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Abstract The biclustering technique was developed to avoid some of the drawbacks
presented by standard clustering techniques, such as their impossibility of finding
correlating data under a subset of features, and, consequently, to allow the extraction
of more accurate information from datasets. Given that biclustering requires the
optimization of at least two conflicting objectives (residue and volume) and that
multiple independent solutions are desirable as the outcome, a few multi-objective
evolutionary algorithms for biclustering were proposed in the literature. However,
these algorithms only focus their search in the generation of a global set of non-
dominated biclusters, which may be insufficient for most of the problems as the
coverage of the dataset can be compromised. In order to overcome such problem,
a multi-objective artificial immune system capable of performing a multipopulation
search, named MOM-aiNet, was proposed. In this work, the MOM-aiNet algorithm
will be described in detail, and an extensive set of experimental comparisons will be
performed, with the obtained results of MOM-aiNet being confronted with those
produced by the popular CC algorithm, by another immune-inspired approach
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for biclustering (BIC-aiNet), and by the multi-objective approach for biclustering
proposed by Mitra & Banka.

Keywords Biclustering · Multi-objective optimization · Multipopulation search ·
Artificial immune systems

1 Introduction

Traditional clustering techniques [1] have become very popular in the data mining
community nowadays, due to the increasing amount of information acquired in
a wide range of fields, from business to science and technology. However, such
techniques present two significant drawbacks: first, they are not capable of finding
correlating data under only a subset of attributes (partial matching); and second, they
cannot assign a given sample to more than one cluster [2]. These limitations have a
large impact in some applications, such as the analysis of gene expression data [3],
extraction of information in collaborative filtering databases [4] and text-mining [5],
to name a few. In real-world applications, data samples are generally correlated with
several distinct subsets of samples, and the correlation presented within each one of
these subsets of samples can be supported by distinct subsets of attributes.

In order to reveal these multi-faceted correlations and to allow deeper inferences
from the available data, the biclustering technique was proposed [6–8]. Consider-
ing that the datasets are structured as data matrices of objects (rows) and their
corresponding attributes (columns), the biclustering technique is capable of finding
several subsets of rows and columns from the data matrix, so that each subset will be
composed of objects (rows) that share some similarities specifically on the selected
attributes (columns). In this approach, a single object may take part in multiple
biclusters, in association with a distinct subset of attributes at each one of them, thus
allowing the extraction of additional information from the dataset.

The problem of finding several biclusters in a dataset can be seen as a combinato-
rial optimization problem, in which two criteria must be maximized: (i) the ‘volume’
of the bicluster, which is generally given by the number of rows times the number
of columns; and (ii) the degree of similarity among the elements of the bicluster.
The extracted biclusters should present a high similarity among elements in order to
represent highly correlated samples, and should also present a high volume in order
to be functional and to allow a deeper analysis of the dataset.

Therefore, the bicluster extraction problem is inherently a multi-objective opti-
mization problem [9], as at least two criteria must be optimized. However, only a few
works in the literature adopt multi-objective optimization concepts to biclustering.
Mitra & Banka [10] proposed a multi-objective evolutionary algorithm that combines
the NSGA–II (Non-dominated Sorting Genetic Algorithm—[11]) with a local search
based on the original algorithm of Cheng & Church [8], and this algorithm was
applied to gene expression problems [10, 12]. Divina & Aguilar-Ruiz [13] proposed
the SMOB algorithm (Sequential Multi-Objective Biclustering), which sequentially
calls a multi-objective evolutionary algorithm capable of generating a bicluster with
maximum volume that attends a lower bound of similarity among its components.
The SMOB algorithm was also applied to gene expression problems in [13] and [14],
but in the latter work a different metric of similarity among the elements of the
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bicluster was also proposed. A third proposal in the literature that applies multi-
objective optimization concepts to biclustering is the work of Maulik et al. [15],
which is also based on the NSGA–II algorithm and employs fuzzy concepts in the
codification of the individuals and the fuzzy k-medoids clustering algorithm [16] to
perform the simultaneous clustering of both genes and conditions in gene expression
problems.

One common aspect between the proposals of Mitra & Banka [10], Divina &
Aguilar-Ruiz [13] and Maulik et al. [15] is that, like all the applications of multi-
objective optimization, the search is aimed at the generation of a global set of
non-dominated solutions [9]. However, in the biclustering problem, a good trade-
off between volume and similarity of components (or any other criteria that is
measured individually in each bicluster) is not the only desirable aspect of a good
set of solutions. It is also very important that the final set of biclusters provides
a good coverage of the dataset or, in other words, exhibits the maximum number
of possible correlations between the samples in the dataset, even if some of these
correlations are sub-optimal. A larger coverage of the dataset is very important to
several applications that employ biclusters, as the higher the number of correlations
that are highlighted, the greater the amount of information that can be inferred from
the dataset.

In order to deal with the coverage issue, Coelho et al. [17] have proposed
the MOM-aiNet algorithm (Multi-Objective Multipopulation Artificial Immune
Network), which is an immune-inspired technique [18] that explores the concept of
multiple populations to generate a set of biclusters that provide a high coverage of
the dataset. As in [17] the authors have just introduced the MOM-aiNet algorithm
and provided only preliminary experiments, in this work the algorithm will be fully
presented, together with a few improvements, a more extensive set of experiments
will be performed, and the results will be compared with those obtained by three
proposals from the literature: the original CC algorithm, proposed by Cheng &
Church [8]; BIC-aiNet (Artificial Immune Network for Biclustering—[19]), which is a
single-objective immune-inspired algorithm; and the proposal of Mitra & Banka [10].

This paper is organized as follows. Sections 2, 3 and 4 present some general
conceptual aspects of biclustering, multi-objective optimization and artificial immune
systems, respectively. In Section 5 the three algorithms adopted in this work for com-
parison with MOM-aiNet will be briefly presented. The rationale of the exploration
of multiple subpopulations to increase coverage and an illustration of the limitations
of returning only the non-dominated set of biclusters in multi-objective biclustering
will be given in Section 6, and the MOM-aiNet algorithm itself will be described in
details in Section 7. In Section 8 the experimental methodology employed will be
presented, and the obtained results will be given. Finally, the concluding remarks of
the paper and further steps of the research will be presented in Section 9.

2 Biclustering

The term biclustering (also co-clustering or two-mode clustering) is referred to the
process of finding subsets of rows and columns of a given data matrix [6–8], which
may represent different kinds of numerical data, such as objects (rows) and their
attributes (columns). Two examples of biclusters of a data matrix can be found in
Fig. 1.
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Fig. 1 Two biclusters (b and c) extracted from the original matrix (a). The bicluster (b) was created
with rows {1, 2} and columns {2, 4}, and the bicluster (c) was created with rows {2, 3, 5} and columns
{1, 3, 5}. The similarity criterion here is the constant value of the elements

The biclustering approach covers a wide scope of different applications such
as dimensionality reduction [20], information retrieval and text mining [5, 19, 21],
electoral data analysis [6], collaborative filtering [22–24], and biological data analysis
[10, 12–15, 20, 25].

Cheng & Church [8] were responsible for the popularization of the bicluster-
ing paradigm with their CC algorithm, which was the first biclustering algorithm
applied to gene expression problems. However, several distinct approaches were
also proposed in the literature, so that different taxonomies were suggested for
these techniques [26]. The biclustering task can be classified into several categories,
according to (i) the way the bicluster quality is measured; (ii) how the set of biclusters
are built; and (iii) which structure of bicluster is adopted.

