
J Math Model Algor (2009) 8:271–292
DOI 10.1007/s10852-008-9101-1

Hybrid Flow-Shop: a Memetic Algorithm
Using Constraint-Based Scheduling
for Efficient Search

Antoine Jouglet · Ceyda Oğuz · Marc Sevaux

Received: 3 March 2006 / Accepted: 11 December 2008 / Published online: 21 January 2009
© Springer Science + Business Media B.V. 2009

Abstract The paper considers the hybrid flow-shop scheduling problem with mul-
tiprocessor tasks. Motivated by the computational complexity of the problem, we
propose a memetic algorithm for this problem in the paper. We first describe the
implementation details of a genetic algorithm, which is used in the memetic al-
gorithm. We then propose a constraint programming based branch-and-bound
algorithm to be employed as the local search engine of the memetic algorithm.
Next, we present the new memetic algorithm. We lastly explain the computational
experiments carried out to evaluate the performance of three algorithms (genetic
algorithm, constraint programming based branch-and-bound algorithm, and memetic
algorithm) in terms of both the quality of the solutions produced and the efficiency.
These results demonstrate that the memetic algorithm produces better quality
solutions and that it is very efficient.

Keywords Multiprocessor task scheduling · Hybrid flow-shop · Genetic algorithm ·
Constraint programming · Memetic algorithm

A. Jouglet (B)
HEUDIASYC, UMR CNRS 6599, Centre de Recherche de Royallieu,
Université de Technologie de Compiègne, BP 20529,
60205 Compiègne cedex, France
e-mail: antoine.jouglet@hds.utc.fr

C. Oğuz
Department of Industrial Engineering, Koç University,
Rumeli Feneri Yolu, Sarıyer, 34450 İstanbul, Turkey
e-mail: coguz@ku.edu.tr

M. Sevaux
UEB—Lab-STICC, UMR CNRS 3192, Centre de Recherche,
Université de Bretagne Sud, BP 92116, 56321 Lorient cedex, France
e-mail: marc.sevaux@univ-ubs.fr

272 J Math Model Algor (2009) 8:271–292

1 Introduction

In this paper, we consider the following scheduling problem: a set J = {1, 2, . . . , n}
of n independent jobs has be processed in a k-stage flow-shop. We assume that all
processors and all jobs are available from time t = 0, and each processor can process
at most one job at a time. Each job j is composed of multiprocessor tasks, and
each stage i has mi identical parallel processors (machines), i = 1, 2, . . . , k; j ∈ J.
It is convenient to view a job as a sequence of k tasks, where each task of a job j
corresponds to a stage i (Tij), and the processing of any task can commence only
after the completion of the preceding task. Each task Tij is characterized by its
processing time pij and its processor requirement sizeij, and we say that task Tij has
to be processed simultaneously on sizeij of mi identical parallel processors of stage
i for an uninterrupted period of pij units of time, i = 1, 2, . . . , k; j ∈ J. Let πi(σ)

denote the sequence of jobs at stage i in schedule σ and Cij(σ) be the completion
time of the i-th task of job j in schedule σ , i = 1, 2, . . . , k; j ∈ J. Our objective is
to minimize the maximum completion time of all jobs in schedule σ , that is the
makespan, which is denoted by Cmax(σ) = max

j∈J
{Ckj(σ)}. Our problem can be denoted

by Fk(Pm1, . . . , Pmk)|sizeij|Cmax by using the well-known three-field notation (see,
for example, Błażewicz et al. [3]).

This scheduling problem arises in several settings such as computer systems
[13], container terminals for berth allocation [15], manufacturing environments for
maintenance works [6], and finally machine vision systems [24]. Furthermore it is
a generalization of the F2(1, 2)||Cmax problem, that is makespan minimization in
a two-stage hybrid flow-shop with one processor at one stage and with classical
job definition. The F2(1, 2)||Cmax problem is an NP-hard problem [10] and one
can see that researchers resort to either heuristics or branch-and-bound algorithms
to solve its different versions [21, 30]. Furthermore Portman et al. [27] showed
that using a genetic algorithm within a branch-and-bound algorithm improves
the performance of the branch-and-bound algorithm considerably for a hybrid
flow-shop scheduling problem. Due to the computational complexity result of the
Fk(Pm1, . . . , Pmk)|sizeij|Cmax problem, heuristic and metaheuristic algorithms have
been proposed for this problem as well [24–26, 28]. These studies showed that genetic
algorithm performs very well in terms of both the solution quality and the efficiency.

In view of the success of combining an exact algorithm with the genetic algo-
rithm for a hybrid flow-shop scheduling problem, in this paper, we incorporated
a constraint programming based branch-and-bound algorithm into a genetic algo-
rithm and propose a memetic algorithm to provide a better quality solution to the
Fk(Pm1, . . . , Pmk)|sizeij|Cmax problem in a shorter time especially for the large-size
instances of the problem.

The rest of the paper is organized as follows. Section 2 first describes the special
features of the genetic algorithm and then presents its specific implementation
details. Section 3 gives the details of the constraint programming based branch-and-
bound algorithm. Section 4 presents the memetic algorithm which combines the ge-
netic algorithm with the constraint programming based scheduling method. Section 5
illustrates the computational experiments employed to test the performance of the
memetic algorithm. After describing the data generation, we subsequently report the
computational results. We first compare the performance of our genetic algorithm
with that of the genetic algorithm of Oğuz and Ercan [24]. We then compare the

J Math Model Algor (2009) 8:271–292 273

performance of our genetic algorithm with that of the constraint programming
based branch-and-bound algorithm alone and with that of the memetic algorithm.
We further compare the performance of the memetic algorithm with that of the
algorithms provided in the literature. Section 7 concludes the paper.

2 The Genetic Algorithm

Genetic algorithms, motivated by the natural evolution, was first introduced by
Holland [11] and widely adapted to solve optimization problems (see, for example,
Goldberg [8]). Starting from a set of solutions (population), genetic algorithms itera-
tively work on certain solutions (parents) by means of genetic operators (selection,
crossover, mutation and replacement) to obtain better solutions (offspring). Each
solution is referred to as a chromosome and it is composed of genes that characterize
the solution. The search in genetic algorithms, which is stochastic in nature, is guided
by the fitness of the chromosomes, which is determined by the associated value of the
objective function for each solution.

In the following, we will explain our implementation of the genetic algorithm for
the Fk(Pm1, . . . , Pmk)|sizeij|Cmax problem by giving details for each component of
the genetic algorithm. The genetic algorithm developed in this paper is in some parts
similar to one of the variants presented by Oğuz and Ercan [24]. For completeness,
we will describe how a solution is coded to a chromosome in the population and
how a feasible schedule can be constructed from this coded solution. Note that the
crossover and mutation operators are the same as in Oğuz and Ercan [24]. For further
details of these components and their implementation, we refer the reader to that
paper. On the other hand, the generation of initial solutions, the stopping condition,
and the selection are different in our implementation and will be explained in detail.

Coding a solution A solution to single machine scheduling problems is usually
coded as a permutation of jobs, which is the natural representation of a solution
in this case. For the hybrid flow-shop scheduling problems, there exist several
representations with varying degrees of complexity that are used for coding solutions.
In Portmann (unpublished manuscript), a list of permutations at each stage is used
in a general genetic algorithm approach. A more complex representation is used
in Portmann et al. [27]. In that paper, two types of variables are necessary, the
assignment variables for each stage and each operation (the indices of the machines
which perform the operation) and the sequencing variables for each stage, in form
of a matrix that contains the precedence constraints between the operations. For
this latter representation, the crossover and mutation operators are designed very
carefully to generate the offspring that represent solutions themselves.

