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Abstract A line is sought in the plane which minimizes the sum of the k largest
(Euclidean) weighted distances from n given points. This problem generalizes the
known straight-line center and median problems and, as far as the authors are aware,
has not been tackled up to now. By way of geometric duality it is shown that such a
line may always be found which either passes through two of the given points or
lying at equal weighted distance from three of these. This allows construction of an
algorithm to find all t-centrum lines for 1 ≤ t ≤ k in O((k + log n)n3). Finally it is
shown that both, the characterization of an optimal line and the algorithm, can be
extended to any smooth norm.
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1 Introduction

The two most commonly-applied criteria in Locational Analysis are the minimization
of the sum of distances and the maximum distance to a set of points, leading to
the concepts of Median and Center of a set of points. When the facility cannot be
modeled as an isolated point but needs some geometrical figure to be represented,
extensive facility location and location of structures arise. The median straight-line
problem, i.e. finding a line minimizing the sum of weighted distances to the points of
a set, appeared within the context of transportation in the paper [11]. The first exact
algorithm for this problem was devised by Wesolowsky [20]. As far as the authors
are aware, the current lowest time algorithm is that provided by Lee and Ching
[9], that finds the weighted median straight line in O(n2) time. For the unweighted
version, subquadratic algorithms have been proposed (see for example [8]). The
center straight-line problem, i.e. finding a line minimizing the maximum weighted
distance to the points of a given set, was first addressed by Morris and Norback [13]
and an O(n log n) optimal time algorithm was proposed by Edelsbrunner [6]. More
information about median and center line location problems can be found in [17]
and [5].

While the median takes into account all the points, the center objective function
only takes into consideration the (weighted) distance corresponding to the worst
possible situation. The median criteria are concerned with the spatial efficiency and
often provide solutions where remote population areas are discriminated in terms
of accessibility as compared with centrally situated areas. For this reason when
locating public services the center solution concept is usually applied to minimize
the maximum distance between the facility and the farthest consumer. Nevertheless,
locating a facility at the center may cause a large increase in the total (average)
distance, generating a substantial loss in spatial efficiency.

A criterion which at the same time offers a compromise and generalizes these
two classical models is the k-centrum which minimizes the sum of the k largest
weighted distances to points. The particular cases of k = 1 and k = n correspond
to the center and the median, respectively. However, the k-centrum criterion has
only been applied to point location, (see [19] for point facility location problems in
networks with the k-centrum criterion) but not to dimensional structures location [5].

Due to the averaging within the group of the worst outcomes the k-Centrum
criterion reduces the flaws of the center and median criteria and it is a good approach
to locate services in which the total (average) and maximum time to serve (distances)
should be minimized and it may not be acceptable to have zones that are poorly
served while some zones are extremely well served. Therefore, the k-Centrum is an
adequate criterion to locate, for example, emergency services or health care facilities.
In a different context, Romeijn et al. [16] considered the problem of designing a
treatment plan for a technique considered to be the most effective radiation therapy
for many forms of cancer. They propose a model that has the potential to achieve
most of the goals with respect to the quality of the treatment plan. In the restrictions
of the model the k-Centrum criterion, expressed in terms of dose of radiation, is
used in order to establish bounds on the average dose received by the subset of the
structure of volume relative 1 − α receiving the highest amount of dose.

In this paper we investigate the properties of the k-centrum objective for straight
lines by considering it in dual space, leading to a quite efficient algorithm. The
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problem and its geometrical dual are stated in Section 2. In Section 3 we study the
tesselations induced by the dual of the given points and their bisectors. This allows
us to derive a characterization of the solutions in Section 4, leading to a finite set
containing a solution. An algorithm based on the results given in Sections 2, 3 and 4,
is provided in Section 5, together with an analysis of its complexity. Finally, in Section
6 an alternative procedure to compute a more reduced finite dominating set is given
and in Section 7 several particular cases, extensions and further research topics are
considered.

2 The Problem and its Geometrical Dual

A point set P = {p1, . . . , pn} ⊂ R
2 and its associated (positive) weight set W =

{w1, . . . , wn} are given. For 1 ≤ k ≤ n, the k-Centrum straight-line problem consists
in finding a straight line � that minimizes the sum of the k largest weighted Euclidean
distances to the points of P or, equivalently, which minimizes the function

f (�) = max
Q ⊂ P
|Q| = k

∑

p∈Q

wpd(�, p) (1)

where d(·, ·) is the point-line Euclidean distance: d(p, �) = minq∈l d(p, q).

In order to solve it, the problem will be transformed into an equivalent one stated
in the geometrical dual of the Euclidean plane. For this purpose, let us consider the
duality map that associates with each point p = (px, py) ∈ R

2 the dual (non-vertical)
straight line p∗ : y = pxx − py, and with the non-vertical straight line � : y = mx + n
the point �∗ = (m, −n). This map has the following relevant properties [4]:

1. Preserves incidence between points and straight-lines: p ∈ � if and only if �∗ ∈ p∗.
2. Preserves the relative position between points and straight lines: p is above � if

and only if �∗ is above p∗.
3. The map is idempotent, i.e. the bi-dual of either a point or a straight line

coincides with the original.
4. For the Euclidean distance

d(p, �) = dv(�
∗, p∗)√

1 + �∗
x

2
(2)

where �∗
x denotes the abcissa of �∗ and dv(·, ·) is the vertical distance, which for

the points p = (px, py), q = (qx, qy) ∈ R
2 is defined as:

dv(p, q) =
{ |py − qy|, when px = qx

∞, when px �= qx

and for a point p = (px, py) and a non-vertical straight line � : y = mx − n as

dv(p, �) = min
q∈�

dv(p, q)