The classification based on the quality measure of a biclustering algorithm is
related to the concept of similarity between the elements of the matrix. For instance,
some algorithms search for constant value biclusters, some for constant columns or
rows, and others for coherency in the values of the elements. In Fig. 2 some of the
quality measures of biclustering algorithms are illustrated. In practical applications,
the obtained biclusters will not follow the quality measure without some deviation,
which can be interpreted as an error (residue) to be minimized at the same time that
the volume of the biclusters is maximized.

The way that the set of biclusters is generated is associated with the amount of
biclusters that is returned in each run of a given algorithm. Some methods find only
one bicluster per run, while others are capable of simultaneously finding several
biclusters. Besides, there are also nondeterministic and deterministic algorithms,
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Fig. 2 A didactic example of four biclusters (b, c, d and e), each one obeying a specific optimization
criterion, extracted from the original matrix (a). The bicluster (b) was created with rows {1, 2} and
columns {2, 4}, and is an example of a constant bicluster. The bicluster (c) was created with rows
{1, 4, 5} and columns {2, 4}, and is an example of a bicluster with constant rows. The bicluster (d)
was created with rows {1, 2, 3} and columns {2, 5}, and is an example of a bicluster with constant
columns. The bicluster (e) was created with rows {1, 4, 5} and columns {1, 3, 4, 5}, and is an example
of a bicluster with coherent values
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being the non-deterministic ones capable of finding different solutions for the same
problem at each execution, while the deterministic ones produce always the same
solution.

The third possible classification of biclustering techniques, proposed by Madeira
& Oliveira [26], is related to the structure of the biclusters adopted by each algorithm,
which can be of different types: (i) those that cannot present overlap in neither
columns nor rows of the matrix, which are known as exclusive columns and/or rows;
(ii) arbitrarily positioned and possibly overlapping biclusters; and (iii) overlapping
biclusters with hierarchical structure.

In this paper, the focus will be on possibly overlapping sets of arbitrarily posi-
tioned biclusters that follow a given coherency metric (more specifically, the metric
proposed by Cheng & Church [8]), equivalent to bicluster (e) in Fig. 2. All the
algorithms employed in this work are nondeterministic and capable of proposing
multiple biclusters in a single run.

In this work, the coherence metric among the elements of a bicluster is the mean-
squared residue, introduced by Cheng & Church [8]. This metric consists in the
calculation of the additive coherence inside a bicluster by considering that each row
(or column) of the bicluster presents a profile identical to (or very similar to) the one
exhibited by other rows (or columns), except for a constant bias. Thus, each element
of a perfectly coherent bicluster can be expressed by:

aij = μ + αi + β j, (1)

where μ is the base value of the bicluster, αi is the additive adjustment of line i ∈ I,
β j is the additive adjustment of column j ∈ J, I is the set of rows in the bicluster and
J is the set of columns in the bicluster.

As the additive adjustments αi and β j are usually unknown, it is possible to rewrite
Eq. 1 so that the theoretical element aij of the bicluster can be obtained from the
mean value of elements in row i (aiJ), the mean value of elements in column j (aIj)
and the mean value of the elements in the bicluster (aI J). These mean values are
given by:

aiJ = μ + αi + β, (2)

aIj = μ + α + β j, (3)

aI J = μ + α + β, (4)

where α is the mean value of the row additive adjustment and β is the mean value of
the column additive adjustment.

Isolating αi, β j and μ in Eqs. 2, 3 and 4 above, we obtain:

αi = aiJ − μ − β, (5)

β j = aIj − μ − α, (6)

μ = aI J − α − β. (7)

Substituting Eq. 7 in Eqs. 5 and 6:

αi = aiJ − aI J + α, (8)

β j = aIj − aI J + β. (9)
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And, finally, substituting Eqs. 7, 8 and 9 in Eq. 1 leads to:

aij = aIj + aiJ − aI J . (10)

Therefore, finding a coherent bicluster is basically the same thing as finding a
bicluster that minimizes the error between the theoretical value given in Eq. 10 and
the real value of an element of the matrix. So the mean-squared residue H(I, J) of a
bicluster becomes:

H(I, J) = 1

|I||J|
∑

i∈I

∑

j∈J

(aij − aIj − aiJ + aI J)
2, (11)

where |I| is the total number of rows of the bicluster, |J| is the total number of
columns of the bicluster, aij is the value in row i and column j, aIj is the mean value
of column j, aiJ is the mean value of row i, and aI J is the mean value considering all
the elements of the bicluster.

Other important aspect of biclustering is the ‘volume’ of the biclusters, which is
generally denoted in the literature by |I| × |J|. In order to be functional and to allow
a deeper analysis of the dataset, it is usually required that a bicluster presents a large
volume (large number of rows and columns).

Therefore, the process of extracting biclusters from a given dataset can be basically
seen as a multi-objective optimization problem, where the mean-squared residue
should be minimized, in order to increase the degree of coherency among the
elements of the bicluster, and the volume of such biclusters should be maximized, so
that they can be functional and allow a deeper analysis of the dataset. It is important
to notice that the minimization of the mean-squared residue and the maximization
of the volume are two conflicting objectives, since larger biclusters tend to present
higher residues.

3 Multi-objective Optimization

In single-objective optimization problems, the solution corresponds to one or more
feasible points that lead to an extreme value of the objective function being op-
timized, i.e., if you have a minimization (maximization) problem, its solution will
be the set of feasible points that lead to the lowest (highest) value of the objective
function.

For a multi-objective optimization problem, this concept of solutions correspond-
ing to extreme values of the objective functions cannot be directly applied, since the
objectives involved can be (and generally are) in conflict. What generally happens in
such cases is that there is a set of final solutions that correspond to different trade-
offs between the objectives, i. e., each of these solutions indicates, for a given value
of one of the objectives, what is the best value that can be obtained for the remaining
ones. Therefore, an infinite set of solutions can exist for a given problem, which
corresponds to the infinite number of existing trade-offs among the objectives. As
will be seen, this set of solutions for a given multi-objective problem is known as the
Pareto front.

Without loss of generality, the concepts and definitions that will be presented
in this section will consider the definition of a multi-objective optimization prob-
lem (MOP) given in Formulation (12), where all objectives should be minimized.
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Therefore, in this work a constrained M-objective (M ≥ 1) minimization problem
will be defined by:

Minimize ( f1(�x), f2(�x), . . . . fM(�x)),

Subject to g j(�x) ≥ 0, j = 1, 2, . . . , J,

hk(�x) = 0, k = 1, 2, . . . , K, (12)

xL
i ≤ xi ≤ xU

i , i = 1, 2, . . . , n,

xi ∈ � i = 1, 2, . . . , n.

where n is the number of variables (dimension of the problem), J is the number
of inequality constraints, K is the number of equality constraints, xL

i is the lower
bound of variable i and xU

i is the upper bound of variable i. This formulation
corresponds to a real-valued optimization problem. However, the concepts that will
be presented here can be directly extended to a multi-objective problem involving
discrete variables.

For the problem given in Formulation 12, n-dimensional real-valued vectors that
satisfy all constraints are called feasible solutions. The set of solutions for a multi-
objective optimization problem contains only non-dominated individuals, and is
known as the Pareto front of the problem. These concepts of dominance and Pareto
front will be defined below.

A given vector �u = (u1, . . . , uM) is said to dominate a vector �v = (v1, . . . , vM)

(denoted by �u � �v) if and only if all M components of �u are better than or equal
to the corresponding components of �v, and there is at least one component of �u that
is strictly better than the corresponding component of �v.

Therefore, given two feasible solutions �x and �y of the problem in Formulation 12,
�x is said to dominate �y (�x � �y) if and only if ∀m ∈ {1, . . . , M}, fm(�x) ≤ fm(�y) and
∃i ∈ {1, . . . , M} : fi(�x) < fi(�y).

