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Abstract We point out that the total number of trails and the total number of paths
of given length, between two vertices of a simple undirected graph, are obtained
as expectation values of specifically engineered quantum mechanical observables.
Such observables are contextual with some background independent theories of
gravity and emergent geometry. Thus, we point out yet another situation in which
the mathematical formalism of a physical theory has some computational aspects
involving intractable problems.
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1 Introduction

When the length is part of the input, counting trails and paths in graphs is usually an
expensive computational task. For example, counting the number of Eulerian trails
and Hamiltonian cycles are #P problems (see [2] and [12], respectively).

In this note, we point out that the number of trails and the number of paths
having generic given length can be obtained as expectation values of specifically engi-
neered quantum mechanical observables. The observables arise from an operational
construction used to associate energy to graphs in certain background independent
models of gravity (see [6, 7]). The Hamiltonian of the system depends only on
minimal information encoded in graphs, like, for example, the degrees sequence and
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the length of trails. The induced dynamics tends to maximize the number of trails of
certain preferred lengths during the time evolution of the system. It has been argued
that such models can exhibit a phase which describes a emergent geometry. We are
interested in remarking some computational aspects of a physical model and it is out
of our scope to propose any algorithm for #P problems.

The remainder of this article is structured as follows: in Section 2 we give
the necessary definitions. Section 2.1 considers trails; Section 2.3, paths. Section 3
concludes the paper with a brief discussion.

2 Counting Trails and Paths

Let G = (V, E) be a simple undirected graph, where V(G) = {1, ..., n}. A walk of
length l in G is a non-empty sequence of vertices v1v2 · · · vlvl+1, such that {vi, vi+1} ∈
E(G), for every i < l. The vertices v1 and vl+1 are said to be the initial and final vertex
of the walk, respectively. If vi = vl+1 then the walk is said to be closed. If vi �= vl+1

then the walk is said to be open. When this is the case, we chose to omit the adjective.
A trail is a walk in which no edges are repeated. A Eulerian trail is a trail of including
all edges. A graph with a Euler trail is said to be Eulerian. A path is a trail in which
no vertices are repeated. A cycle is a closed path. A Hamiltonian cycle is a cycle of
length n, that is, a cycle including all vertices of G. A graph with a Hamiltonian cycle
is said to be Hamiltonian. See the book by Diestel [4], for a reference on the concepts
and terminology of graph theory.

The adjacency matrix of G is a binary n × n matrix, denoted by A(G), with
A(G)u,v = 1 if {u, v} ∈ E(G) and A(G)u,v = 0, otherwise. Let w(G, l, u, v) be the
number of walks of length l in G, with initial vertex u and final vertex v. It is
well-known that w(G, l; u, v) = A(G)l

u,v , for all u, v ∈ V(G), even if u = v. During
our discussion, it is useful to define a formal adjacency matrix ˜A(G), by replacing
each A(G)u,v = 1 with an independent variable eu,v , where [eu,v, ew,z] = 0, for all
u, v, w, z ∈ V(G). For instance, for the 4-cycle C4,

A(C4) =

⎛

⎜

⎜

⎝

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

⎞

⎟

⎟

⎠

and

˜A(C4) =

⎛

⎜

⎜

⎝

0 e12 e13 0
e21 0 0 e24

e31 0 0 e34

0 e42 e43 0

⎞

⎟

⎟

⎠

.

The walks of lengths 3 between vertex 1 and vertex 2 are given by ˜A(C4)
3
1,2 =

e2
1,3e1,2 + e1,2e2

2,4 + e1,3e3,4e2,4 + e3
1,2 and then w(C4, 3; 1, 2) = 4. We denote by

t(G, l; u, v) and p(G, l; u, v) respectively the number of trails and paths of length l
in G, with initial vertex u and final vertex v.
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2.1 Trails

LetH2
∼= C2 be a two-dimensional Hilbert space with the orthonormal basis {|0〉, |1〉}.