= |py − mpx + n| (3)

The duality map is a bijection between the primal and the dual planes transforming
points in non-vertical straight lines and vice-versa. This fact along with the above
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properties allow us to state an equivalent problem in the dual. If P∗ = {p∗
1, . . . , p∗

n}
is the dual image of the set P, then finding a minimum of the function of Eq. 1 is
equivalent to finding a minimum of the function:

f ∗(�∗) = max
Q∗ ⊂ P∗
|Q∗| = k

∑

p∗∈Q∗

wpdv(p∗, �∗)
√

1 + �∗
x

2
(4)

except when the minimum of Eq. 1 is a vertical straight line, in which case it
corresponds to some point at infinity of the dual plane.

3 Tessellations of the Dual Plane

The following two tessellations of the dual plane will be useful for solving the
straight-line k-Centrum problem.

First define the bisector of the weighted straight lines p∗
i , p∗

j ∈ P∗ by

bisv(p∗
i , p∗

j) = {�∗ : widv(p∗
i , �

∗) = w jdv(p∗
j , �

∗)}
Using Eqs. 2 and 3 we can see that �∗ = (m, n) ∈ bisv(p∗

i , p∗
j) corresponds to the

equations

wi|(pi)y − m(pi)x + n| = w j|(pj)y − m(pj)x + n|
It follows that the bisector of two straight lines p∗

i and p∗
j with different weights

consists of two non-vertical straight lines in the dual plane with the same intersection
point as p∗

i and p∗
j , and when p∗

i and p∗
j are parallel the two branches of the bisector

are also parallel to them. When the weights are equal, one of these bisector branches
is vertical in case p∗

i and p∗
j intersect, and when they are parallel the bisector is

reduced to a single line (the second being the line at infinity).

Lemma 1 The set Bv(P∗) = {bisv(p∗
i , p∗

j) : i �= j, 1 ≤ i ≤ n, 1 ≤ j ≤ n} induces a par-
tition of the dual plane into polygonal regions. All points within each such region
consist of dual images of straight lines for which the ordering of the weighted distances
to the elements of P remains constant.

Proof Since the vertical distance function is continuous with respect to �∗, the order
between widv(p∗

i , �
∗) and w jdv(p∗

j , �
∗) may only be inverted by crossing some line

of bisv(p∗
i , p∗

j). Therefore, for each region R∗ determined by Bv(P∗), there exists a
permutation σ of the set {1, 2, . . . , n} so that

wσ(1)dv(p∗
σ(1), �

∗) ≥ wσ(2)dv(p∗
σ(2), �

∗) ≥ · · · ≥ wσ(n)dv(p∗
σ(n), �

∗), ∀�∗ ∈ R∗

from which it follows that

wσ(1)

dv(p∗
σ(1), �

∗)
√

1 + �∗
x

2
≥ wσ(2)

dv(p∗
σ(2), �

∗)
√

1 + �∗
x

2
≥ · · · ≥ wσ(n)

dv(p∗
σ(n), �

∗)
√

1 + �∗
x

2

or equivalently,

wσ(1)d((�∗)∗, pσ(1)) ≥ wσ(2)d((�∗)∗, pσ(2)) ≥ · · · ≥ wσ(n)d((�∗)∗, pσ(n))


�
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Definition 2 The tesselation of the dual plane determined by Bv(P∗) induces the
Vertical Distance Completely-Ordered Dual Voronoi Diagram of P, VDCODVD(P).
Each region of VDCODVD(P) is the union of polygonal cells, not necessarily
bounded, of the tessellation induced by Bv(P∗) in which the ordering of weighted
distances to the elements of P∗ remains constant.

Definition 3 The set P∗, in the dual plane, induces a partition in regions forming a
Dual Tessellation that will be denoted by DT(P).

The vertices of the regions of VDCODVD(P) are described as follows:

Lemma 4 Extreme points of regions of VDCODVD(P) are (at least) of one the three
following types :

– Type 1 points: Vertices of a bisector of two elements of P∗, or equivalently
duals of a line connecting two points of P.

– Type 2 points: Intersections of two edges of VDCODVD(P) corresponding
to the bisectors of two pairs of P∗ with a common element. In fact, in such extreme
points six edges of VDCODVD(P) are concurrent.

– Type 3 points: Intersections of two edges of VDCODVD(P) corresponding
to the bisectors of two pairs of P∗ without common elements. In fact, in such
extreme points four edges of VDCODVD(P) are concurrent.