As mentioned before, the notion of a solution in multi-objective optimization
problems is associated with the concept of Pareto Front. This notion of optimality
was originally introduced by Edgeworth [27] and later generalized by Pareto [28],
and it states that a given solution �x∗ belongs to the Pareto front (or is Pareto optimal)
if there is no other feasible solution �x capable of reducing the value of one objective
without simultaneously increasing at least one of the others.

Therefore, the Pareto optimal set (the solution of the multi-objective problem) is
given by the set of solutions that are not dominated by any other feasible solution in
the domain of the problem, and the corresponding Pareto front is the set obtained by
the application of the objective functions to each solution in the Pareto optimal set.
Examples of Pareto fronts can be found in Fig. 3.

Given these two main concepts, it is important to notice that, differently from a
single-objective problem where the main goal is to obtain the global optimum (or the
multiple optimal solutions, if the problem is multimodal), to solve a multi-objective
problem, two goals should be pursued: (i) find a finite set of solutions in the optimal
Pareto front; and (ii) guarantee that these solutions present a high degree of diversity,
in order to properly cover all the Pareto front. This proper coverage is generally
associated with a uniform sampling of the Pareto front, and is necessary to give the
user a set of trade-offs as complete as possible, without previously assigning relative
weights to any objective of the problem.
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Fig. 3 Examples of Pareto
fronts (solid lines) for
two-objective optimization
problems, where objectives f1
and f2 are being both
minimized (Min–Min), both
maximized (Max–Max), f1
minimized and f2 maximized
(Min-Max) and f1 maximized
and f2 minimized (Max–Min).
The gray area corresponds to
the feasible region of the
problem, and the dashed
lines (in the Min–Max and
Max–Max cases) were
drawn to emphasize that
the concave regions are
NOT in the Pareto front
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It can be said that these two goals are, in some sense, orthogonal, as the sat-
isfaction of one of them does not necessarily mean the satisfaction of the other.
Therefore, multi-objective optimization algorithms must incorporate implicit and/or
explicit methods to emphasize both the convergence of the optimal Pareto front and
the diversity of the final set of solutions [9].

4 Artificial Immune Systems

The Artificial Immune System (AIS) paradigm was originated from attempts to
model and apply immunological principles to problem solving in a wide range of
areas such as optimization, data mining, computer security and robotics [18]. The
algorithms developed based on this paradigm present three advantages over other
population-based strategies: (i) they are inherently able to maintain population
diversity (as modules with some resemblance with niching and fitness sharing are
intrinsic parts of them); (ii) the size of the population at each generation is auto-
matically defined according to the demand of the application; and (iii) local optimal
solutions are simultaneously preserved once located.

The natural immune system, which is the inspiration for AISs, can be considered
as one of the most important components of superior living organisms. Its permanent
cycle of recognition and combat against pathogens (infectious foreign elements) has
the goal of keeping the organism healthy. During this recognition cycle, the molecu-
lar patterns expressed in those invading pathogens (or antigens) are responsible for
triggering the immune response when properly recognized by the immune cells.

The immune-inspired algorithms for biclustering that will be discussed in this work
are mainly based on the reproduction of the Clonal Selection and Affinity Maturation
principles [29], together with the Immune Network Theory [30].

The clonal selection theory is generally adopted to explain how the immune
system responds to the attack of antigens. According to this theory, when an antigen
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invades the organism, some specific immune cells start proliferating to face the
infection. This immune response results in some cells capable of secreting antibodies
at high rates, and in other ones that become memory cells. During the proliferation
of these cells, some individuals suffer a controlled mutation that, together with
the selective pressure of the antigen, may allow the selection of immune cells that
presents higher affinity with the infectious antigen (higher recognition and, thus,
response capability). These processes of recognition, reproduction and maturation
(mutation plus selection) are continuously repeated throughout life and they ensure
that our organisms become increasingly better at recognizing the antigens.

Although the clonal selection theory explains how the immune system responds
to antigens, it does not explain well how the immune system reacts to itself. A
well-known proposal that tries to explain the autonomous dynamics of the immune
system is the immune network theory, proposed by Jerne [30]. According to this
theory, the immune cells are not only capable of recognizing foreign antigens, but
they also contain some endogenous antigens that allow them to be recognized by
other immune cells. When an immune cell is recognized by another immune cell, the
recognizing cell is stimulated and the recognized cell is suppressed. The meanings of
stimulation and suppression in AIS will depend on how the theory is interpreted in
each algorithm. In the particular case of this work, both immune-inspired algorithms
consider only suppression, which corresponds to the elimination of some of the self-
recognizing cells. Although Jerne’s theory proposes an explanation to the immune
system reactions to itself, it has been discredited in the natural immune system
community as no empirical evidences of such theory was found. However, the
immune network theory is computationally interesting as it provides mechanisms
to stimulate diversity among solutions in population-based algorithms, and so it still
inspires the development of new approaches nowadays.

The concepts of clonal selection and immune network theories have been by the
first time explored together to produce an immune-inspired algorithm for multi-
modal optimization in [31].

5 Algorithms for Biclustering

In this section, the three algorithms that will be employed here, in the comparisons
with MOM-aiNet, will be presented and described in details. The choice of these
algorithms were made according to their characteristics and similarities with the
algorithm proposed in this work: CC was chosen as it is one of the most popular
biclustering algorithms nowadays; the algorithm of Mitra & Banka [10] is one of the
few multi-objective proposals for biclustering in the literature; and the BIC-aiNet was
selected because, as MOM-aiNet, it is an immune-inspired approach based on the
original aiNet algorithm, proposed by de Castro & Von Zuben [32]. These algorithms
will be described in the following subsections.

5.1 CC – Cheng & Church Algorithm

The CC algorithm [8] was the first biclustering algorithm applied to gene expression
problems, and it is based on the concept of δ-biclusters. A δ-bicluster is basically a
bicluster that presents a mean-squared residue (see Eq. 11) smaller than a predefined
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maximum acceptable value δ. Therefore, the goal of CC is to obtain K δ-biclusters
for a given dataset.

CC is a constructive heuristic that starts with a single bicluster, representing the
whole dataset, and iteratively removes rows and columns of this bicluster until the
residue is equal to or less than δ. After that, it starts to insert rows and columns
(that are not in the bicluster yet) sequentially, until the insertion of any other
row or column increases the residue to a value above δ. After the first bicluster
is constructed, the rows and columns already present in this bicluster are replaced
by random values in the original dataset, and the whole process is restarted until a
predefined number K of biclusters is created.

As CC masks the previously generated biclusters in the original dataset, it may
seem that this algorithm is not capable of finding overlapping biclusters. But this is
not completely true, as the row/column insertion is made considering the original
values of the dataset. However, although CC is capable of generating biclusters
with a certain degree of overlap, highly overlapping biclusters are not likely to
be found.

5.2 The Algorithm of Mitra & Banka

The algorithm of Mitra & Banka [10] is basically an adaptation of the NSGA-II
algorithm [11] to generate a set of biclusters, with the addition of a local search based
on the node insertion and deletion mechanisms proposed by Cheng & Church [8] in
the CC technique.

This technique employs a binary encoding, where each individual in the popu-
lation is a binary vector with size equal to the number of rows plus the number
of columns of the dataset. If a given position presents value 1, it indicates that the
associated row or column is present in the bicluster.

The local search of Mitra & Banka’s proposal basically calculates the contribution
of each row and column of the bicluster (‘nodes’) to its residue, and removes
those nodes that present a contribution higher than a predefined threshold. After
that, a fine tuning is made, where new nodes with low contribution to the residue
are inserted, in order to increase the volume of the bicluster. This node removal
and insertion steps are greedy procedures, similar to those proposed by Cheng &
Church [8].

