
J Math Model Algor (2009) 8:343–355
DOI 10.1007/s10852-008-9097-6

A Fast Robust Algorithm for Computing Discrete
Voronoi Diagrams

Mirko Velić · Dave May · Louis Moresi

Received: 15 October 2008 / Accepted: 21 November 2008 / Published online: 16 December 2008
© Springer Science + Business Media B.V. 2008

Abstract We describe an algorithm for the construction of discretized Voronoi
diagrams on a CPU within the context of a large scale numerical fluid simulation.
The Discrete Voronoi Chain (DVC) algorithm is fast, flexible and robust. The
algorithm stores the Voronoi diagram on a grid or lattice that may be structured
or unstructured. The Voronoi diagram is computed by alternatively updating two
lists of grid cells per particle to propagate a growth boundary of cells from the
particle locations. Distance tests only occur when growth boundaries from different
particles collide with each other, hence the number of distance tests is effectively
minimized. We give some empirical results for two and three dimensions. The
method generalizes to any dimension in a straight forward manner. The distance
tests can be based any metric.

Keywords Discrete Voronoi · Particle-in-cell · FEM · Quadrature

1 Introduction

The particle-in-cell (PIC) Finite Element Method described in [1] is a hybrid of the
classical Finite Element Method (FEM) with a set of Lagrangian material points
(or particles) which is used to track history-dependent fluid properties including
composition, anisotropic fabric, elastic stored stresses, plastic strain and accumulated
damage. Each moving particle represents a finite volume of the nearby fluid.

Within the FEM the governing equations are expressed in a weak (integral) form.
The weak form is defined over a mesh of elements �e, which partition the domain �.

M. Velić (B) · D. May · L. Moresi
School of Mathematical Sciences, Monash University,
Building 28, Clayton, Victoria 3800, Australia
e-mail: mirko.velic@sci.monash.edu.au

344 J Math Model Algor (2009) 8:343–355

For numerical work, the weak form over each element is typically approximated via
a quadrature summation, i.e.,

I :=
∫

�e
φ(x) d�e ≈

N∑
p=1

wpφ(ξp)Jp, (1)

where φ(x) is a field quantity, N is the number of quadrature points, ξp = (ξp, ηp, ζp)

and wp are the abscissa and weight of the pth quadrature point respectively and Jp

is the Jacobian transformation between the x and ξ coordinate systems.
In [1] the material points are in fact the quadrature points used within the summa-

tion in Eq. 1. Hence, material properties appearing in the weak form are naturally
incorporated into the quadrature approximation without needing to perform any
interpolation. In the context of the fluid simulation, it is appropriate to associate
the quadrature weight wp with the fluid volume, and hence require wp ≥ 0.

By using the material point coordinates as the quadrature abscissa, we only have
the weights wp as free parameters to construct an accurate approximation of I. This
is in contrast to standard quadrature schemes such as Gauss and Lobatto quadrature
where both the abscissa and weights are chosen to minimize the approximation error.
To ensure optimal convergence of the finite element solution, we must consider
the highest order complete polynomials appearing in the basis functions used in
our approximation space [2]. In the PIC method, bilinear/trilinear basis functions
are usually used which, in the two dimensional case for example, require that the
following conditions on the integration weights must be satisfied [1]:

∑
p

wp = 4, (2)

∑
p

ξpwp = 0,
∑

p

ηpwp = 0. (3)

A Voronoi diagram constructed from the locations of the material points within
each element �e automatically satisfies Eq. 2 if we associate each wp with the volume
of the Voronoi cell of point p. To satisfy the constraints given by Eq. 3 we choose to
use the centroid of the fluid volume local to the material point as the location of our
quadrature point. This step does not introduce any additional approximation error.
Satisfaction of Eqs. 2 and 3 still holds when the exact Voronoi diagram is replaced
by a discrete approximation to the Voronoi diagram provided the approximation
partitions the element exactly.

The DVC algorithm described in this paper provides a practical, robust and fast
method to partition cells within the context of the PIC FEM and can be implemented
efficiently on a variety of computer architectures, which is a requirement for large
scale numerical simulations on parallel machines.

A Voronoi diagram is a unique partitioning of a space into a set of convex
polyhedra in n-dimensions. Each polyhedron contains one generating point site and
the facets of the polyhedron coincide with the hyperplane that bisects the space
between the generating points. i.e., any point inside a given polyhedron is closer to
the generating point of that polyhedron than it is to any other generating point. If
the facets of two polyhedra coincide, then the generating points of the two polyhedra
are classified as natural neighbors to each other.