Proof Let v be a vertex of a region of VDCODVD(P). Since such a region is limited
by bisectors of pairs of elements of P∗, three possibilities arise:

1. v is the intersection of the two branches of a bisector bisv(p∗
i , p∗

j), p∗
i , p∗

j ∈ P∗
and therefore v ∈ p∗

i ∩ p∗
j . As a consequence, v is the dual point of a straight-line

passing through pi and pj.
2. v is the intersection of two bisectors bisv(p∗

i , p∗
j) and bisv(p∗

i , p∗
t ), p∗

i , p∗
j , p∗

t ∈
P∗ and therefore v is at the same weighted vertical distance of p∗

i , p∗
j and p∗

t . As
a consequence, bisv(p∗

j , p∗
t ) also passes through v and, since the three bisectors

coincide in v, (at least) six edges of VDCODVD(P) are concurrent in v.
3. v is the intersection of two bisectors bisv(p∗

i , p∗
j) and bisv(p∗

s , p∗
t ) where

p∗
i , p∗

j , p∗
s , p∗

t are four different elements of P∗. As a consequence, (at least) four
edges of VDCODVD(P) are concurrent in v.


�

In Fig. 1, where P = {(1,−1), (1/2,−2), (−1, 2), (1/8, 2)} with weights W =
{1, 2, 1, 4}, a connected component of the Voronoi region (1, 4, 3, 2) of the
VDCODVD(P) is partially depicted. Vertex v3 is a type 1 point, vertex v4 is
a type 3 point and vertices v1 and v2 are type 2 points.

In order to simplify the following proofs we will ignore for the moment details
that would clutter our understanding of the geometric concepts we are dealing with.
Therefore in case k < n we will assume from now on that the points in P are in
general position in the dual plane, in the sense that type # points (# = 1, 2, 3)
are uniquely determined and that for each type 3 point there is no p∗

i line which
crosses it. Similarly when k = n, we assume that vertices of DT(P) are uniquely
determined. These restrictions will be removed in the last section (more information
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Fig. 1 Connected component of a Voronoi region

about the general treatment of degenerate cases in geometrical algorithms can be
found in [4]). In particular, this general position assumption in the dual plane is
equivalent to the following four conditions on the primal plane:

1. There are neither three aligned points in P nor four points at equal weighted
distance from a straight line.

2. If � crosses pi, pj ∈ P then for each pair {ps, pt}, ps, pt ∈ P \ {pi, pj},
ws d(ps, �) �= wt d(pt, �) holds.

3. If a straight line � satisfies wi d(pi, �) = w j d(pj, �) and ws d(ps, �) = wt d(pt, �)

for four points pi, pj, ps, pt ∈ P then wh d(ph, �) �= wm d(pm, �) for any
ph, pm ∈ P \ {pi, pj, ps, pt} and no point p ∈ P \ {pi, pj, ps, pt} lies on �.

4. Given ph, pi, pj ∈ P, if there exists a straight line � so that wh d(ph, �) =
wi d(pi, �) = w j d(pj, �), then ws d(ps, �) �= wt d(pt, �) for any pair of points
ps, pt ∈ P \ {ph, pi, pj}.

Lemma 5 Each of the connected components of a region R∗ of VDCODVD(P), is
crossed by a single dual straight line p∗ ∈ P∗ at most. In this case p∗ is the element of
P∗ closest to the points of R∗, in terms of the weighted vertical distance.

Proof Contrarily let us assume that there are two such straight lines p∗
i , p∗

j ∈ P∗
crossing R∗. In case p∗

i ∩ p∗
j �= ∅, p∗

i ∪ p∗
j partitions the dual plane into four regions,

and each of the half straight lines composing bisv(p∗
i , p∗

j) crosses just one of them.
Otherwise, when p∗

i ∩ p∗
j = ∅ and wi �= w j, then one of the straight lines composing

bisv(p∗
i , p∗

j) separates p∗
i from p∗

j ; if wi = w j instead, then bisv(p∗
i , p∗

j) is composed
of only one straight line separating p∗

i from p∗
j . Consequently, if p∗

i and p∗
j cross the

same connected component of R∗ then bisv(p∗
i , p∗

j) crosses R∗ also, contradicting the
fact that R∗ is a region of VDCODVD(P).

For the second part, let us assume that p∗ ∈ P∗ crosses R∗. According to the
definition of R∗, the order of the weighted vertical distances to the elements of P∗
remains fixed in this region. Since dv(�

∗, p∗) = 0 for all �∗ ∈ p∗ ∩ R∗ and no other
element of P∗ crosses R∗ (thus the distance from any line of P∗ \ {p∗} to all the inner
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points of R∗ is strictly positive), p∗ is necessarily the closest element of P∗ to all the
points of R∗. 
�

4 A Finite Dominating Set

Lemma 6 For k < n the objective function f ∗ in the dual plane is quasiconcave in
each cell of VDCODVD(P). It is also strongly quasiconcave on each segment of a
non-vertical bisector in which the subset of points of P defining the function remains
constant. When k = n, f ∗ is quasiconcave in each region of DT(P).