One distinct aspect of the algorithm of Mitra & Banka is the way the mean-
squared residue is optimized. In this approach, the algorithm maximizes the mean-
squared residue as long as it is smaller than the upper bound δ.

The algorithm starts with the random initialization of the population and the
application of a local search to this initial population. Then, the main loop is repeated
for a predefined number of iterations, in which the population is ranked according
to the dominance criterion (see Section 3), a crowding tournament selection is
performed, the selected individuals suffer crossover and mutation, the offspring and
parent population are mixed together and the best individuals are selected to remain
in the next generation.

This dominance-based ranking procedure basically consists in dividing the indi-
viduals into categories, being set to the first category those that are not dominated by
any other individual in the population, to the second those that are dominated only
by the individuals in the first category, and so on.
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The crowding tournament selection is based both on the rank of each individual
and on their crowding distance, which evaluates the spread degree of each solution
[11]. When two individuals are compared, first their rank is evaluated and, if both
of them are on the same rank (which means that both present the same quality
with respect to dominance), the crowding distance criterion is considered, and the
individual that is farther from its neighbors (in the objective space) is chosen.

5.3 BIC-aiNet—Artificial Immune Network for Biclustering

The BIC-aiNet algorithm (Artificial Immune Network for Biclustering [19]), is an
extension of the aiNet algorithm proposed by de Castro & Von Zuben [32] to solve
traditional clustering problems. Both algorithms are based on the Clonal Selection
and Immune Network Theories (see Section 4), so they are basically constituted by
sequences of cloning, mutation, selection and suppression steps.

In BIC-aiNet, the individuals (biclusters) in the population are coded in two
ordered integer vectors: one of them represents a list of the index of the rows of
the original data matrix that form the bicluster, and the other represents a list of the
index of columns in the bicluster.

The algorithm begins by generating a random population of biclusters, formed by
just one row and one column. After the initialization, the algorithm enters its main
loop, where the population is cloned and the generated clones suffer a process of
mutation. The mutation operator consists in the application of one of three different
possible actions, chosen randomly with equal probability:

– Insert one row: randomly inserts one row that is not included in the bicluster yet.
– Insert one column: randomly inserts one column that is not included in the

bicluster yet.
– Remove one row or one column: randomly chooses one element of the bicluster

to be removed.

After the cloning and mutation steps, the affinity (or fitness, using an evolutionary
computation notation) of each mutated clone is calculated, and the fittest individual
is selected to replace the original cell (if it presents a higher quality).

As BIC-aiNet does not deal with an explicit set of antigens, the affinity measure
of each cell corresponds to an evaluation of the quality of each individual within
the context of the problem being solved (which is also a valid approach in artificial
immune systems, as can be seen in [18]). This affinity metric is calculated by Eq. 13,
which tries to balance the residue and the volume of the bicluster:

Af fk = H(Ik, Jk)

δ
+ wr × δ

|Ik| + wc × δ

|Jk| , (13)

where H(Ik, Jk) is the mean-squared residue of bicluster k (see Eq. 11), Ik and Jk

are the sets of rows and columns of bicluster k, δ is the residue threshold, wr and wc

are, respectively, the degree of relevance of the number of rows and columns of a
bicluster and |Ik| and |Jk| are the number of rows and columns of bicluster k.

As the BIC-aiNet algorithm is a single-objective optimization algorithm, it tries to
minimize the mean-squared residue and maximize the volume of the biclusters with
the minimization of a single criteria: the affinity measure given in Eq. 13. Therefore,
the algorithm tries to control the maximum acceptable residue with parameter δ, and
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stimulates the generation of biclusters with large numbers of rows and columns with
the second and third terms of Eq. 13.

As the BIC-aiNet algorithm is also based on the immune network theory, the
individuals in the population are also capable of recognizing each other and, if the
affinity among them is high, this indicates the existence of self-reactive cells that
must be suppressed. This suppression step is performed periodically (not in every
iteration), and causes a fluctuation in the population size, helping the algorithm to
maintain diversity and to work with just the most meaningful biclusters.

The suppression mechanism of BIC-aiNet is rather simple: the affinity between
two cells is given by the degree of overlapping between the two individuals (the
intersection of lines and rows in both biclusters). If the overlapping between biclus-
ters A and B exceeds a given threshold, the fittest bicluster survives and the other
one is eliminated from the population. This suppression procedure is followed by an
insertion step that generates new cells in the same way as the initial population is
created, but giving preference to pairs of rows and columns that do not belong to any
bicluster yet.

It is important to highlight that these two last procedures were conceived to give
to the algorithm the capability of self-adapting the population size with a proper
number of biclusters (for the given suppression threshold) to suitably represent the
dataset.

6 When Non-dominated Solutions are not Enough in Multi-Objective Biclustering

In this work, with the addition of the multi-objective optimization concepts, the
MOM-aiNet algorithm will explore a multipopulation aspect inherent of the aiNet-
based algorithms, by keeping in the population not only the best individual of
each subpopulation, but several locally (within their subpopulations) non-dominated
ones.

As each of these subpopulations will be stimulated to explore distinct regions of
the search space (thus different regions of the data matrix or different correlations
in the dataset), it will be possible to consider the individuals in each subpopulation
as the non-dominated front found by the algorithm for the region of the dataset
explored by such subpopulation (see Fig. 4a).

Also, in the end of its execution, the MOM-aiNet algorithm is configured to
return not only the final set of non-dominated individuals, but all the non-dominated
individuals within each sub-population. The reasons for this are twofold: (i) the
coverage of the dataset provided by the full final set of “locally” non-dominated
biclusters may be much higher than the one provided by the set constituted only
by the “global” non-dominated set of solutions (see Fig. 4b); and (ii) sub-optimal
biclusters may represent significant correlations of the dataset, which could be very
useful in the post analysis. An example of this second motivation is given in Fig. 5.

In Fig. 5, it is possible to find examples of three biclusters (Fig. 5b, c and d)
extracted from a data matrix (Fig. 5a). Calculating the volume and the mean-
squared residue (Eq. 11) of these biclusters, we can see that bicluster (b) dominates
bicluster (d). However, biclusters (b) and (c) are less informative than bicluster
(d) as, in this example, they present constant rows and highlight much more trivial
correlations of the data, while bicluster (d) represents a more complex correlation,
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(a) Pictorial representation of the region of the data matrix covered by each subpopulation of the algorithm.
In practice, the regions covered by the subpopulations may not be contiguous as in this example.

(b) Pictorial representation of the region of the data matrix covered by the global set of non-dominated
individuals generated by the algorithm (blackdots). In practice, this region may not be contiguous as in
this example.

Fig. 4 Pictorial representations of the coverage of the original data matrix by each subpopulation
(a) and by the globally non-dominated individuals (b)

presenting a more elaborate structure, with distinct additive adjustment terms (see
Section 2). Therefore, if only the non-dominated biclusters of these three examples
were returned, bicluster (d) would have been eliminated and the final set of biclusters
would correspond only to trivial correlations, what would certainly have a negative
impact in the post analysis process. Also, if bicluster (d) is kept in the final results, a
higher coverage of the original data matrix would also be accomplished.