In our case, as in Oğuz and Ercan [24], we prefer to keep an easier representation,
one that can easily be coded for implementation. The permutation of the jobs at
the first stage will be the coding of a solution. It is clear that using this coding, a
permutation could generate several different schedules. This will be explained next.

Decoding of a solution A list scheduling algorithm is used to obtain a feasible
schedule for the permutation that codes a solution. This algorithm chronologically
constructs the schedule by iteratively assigning the jobs to the processors according
to the ordered list of completion times at the previous stage. This list scheduling

274 J Math Model Algor (2009) 8:271–292

Table 1 Data for the 2-stage 5-job example

Jobs j 1 2 3 4 5 6 7 8 9

p1 j 4 5 5 4 3 2 1 1 2
size1 j 1 3 3 3 3 1 2 2 2
p2 j 2 6 2 1 1 4 1 2 1
size2 j 4 5 2 5 3 2 1 2 3

algorithm preserves the general order induced by the representation. In that way,
semi-active schedules are built but non-permutation sequences can be constructed.
A simple example from Oğuz and Ercan [24] is given below.

Example Consider a 2-stage 5-job example for which the data are given in Table 1
(pij and sizeij represent respectively the processing time and the processor re-
quirement at stage i of job j). Each stage can run up to five processors in
parallel. The ordered sequence of jobs for the example considered will be π1 =
{2, 3, 1, 4, 7, 6, 5, 8, 9}.

First, according to the sequence π1 = {2, 3, 1, 4, 7, 6, 5, 8, 9}, the jobs are scheduled
at the first stage by the decoding algorithm. Note that even if job 1 might have been
scheduled at time 0 (enough time and processors are available), the algorithm did
not choose this option to follow the general order induced by the representation.
The alternative way of scheduling, which schedules job 1 at time 0, has the advantage
of more densely packing the jobs but at the same time, it may lead to an identical
solution for many different permutations, so many sequences would be handled by
the genetic algorithm “for nothing”. Figure 1 presents the resulting schedule after

5 9 10 11 13 14 15 17

5 11 13 14 15 17 18 19 20

2 3 4

1

5

8
6

7 9

m2

m3

m4

m5

m2

m3

m4

m5

m1

m1

2
1

7

6

3

4
5 9

8

St
ag

e
2

St
ag

e
1

Fig. 1 The schedule generated by the decoding algorithm for the example

J Math Model Algor (2009) 8:271–292 275

applying the decoding algorithm. After sequencing the jobs at the first stage, the new
order is π2 = {2, 1, 3, 7, 6, 4, 8, 5, 9}. Jobs at stage 2 are scheduled in that order.

Initial solutions An initial population is randomly generated. As usually recognized
by the researchers, good solutions that are introduced in the initial population speed
up the convergence of the genetic algorithm. In Oğuz et al. [25], different priority
lists have been used for a two-stage hybrid flow-shop problem. We will consider four
best performing priority lists from that paper after extending them to the multi-stage
problem. These priority list rules are described below:

1. Find a sequence S by sorting the jobs in non-increasing order of last stage’s
processing times multiplied by last stage’s processor requirements.

2. Find a sequence S by sorting the jobs in non-decreasing order of stage 1
processing times multiplied by stage 1 processor requirements.

3. Find a sequence S by sorting the jobs in non-increasing order of stage 1 processor
requirements.

4. Find a sequence S by sorting the jobs in non-increasing order of last stage’s
processor requirements.

Selection The binary tournament technique is one of the simplest and most reliable
techniques to implement. When selecting a chromosome for crossover operation,
we want to make a biased random selection (giving more chance to the best
chromosomes to be selected). To obtain such a chromosome, we select at random
(with uniform repartition) two chromosomes in the population and keep the best as
the first parent. We perform this operation again for obtaining the second parent. To
avoid useless crossover operations, we force the second parent to be different from
the first one.

Crossover and mutation operators The NXO crossover operator described in Oğuz
and Ercan [24] is used in this genetic algorithm. This operator has been specially
designed for hybrid flow-shop problems with multiprocessor tasks and performs
well. It preserves the interesting characteristics of the parents, such as collections
of consecutive jobs, in the resulting offspring. In Oğuz and Ercan [24], the PMX
crossover operator has also been tested but the results indicate that the NXO
operator gives better results when combined with the insertion mutation operator.

The insertion mutation operator is one of the most commonly used operator
for scheduling problems. One of the jobs of a sequence is picked at random and
inserted at a random place elsewhere in the chromosome structure. This mutation
operator preserves the structure of several consecutive jobs but inserts one job in
a new position. So depending on the place where the job is picked up from and
inserted into, the effect of the mutation operator will be important or not. We note
here one difference with the genetic algorithm of Oğuz and Ercan [24] regarding the
application of mutation operator. We apply the mutation operator with probability
pm to an offspring only if its fitness is worse than the fitness of the best chromosome
in the population. However, the mutation operator was performed on an offspring
with probability pm without checking its fitness in Oğuz and Ercan [24].

Stopping conditions One of the aims of this study is to perform a comparison be-
tween different solution procedures and for a fair comparison, the same duration to

276 J Math Model Algor (2009) 8:271–292

run each solution procedure is used. After few experiments on the largest instances,
the total duration given to each solution method was set to 15 min (900 s) of CPU
time. In addition, we note that it is not necessary to spend more time trying to solve
an instance if we reach a lower bound, an optimal solution, or a local minimal solution
from which we cannot escape. For this reason, an additional stopping condition of a
maximum number of 10,000 iterations without improvement of the best solution has
been added with also a check on the lower bound value.

3 The Constraint Programming Based Branch-and-Bound Algorithm

Constraint programming is a programming paradigm aimed at solving combinatorial
optimization problems. Indeed, these problems can be solved by defining them as a
Constraint Satisfaction Problem: the problem is described by a set of variables,
a set of possible values for each variable, and a set of constraints between the
variables. The set of possible values of a variable is called the variable domain. A
constraint between variables expresses which combination of values for the variables
are allowed. The question to be answered is whether there exists an assignment of
values to variables, such that all constraints are satisfied. If such an assignment ex-
ists, it is a solution to the Constraint Satisfaction Problem. The power of constraint
programming method is largely due to the fact that constraints can be used in
an active process called “constraint propagation” in which certain deductions are
made to reduce computational effort needed to solve problems, by removing val-
ues from the domains, deducing new constraints, and detecting inconsistencies. In
recent years, constraint programming techniques have been successfully used to
model and solve scheduling problems [2]. Thus “constraint-based scheduling” is
defined as the discipline that studies how to solve scheduling problems using
constraint programming methods. Combining ideas from Artificial Intelligence and
Operations Research, constraint-based scheduling is able to maintain the best of both
approaches, i.e., the flexibility of Artificial Intelligence scheduling systems and the
efficiency of Operation Research algorithms.

The aim of this section is to propose a branch-and-bound algorithm with constraint
propagation techniques to solve the Fk(Pm1, . . . , Pmk)|sizeij|Cmax problem under
the constraint that a permutation π1 is given. We employed the constraint-based
scheduling tool Ilog Scheduler [12] to develop this branch-and-bound algorithm.
In Section 3.1, we describe the problem as an instance of the Constraint Satisfaction
Problem. We then describe in Section 3.2 the proposed branch-and-bound algorithm.
Finally, we describe in Section 3.3 some techniques which are used to improve the
performance of the branch-and-bound procedure.