Proof

– Case k < n : Let R∗
C be a connected component of VDCODVD(P); the ordering

of the weighted vertical distances from lines p∗
i to points in it remains constant,

i.e. there is a fixed permutation σ of P such that ∀ �∗ ∈ R∗
C :

wσ(1)dv(�
∗, p∗

σ(1)) ≥ · · · ≥ wσ(n)dv(�
∗, p∗

σ(n))

It follows that for any �∗ ∈ R∗
C the k largest weighted vertical distances are always

obtained at the same straight lines p∗
σ(i) (i = 1, . . . , k). Since k < n this does

not involve p∗
σ(n) which, by Lemma 5, is the only straight line that can cross

R∗
C. Therefore, the vertical point-line distance given in Eq. 3 becomes a linear

function and the function

f ∗(�∗) =
∑k

i=1 wσ(i) dv(�
∗, p∗

σ(i))√
1 + �∗

x
2

on R∗
C is a sum of linear functions divided by a positive convex function, yielding

a quasiconcave function. Furthermore, the same argument can be used to show
that the function is explicitly quasiconcave as can be checked using Theorem
51 of [12]. That is, f ∗(λ�∗

(1) + (1 − λ)�∗
(2)) > min{ f ∗(�∗

(1)), f ∗(�∗
(2))}, ∀�∗

(1), �
∗
(2) ∈

R∗
C, f ∗(�∗

(1)) �= f ∗(�∗
(2)), λ ∈ (0, 1).

Let sg be a segment of a non-vertical bisector, say bisv(p∗
i , p∗

j), for which neither
widv(�

∗, p∗
i ) nor w jdv(�

∗, p∗
j) occupy the k-th and the (k + 1)-th position in the

descending order of weighted distances for all �∗ ∈ sg. Since the numerator is a
sum of linear functions, there exist A, B, C ∈ R such that

f ∗(�∗) = A�∗
x + B�∗

y + C
√

1 + �∗2
x

, �∗ = (�∗
x, �

∗
y) ∈ sg.

Since sg is a line segment the coordinates of �∗ are related by �∗
y = a�∗

x + b .

Therefore,

f ∗(�∗) = A�∗
x + B(a�∗

x + b) + C√
1 + �∗2

x

= A′�∗
x + C′

√
1 + �∗2

x

.

Since the numerator is the sum of weighted vertical distances to the farthest
straight lines then (A′, C′) �= (0, 0) and the function f ∗(�∗) is strictly monotone
on sg. Therefore, f ∗(λ�∗

(1) + (1 − λ)�∗
(2)) > min{ f ∗(�∗

(1)), f ∗(�∗
(2))}, ∀λ ∈ (0, 1),

and f ∗ is strongly quasiconcave on sg.
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– Case k = n : In each region R∗ of DT(P) all the vertical distances to lines of
P∗ are linear, since none of the terms inside absolute values in Eq. 3 changes
sign. Therefore, on R∗ f ∗ is again a sum of linear functions divided by a positive
convex function, yielding a quasiconcave function.


�

From the Lemma 6, a finite dominating set for the k-Centrum straight-line
problem (i.e. a set containing at least a solution) is composed, when k < n, of the
primals of the extreme points of the regions of VDCODVD(P) and, when k = n, of
the primals of the extreme points of the regions of DT(P). In the following theorem it
is shown that this set can be reduced: when k < n type 3 points can be removed from
the finite dominating set and, when k = n, type 2 and type 3 points can be removed
from this set.

Theorem 7 A finite dominating set for the k-Centrum straight-line problem is com-
posed of the primals of type 1 and type 2 points, i.e. all straight lines passing through
two points of P and all straight lines at equal weighted distances from three points of
P. When k = n it may be restricted to the primals of type 1 points only.

Proof First we will consider the case k < n. Candidate straight lines correspond
under the geometrical duality map to candidate points for the dual objective function.
By Lemma 6, and since a quasiconcave function attains its minimum in an extreme
point of any polygonal region, the set of extreme points (possibly at infinity) of each
region of VDCODVD(P), i.e. all points of type 1, 2 or 3 and extreme points at
infinity, form a dominating set for f ∗.

(i) Let us assume that the minimum is attained in a vertex of VDCODVD(P).
However, type 3 points are dominated by other extreme points or there exists
a type 1 or 2 point whose objective function value is at least equal to that
of the type 3 point. To prove this, let �

∗
be such a point, i.e. �

∗
is a point

of intersection of the bisectors of two disjoint pairs {p∗
i , p∗

j} and {p∗
s , p∗

t }.
Therefore, widv(�

∗
, p∗

i ) = w jdv(�
∗
, p∗

j) and wsdv(�
∗
, p∗

s ) = wtdv(�
∗
, p∗

t ). From
our assumption of the general position we know that all pm ∈ P \ {pi, pj, ps, pt}
satisfy widv(�

∗
, p∗

i ) �= wmdv(�
∗
, p∗

m) �= wsdv(�
∗
, p∗

s ) and we may assume that
widv(�

∗
, p∗

i ) < wsdv(�
∗
, p∗

s ). Let H∗
ij and H∗

ji be the two half planes defined

by the branch of bisv(p∗
i , p∗

j) passing through �
∗
, and let U∗ be a small

enough �
∗
-neighborhood so that its intersection with any bisector different

from bisv(p∗
i , p∗

j) and bisv(p∗
s , p∗

t ), as well as with any element of P∗, is empty
(Fig. 2). If the distances to the elements of P∗ are ordered from greater to lesser
and in case of tie the order of the subindexes, two possibilities arise:

a. If none of the pairs of distances {widv(�
∗
, p∗

i ), w jdv(�
∗
, p∗

j)} and {wsdv(�
∗
,

p∗
s ), wtdv(�

∗
, p∗

t )} occupy the k-th and (k + 1)-th positions, then the set of k
straight lines the farthest away from �

∗
does not change in U∗, and neither

does the function f ∗ which is therefore quasiconcave in U∗ and strongly
quasiconcave on at least one bisector crossing �

∗
, so it cannot be a local

minimum of f ∗.
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Fig. 2 Theorem 7 proof

b. If one of the pairs of distances {widv(�
∗
, p∗

i ), w jdv(�
∗
, p∗

j)} and {wsdv(�
∗
,

p∗
s ), wtdv(�

∗
, p∗

t )} occupies the k-th and (k + 1)-th positions, say widv(�
∗
,

p∗
i ) = w jdv(�

∗
, p∗

j), consider the half neighborhood Û∗ = U∗ ∩ H∗
ij of �

∗
, in

which the set of k straight lines of P∗ farthest away remains constant. Let
r∗ denote the boundary of the half plane defining Û∗ (from here on it will
be called the straight line support of Û∗).
If r∗ is a non-vertical straight line then f ∗ is a quasiconcave function in Û∗

and strongly quasiconcave in r∗ ∩ Û∗; thus since �∗ is not an extreme point
of Û∗ it cannot be a local optimum of f ∗.
If r∗ is a vertical straight line, let �∗

1, �
∗
2, . . . , �

∗
m(r∗) ∈ r∗ be the vertices

of VDCODVD(P) in r∗, ordered from lesser to greater y-coordinate.
Let �∗∞(r∗) denote the infinity point of r∗. For each type 3 point �∗

s ∈
{�∗

1, �
∗
2, . . . , �

∗
m(r∗)}, let Û∗

s denote the half neighborhood of this point which

is defined in a similar way to Û∗.
Let us first assume that �∗

h = �
∗

for some h, 2 ≤ h ≤ m(r∗) − 1. Then,
according to the definition of Û∗

h the set of k elements of P∗ farthest away
from �∗

h remains constant on Û∗
h and therefore f ∗ is a linear function on the

segment �∗
h−1�

∗
h+1. There are two possibilities:

• f ∗ is constant on �∗
h−1�

∗
h+1. In this case (see Fig. 3), if all the ver-

tices �∗
1, �

∗
2, . . . , �

∗
m(r∗) were type 3 points and the corresponding half

neighborhoods Û∗
1 , Û∗

2 , . . . , Û∗
m(r∗) were supported by r∗, then the set

of k elements of P∗ farthest away would remain constant along the
vertical straight line r∗ and, given that f ∗ is linear on r∗ and constant
on �∗

h−1�
∗
h+1, it would also be constant in r∗. This cannot happen since,

when moving from �∗
1 to �∗∞(r∗) along r∗, the function f ∗ is strictly

increasing. Therefore some �∗
d with 1 ≤ d ≤ h − 1 exists which is either

not a type 3 point or its neighborhood is not supported by r∗. In a similar
way, when moving from �∗

m(r∗) to �∗∞(r∗) along r∗, the function f ∗ is
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Fig. 3 Vertices in a vertical
line

strictly increasing and some �∗
d′ with h + 1 ≤ d′ ≤ m(r∗) exists which is

either not a type 3 point or its neighborhood is not supported by r∗.
Since the arguments are similar we will only deal with the first case,
i.e. with �∗

d. If Û∗
d is not supported by r∗ then f ∗ is quasiconcave in Û∗

d
and strongly quasiconcave on the supporting straight line, and it follows
that �∗

d is not a local optimum. Since f ∗(�∗
h) = f ∗(�∗

d), �∗
h(= �

∗
) it is not

a global optimum either. If �∗
d is not a type 3 point, we have found a

non-type 3 point providing the same value for the objective function
than �∗

h(= �
∗
).

• f ∗ is not constant on �∗
h−1�

∗
h+1. Let us assume, without loss of generality,

that f ∗ decreases when moving from �∗
h+1 towards �∗

h−1; then, as in
the former case with the points �∗

d; 1 ≤ d ≤ h − 1, we obtain the same
result.

In case h = 1 or h = m(r∗) then it is sufficient to take �∗
0 = �∗

m(r∗)+1(=
�∗∞(r∗)), respectively, and since f ∗ is decreasing when moving from �∗∞(r∗)
towards �∗

1 on r∗ and from �∗∞(r∗) towards �∗
m(r∗), we can proceed similarly

to the previous case.
(ii) Let us assume that the minimum of f ∗ is not attained in a vertex of

DVCODVD(P), then there exists a minimum of f ∗ reached at the infinity
point of a half straight line of DVCODVD(P). In this case the solutions to
the k-Centrum problem are vertical straight lines in the primal plane. Let us
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denote V as the set of such vertical lines and Gα as a rotation whose vertex
is the origin; its angle is chosen in order that the transformed set Gα(V)

does not contain any vertical line. Then, since the straight lines of Gα(V)

are optima of the problem associated to Gα(P) and are not vertical, the dual
points are type 1 or 2 extreme points of DVCODVD(P) and, therefore, at
least one line of Gα(V) crosses two points of Gα(P) or it is at equal weighted
distance from three points.