Let a and a† be operators obeying the relation

{a, a†} ≡ aa† + a†a = I.

These operators act on {|0〉, |1〉} as follows: a|0〉 = 0|0〉, a†|0〉 = |1〉, a|1〉 = |0〉 and
a†|1〉 = 0|1〉. The Hermitian combination N = a†a is the so-called particle number
operator and it has the property that

N|k〉 = a†a|k〉 = k|k〉,
for k = 0, 1. Each l-th (l ≥ 2) normally ordered power of N gives : Nl : |k〉 = 0|k〉.
For instance,

: N2 : |k〉 = a†a†aa|k〉 = 0|k〉.
This is equivalent to say : Nl : only has zero eigenvalues. Let us now define the space

HV2 :=
⊗

u,v∈V(G)

(H2)u,v ,

where dimHV2 = 2(n
2). Each pair {u, v} is associated to a space

(H2)u,v ≡ span{|0u,v〉, |1u,v〉}.
All vectors

|x〉 =
⊗

u,v∈V(G)

|xu,v〉,

being xu,v ∈ {0, 1} and x ∈ {0, 1}(n
2) (i.e., the set of binary strings of length n(n − 1)/2)

form an orthonormal basis of HV2 . The state in HV2 corresponding to the graph G is
the basis state |ψG〉, in which |xu,v〉 ≡ |1〉 if {u, v} ∈ E(G) and |0〉, otherwise. The state
|ψG〉 needs n(n − 1)/2 qubits to be encoded. Operators acting on the space HV2 can
be defined by making use of the operators a and a† acting on the individual spaces
(H2)u,v . In particular, it is possible to define number operators acting on each copy of
(H2)u,v . These operators are denoted by Nu,v and are defined by Nu,v|x〉 = xu,v|x〉, for
x ∈ {0, 1}(n

2). Each operator Nu,v returns the occupation number xu,v . More explicitly,
Nu,v is defined by

Nu,v|x〉 = 1 ⊗ 1 ⊗ · · · ⊗ 1 ⊗ a†a ⊗ 1 ⊗ · · · ⊗ 1|x〉 = xu,v|x〉.
Since the operators Nu,v act on different subsystems of HV2 , they all commute with
each other.

Now, let us define a matrix N with elements

Nu,v =
{

Nu,v, if u �= v;
0, otherwise.

Note that the matrix N is not an operator on HV2 in the usual sense; it is the elements
of N that act naturally on HV2 . Thus, the action of N on a state should be understood
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as occurring entry-wise. The evaluation of the matrix N, using the state |ψG〉, gives
the same entries of the adjacency matrix, that is,

〈ψG|Nu,v|ψG〉 := 〈ψG|Nu,v|ψG〉 = A(G)u,v.

Powers of N can be defined recursively as Nl = NNl−1. The entries of Nl are sums
of sequences of number operators acting on different subspaces. By considering
the expectation values of the normally ordered entries, we can state the following
proposition: (Recall that a trail is a walk in which no edges are repeated.)

Proposition 1 Given a graph G, the total number of trails of length l in G, with initial
vertex u and final vertex v is

t(G, l; u, v) = 〈ψG| : Nl
u,v : |ψG〉. (1)

Proof (Sketch) Keeping in mind the formal adjacency matrix ˜A(G), we need to point
out the following two facts only:

• If a product of number operators in one of the terms Nl
u,v contains a member

acting on a pair of nonadjacent vertices then the operator yields zero and that
term does not contribute to the expectation value.

• When a term in Nl
u,v contains more than one copy of a number operator acting

on a particular edge, that term also does not contribute to the expectation value,
because : Nl : |k〉 = 0|k〉.

It follows that the only combinations of number operators that do not give a
vanishing contribution to t(G, l, u, v) correspond to trails with initial vertex u and
final vertex v. Thus, Eq. 1 gives this number of trails as an expectation value of a
quantum mechanical operator. 
�

Notice that : Nm
u,u : counts the number of Eulerian trails in G, if |E(G)| = m.