3.1 Modelling the Problem in Constraint Programming

Recall that a solution is encoded as a permutation of n jobs at stage one in the genetic
algorithm and then decoded into a schedule by a list scheduling algorithm. The list
scheduling algorithm used in the genetic algorithm is very efficient to build a feasible
solution from a given permutation and to compute the fitness of the solutions quickly,
but has some drawbacks.

J Math Model Algor (2009) 8:271–292 277

Let Cl
max(σ (π1)) be the makespan of the schedule σ built by the list scheduling

algorithm from the permutation π1. Let C∗
max(σ (π1)) be the optimal makespan which

is found under the constraint that the jobs at the first stage are sequenced in the order
defined by π1. Note that due to the restriction in the list scheduling algorithm that the
order imposed from the previous stage is preserved at each stage, Cl

max(σ (π1)) is not
necessarily equal to C∗

max(σ (π1)). Of course, C∗
max(σ (π1)) is also not necessarily the

optimal makespan of the Fk(Pm1, . . . , Pmk)|sizeij|Cmax problem, that is, C∗
max(σ).

By these remarks, we note that the genetic algorithm may not be able to produce the
optimal solution in certain cases because of the decoding algorithm used.

Nevertheless, the solutions produced by the genetic algorithm were observed to
be of high quality most of the time, i.e., very near to the optimum. If, in addition, we
make the hypothesis that the sequence π1 obtained by the genetic algorithm is very
close to the sequence which can produce the optimal makespan, then π1 seems to be
a precious information on the structure of the optimal solution.

The main idea of our algorithm is to propose a kind of refining method which
allows us to exploit the results of the genetic algorithm and to find a better solution,
which can be proven in certain cases to be the optimal solution. For that purpose, we
propose to use a branch-and-bound procedure using constraint programming.

In constraint programming, the Fk(Pm1, . . . , Pmk)|sizeij|Cmax problem can be
efficiently encoded in terms of variables and constraints in the following way [2].
Let us remind that Tij is the task i of job j; i = 1, 2, . . . , k, j ∈ J. For each task Tij two
variables are introduced, start(Tij) and end(Tij), representing the start time and the
end time of the task Tij, respectively; i = 1, 2, . . . , k, j ∈ J. Note that the domains of
these variables are tightened during the branch-and-bound procedure as a result of a
combination of decisions and constraints propagation.

Temporal relations between the tasks are expressed by linear constraints between
the start and the end variables of the tasks. Then, the precedence between two
successive tasks Tij and Ti+1, j of the same job j is modelled by the linear constraint
end(Tij) ≤ start(Ti+1, j); i = 1, 2, . . . , k − 1, j ∈ J. Such constraints are easily propa-
gated using a standard arc-B-consistency algorithm [16], which ensures that, when a
schedule has been found, all precedence constraints are respected.

Cumulative resource constraints represent the fact that the tasks require some
amount of a resource throughout their execution. For our problem, the propagation
of the resource constraints mainly consists of maintaining arc-B-consistency on the
formula

∀i ∈ {1, 2, . . . , k}, ∀t,
∑

j∈{1,2,...,n} such that
start(Tij)≤t<end(Tij)

sizeij ≤ mi.

In other words, the sum of processor requirement of those tasks, for which
start(Tij) ≤ t < end(Tij), at stage i and at time t, has to be lower than the number of
available processors mi at stage i; i = 1, 2, . . . , k, ∀t (see for instance Le Pape [14]).

The makespan criterion is represented by an additional variable Cmax. Its value is
determined by the constraint

Cmax = max
i, j

end(Tij),

278 J Math Model Algor (2009) 8:271–292

and arc-B-consistency is used to propagate this constraint as well. It ensures that
when a schedule has been found, the value of Cmax is actually the makespan of the
schedule.

3.2 Solving the Problem

To find an optimal solution, we solve successive variants of the decision problem,
i.e., a problem in which a constraint on the makespan value is added to the problem
(Cmax ≤ UB). For the decision problem, the constraint programming approach re-
turns a feasible schedule for this maximum makespan value (UB) or fails. Each time
a feasible solution is found (with possibly a new upper bound UB′), the maximum
makespan value UB (or UB′) is decreased by one unit and the branch-and-bound
algorithm is restarted. Each time, the search resumes at the last visited node of the
previous iteration. When no other solution can be found, the last one found is the
optimal solution of the problem.

We use a schedule-or-postpone method to solve the decision problem which works
as follows: at each step of the branch-and-bound method, we choose an unscheduled
task Tij of minimal earliest start time and we schedule it as early as possible, as
allowed by the previously scheduled tasks (which have smaller start times than Tij)
and by the preceding tasks of the same job (on other resources). Note that each time
such a job is scheduled, the constraint propagation techniques are triggered to reduce
the domains of variables and then to reduce the search space. If that decision leads
to a failure, i.e., no solution can be found according to this start time, choosing the
start time of this activity is postponed.

This activity might be considered again when its earliest start time is removed.
Such an adjustment can occur as a result of a combination of decisions and propaga-
tion. The schedule is built by using a depth first strategy.

At each step of the schedule, the job is selected as follows. A priority sequence
of the jobs is provided to the branch-and-bound procedure. When a job has to
be scheduled, we then choose the task which is not postponed and which can be
scheduled at the stage with the smaller index. Ties are broken choosing the job with
the smaller index in the priority sequence among those which can be scheduled the
earliest.

If the branch-and-bound procedure is used in the memetic algorithm (which will
be explained in Section 4) to perform a hybrid search in cooperation with the genetic
algorithm, the priority sequence is provided by the genetic algorithm. If the branch-
and-bound algorithm is used alone to solve the problem, the priority sequence is
obtained by sorting the tasks in non-decreasing order of stage 1 processing times
multiplied by stage 1 processor requirements. Indeed, this heuristic has been shown
to give the best results among several other ones in Oğuz et al. [25].

If the branch-and-bound is stopped before reaching the optimal solution, the best
schedule found so far (if any) is returned.

3.3 Improving the Performance of the Branch-and-Bound Procedure

Several ways are used to improve the performance of the branch-and-bound
procedure. Particularly, several methods relying on jobs’ time-windows to propagate
the resource constraints are used to update and adjust these sets. These rules are

J Math Model Algor (2009) 8:271–292 279

often pre-implemented in constraint-based scheduling systems such as Ilog
Scheduler [12].

• At each node of the search tree, we compute a lower bound of the cost of
scheduling remaining unscheduled jobs. If this lower bound is greater than the
upper bound Cmax of the decision problem, then a backtrack occurs. For that, we
use the lower bound described by Oğuz and Ercan [24] for this problem.

• We use the propagation of the disjunctive constraint which compares the tem-
poral characteristics of pairs of tasks: two tasks Tij and Tik such that sizeij +
sizeik > mi cannot overlap in time since they require the same resource i and
since scheduling both tasks at the same time requires more processors than the
maximum number of processors at stage i. Hence, either Tij precedes Tik or Tik

precedes Tij, i.e., the disjunctive constraint holds between these tasks. Arc-B-
consistency can be then achieved by the formula

[
sizeij + sizeik ≤ mi

] ∨ [
end

(
Tij

) ≤ start (Tik)
] ∨ [

end (Tik) ≤ start
(
Tij

)]
.

If n tasks require the same resource, the constraint can be implemented as
n(n − 1)/2 disjunctive constraints.

• We use the edge-finding propagation techniques [2, 4] which are also able
to adjust the time-windows according to the resource constraint. Rather than
considering only pair of tasks (Tij, Tik) to prove that Tij must precede Tik or
vice-versa, the edge-finding constraint propagation techniques make a decision
considering the order in which tasks are processed on the resource. The goal
is to determine whether a task Tij must be sequenced before (or after) a given
set of tasks [22, 23]. Two types of conclusions can then be drawn: new ordering
relations (“edges” in the graph representing the possible orderings of jobs) and
new time-bounds (earliest and latest start and completion times).