Finally, let us consider the case in which k = n. Using Lemma 6, if R∗ is a region of
DT(P), then f ∗ is a quasiconcave function in R∗ and, therefore, at least a minimum
of f ∗ exists which is a vertex of DT(P) or an infinity point of any of the half straight
lines forming the edge set of DT(P). In the first case, it follows that a solution
corresponding to a non vertical line crossing two points of P exists. In the second
case, the solution corresponds to a vertical straight line, which, by means of a similar
case (ii) rotation argument, can be proven to cross two points of P. 
�

5 An Algorithm

The dual finite dominating set derived in the last section consists of intersections
between elements of Bv(P∗) when k < n and straight lines of P∗ when k = n,
respectively. Since there are specific and efficient algorithms for the latter case [9],
we will discuss here only the first. In order to examine the candidates we will consider
each pair {pi, pj} of points and the bisector bisv(p∗

i , p∗
j) of their dual points, taking

each of the two possible lines of the bisector bism
v (p∗

i , p∗
j); m = 1, 2 separately.

Let

C∗
ij,m = (p∗

i ∩ p∗
j) ∪ {bism

v (p∗
i , p∗

j) ∩ bisv(p∗
i , p∗

j′) : j′ �= i, j}
be the candidate set on the branch m of bisv(p∗

i , p∗
j), and Cm

ij = {(C∗
ij,m)∗} ∪ {�v

ij} be
the corresponding straight-line set on the primal plane to which the vertical straight
line �v

ij passing through the common point Om
ij = (bism

v (p∗
i , p∗

j))
∗ has been added.

Then the straight-line set

∪n
i=1 ∪n

j=i+1 ∪2
m=1 Cm

ij

contains the dominating set described in Section 4, and we may solve the problem by
repeated restriction to each Cm

ij .
The problem of finding the line in Cm

ij that minimizes the sum of the k largest
weighted distances may be transformed in an equivalent non-weighted one,

min
�∈Cm

ij

max
Q ⊂ Pm

ij
|Q| = k

∑

pm∈Q

d(�, pm) (5)

with given point set

Pm
ij = {pm

t,ij = Om
ij + wt

−−−→
Om

ij pt | pt ∈ P}.
Note that under this transformation the weighted distance from a point pt of P

to any straight line � of Cm
ij is equal to the unweighted distance from pm

t,ij to � (see
Fig. 4.)
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Fig. 4 Triangles similarity

In order to determine the k farthest points in Pm
ij from the straight line � ∈ Cm

ij , the
algorithm described in [14] will be applied. When k is fixed, after an O(kn + n log n)
preprocessing time, the k ordered farthest points to any line � are computed in O(k +
log n). If k is part of the input, the preprocessing time is O(n2).

A short description of the algorithm follows:

Input: The sets P of points and W of associated non-negative weights to the points
in P.

Output: A t-centrum straight line for each t = 1, 2, . . . , k.

For each pair {pi, pj} ∈ P, m = 1, 2, repeat:

– Step 1: Obtain the sets Cm
ij

– Step 2: Construct the set of non-weighted points Pm
ij and preprocess it

as in [14].
– Step 3: For each straight line � ∈ Cm

ij , determine the k farthest points
(in decreasing order of distances) from � by way of the algo-
rithm described in [14] and for each t-centrum problem (t =
1, 2, . . . , k) evaluate the objective function, and update if nec-
essary the best solution found.

Theorem 8 All t-centrum (1 ≤ t ≤ k) straight lines may be computed in O(kn3 +
n3 log n) time. When k is part of the input, this complexity is O(n4).

Proof The algorithm described above has the announced time-complexity. Indeed,
Step 1 and the construction of the set Pm

ij takes O(n) time. The preprocessing of Pm
ij

in Step 2 requires O(kn + n log n) time. The search of the k farthest points from each
straight line � ∈ Cm

ij and the computation of the corresponding objective functions use
O(k + log n) time; since there are O(n) straight lines in Cm

ij , Step 3 requires O(k n +
n log n) time. Finally there are O(n2) Cm

ij sets.
The last result follows from k = O(n). 
�

5.1 A Short Example

A set P and its associated weight set W, where

P = {(0.5, 3), (2.5, .8), (3.7, 3.8), (6, 5), (7, 1.2), (8.5, 2.9), (8.6, 4.6), (12, 1.6)}



J Math Model Algor (2010) 9:1–17 13

Fig. 5 Solutions for all the k-values

and

W = {1/145, 1/130, 1/704, 1/322, 1/560, 1/237, 1/116, 1/185}

are considered. The points of P represent the capitals of Andalusia and the associ-
ated weights are the inverse of the populations (in thousand inhabitants) of these
cities. In the Fig. 5 the solutions for all the k-values have been represented.

6 An Alternative Procedure

In the last section an easily implementable algorithm based in the finite dominating
set given in Section 4 has been described. Nevertheless this finite dominating set
could be too large when it is desired to find a k-centrum straight-line only for a fixed
k-value. In what follows we will describe a procedure (suggested by the authors in
[10]) in order to reduce the finite dominating set and obtain an alternative algorithm,
with less complexity, when only a fixed k-value is considered.