In the literature, some proposals like the SMOB algorithm [13] also maximize
the row variance of the biclusters, in order to deal with this specific issue of
generation of constant row biclusters. However, the inclusion of another criteria in
the optimization task certainly increases the overall computational cost, and does not
solve the coverage issue.
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1 7 1 − 1 − − 7 7 −
− − − − − − − − − −
1 8 1 1 10 8 8 12
− 9 − − − − 13 − − 15
1 − 1 − 2 − − − − −
− 10 − − − − 15 − − 16

(a) Original Data Matrix

1 1 1
1 1 1
1 1 2
(b)

7 7 7
8 8 8
(c)

8 10 12
9 13 15

10 15 16
(d)

Fig. 5 Example of sub-optimal bicluster with significant meaning. Bicluster (b) was created with rows
{1, 3, 5} and columns {1, 3, 5} of the original data matrix (a). Bicluster (c) was created with rows {1, 3}
and columns {2, 8, 9} and bicluster (d) with rows {3, 4, 6} and columns {2, 7, 10}. The mean-squared
residue and volume are, respectively, 0.05 and 9 for bicluster (b), 0.00 and 6 for bicluster (c) and 0.29
and 9 for bicluster (d). It is possible to see that bicluster (d), although dominated by bicluster (b),
is meaningful. The non-relevant elements of the original data matrix (a) were omitted for the sake
of simplicity

7 MOM-aiNet – A Multi-Objective Multipopulation Artificial Immune
Network for Biclustering

As the BIC-aiNet algorithm, the MOM-aiNet (Multi-Objective Multipopulation
Artificial Immune Network) is also based on de Castro & Von Zuben’s aiNet.
However, as mentioned before, MOM-aiNet introduces some multi-objective opti-
mization aspects to the original algorithm, to address the multi-objective aspect of
the biclustering problem, and promotes a better exploration of the multipopulation
concept already present in aiNet, but not explored so far.

The aiNet algorithm evolves multiple cells (individuals) in parallel and, associated
with each of these cells, there is a population of mutated clones. Each of these
subpopulations are stimulated to converge to distinct promising regions of the search
space (generally to the closest local optimum). However, at each iteration of aiNet,
only the best individual of each subpopulation is maintained to the next generation.
In MOM-aiNet, this multipopulation aspect is further explored, by keeping in the
population not only the best individual of each subpopulation, but several locally
non-dominated individuals (see Section 6).

Also, in the end of its execution, the MOM-aiNet algorithm returns not only the
final set of non-dominated individuals, but all the non-dominated individuals within
each sub-population. With this approach, the final set of solutions may provide a
higher coverage of the data matrix and may also contain sub-optimal biclusters
(according to the mean-squared residue and volume criteria) that still represent
important correlations of the dataset that were not identified by the “optimal” set
of solutions.

Another characteristic of the MOM-aiNet algorithm is that constraints can be eas-
ily added to the algorithm, as the comparison between individuals in the population
is made according to the dominance criterion (see Section 3). In order to add a given
constraint to the biclustering problem as, for example, an upper bound δ to the mean-
squared residue (which was adopted in this work), it is only necessary to consider all
the unfeasible solutions as dominated by every feasible solution of the problem. By
doing that, the unfeasible solutions will be naturally eliminated from the algorithm’s
population and the generation of feasible solutions will be stimulated.

The aiNet paradigm have already been successfully adapted to constrained
multi-objective optimization with the omni-aiNet algorithm [33]. But the approach
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presented in this paper is significantly different from the one in [33], as omni-
aiNet, besides presenting additional attributes, is specialized in sampling the Pareto
front uniformly and with high precision, while the MOM-aiNet algorithm makes
a rougher approximation of the Pareto front. Besides, omni-aiNet (as most multi-
objective optimization algorithms) generates a single set of non-dominated solutions,
differently from MOM-aiNet.

The main modules of the proposed algorithm are depicted in Algorithm 1 and
explained in the sequence.

Algorithm 1 The MOM-aiNet algorithm.
generate_initial_population();
while the maximum number of generations is not achieved do

for each subpopulation i do
clones = clone(sub populationi);
clones = mutate(clones);
sub populationi = select_nondominated(clones ∪ sub populationi);

end for
network_suppression();
insert_new_individuals();

end while

The algorithm starts with the generation of n subpopulations of one bicluster
each, generated by randomly choosing one row and one column of the dataset. If
the dataset is sparse, the algorithm must choose only among the non-null values.
Inside the main loop, for each subpopulation nclones clones of all the individuals are
generated. In the preliminary proposal of this algorithm in [17], half of the clones
were copied from the bicluster with the smallest volume (generally the smallest
mean-squared residue) in the subpopulation, and the other half from the bicluster
with the highest volume. However, it was observed that cloning all the individuals in
the subpopulation guides to a better coverage of the search space.

Each clone then suffers a mutation process, which consists of one of three possible
actions, chosen randomly with the same probability (like the BIC-aiNet algorithm—
see Section 5.3): insert a row, insert a column, remove a row or column. Each action
randomly selects one element to be inserted/removed. After the mutation step is
performed on each clone, all the non-dominated biclusters of this subpopulation,
considering the mutated clones and original individuals, are selected to generate the
new subpopulation for the next iteration. If the number of non-dominated elements
exceed nclones, a crowding-distance-based [11] suppression is performed in order to
maintain a small and locally diverse subpopulation.

One important characteristic of the MOM-aiNet algorithm is the incremental
nature of the mutation step, where only one row or one column can be inserted
in/removed from each bicluster at a time. Therefore the biclusters are likely to suffer
an incremental growth toward both ends of the non-dominated front (low and high
volume), thus tending to be equally distributed.

Two constraints can be imposed on the biclustering problem and controlled on
these steps of the algorithm. The first one is associated with the mean-squared residue
that can be limited to a specified value (δ), being every bicluster with a residue higher
than δ considered dominated by any other feasible bicluster. And the other is the
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occupancy rate (for sparse matrices), that measures the proportion of non-null values
in the bicluster. When an insertion action is chosen by the mutation process, the set
of candidate rows/columns to be inserted is reduced to those that make the bicluster
occupancy rate stay above a threshold γ .

After the cloning and mutation processes, from time to time a suppression
operation is performed, so that the largest biclusters of each subpopulation are
compared, based on the degree of overlapping. When a pair of biclusters has a degree
of overlapping higher than a given threshold σ , the two subpopulations are combined
and the non-dominance selection is performed, creating a single subpopulation. Only
the largest bicluster of each population is taken for comparison, because they tend
to be more representative. So, two subpopulations will only be merged when they
start to express the same correlations among rows and columns of the data matrix. In
other words, they will be merged when both subpopulations start to converge to the
same region of the data matrix.

Finally, besides the suppression of similar subpopulations, it is also performed an
insertion of new randomly generated subpopulations, in order to increase diversity
and promote the exploration capability of the algorithm. This random insertion is
performed in the same way as the initial subpopulations are generated, but with the
difference that first it is chosen a pair of row and column that is not contained in any
existing bicluster.

8 Experimental Results

In order to evaluate the quality of the biclusters generated by MOM-aiNet, when
compared to those obtained by the other three algorithms, we have chosen two well-
known gene expression datasets and one collaborative filtering experimental dataset,
which presents a high degree of sparsity.

The first gene expression dataset is the Saccharomyces cerevisiae cell cycle expres-
sion data from Cho et al. [34]. This dataset contains 2, 884 genes under 17 conditions,
and it was adapted in this work according to Cheng & Church [8], with the null values
being replaced by random numbers in the range [0, 600]. This dataset is popularly
known as Yeast.

The second dataset is the Human B-Cell Lymphoma expression data, first
employed in [35]. This problem holds 4, 026 genes under 96 conditions, and the
expression levels were treated in the same way as the Yeast dataset, with missing
values being replaced by random numbers in [−750, 650]. Both the Yeast and Human
datasets can be found at http://arep.med.harvard.edu/biclustering.