It is noteworthy to remark that the logarithm of the dimension of the space HV2

is polynomial in the number of vertices. Also, notice that the operators Nl
u,v are

independent of G. For the purpose of counting trails in a specific graph, a similar
procedure may be applied taking a Hilbert space

HE :=
⊗

{u,v}∈E(G)

(H2)u,v,

where dimHE = 2|E(G)|. In this case, the matrix of operators N needs to be slightly
modified so that some of its entries are zero from the beginning, rather than number
operators acting on empty states.

Proposition 1 is based on the equation : Nl : |k〉 = 0|k〉. It may be worth remarking
that there is way of counting trails without making use of normal ordering. This can
be done by defining the matrices

Du,v =
{

au,v, if u �= v;
0, otherwise.
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It is in the same spirit of matrix Nu,v , but the entries are annihilation operators, au,v ,
rather than number operators Nu,v . This matrix of operators is not Hermitian, i.e.,
D† �= D. Here the Hermitian conjugate is defined entry-wise by (D†)u,v = (

Du,v

)†. It
can be shown that

t(G, l; u, v) = 〈ψG| : Nl
u,v : |ψG〉

= 〈ψG| (

Dl
u,v

)†
Dl

u,v |ψG〉.

2.2 Example

We consider the 4-cycle C4: the set of vertices is V(C4) = {1, 2, 3, 4}; the set of edges
is E(C4) = {{1, 2}, {1, 3}, {2, 4}, {3, 4}}. Since |V(C4)| = 4, we associated to this graph
an Hilbert space HV2 of dimension 26 = 64. Specifically,

HV2 = (H2)1,2 ⊗ (H2)1,3 ⊗ · · · ⊗ (H2)3,4 .

The state associated to C4 is

|ψG〉 = |110011〉.
Regarding the operators Nu,v , we have, for instance

N1,2|110011〉 = 1|110011〉
and

N1,4|110011〉 = 0|110011〉.
In fact,

〈110011|N1,2|110011〉 = A(C4)1,2 = 1

and

〈110011|N1,4|110011〉 = A(C4)2,4 = 0

Observe that ˜A(C4)
3
1,2 = e2

1,3e1,2 + e1,2e2
2,4 + e1,3e3,4e2,4 + e3

1,2. For the vertices 1 and
2, we have,

〈ψG| : N3
1,2 : |ψG〉 = 〈ψG| : N2

1,3 N1,2 : |ψG〉
+ 〈ψG| : N1,2 N2

2,4 : |ψG〉
+ 〈ψG| : N1,3 N3,4 N2,4 : |ψG〉
+ 〈ψG| : N3

1,2 : |ψG〉
= 〈ψG| : N1,3 N3,4 N2,4 : |ψG〉
= 1

Indeed, t(C4, 3; 1, 2) = p(C4, 3; 1, 2) = 1, something that : N3
1,2 : is able to detect

even if w(C4, 3; 1, 2) = 4.
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2.3 Paths

In this section, our working space is HV := ⊗

v∈V(G)(H2)v , where dimHV = 2n, given
that |V(G)| = n. This is the space usually assigned to networks of spin 1/2 quantum
mechanical particles. The space (H2)v is associated to the vertex v and (H2)v ≡
span{|0v〉, |1v〉}. All vectors |x〉 = ⊗

v∈V(G) |xv〉, being xv ∈ {0, 1} and x ∈ {0, 1}n, form
an orthonormal basis of HV . The state in HV corresponding to the graph G is the
basis state |11...1〉 = ⊗

n |1〉. As we have done in the previous subsection, we can
define number operators acting on each (H2)v . These operators are denoted by Nv .

Let M be a matrix of operators with entries defined as follows:

Mu,v =
⎧

⎨

⎩

Nmax(u,v), if {u, v} ∈ E(G) and v > u;
Nmin(u,v), if{u, v} ∈ E(G) and u > v;
0, otherwise.