For each point p = (px, py) ∈ P and its dual p∗ : y∗ = pxx∗ − py let us consider
the dual planes defined by

α∗
1(p∗) : z∗ = wp(pxx∗ − py − y∗) and α∗

2(p∗) : z∗ = −wp(pxx∗ − py − y∗)

It is clear that for any dual point �∗ = (�∗
x, �

∗
y) and each p∗ ∈ P∗

wpdv(�
∗, p∗) = max {wpdv((�

∗
x, �

∗
y, 0), α∗

1(p)), wpdv((�
∗
x, �

∗
y, 0), α∗

2(p))}

Let us consider the set of 2n dual planes H = {α∗
1(p), α∗

2(p) : p ∈ P} and A(H) the
arrangement of H (note that A(H) is an arrangement in the three-dimensional dual
space). Then for each dual point, the k highest planes correspond to the k-farthest
lines of P∗. Once the 2n planes have been computed, the procedure is similar to those
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used by Chazelle and Edelsbrunner [3] in order to compute the k-order Voronoi
diagram: compute the n − k level of A(H), i.e. the closure of the points that lie in
some plane and have n − k planes strictly below them (and therefore have k planes
above them, including the one they lie on) and project the edges and vertices of
the n − k level onto the plane z∗ = 0. This projection (in what follows πn−h(H)),
induces a tesselation in the dual plane such that for each cell all its points have the
same set of k highest planes of H and are duals to lines that have the same set of k
farthest points of P. Therefore, in each cell, the sum in the objective function is over a
fixed set.

Moreover, the sign of each term in the numerator is fixed and, therefore, the
objective function is concave over each cell of the tesselation and the optimum values
are obtained in the vertices of the cells and infinite points (corresponding to vertical
primal lines) of the dual straight lines.

The k-level of an arrangement of n planes can be computed in O(n log f + f 1+ε)

[2] where f is the complexity of the k-level. Since the best upper bound on this
complexity is O(nk3/2) [18], when k is a fixed value πn−h(H) and therefore a finite
dominating set can be computed in O(n log n + n1+ε).

7 Particular Cases, Extensions and Further Research

7.1 Strong Characterization of Solutions

If weights are different pairwise (i.e. wi �= w j, for i �= j) then there is no vertical
bisector in the dual plane. Therefore, according to the proof of Theorem 7, no type 3
point can be optimal. The strong property of the solutions follows:

Corollary 9 If the weights of points in P are different pairwise then any optimal k-
Centrum straight-line �opt satisfies one of the following conditions:

1. �opt crosses two points pi, pj ∈ P.
2. �opt is at equal weighted distance from three points in P:

wid(�opt, pi) = w jd(�opt, pj) = wh(�opt, ph).

7.2 Degeneracies

In this subsection the case where points are not in general position is discussed. In or-
der to include cases of degeneracy the classification of the vertices of VDCODVD(P)
will be reformulated:

Definition 10 If points in P are not in general position we will say that a vertex of
VDCODVD(P) is

– a type 1 point if it is vertex of a bisector of two elements of P∗, or,
equivalently, dual of a line connecting two points of P.
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– a type 2 point if it is the intersection of two edges of VDCODVD(P)
corresponding to the bisectors of two pairs of P∗ with a common element and
it is not a type 1 point.

– a type 3 point if it is the intersection of two edges of VDCODVD(P)
corresponding to the bisectors of two pairs of P∗ without common elements and
it is neither a type 1 nor a type 2 point.

The finite dominating set for the straight line k-Centrum problem remains valid
when points are not in general position. The only issue to be checked is that any
type 3 point can be removed from the finite dominating set, either because it
is dominated or because there is a type 1 or 2 point with the same objective
function value. Let �

∗
be a type 3 point. The first observation is that only one

dual straight line p∗
t ∈ P∗ can cross it because, otherwise, it would be a type 1

point. For the same reason, for any bisector bisv(p∗
i , p∗

j) crossing �
∗
, if some p∗

t

exists also crossing it, then t /∈ {i, j}. The only straight line p∗
t ∈ P∗ that can cross �

∗

is the nearest one, and therefore p∗
t does not appear in the objective function. From

there, the application of the rest of the proof of Theorem 7 does not need any further
explanation.

7.3 More General Norms

For general norms, the expression Eq. 2 becomes:

dμ(p, �) = dv(�
∗, p∗)

μ0(u)
(6)

where μ0 is the polar norm of μ, u = (�∗
x,−1) with �∗

x the slope of the straight line
�∗. If μ is a smooth norm then μ0 is strictly convex. Therefore, the dual objective
function is:

f ∗
μ(�∗) = max

Q∗ ⊂ P∗
|Q∗| = k

∑

p∗∈Q∗

wpdv(p∗, �∗)
μ0(�∗

x,−1)
. (7)

This is a quasiconcave function on each cell of VDCODVD(P) and, therefore,
attains its minimum at one of its vertices or in the infinite point associated to one of
the edges. Furthermore, since the function μ0(�∗

x, −1) is strictly convex on each non-
vertical segment, it is possible to define a half-neighbourhood where f ∗

μ is strongly
quasiconcave on the segment of the supporting straight line. Therefore, the finite
dominating set of Theorem 7 remains the same for smooth norms.

In order to justify the validity of the algorithm for the case of smooth norms, some
comments are needed. On the one hand, the following lemma proves that in the case
of a general norm the weighted problem can be transformed into an unweighted one
such as Eq. 5.