The third dataset is called Movielens (available at http://www.grouplens.org/
node/73), and it was built with ratings in the range of [1, 5] given by 943 users
to different subsets of a database of 1, 650 movies, resulting in a highly sparse
dataset with 80, 000 ratings (approximately 6.4% of occupancy). This dataset was
first intended to be used with collaborative filtering algorithms, where the objective
is to extract information from the dataset to infer a list of movie recommendations
to a given user. This dataset is challeging to biclustering algorithms due to its lack
of information (high sparsity) so, in this case, good quality biclusters must not only
present low mean-squared residue and high volume but also a high rate of occupancy
(non-null values).

http://arep.med.harvard.edu/biclustering
http://www.grouplens.org/node/73
http://www.grouplens.org/node/73
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For each experiment, the mean values taken in five independent runs of each
algorithm were calculated for the average mean-squared residue, volume, coverage
and, for the sparse dataset, occupancy of the final set of biclusters. Box plots for
these criteria were also generated to allow better conclusions to be drawn from
the results. Additionally, the quantitative comparisons between the algorithms were
verified with the Student’s t-test [36] with p-value threshold equal to 10−3.

It is important to notice that the goal of the analysis that will be made here is not
purely quantitative, as we will also focus on the quality of the biclusters generated by
each algorithm. It is not possible to establish a single numeric criteria to determine
which bicluster should be picked as the best one in the population, since multiple
objectives are being considered in this approach and the quality of the biclusters
should be seen as an interconnection of such different criteria, which is application-
dependent.

The parameters adopted for each dataset were chosen experimentally for each
algorithm, in order to lead to the best possible set of biclusters. Most of the
parameters adopted were the same for all the three datasets being only a few of them
problem-specific. The BIC-aiNet and MOM-aiNet algorithms were run for 2, 000
iterations, with a maximum of 6 individuals in each sub-population of the MOM-
aiNet. For Mitra & Banka’s algorithm, the number of iterations adopted was equal to
the number of biclusters required, the offspring size was set to 50 and the probability
of crossover and mutation were 75% and 3%, respectively. For CC, the only fixed
parameter was α which held a value of 1.2.

For the Yeast dataset, each algorithm was set to generate 300 biclusters with δ

(upper boundary of the mean-squared residue) set to 300 for MOM-aiNet, CC and
Mitra & Banka, and to 100 for BIC-aiNet. As it was seen on Section 5.3, the BIC-
aiNet algorithm tries to control the maximum mean-squared residue in the fitness
equation (see Eq. 13), so the meaning of parameter δ is different in this algorithm.
However, δ was properly set to 100 in order to lead BIC-aiNet to generate a set
of biclusters that attend the same upper bound of the residue (300). Also, the α

parameter of the Mitra & Banka’s algorithm (which is associated with the rate of
node deletion in the local search) was set to 1.8. The row (wr) and column (wc) degree
of relevance of the BIC-aiNet algorithm were set to 2 and 3, respectively.

For the Human dataset, the algorithms were adjusted to generate 200 biclusters
with maximum mean-squared residue (δ) of 1, 200 (in BIC-aiNet, δ was set to 200),
and α was set to 1.2 in Mitra & Banka’s technique. As for the Yeast dataset, the row
(wr) and column (wc) degree of relevance of the BIC-aiNet algorithm were set to 2
and 3, respectively.

Finally, for the Movielens dataset, all the algorithms were adjusted to generate
100 biclusters with a maximum residue δ of 2 (including BIC-aiNet) and α was set to
1.2 in Mitra & Banka’s algorithm, and the occupancy threshold γ of the MOM-aiNet
algorithm was set to 0.6. For this problem, the row (wr) and column (wc) degree of
relevance of the BIC-aiNet algorithm were set to 3 and 2, respectively.

As the number of subpopulations and of individuals in each of these subpopu-
lations of biclusters can vary during the execution of MOM-aiNet, which generally
leads this algorithm to return a much larger number of biclusters at the end of its
execution than the other three techniques, in this work only the largest bicluster of
each sub-population of the MOM-aiNet algorithm was considered in the evaluation
of the results that will be presented in the following sub-sections.
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8.1 Yeast Microarray Dataset

In order to correctly analyze the quality of the generated biclusters, it is first
necessary to establish what are the expected characteristics desired from the set of
biclusters. Sometimes it is required an equilibrium among minimal mean-squared
residue, maximum volume and maximum coverage. In other situations, biclusters
with maximum volume and coverage may be needed, being only required that they
attend a maximum mean-squared residue constraint. A third possible situation is
that the generated biclusters present a minimum degree of overlap, so that they can
represent the correlations in the dataset with a minimum amount of redundancy.
The ideal set of requirements to be imposed on the bicluster generation procedure
is highly problem-specific. For this reason, in the analysis that will be performed
here, we will try to highlight the main characteristics of each algorithm according
to several criteria, to allow users who intent to apply any of these techniques to a
specific problem to identify which proposal presents the characteristics required by
his/her situation.

From Table 1 it is possible to see that both the MOM-aiNet and Mitra & Banka’s
algorithm presented the highest coverage for this problem, being the coverage of the
biclusters generated by MOM-aiNet a little bit higher than those returned by the
Mitra & Banka’s proposal.

In order to be sure that the comparisons performed in this work were statistically
significant, Student’s t-tests were made (with p-value threshold equal to 10−3)
comparing the MOM-aiNet algorithm against all the other three techniques, with
respect to the mean-squared residue, volume, coverage, overlap and occupancy (just
for the Movielens dataset) of the returned biclusters. It is important to highlight here
that these tests do not indicate that MOM-aiNet is better or worse than the other
algorithms, but only that their results are statistically different. The results of these t-
tests are given in Table 2 and, from this table, it is possible to see that the comparisons
made in this paper are conclusive regarding all the criteria, except the overlap among
biclusters in the Movielens dataset.

It can also be seen from Table 1 that the average volume of the biclusters
generated by Mitra & Banka’s algorithm is much higher than those obtained by
MOM-aiNet, which is due to a much higher overlap presented by the biclusters of
Mitra & Banka. This same situation can be observed when the results obtained by
MOM-aiNet are compared to those of the BIC-aiNet algorithm. The MOM-aiNet
presents mechanisms to maintain a low overlap between biclusters, as it stimulates
both the diversity among different subpopulations and the diversity within the
individuals in the same subpopulation (see Section 7).

Table 1 Mean and standard deviation values of the mean-squared residue, mean volume, coverage
and overlap of the biclusters obtained by CC, BIC-aiNet, Mitra & Banka’s algorithm and MOM-
aiNet, for the Yeast dataset

CC BIC-aiNet Mitra & Banka MOM-aiNet

Residue 144.96 ± 2.9 232.04 ± 25.30 288.62 ± 3.35 294.56 ± 1.53
Volume 126.10 ± 0.2 3, 659.00 ± 1, 214.80 4, 800.40 ± 76.40 1, 834.70 ± 30.70
Coverage (%) 76.75 ± 0.12 68.20 ± 11.28 83.26 ± 0.83 85.91 ± 1.06
Overlap (%) 10.67 ± 0.01 20.67 ± 7.58 20.76 ± 0.72 7.27 ± 0.26
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Table 2 Hypothesis Student’s t-test for the comparisons of MOM-aiNet with the three other
proposals, for each dataset studied in this paper using a p-value threshold of 10−3

Dataset Criterion CC BIC-aiNet Mitra & Banka
H p-value H p-value H p-value

Yeast Mean-squared residue True 0.0000 True 0.0001 True 0.0000
Volume True 0.0000 True 0.0001 True 0.0000
Coverage True 0.0000 True 0.0001 True 0.0000
Overlap True 0.0000 True 0.0001 True 0.0000

Human Mean-squared residue True 0.0000 True 0.0000 True 0.0000
Volume True 0.0000 True 0.0000 True 0.0000
Coverage True 0.0000 True 0.0000 True 0.0000
Overlap True 0.0000 True 0.0000 True 0.0000

Movielens Mean-squared residue True 0.0000 True 0.0000 True 0.0001
Volume True 0.0000 True 0.0000 True 0.0001
Coverage True 0.0000 True 0.0000 True 0.0001
Overlap False 0.1121 True 0.0000 False 0.8043
Occupancy True 0.0000 True 0.0000 True 0.0000

Considering the mean-squared residue, an interesting characteristic of the MOM-
aiNet and Mitra & Banka’s algorithm can be noticed. These algorithms allow the
increase of the mean-squared residue of the biclusters up to values close to the upper
boundary δ, so that their volume can also be increased. Thinking in the Pareto front
in the “mean-squared residue × volume” objective space, it could be observed in
this experiment that these two multi-objective algorithms tend to generate more
biclusters of high volumes and high mean-squared residues than individuals with low
mean-squared residues and also low volumes. This behavior is directly reflected in
their respective average volume and average mean-squared residue obtained in the
five independent runs.