As in the previous subsection, the elements of M are still number operators, but
this time acting on HV . However, unlike the adjacency matrix, M is not symmetric.
Powers of M are defined via matrix multiplication, for example, by the recursion
Ml = MMl−1. Recall that a path is a trail in which no vertices are repeated.

Proposition 2 Given a graph G, the total number of paths of length l in G, with initial
vertex u and final vertex v is

p(G, l; u, v) = 〈11...1| : Ml
u,v : |11...1〉.

Proof (Sketch) The operators Ml
u,v are sums of products of number operators. Since

the entries in M are nonzero only in the positions where the adjacency matrix is
nonzero, each of the terms in Ml

u,v also correspond to walks. Due to the normal
ordering convention, a term in which the same vertex appears more than once
does not contribute to the expectation value. Thus, 〈ϕG| : Ml

u,v : |ϕG〉 has the desired
interpretation. 
�

A similar construction could be made up with a “symmetric version” of M.
With respect to the Hilbert space HV , we define a matrix of operators F with

entries

Fu,v =
⎧

⎨

⎩

amax(u,v) if {u, v} ∈ E(G) and v > u;
amin(u,v) if {u, v} ∈ E(G) and u > v;
0 otherwise.

Notice that Fu,v depends on E(G) and thus on the graph G. Then, the transition
amplitude

p(G, l; u, u) = 〈00...0|F l
u,u|11...1〉,

is the number of cycles of length l containing the vertex u. Taking l = n, we have
p(G, n; u, u) > 0 if and only if the graph G used to construct Fu,u is Hamiltonian.
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3 Conclusion

For the purpose of counting trails and paths, we have described quantum observables
in Hilbert spaces whose logarithm of the dimension is a polynomial in the number
of vertices. The numbers of trails and paths can be obtained as expectation values
of these observables. The states involved are the pure states |11...1〉 and |ψG〉. These
states can be prepared efficiently. While it is clear that the observables raise no issues
about uncertainty, it is most likely that these are not efficiently implementable in
a quantum computer (e.g., by phase estimation). The reason behind this thought
is based on the fact that our observables are used to approach #P problems.
Despite this, it may still be instructive to describe their form for special classes of
graphs, to determine their complexity, and to describe the physics required for the
implementation.

It is valuable to point out that the literature contains so far a number of examples
of quantum observables for solving computational task, which are either not known
to be efficiently implementable or implementable with poor accuracy. Among these,
observables for the graph isomorphism problem [5] and for the permanent [11] (see
also [13]). It has also be shown that some mathematically well-defined observables
allow to solve the halting problem, in contradiction with the Church-Turing thesis
[9]. Recall that the Church-Turing thesis asserts that every function which can be
computed by what we would naturally regard as an algorithm is a computable
function, and viz.

In the present notes, we have highlighted yet another situation in which the math-
ematical formalism of a physical theory has some computational aspects involving
intractable problems. On the other hand, the computational complexity side may
suggest some potential limitations on the physical picture (see [1], for a detailed
survey on these ideas)—that is, the physical picture is simply not plausible.—With
the same perspective of [8], it is legitimate to study the properties of background
independent models of gravity and emergent geometry as computational devices (as
cellular automata, for instance). Indeed, in the model studied in [6], the Hamiltonian
of the system keeps track of trails of given lengths. Still this is inline with natural
phenomena of self-organization at the microscopic scale. For example, the folded
3-dimensional conformation of a protein is believed to be its lowest free energy state.
The 3-dimensional models describing the folding process of a protein as free energy
minimization problems are N P-hard (see, e.g., [3]). Finally, since the entries of the
observables described in this paper can be seen as Grassmann numbers (because
corresponding to fermionic operators), the observables may have some analogy to
certain matrix model (see, e.g., [10]), where the partition function is given by their
weighted sums.
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