• We use energetic reasoning techniques [7, 17]. Considering the quantities of
energy supplied by resources and consumed by tasks within given intervals,
the energetic approach aims at developing satisfiability tests and time-bound
adjustments to ensure that either a given schedule is not feasible or to derive
some necessary conditions that any feasible schedule must satisfy.

4 The Memetic Algorithm

In this section, we describe the memetic algorithm proposed for the
Fk(Pm1, . . . , Pmk)|sizeij|Cmax problem. A memetic algorithm [18, 19] is a
metaheuristic based on a genetic algorithm in which a local search is performed on
new solutions generated during the search. Recent advances on memetic algorithm
are presented in Moscato and Cotta [20]. In the proposed memetic algorithm we
combine the genetic algorithm described in Section 2 with the branch-and-bound
algorithm described in Section 3 to benefit from the advantages of these approaches.

The main idea is, with probability phs, to improve an offspring with the branch-
and-bound algorithm using constraint programming if the offspring is better than
all of the chromosomes in the population before considering its inclusion in the
population. Such a local search performed on the offspring will definitely increase
the quality of the solutions obtained.

280 J Math Model Algor (2009) 8:271–292

In our approach, we have chosen an incremental version of the genetic algorithm
to replace the existing chromosomes with the selected better ones. In our opinion,
this version, compared to a population replacement version, is able to take benefits
from a new chromosome at the immediate next iteration by being able to poten-
tially use it for a new crossover operation. Moreover, since some solutions will be
generated by the branch-and-bound method, and these solutions will probably be
improved a lot, we would like to be able to gain benefits from them as soon as
possible.

Description of the memetic algorithm Algorithm 1 describes the memetic algorithm,
which is a combination of the genetic algorithm with the constraint programming
based branch-and-bound algorithm.

First, an initial population of npop chromosomes is generated as described in
Section 2 and two chromosomes, namely best and worst, are identified. The main
loop is then repeated until some stopping conditions are met. Within the loop, the
first operation performed is the selection of two chromosomes as parents for the
crossover operator. The selection is made by the binary tournament technique. Next,
the crossover operation is performed using the NXO operator and one offspring, c,
is generated. The quality of the offspring, f (c), is immediately evaluated. Here f (c)
refers to the value of Cl

max(σ (c)) If the quality of the offspring is better than that of
the best solution found so far, the mutation is not performed at this iteration (test
line 7 of Algorithm 1), otherwise the mutation is performed with probability pm.

With a probability phs, we apply the local search using the constraint programming
based branch-and-bound algorithm (CP search). One common rule applied for ac-
cepting the new chromosome to the population is that they at least improve the worst
chromosome (line 11 of Algorithm 1). If the new chromosome is accepted to the
population, to keep a population of a fixed size, we have to remove one chromosome.
To be sure to remove one of the worst, we can use the binary tournament as well, but

J Math Model Algor (2009) 8:271–292 281

this time in a reverse way (select two different chromosomes and remove the worst
one). Another strategy would be to remove the worst individual at each iteration, but
as shown by Goldberg and Deb [9] the systematic deletion of this worst individual
from the population induces a high selective pressure on the population (in other
words, it results in a too rapid convergence).

We note that the CP search is first applied for 1 s of CPU time and each time
the current solution is improved an additional second of CPU time is allowed.
These stopping conditions have been defined experimentally. It appears, in most of
the cases, that the constraint programming algorithm either finds very quickly an
improved solution or does not find one at all. On the average, when the search is
successful, the constraint programming algorithm never runs for more than 5 s. It is
important to note that each time a CP search is stopped, the explored search space
is kept to avoid redundant and inefficient searches among all calls of the CP search.

When CP search finds a better solution than the incumbent, the fitness value and
the permutation are updated accordingly in the genetic algorithm. If CP search finds
more than one better solution, only the best one is kept for the mutation.

5 Computational Experiments for Fk(Pm1, . . . , Pmk)|sizei j|Cmax Problem

All of the algorithms were implemented in C++ and run on a PC Pentium 4, 1.8 GHz
processor with 512 Mb memory. In the sequel, GA will denote the genetic algorithm
described in Section 2, CP will denote the constraint programming based branch-
and-bound algorithm of Section 3 when it is used alone and MA will denote the
memetic algorithm that combines the GA and the CP as described in Section 4.
Table 2 summarizes the parameters used for different algorithms and their values.

The CPU time limit of 900 s for a branch-and-bound algorithm may appear as
a very strict limit. We note that, after some experiments, we concluded that the
branch-and-bound algorithm cannot prove the optimality of the solution even after
3600 s which confirms the difficulty of the problem and the inadequacy of the exact
solution procedures alone. In more detailed tests, we observed also that only very
few solutions have been improved (and not significantly) when the time limit was
extended to 1800 s of CPU time.

We will first show in the rest of this section that the genetic algorithm described in
Section 2, that is GA, is of similar efficiency with the genetic algorithm described
in Oğuz and Ercan [24] (GA_OE). We will then compare the three algorithms
presented in this paper, namely, GA, CP and MA. The data used for the evaluation

Table 2 Parameters used in the computational experiments

Parameter Value Algorithm Comments

pm 0.1 GA, MA Mutation rate
phs 0.0001 MA Hybrid search rate
CPU_Max 900 s GA, CP, MA Maximum CPU time allowed
MaxIterImp 10 000 GA, MA Maximum number of iterations without improvement

of the best solution
CPU_HS 1s+1s+. . . MA Maximum CPU time allowed for the CP search in MA

(1 s + an additional second each time the solution is
improved)

282 J Math Model Algor (2009) 8:271–292

of the proposed method for the Fk(Pm1, . . . , Pmk)|sizeij|Cmax problem in these
experiments are the ones generated in Oğuz and Ercan [24]. Two types of instances
are provided depending on the setting of the processor configurations. For each type,
the number of stages are 2, 5 or 8 and the number of jobs are 5, 10, 20, 50 or 100.
This leads to a set of 300 instances. We will finally compare the performance of the
proposed algorithms with that of the genetic algorithm proposed in Serifoğlu and
Ulusoy [28] with their data set.

5.1 Comparison of the Two Genetic Algorithms

We first note that the stopping conditions for GA and GA_OE are not the same. In
GA_OE, 30 min were allowed to produce results, i.e., 1800 s of CPU time, whereas
GA uses 900 s of CPU time. We note that, increasing the CPU time for GA did
not significantly improve the results. Table 3 provides results for GA_OE and GA.
The columns under “Av. Cmax” give the average Cmax value over 10 instances. The
other columns under “# best” denote the number of time each method finds the best
solution.

From this table, it seems that the two methods are almost equivalent. For type-
1 instances, our genetic algorithm provides better results (in terms of average Cmax

values and number of best solution found) as the number of jobs increases. For type-2
instances, the genetic algorithm provided by Orğuz and Ercan [24] give better results
in terms of the number of best solutions found but GA_OE and GA are equivalent
when comparing the average Cmax values. Based on these observations, in the sequel,
we will focus only on GA.