In Fig. 6a, b, c and d it can be seen that, apart from BIC-aiNet, all algorithms
present low variance in their results, which means that they are consistent and do not
tend to present much variability from one run to another. It is important to highlight
here that, although the variance for the volume and mean-squared residue shown
in the box plots are small, this does not mean that the algorithms are not capable
of finding one (or more) non-dominated fronts. Such variance is small because, at
each run, we calculate the average volume and mean-square residue of the final set
of biclusters obtained. Therefore, a small variance of these two criteria may indicate
that the non-dominated front (or fronts) found by each algorithm in each run are
within the same range.

The results presented in Table 1 and Fig. 6 illustrate well the different char-
acteristics of each biclustering algorithm. For this problem MOM-aiNet presented
the highest coverage of the data matrix, highlighting more correlations among the
data than any other algorithm, while BIC-aiNet and Mitra & Banka’s proposals
presented biclusters with much higher volumes, but at the cost of a much higher
overlap between such biclusters. All these three algorithms seem to have favored
the volume and coverage characteristics in detriment of the mean-squared residue,
differently from the CC algorithm, which led to a set of much smaller biclusters but
also with a much smaller average mean-square residues (see Fig. 7). Therefore, it
is not possible to assert that one of these algorithms is better than the other without
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Fig. 6 Box plots of the results for the Yeast dataset (a–d)

considering the characteristics of the practical problem, as all of them present distinct
advantages and disadvantages, when distinct criteria are considered.

Regarding the computational costs, all the algorithms presented equivalent times
for this problem, except CC: MOM-aiNet, BIC-aiNet and Mitra & Banka’s proposal

Fig. 7 Volume of each
bicluster returned in a single
execution of the CC algorithm
for the Yeast problem, in
descending order. Note that
only a few biclusters with high
volume are generated, being
the majority of the proposals
biclusters with low volume and
also low mean-squared residue
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spent about 1 hour on an AMD Turion 64 2GHz with 1GB RAM and CC about 25
minutes on the same machine.

8.2 Human Microarray Dataset

Concerning the Human microarray dataset results, given in Table 3, it is possible to
see that the CC algorithm led to a set of biclusters that present the lowest average
mean-squared residue, together with a good coverage of the dataset (the second
highest rate) and no overlapping among the biclusters. The next best average mean-
squared residue on this experiment was obtained with Mitra & Banka’s algorithm,
which has also presented biclusters with the second highest average volume, being
more than twelve times larger than those obtained by CC in average. However, the
algorithm of Mitra & Banka has also presented the smallest coverage of the dataset,
and the largest amount of overlapping among the biclusters, which indicates that
most of the biclusters generated remained concentrated in a small portion of the
data matrix.

The MOM-aiNet algorithm, on the other hand, did not present the best results
concerning the residue and the volume of the biclusters for this problem, but the
mean-squared residue constraint was respected and the deficiency on the volume of
the biclusters was compensated with the largest coverage of the dataset, with minimal
overlapping (2.87%). This large coverage of the dataset increases the efficiency of the
low-volume set of biclusters, as the goal of generating high-volume biclusters is akin
to the one of providing a good coverage of the dataset: highlight the highest amount
of correlations present in the data.

With a mean-squared residue just slightly higher than the one presented by Mitra
& Banka’s proposal, BIC-aiNet was able to find a set of biclusters with much higher
average volume. Also, BIC-aiNet had a good average coverage compared to the
other algorithms, although corresponding to half the coverage of the MOM-aiNet.
However, the overlapping of the biclusters generated by BIC-aiNet was almost as
high as the one of Mitra & Banka.

Then again we have different characteristics on each set of biclusters generated by
each algorithm. If the application requires a high coverage of the dataset with little
or no overlapping and the maintenance of average to high volume biclusters, the
MOM-aiNet is the most indicated algorithm. If you look for a set of biclusters with
the highest volume, that just respects the residue threshold and presents a standard
coverage with overlaps, the BIC-aiNet is the best choice. And also, if you want to
cover the dataset with biclusters with the smallest possible mean-squared residue
that do not overlap, then CC may be the best option, although experiments have

Table 3 Mean and standard deviation values of the mean-squared residue, mean volume, coverage
and overlap obtained by CC, BIC-aiNet, Mitra & Banka’s proposal and MOM-aiNet, for the Human
dataset

CC BIC-aiNet Mitra & Banka MOM-aiNet

Residue 915.50 ± 6.27 1,156.70 ± 2.62 1,052.90 ± 2.33 1,097.50 ± 18.24
Volume 610.00 ± 3.61 11,606.00 ± 38.39 7,559.00 ± 83.41 2,953.00 ± 126.62
Coverage (%) 31.57 ± 0.19 23.08 ± 0.11 17.08 ± 0.20 41.65 ± 0.76
Overlap (%) 0.00 ± 0.00 32.00 ± 0.21 34.57 ± 0.27 2.87 ± 0.21
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pointed out that this algorithm cannot go much further regarding coverage, even if
the number of generated biclusters is raised.

From Fig. 8a, b, c and d we can see again that the results were stable enough
(presented low variance) to discard any doubts about the behavior of each studied
algorithm. It is also possible to notice that, for this problem, the variance of MOM-
aiNet results was a little higher than the variance of the other proposals, but
this is still not enough to raise uncertainties about the given results, which were
corroborated by the Student’s t-test given in Table 2.

Concerning the computational costs associated with each algorithm for this
problem, MOM-aiNet, BIC-aiNet and Mitra & Banka’s proposal spent about 5 hours
on an AMD Turion 64 2 GHz with 1 GB RAM, while CC spent about 80 minutes to
generate the final set of biclusters.

8.3 Movielens Dataset

In the Movielens dataset, which is highly sparse, another characteristic of the
biclusters must be controlled by the algorithms: their occupancy rate. Since we
expect to have enough information to create inferences or draw conclusions from
the correlations represented in the biclusters, the amount of non-null values in each
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Fig. 8 Box plots of the results for the Human dataset (a–d)
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bicluster is very important as, according to the application, biclusters with high or
very low amounts of null values may not be desired.

The results obtained by each algorithm for the Movielens problem are given in
Table 4. Analyzing the CC performance, it is possible to see that, although this
algorithm provides 100% of occupancy and the best mean-squared residue, it also
generates biclusters with very low volume and coverage, which indicates that CC is
only capable of generating small biclusters positioned in a small region of the dataset.