Lemma 11 Given two points p and x0, a general norm μ, a positive value w and
the point p′ = x0 + w

−→x0 p, for each straight line � crossing x0 the following holds:
dμ(p′, �) = wdμ(p, �).
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Proof Denoting the scalar product by < ·, · >, consider the straight line � = {x ∈
R

2 :< u, x >= c}, then the distance between p′ and � is:

dμ(p′, �) = | < u, p′ > −c|
μ0(u)

= | < u, x0 + w(p − x0) > −c|
μ0(u)

= | < u, x0 > +w < u, p > −w < u, x0 > −c|
μ0(u)

= w| < u, p > −c|
μ0(u)

= wdμ(p, �).


�

Finally, given a set of points P, the algorithm proposed in [14] computes the k
farthest points of P to a query line � using the arrangement of the set of lines P∗, the
dual point �∗ and the vertical distance in the dual plane. Since all these structures are
independent of the norm μ considered, this algorithm can be applied in this case for
computing the k farthest points from each candidate line in the set Cm

ij . However, the
norm itself will have to be used for evaluating the objective function.

7.4 Further Research

Several k-Centrum type problems are interesting but lie out of the scope of this
paper. For example, both the problems of finding a median and a center hyperplane
in R

3 have been studied and O(n3) and O(n(17/11)+ε) algorithms have been suggested
in [7] and [8], and [1], respectively. As far as the authors are aware no paper on the
k-Centrum Hyperplane has been published. For other geometrical structures such as
segments, half-lines and circles, the extreme cases of k = 1 and k = n have also been
studied. Finally, as in [17] and [15], the application of non-smooth norms and more
generally that of gauges would be of particular interest in location problems in which
these kinds of distances are appropriate.

References

1. Agarwal, P.K., Aronov, B., Sharir, M.: Computing envelopes in four dimensions with applica-
tions. SIAM J. Comput. 26, 1714–1732 (1997)

2. Chan, T.: Output-sensitive results on convex hulls, extreme points, and related problems. In:
Proceedings of the 11th Annual Symposium on Computational Geometry, pp. 10–19 (1995)

3. Chazelle, B., Edelsbrunner, H.: An improved algorithm for constructing kth-order Voronoi
diagrams. Trans. Comput. C-36, 1349–1354 (1987)

4. De Berg, M., Van Krevel, M., Overmars, M., Schwarzkopf, O.: Computational Geometry:
Algorithms and Applications. Springer, New York (2000)

5. Díaz-Báñez, J.M., Mesa, J.A., Schöbel, A.: Continuous location of dimensional structures. Eur.
J. Oper. Res. 152, 22–44 (2004)

6. Edelsbrunner, H.: Finding traversals for sets of simple geometric figures. Theor. Comp. Sci. 35,
55–69 (1985)

7. Houle, M.E., Imai, H., Imai, K., Robert, J.-M., Yamamoto, P.: Orthogonal weighted linear L1
and L∞ approximations and applications. Discrete Appl. Math. 43, 217–232 (1993)

8. Korneenko, N.M., Martini, H.: Hyperplane approximation and related topics. In: Pasch, J. (ed.)
New Trends in Discrete and Computational Geometry, pp. 135–161. Springer, New York (1993)



J Math Model Algor (2010) 9:1–17 17

9. Lee, D.T., Ching, Y.T.: The power of geometric duality revisited. Inf. Process. Lett. 21, 117–122
(1985)

10. Lozano, A.J., Mesa, J.A., Plastria, F.: Improved results for the k-centrum straight-line location
problem. In: Proceedings of the 20th European Workshop on Computational Geometry, pp.
217–219 (2004)

11. MacKinnon, R., Barber, G.M.: A new approach to network generation and map representation:
the linear case of the location-allocation problem. Geogr. Anal. 4, 156–168 (1972)

12. Martos, B.: Nonlinear Programming: Theory and Methods. North-Holland, Amsterdam (1975)
13. Morris, J.G., Norback, J.P.: Linear facility location-solving extensions on the basic problems.

Eur. J. Oper. Res. 12, 90–94 (1983)
14. Nandy, S.C., Das, S., Goswami, P.P.: An efficient k nearest neighbors searching algorithm for a

query line. Theor. Comp. Sci. 299, 273–288 (2003)
15. Plastria, F., Carrizosa, E.: Gauge-distances and median hyperplanes. J. Optim. Theory Appl.

110(1), 173–182 (2001)
16. Romeijn, H.E., Ahuja, R.K., Dempsey, J.F., Kumar, A.: A new linear programming approach to

radiation therapy treatment planning problems. Oper. Res. 54, 201–216 (2006)
17. Schöbel, A.: Locating Lines and Hyperplanes-Theory and Algorithms. Kluwer Academic,

Dordrecht (1999)
18. Sharir, M., Smorodinsky, S., Tardos, G.: An improved bound for k-sets in three dimensions.

Discrete Comput. Geom. 26, 195–204 (2001)
19. Tamir, A.: The k-centrum multi-facility location problem. Discrete Appl. Math. 109, 293–307

(2001)
20. Wesolowsky, G.O.: Location of the median line for weighted points. Environ. Plann. A 7, 163–

170 (1975)


	The k-Centrum Straight-line Location Problem
	Abstract
	Introduction
	The Problem and its Geometrical Dual
	Tessellations of the Dual Plane
	A Finite Dominating Set
	An Algorithm
	A Short Example

	An Alternative Procedure
	Particular Cases, Extensions and Further Research
	Strong Characterization of Solutions
	Degeneracies
	More General Norms
	Further Research

	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