5.2 Studying Algorithm MA

In Table 4, we study the stability and the convergence of the method MA. For
each instance type (1 or 2), for each number of stages, we have launch the method

Table 3 Comparing the two genetic algorithms

k n Type 1 instances Type 2 instances

Av. Cmax # best Av. Cmax # best

GA_OE GA GA_OE GA GA_OE GA GA_OE GA

2 5 267.60 267.60 10 10 256.40 256.40 10 10
10 451.10 451.10 10 10 409.50 426.30 9 4
20 876.70 876.50 9 9 757.40 809.50 10 5
50 2049.40 2048.50 6 8 1671.10 1731.80 9 4

100 4355.00 4351.50 4 10 3205.30 3242.50 9 1
5 5 472.10 472.10 10 10 423.80 423.80 10 10

10 639.10 648.40 8 4 616.30 606.80 8 3
20 1072.10 1077.70 9 4 948.50 950.90 8 2
50 2604.00 2574.80 4 8 2074.60 1971.70 2 8

100 4755.00 4755.90 4 6 4145.30 3822.30 0 10
8 5 641.60 641.60 10 10 614.20 614.20 10 10

10 836.90 850.50 9 2 813.10 840.40 6 3
20 1319.30 1319.90 6 4 1148.00 1144.70 6 4
50 2669.60 2634.30 2 8 2321.80 2292.20 5 5

100 5327.70 5260.20 1 9 4216.60 4412.10 9 1

J Math Model Algor (2009) 8:271–292 283

Table 4 Studying MA

Type k Cmax values χ Number of CP calls

min av. max min av. max min av. max

1 2 666 670.4 676 0.809 0.903 0.993 117 129 149
5 1167 1167.0 1167 0.529 0.924 0.994 63 73 81
8 1387 1398.6 1426 0.529 0.780 0.927 47 56 64

2 2 760 760.0 760 0.938 0.961 0.983 113 122 126
5 1042 1042.2 1044 0.332 0.821 0.967 61 70 76
8 1071 1093.3 1106 0.089 0.424 0.821 44 52 62

MA, 10 times on an instance of 20 jobs which is not proved to be optimal.
The search is stopped after 900 s. We report the minimum, the average and the
maximum value on the 10 launches of the method. To study the convergence, for
each launch is computed the value χ = (nb_total_iter − nb_best_iter)/nb_total_iter
where nb_total_iter and nb_best_iter are respectively the total number of iteration
and the number of iterations when the best value has been found. We report
then report the minimum, the maximum and the average of χ on the 10 launches.
Moreover we report the minimum, the maximum and average number of times the
CP search is run all along the method MA. The method seems to be rather stable
for a k = 2 or k = 5. Nevertheless, for k = 8, it seems that the method need more
CPU times. Analyzing the convergence seems confirm this situation since, contrary
to instances with k = 2 and k = 5, the best value is found later in the search.

5.3 Comparison of GA, CP and MA

In Table 5, we present the average Cmax values found by each method over the 10
instances of each class of data. From this table, we can observe that when the number
of jobs is small (5 or 10) CP is able to give optimal results in most of the cases,

Table 5 Comparing Cmax average values

k n Type 1 instances Type 2 instances

GA CP MA GA CP MA

2 5 267.6 267.0 267.0 256.4 253.5 253.5
10 451.1 451.1 451.1 426.3 422.0 422.1
20 876.5 889.8 877.7 809.5 832.5 807.6
50 2048.5 2087.0 2046.1 1731.8 1794.1 1722.2

100 4351.5 4417.7 4348.6 3242.5 3325.9 3215.0
5 5 472.1 466.6 466.6 423.8 418.4 418.4

10 648.4 637.8 637.8 606.8 596.8 594.9
20 1077.7 1151.0 1070.3 950.9 1066.5 945.3
50 2574.8 2680.7 2571.7 1971.7 2134.1 1960.7

100 4755.9 4868.5 4746.9 3822.3 3965.2 3802.0
8 5 641.6 616.7 616.7 614.2 599.9 599.9

10 850.5 854.0 840.3 840.4 820.9 824.0
20 1319.9 1468.2 1315.2 1144.7 1256.2 1133.4
50 2634.3 2950.2 2623.1 2292.2 2569.2 2315.7

100 5260.2 5643.9 5267.2 4412.1 4525.8 4330.7

284 J Math Model Algor (2009) 8:271–292

Table 6 Comparing the
number of the best solution
found

k n Type 1 instances Type 2 instances

GA CP MA GA CP MA

2 5 8 10 10 8 10 10
10 10 10 10 5 10 9
20 9 6 8 7 3 9
50 5 4 10 4 2 9

100 7 5 10 0 0 10
5 5 5 10 10 6 10 10

10 3 10 10 1 8 7
20 6 1 10 3 0 9
50 7 2 9 3 0 8

100 5 1 7 3 2 5
8 5 2 10 10 4 10 10

10 2 8 7 1 8 5
20 5 2 8 5 0 7
50 3 0 7 7 0 3

100 7 0 4 1 2 7

however, the performance of CP gets worse as the number of jobs increases. We
further see that MA performs better than GA as the number of jobs increases. We
also note that for the small size instances (n = 5 or 10), optimal solutions are found
as soon as the CP Search is started in MA, and the memetic algorithm is stopped
immediately. This is the reason why either the first line or the first two lines of each
instance class present similar results for CP and MA. Overall, it is easy to see that the
best results are produced by MA.

In Table 6, we present the number of time the best Cmax values (among the
three methods) are retrieved by each method. In this case, we can again make the
similar observations as for Table 5. Among the three methods, MA provides the best
solutions in 90% of all cases. Again, for small size instances (up to 10 jobs) CP solves
the problem efficiently. Most of the time, CP is able to find the optimal solution very

Table 7 Comparing the
number of the optimal
value found

k n Type 1 instances Type 2 instances

GA CP MA GA CP MA

2 5 8 10 10 8 10 10
10 10 10 10 4 9 8
20 5 5 5 4 3 4
50 4 4 5 3 2 4

100 5 5 5 0 0 0
5 5 5 10 10 6 10 10

10 3 10 10 0 7 5
20 3 0 3 0 0 0
50 4 2 5 0 0 0

100 2 1 6 0 0 0
8 5 2 10 10 4 10 10

10 2 6 5 0 5 4
20 2 2 2 0 0 0
50 0 0 1 0 0 0

100 1 0 1 0 0 0

J Math Model Algor (2009) 8:271–292 285

Table 8 Deviation of Cmax
value from the optimal value
or from the lower bound
(in %)

k n Type 1 instances Type 2 instances

GA CP MA GA CP MA

2 5 0.29 0.00 0.00 1.23 0.00 0.00
10 0.00 0.00 0.00 10.45 9.33 9.36
20 0.44 2.59 0.66 9.63 12.90 9.34
50 0.63 2.79 0.49 5.33 9.29 4.70

100 0.15 1.96 0.07 2.67 5.30 1.77
5 5 1.35 0.00 0.00 1.44 0.00 0.00

10 1.64 0.00 0.00 3.71 1.92 1.60
20 3.49 10.85 2.78 7.83 20.78 7.15
50 0.59 5.30 0.51 4.90 13.61 4.35

100 2.50 5.19 2.33 10.67 14.89 10.12
8 5 4.15 0.00 0.00 2.38 0.00 0.00

10 9.38 10.32 8.02 9.32 6.80 7.24
20 5.69 17.98 5.32 17.26 28.52 16.02
50 2.17 14.42 1.71 15.62 29.62 16.87

100 2.02 9.49 2.18 18.85 21.97 16.64

quickly, hence, the first time the exact method is called inside MA, it also finds the
optimal solution. On the other hand, for bigger instances MA proves its superiority
over CP and most of the time over GA.

In Table 7, we present the number of the optimal value found by each method.
In this case, optimal values can be obtained either from the equality with the lower
bound or from the CP. We observe that similar conclusions as above can be drawn
from this table as well.