Regarding the other three algorithms, it is possible to see that they generate sets
of biclusters with very similar mean-squared residues, but with significantly different
characteristics, as they differ in volume, coverage, overlap and occupancy. In this
problem the MOM-aiNet algorithm has led to biclusters with the highest volume
and the highest coverage of the dataset while maintaining a fairly low overlap rate
(although it was almost twice the overlap presented by BIC-aiNet) and a good occu-
pancy, given the high volume of the biclusters. As Movielens is a sparse dataset, the
higher the volume of the bicluster, the higher the probability that this bicluster will
have a null value, which reduces its occupancy rate. Nevertheless, the MOM-aiNet
algorithm still respected the imposed occupancy threshold established (γ = 0.6).

Therefore, for problems that present characteristics similar to Movielens, if
biclusters with high occupancy rate are required, the BIC-aiNet algorithm seems
to perform better (even though it has not led to the highest occupancy rate in
Movielens, it presents a good trade-off between volume and residue), but if such
applications do not require high occupancy rates but they demand high-volume
biclusters, the MOM-aiNet should be the best choice.

Although the results obtained by the MOM-aiNet algorithm for this dataset may
indicate that this algorithm is not suitable for some applications, as the occupancy
rate obtained by this algorithm is smaller than those obtained by the other three
techniques, this is the best scenario for collaborative filtering problems, as one of
the goals of such problems is to extract the highest amount of information from the
dataset in order to predict the missing values. For this reason, it is required that the
biclusters obtained present a high occupancy rate so that the missing information
can be inferred. However, if a bicluster presents 100% of occupancy rate, it will be
meaningless to this kind of application, as it does not contribute to the prediction of
any missing value.

In Fig. 9a, b, c and d it is possible to see that, differently from the Yeast and
Human problems, the algorithm of Mitra & Banka and CC presented a much higher
variance in the mean-squared residue and overlap. This can be associated with
the small coverage presented by these two algorithms, which leads them to locate
different sets of biclusters in each run, extracting different correlations at each time

Table 4 Mean and standard deviation values of the mean-squared residue, average volume, cover-
age, overlap and occupancy of the biclusters obtained by CC, BIC-aiNet, Mitra & Banka’s proposal
and MOM-aiNet, for the Movielens dataset

CC BIC-aiNet Mitra & Banka MOM-aiNet

Residue 0.51 ± 0.37 1.33 ± 0.03 1.18 ± 0.38 1.61 ± 0.03
Volume 6.72 ± 8.29 216.43 ± 2.05 73.42 ± 10.73 557.14 ± 22.55
Coverage (%) 0.04 ± 0.06 0.62 ± 0.01 0.28 ± 0.07 1.58 ± 0.03
Overlap (%) 2.97 ± 1.03 2.80 ± 0.14 4.63 ± 2.10 4.39 ± 0.33
Occupancy (%) 100.00 ± 0.00 92.31 ± 0.22 96.54 ± 5.69 88.84 ± 0.16
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Fig. 9 Box plots of the results for the Movielens dataset (a–e)

and, consequently, presenting different residue and overlapping profiles. Also, this
high variance in the overlap criterion explains why the t-test indicated that there
are no statistical differences among the overlap results of CC and Mitra & Banka’s
proposals and the one obtained by MOM-aiNet (see Table 2).

Concerning the computational time spent by each algorithm for Movielens, it was
verified that MOM-aiNet was about 6 times slower than BIC-aiNet and Mitra &
Banka’s technique, due to the constraint on occupancy included in MOM-aiNet.
For this problem, MOM-aiNet spent about 3 hours on an AMD Turion 64 2 GHz
with 1 GB RAM, while BIC-aiNet and Mitra & Banka’s proposal spent about
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30 minutes. For this problem, CC was again the fastest approach, obtaining its final
set of biclusters in less than 10 min on the same machine.

8.4 Number of Fronts Obtained by MOM-aiNet and Mitra & Banka’s Algorithm

In this work, it was also evaluated the final number of fronts in the objective space
found by MOM-aiNet and Mitra & Banka’s algorithm. This value is calculated by
counting the total number of ranks generated by the final population of biclusters
(see non-dominated ranking in Section 5.2), and is given in Table 5 (together with
the number of biclusters in the final population). It may seem, at first sight, that the
MOM-aiNet could find a better set of frontiers because of the elevated number of
biclusters generated, but it is important to notice that each sub-population generally
belongs entirely to a single front, which means that the algorithm is capable of
maintaining and evolving several fronts in parallel. This capability of working with
a large number of fronts is directly reflected in the percentage of coverage of the
search space accomplished by this algorithm, as MOM-aiNet is able to explore a
given region of the dataset without the risk of discarding it, during its execution,
for belonging to a lower rank (and thus being dominated by solutions in different
subpopulations).

9 Final Remarks

In this paper, a multi-objective multipopulation artificial immune network for biclus-
tering, named MOM-aiNet, was explained in further details and had its performance
evaluated and compared with three other algorithms from the literature, being
one of them also developed based on multi-objective optimization concepts. The
main characteristics of MOM-aiNet are the generation of more than a single non-
dominated front of solutions in parallel, representing different regions of the original
data, and the dynamic variation of its population size, which is automatically adjusted
to cover the highest amount of the data space.

This algorithm was applied to three well known datasets from the literature, being
two of them gene expression datasets (popularly known as Yeast and Human B-Cell
Lymphoma), and the other one a dataset from the collaborative filtering literature
(Movielens), which presents as its main feature a very high degree of sparseness.
The results were analyzed with the verification of the balance among the mean-
squared residue, volume, coverage, overlap and, when suited, occupancy rate of the
biclusters. The scope of the analysis made here was to show that each algorithm could

Table 5 Final number of biclusters and fronts obtained by MOM-aiNet and Mitra & Banka’s
algorithm

Dataset Algorithm Final number of Biclusters Final number of Fronts

Yeast MOM-aiNet 1,800 155
Mitra & Banka 300 28

Human MOM-aiNet 1,200 192
Mitra & Banka 200 23

Movielens MOM-aiNet 600 122
Mitra & Banka 100 28
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fit different real world application situations but also that, in general, MOM-aiNet
could generate a really good material for post analysis in practically every situation.

From the comparisons made, it was possible to conclude that MOM-aiNet, even
though explicitly optimizing just two objectives (volume and residue), aimed at build-
ing a set of solutions that maximize the coverage of the data, mainly because of its
multipopulation aspect and its suppression mechanism that inhibits two populations
from exploring similar areas of the search space. Also because of this suppression
mechanism, the overlap among biclusters was kept under control and implicitly
minimized, although this can always be relaxed with a proper adjustment of the
suppression threshold. Finally, regarding the volume-residue trade-off, MOM-aiNet
could not always find the maximum volume on dense datasets, which is again due
to the effect of the suppression mechanism inhibiting two populations from growing
indefinitely and intersecting with each other. The most noticeable advantage of the
proposed algorithm was on the sparse dataset where MOM-aiNet was able to find
the best trade-off among the objectives (except, maybe, for the occupancy, but given
the higher volume, the occupancy rate should decay inevitably).

It was also shown in this work that MOM-aiNet is capable of finding a larger
number of distinct non-dominated fronts when compared to Mitra & Banka’s
algorithm, which is directly reflected in the coverage capability of the algorithm, as
each region of the dataset presents different properties that might lead to biclusters
dominated by solutions in distinct regions. Thus, even though the biclustering search
procedure demands the optimization of conflicting objectives, the focus just on the
generation of non-dominated solutions does not seem to be enough to obtain a set of
biclusters as meaningful as possible to a given application.

As future works, we intend to explore the use of more biclusters on these datasets
until a coverage close to 100% is achieved, include a local search step in order to
improve each subpopulation without changing much of its structure and, finally,
include more objectives in the optimization process, such as the row variance of the
biclusters, to verify whether even more useful biclusters can be generated.
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