In Table 8, the average deviation of Cmax values from the optimal value (if known,
or from the lower bound) in percentage is presented with 1% significance. In Table 9,
we present the CPU times for each algorithm. Finally, in Table 10, we provide the
average total number of iterations (“total”) performed by each method and the
average number of iterations performed by each method (for GA and MA) until

Table 9 Comparing the CPU
times (in seconds)

k n Type 1 instances Type 2 instances

GA CP MA GA CP MA

2 5 598.8 0.03 0.8 586.3 0.02 0.7
10 900 0.05 0.9 900 91.19 763.1
20 900 450.54 450.4 900 648.35 541.2
50 900 540.69 454.9 900 725.09 629.8

100 900 451.62 458.8 900 900 900
5 5 900 0.04 1.1 900 0.04 1.7

10 900 60.55 541.6 900 411.13 843.6
20 900 900 634.6 900 900 900
50 900 721.31 467.8 900 900 900

100 900 812.03 551.7 900 900 900
8 5 900 0.11 2.2 900 0.06 1.2

10 900 386.8 720.4 900 560.7 900
20 900 720.88 721 900 900 900
50 900 900 816.1 900 900 900

100 900 900 865.1 900 900 900

286 J Math Model Algor (2009) 8:271–292

T
ab

le
10

C
om

pa
ri

ng
th

e
nu

m
be

r
of

it
er

at
io

ns

k
n

T
yp

e
1

in
st

an
ce

s
T

yp
e

2
in

st
an

ce
s

G
A

C
P

G
A

G
A

C
P

G
A

B
es

t
T

ot
al

T
ot

al
B

es
t

T
ot

al
B

es
t

T
ot

al
T

ot
al

B
es

t
T

ot
al

2
5

52
4

10
00

00
00

42
48

97
13

62
4

72
10

00
00

00
11

1
23

15
97

57
10

89
61

91
83

12
1

55
9

14
17

76
18

18
32

4
87

34
65

9
21

45
36

4
14

78
1

16
46

12
1

20
13

58
91

48
32

35
5

71
69

09
5

21
17

2
14

41
49

6
38

30
25

45
74

50
1

12
21

60
85

13
25

55
17

08
92

2
50

54
56

32
17

75
61

3
49

48
85

1
41

16
78

71
23

11
64

01
07

16
58

97
6

46
42

82
5

64
50

33
97

88
21

10
0

29
00

61
78

28
57

13
97

42
2

17
14

86
29

60
16

61
12

95
69

29
42

13
99

49
9

50
09

85
60

37
11

5
5

58
7

58
46

65
1

26
1

42
10

80
77

19
8

66
96

83
7

33
9

51
69

12
66

3
10

65
64

1
35

34
13

9
71

72
47

45
11

96
15

65
92

8
96

69
39

22
61

5
60

53
15

7
21

40
45

23
53

47
0

20
10

40
85

18
07

29
1

67
24

96
6

30
00

39
11

47
49

4
20

11
67

19
97

71
4

98
12

70
7

58
70

18
15

73
04

1
50

14
41

48
68

94
80

18
75

09
2

11
94

54
35

44
10

61
86

07
70

04
49

54
16

99
6

53
87

62
63

52
21

10
0

19
27

70
27

56
85

12
73

43
2

14
29

98
15

35
17

25
31

81
27

39
37

16
08

93
0

16
34

69
23

78
03

8
5

55
5

47
24

60
8

93
5

79
72

11
56

2
44

9
48

06
86

2
45

2
33

52
66

12
10

19
61

1
27

21
75

3
29

56
19

8
24

94
14

15
93

90
0

27
50

96
26

82
76

5
38

56
18

7
79

48
09

17
71

75
4

20
62

28
7

13
88

17
2

50
25

71
8

23
10

34
93

09
72

27
98

65
13

24
96

4
63

28
80

4
47

65
77

99
70

60
50

23
81

99
49

40
18

28
53

29
4

28
79

51
41

21
97

39
98

89
45

04
01

42
37

14
0

23
88

51
35

02
63

10
0

11
66

26
19

40
04

79
57

73
11

75
77

15
08

15
13

10
09

17
12

75
10

46
85

1
10

95
75

13
24

72

J Math Model Algor (2009) 8:271–292 287

the best value is found. These tables complements the previous three tables. One can
easily note that these results confirm the above observations and that MA performs
very good, especially for Type 1 instances. It is apparent that the combination of
the constraint programming based branch-and-bound algorithm with the genetic
algorithm, in the form of a memetic algorithm, improves the search in terms of
number of best solutions found, number of optimal solutions retrieved and deviation
from the optimal value or the lower bound. We can conclude that even though
CP can produce optimal or near-optimal solutions for small-size problem instances
efficiently, it is necessary to have a metaheuristic method to solve larger instances.

Finally we have remarked that if we use a more sophisticated approach in the CP
search, such as energetic reasoning techniques, then CP alone performs better but,
in MA, this approach disturbs the search. Indeed, time consuming techniques ran at
each node of the search tree prevents MA converging to solutions when the number
of jobs is large. From our computational experiments, we can conclude that each
technique used in CP of MA has to be very efficient from the point of view of CPU
time if we hope to explore an interesting search space during the short time allowed
to CP each time MA calls it.

5.4 Comparison with Serifoğlu and Ulusoy [29]

To prove the efficiency of our proposed approach, we further test our three methods
(GA, CP and MA) on the instances from Serifoğlu and Ulusoy [28] and compare the
results with those provided directly by the authors themselves (GA_SU). In Table 11,
like for previous tests, we report the average Cmax values. From the observation,

Table 11 Comparing Cmax average values for [28]

k n Type 1 instances Type 2 instances

GA_SU GA CP MA GA_SU GA CP MA

2 5 275.3 275.3 275.3 275.3 252.2 252.2 251.7 251.7
10 506.9 506.9 506.9 506.9 390.6 392.9 388.6 388.6
20 820.2 821.5 838.4 820.6 691.3 690.6 723.5 688.3
50 2024.3 2007.1 2069.2 2004.2 1737 1704.1 1779 1703.2

100 4183.4 4127.4 4230 4135.4 3395.4 3305.8 3398.3 3303
5 5 452.9 452.9 446 446 438.6 438.6 429.2 429.2

10 668.2 669.2 660.1 661.6 627.4 635.5 611.9 614.5
20 1109.6 1110.4 1179 1109.2 924 931.6 1006.1 917.1
50 2486 2472.6 2540.8 2468.3 1971.5 1931.1 2148.7 1935.1

100 4665.2 4636.7 4790.4 4622.2 3910.9 3954.7 4056.3 3849.1
8 5 632.4 631 621.4 621.4 614.1 613.4 592.7 592.7

10 854.2 860.1 847.4 840.5 829.1 841 826.8 819.4
20 1337.3 1345 1464.8 1336.8 1181.4 1195.4 1320.3 1179.6
50 2777.5 2741.2 3023.2 2742.6 2275.8 2290.2 2518.4 2261.5

100 5142.3 5155.7 5542.4 5157.7 4290.3 4382 4498.4 4320.6
10 5 809.9 810 794.3 794.3 748.5 748.5 724.8 724.8

10 999.9 1010.8 997.2 988.1 899.9 905.7 887 874.3
20 1459.3 1455.9 1645.3 1462.7 1303.9 1336.7 1463 1324.7
50 2922 2899.4 3351.4 2893.3 2541 2552.4 2850.9 2544.7

100 5358.8 5329.1 5722.6 5323.7 4490.4 4622.1 4727.9 4505.9

288 J Math Model Algor (2009) 8:271–292

Table 12 Comparing the number of the best solution found for [28]

k n Type 1 instances Type 2 instances

GA_SU GA CP MA GA_SU GA CP MA

2 5 10 10 10 10 9 9 10 10
10 10 10 10 10 6 6 10 7
20 10 8 5 9 5 5 3 8
50 4 8 4 9 0 7 2 3

100 3 9 3 6 0 7 1 10
5 5 3 3 10 10 6 6 10 10

10 3 3 9 7 0 0 10 5
20 9 6 3 9 2 0 0 4
50 4 5 2 9 1 6 0 6

100 3 2 0 9 0 0 0 4
8 5 3 3 10 10 3 3 10 10

10 2 1 6 8 3 0 5 5
20 6 3 0 5 4 2 0 4
50 0 6 0 8 4 0 0 6

100 7 4 0 3 6 0 0 4
10 5 4 4 10 10 2 2 10 10

10 4 2 7 5 1 1 4 8
20 3 4 0 6 6 2 0 2
50 3 4 0 7 4 2 0 4

100 4 5 0 6 7 0 0 3

we can say that better solutions are found by MA comparing to the ones obtained by
GA and CP, but also by GA_SU. MA performs better than GA_SU in 31 cases out
of 40 and performs the same in two cases.

Table 13 Comparing the number of proven optima for [28]

k n Type 1 instances Type 2 instances

GA_SU GA CP MA GA_SU GA CP MA

2 5 1 0 10 10 0 0 10 10
10 4 0 9 7 0 0 10 5
20 1 0 4 5 0 0 3 1
50 4 0 6 7 0 0 2 0

100 3 0 3 1 0 0 1 0
5 5 0 0 10 10 0 0 10 7

10 2 0 9 2 0 0 8 0
20 3 0 3 8 0 0 0 0
50 4 0 2 6 0 0 0 0

100 3 0 0 2 0 0 0 0
8 5 0 0 10 10 0 0 10 6

10 0 0 3 0 0 0 2 0
20 0 0 0 0 0 0 0 0
50 0 0 0 0 0 0 0 0

100 4 0 0 0 0 0 0 0
10 5 0 0 10 4 0 0 10 7

10 0 0 3 1 0 0 3 0
20 1 0 0 0 0 0 0 0
50 0 0 0 0 0 0 0 0

100 1 0 0 0 0 0 0 0

J Math Model Algor (2009) 8:271–292 289

The same conclusion can be drawn from Table 12 on the number of time the best
solution is found by each method. We can also observe that MA performs very well
for all type 1 instances and for type 2 instances with 5 stages or less.

In Table 13, the number of proven optima is reported for each method. Overall
MA is able to find the proven optima more often than GA_SU. We note that while
GA_SU cannot find any proven optima for type 2 instances, we can still prove some
optimal solutions when the number of jobs is 5 or 10.

From the above results, we can say that the MA outperforms the competi-
tive method from Serifoğlu and Ulusoy [28] for the Fk(Pm1, . . . , Pmk)|sizeij|Cmax

problem.

6 Computational Experiments for Fk(Pm1, . . . , Pmk)||Cmax Problem

In this section, we report the performance of the three approaches proposed, namely,
GA, CP and MA, on the hybrid flow-shop problems with classical job definition.
In classical hybrid flow-shop problems, the resource requirements of each task is
equal to 1, i.e.the machines considered at each stage are non-cumulative ones. For the
computational experiments, we considered the benchmark data from Vignier [29],
Carlier and Néron [5] and Néron et al. [21].

Néron et al. [21] reported solving all instances of Vignier [29] very quickly and our
computational experiments resulted the same. Hence we do not give the results as a
table but they are available upon request.

We have next run our algorithms on the instances of Carlier and Néron [5]. As
Néron et al. [21] reported improved results on these instances, we compare the
performance of GA, CP and MA with that of the algorithm given in Néron et al.
[21] (“NBG”). In their paper, the authors use energetic reasonning, satisfiability
tests and time adjustments of the release dates and deadlines within two branch-
and-bound approaches that differ by their branching scheme. The first one is based
on the selection scheme of Carlier and Néron [5] whereas the second one is based
on the chronological branching scheme from Baptiste et al. [1]. The latter approach,

Table 14 Comparing the
average Cmax values for
Carlier and Néron [5]

k n Type NBG GA CP MA

5 10 a 111.60 111.60 111.60 111.60
b 122.67 122.67 122.67 122.67
c 71.00 71.50 71.00 71.00
d 66.83 67.50 66.83 66.83

15 a 161.83 161.83 161.83 161.83
b 161.17 161.17 161.17 161.17
c 87.83 87.00 86.50 86.00
d 105.50 96.67 97.83 96.33

10 10 a 148.00 148.33 148.00 148.00
b 163.00 163.00 163.00 163.00
c 128.00 117.00 116.67 115.67
d _ 112.67 112.33 111.83

15 a 207.00 206.83 206.83 206.83
b 211.83 211.83 211.83 211.83
c _ 136.67 143.17 135.67

290 J Math Model Algor (2009) 8:271–292

Table 15 Comparing the
number of the best solution
found for Carlier and
Néron [5]

k n Type NBG GA CP MA

5 10 a 5 5 5 5
b 6 6 6 6
c 6 3 6 6
d 6 3 6 6

15 a 6 6 6 6
b 6 6 6 6
c 4 2 4 6
d 1 4 5 6

10 10 a 6 5 6 6
b 6 6 6 6
c 1 1 4 6
d _ 2 5 6

15 a 5 6 6 6
b 6 6 6 6
c _ 1 0 6

which is more efficient, is also a constraint-based branch-and-bound algorithm. The
results are presented in Tables 14 and 15, by comparing the average values of Cmax

and the number of the best solution found, respectively.
Similar conclusions can be drawn when we compare GA, CP and MA; memetic

algorithm performs the best on the average compared to GA and CP. From
Tables 14 and 15, we can draw two important conclusions:

• Even though CP and NBG are very similar methods, we observe that CP
provides better results on some instances, while providing the same results for
the rest. For two cases (k = 10, n = 10, type d, and k = 10, n = 15, type c), CP
succeeds to find solutions, while NBG fails to do so.

• MA either produces the same results as NBG or it improves the results (25
instances over 89). We also observe that MA improves the results of CP in twelve
of the instances given.

7 Conclusion

In this paper we proposed a memetic algorithm for the Fk(Pm1, . . . , Pmk)|sizeij|Cmax

problem and described its implementation. We had combined a genetic algorithm
with a constraint programming based branch-and-bound algorithm to perform the
local search on the population of solutions. Even though the proposed genetic
algorithm draws heavily from the genetic algorithm of Oğuz and Ercan [24], it
includes some differences to make the implementation of the algorithm more effi-
cient. Our computational experiments showed that the quality of the results provided
by these genetic algorithms are comparable.

We employed an extensive computational experiment (with several sets of
instances from the literature) to test the performance of the three algorithms devel-
oped: the genetic algorithm alone (GA), the constraint programming based branch-
and-bound algorithm alone (CP), and the memetic algorithm which is a combination
of GA and CP (MA). The results showed that MA performs better than both GA
and CP in terms of both the quality of the solutions produced and the efficiency.

J Math Model Algor (2009) 8:271–292 291

Our results revealed that even though the performance of GA is quite close to that
of MA in terms of the quality of the solutions produced, it is evident that MA is a
better approach for the Fk(Pm1, . . . , Pmk)|sizeij|Cmax problem when we consider the
efficiency of the algorithms. From these, we can conclude that the memetic algorithm,
which combines a genetic algorithm with a constraint programming based branch-
and-bound algorithm, is an effective approach for the Fk(Pm1, . . . , Pmk)|sizeij|Cmax

problem.
We then tested the performance of the proposed algorithms for the

Fk(Pm1, . . . , Pmk)||Cmax problem to see whether they can be employed for other
scheduling problems. In these experiments, we used different benchmark data sets
from the literature. The results showed that the proposed algorithms are successful
for the Fk(Pm1, . . . , Pmk)||Cmax problem as well. We particularly note that the
memetic algorithm was able to improve some of the results from the literature and
to provide solutions for those where no results were provided. This supports the
robustness of the proposed memetic algorithm and we can conclude that it can be
used for different flow-shop scheduling problems.

Acknowledgements The work described in this paper was partially supported by a grant from The
Hong Kong Polytechnic University (Project No. G-T247) and by EGIDE, 28 rue de la Grange aux
Belles, 75010 Paris, under the French-Hong-Kong joint programme “PAI Procore” n◦05655UK-
2004. The major part of this research was conducted when the second author was at the Hong Kong
Polytechnic University, Department of Logistics, Hong Kong SAR.

References

1. Baptiste, Ph., Le Pape, C., Nuijten, W.: Satisfiability tests and time bound adjustments for
cumulative scheduling problems. Ann. Oper. Res. 92, 3305–3333 (1999)

2. Baptiste, Ph., Le Pape, C., Nuijten, W.: Constraint-Based Scheduling, Applying Constraint
Programming to Scheduling Problems, vol. 39. International Series in Operations Research and
Management Science. Kluwer, Deventer (2001)

3. Błażewicz, J., Ecker, K.H., Pesch, E., Schmidt, G., Wȩglarz, J.: Scheduling Computer and Manu-
facturing Processes, 2nd edn. Springer, Berlin (2001)

4. Carlier, C., Pinson, E.: A practical use of jackson’s preemptive schedule for solving the job-shop
problem. Ann. Oper. Res. 26, 269–287 (1990)

5. Carlier, J., Néron, E.: An exact method for solving the multiprocessor flowshop. RAIRO-RO 34,
1–25 (2000)

6. Chen, J., Lee, C.-Y.: General multiprocessor task scheduling. Nav. Res. Logist. 46, 57–74 (1999)
7. Erschler, J., Lopez, P., Thuriot, C.: Raisonnement temporel sous contraintes de ressource

et problèmes d’ordonnancement. Rev. Intell. Artif. 5(3), 7–32 (1991)
8. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison

Wesley, Redwood City (1989)
9. Goldberg, D.E., Deb, K.: A comparative analysis of selection schemes used in genetic algorithms.

In: Rawlins, G.J.E. (ed.) Foundations of Genetic Algorithms, pp. 69–93. Morgan Kaufman,
San Mateo (1991)

10. Gupta, J.N.D.: Two stage hybrid flowshop scheduling problem. J. Oper. Res. Soc. 39(4), 359–364
(1988)

11. Holland, J.H.: Adaption in Natural and Artificial Systems. University of Michigan Press, Ann
Arbor (1975)

12. Ilog: Ilog Scheduler Reference Manual. Ilog, Gentilly (2004)
13. Krawczyk, H., Kubale, M.: An approximation algorithm for diagnostic test scheduling in multi-

computer systems. IEEE Trans. Comput. 34, 869–872 (1985)
14. Le Pape, C.: Implementation of resource constraints in ILOG SCHEDULE: a library for the

development of constraint-based scheduling systems. Intell. Syst. Eng. 3(2), 55–66 (1994)

292 J Math Model Algor (2009) 8:271–292

15. Lee, C.-Y., Cai, X.: Scheduling one and two-processor tasks on two parallel processors. IIE Trans.
31, 445–455 (1999)

16. Lhomme, O.: Consistency techniques for numeric CSPs. In: Thirteenth International Joint Con-
ference on Artificial Intelligence, Chambéry, August 1993

17. Lopez, P., Erschler, J., Esquirol, P.: Ordonnancement de tâches sous contraintes: une approche
énergétique. RAIRO Autom. Prod. Inform. Ind. 26(6), 453–481 (1992)

18. Moscato, P.: On evolution, search, optimization, genetic algorithms and martial arts: towards
memetic algorithms. Technical Report C3P 826, Caltech Concurrent Computation Program,
(1989)

19. Moscato, P.: Memetic algorithms: a short introduction. In: Corne, D., Dorigo, M., Glover, F.
(eds.) New Ideas in Optimization, pp. 219–234. McGraw-Hill, New York (1999)

20. Moscato, P., Cotta, C.: A gentle introduction to memetic algorithms. In: Glover, F.,
Kochenberger, G.A. (eds.) Handbook of Metaheuristics, pp. 105–144. Kluwer, Deventer (2003)

21. Néron, E., Baptiste, Ph., Gupta, J.N.D.: Solving hybrid flow shop problem using energetic
reasoning and global operations. Omega 29, 501–511 (2001)

22. Nuijten, W.: Time and resource constrained scheduling: a constraint satisfaction approach. Ph.D.
thesis, Eindhoven University of Technology (1994)

23. Nuijten, W., Aarts, E.H.L.: A computational study of constraint satisfaction for multiple capaci-
tated job-shop scheduling. Eur. J. Oper. Res. 90(2), 269–284 (1996)

24. Oğuz, C., Ercan, M.F.: A genetic algorithm for hybrid flow-shop scheduling with multiprocessor
tasks. J. Sched. 8(4), 323–351 (2005)

25. Oğuz, C., Ercan, M.F., Cheng, T.C.E., Fung, Y.-F.: Heuristic algorithms for multiprocessor task
scheduling in a two-stage hybrid flow-shop. Eur. J. Oper. Res. 149, 390–403 (2003)

26. Oğuz, C., Zinder, Y., Do, V.H., Janiak, A., Lichtenstein, M.: Hybrid flow-shop scheduling
problems with multiprocessor task systems. Eur. J. Oper. Res. 152, 115–131 (2004)

27. Portmann, M.-C., Vignier, A., Dardilhac, D., Dezalay, D.: Branch and bound crossed with GA
to solve hybrid flow shops. Eur. J. Oper. Res. 107, 389–400 (1998)

28. Serifoğlu, F.S., Ulusoy, G.: Multiprocessor task scheduling in multistage hybrid flow-shops: a
genetic algorithm approach. J. Oper. Res. Soc. 55(5), 504–512 (2004)

29. Vignier, A.: Contribution à la Résolution des Problèmes d’Ordonnancement de type
Monogamme, Multimachines Flow-shop hybride. Ph.D. thesis, University of Tours (1997)

30. Vignier, A., Billaut, J.-C., Proust, C.: Hybrid flowshop scheduling problems: state of the art.
Rairo-Rech. Oper.-Oper. Res. 33, 117–183 (1999)

	Hybrid Flow-Shop: a Memetic Algorithm Using Constraint-Based Scheduling for Efficient Search
	Abstract
	Introduction
	The Genetic Algorithm
	The Constraint Programming Based Branch-and-Bound Algorithm
	Modelling the Problem in Constraint Programming
	Solving the Problem
	Improving the Performance of the Branch-and-Bound Procedure

	The Memetic Algorithm
	Computational Experiments for Fk(Pm1,…,Pmk)|sizeij|Cmax Problem
	Comparison of the Two Genetic Algorithms
	Studying Algorithm MA
	Comparison of GA, CP and MA
	Comparison with Serifoglu and Ulusoy [SU0429]

	Computational Experiments for Fk(Pm1,…,Pmk)||Cmax Problem
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