J Math Model Algor (2009) 8:343–355 345

Discrete Voronoi diagrams have been studied extensively and have numerous
applications, including the determination of path plans for robots [3], distance
approximation [4, 5], distance transforms [6–9], polygon collision detection [10, 11]
and virtual networking [12]. One of the earliest examples is the cellular automaton
method of Adamatzky [13, 14]. For an in depth review of Voronoi diagrams in
general see [15] or [16]. For other examples of the use of Voronoi diagrams within a
geophysical numerical application see [17].

A discrete implementation for constructing Voronoi diagrams was chosen for our
particular application as it is robust (the computational effort scales weakly) to large
variations in the number and spatial distribution of the seed points. Our algorithm
specifies a spatial resolution below which we are not interested in resolving the local
fluid volumes. In the PIC FEM there is little benefit in having a large amount of
detail represented in the sub-grid scale information carried by the particles [18] and
so the ability to limit the work spent on building the quadrature scheme to achieve
a pre-determined accuracy is a strong advantage. There are many other practical
computer-based applications where an approximate, discrete Voronoi diagram is a
sufficient or more appropriate choice of algorithm [19]. Furthermore, a grid based
discrete method is very well suited for the construction of a Voronoi diagram that is
bounded in a finite region.

The discrete algorithms of [7, 8] and [9] are specifically designed to be fast when
implemented to take advantage of the properties of a graphical processing unit
(GPU). The range culling method of [9] reduces the number of potential distance
tests performed over the grid by limiting the range from a seed that distance tests
need to be done. Both algorithms still perform many distance tests but significantly
improve on the method first given on a GPU by [20].

We have taken an alternative approach: to minimize the number of expensive
operations and to try to achieve an efficient implementation on standard CPUs.
The method used to propagate cell-ownership which is used in our DVC algorithm
superficially resembles the classic cell growth method which can be seen, for example,
in [16]. However our method is not a cellular automaton method, which scans the
whole grid repeatedly and updates cells based on rules for each cell in the grid.
Instead, our method of propagation is based on the use of a stored boundary chain
and scans of cells local to the boundary; this significantly reduces the number of
distance tests performed as we resolve the Voronoi diagram.

The method of [19] appears to be potentially fast on a CPU but generates an
approximation to the facets of the Voronoi diagram via an adaptive grid, discarding
cells that are no longer associated with the boundaries of the Voronoi regions. As
such, it is not as straight-forward to extract geometrical information such as the
volumes and centroid locations of Voronoi cells.

2 The Discrete Voronoi Chain Algorithm

2.1 Algorithmic Description

To construct an approximate Voronoi diagram on a domain, �, we partition the
domain into a set of m non overlapping cells. i.e.,

M = {c1, c2, . . . , cm}, (4)

346 J Math Model Algor (2009) 8:343–355

Fig. 1 A cell with its
neighbors shown in grey for a
two dimensional regular grid

where the ck are the cells partitioning � such that,

� =
m⋃

k=1

ck. (5)

We also define a list of particles (generating points)

P = {p1, p2, . . . , pn}, (6)

where each particle pi is to claim ownership of cells ck from M to form an approxi-
mate Voronoi diagram.

The simplest way to define each cell is usually to divide � into an equispaced
Cartesian grid. Then all cells ck are squares of equal size in two dimensions and
cubes in three dimensions. In general, we may divide � into a set of polygons (or
polyhedra in three dimensions). We define neighbors for each cell, such that two
cells are neighbors if they share a common facet1, as in Fig. 1.

The algorithm consists of alternatively updating two lists per particle as the
particles claim ownership of cells ck in the grid. The first list is the newly claimed
cell list L i

C. For each iteration per particle, this list is reset to be empty and as the ith

particle claims cells, these cells are added to L i
C. From this list, the boundary chain

list L i
B is generated as the union of the neighbors of all the cells in L i

C that are not
already owned by particle pi (see Fig. 2). Then for each particle i, L i

C is reset to be
empty and its boundary chain L i

B is traversed. Each cell in L i
B that is unowned is

claimed by the ith particle. Only when a cell in L i
B is owned by another particle must

we resolve the ownership of the cell based on a distance test: whichever particle is
closest to the centroid of the cell in question wins the “battle” and claims or retains
ownership of the cell as in Fig. 3. As cells are claimed they are added to the newly
claimed cell list for that particle. This process is repeated until no particles can claim
any new cells. i.e., when all the lists L i

C are empty. The algorithm is initialized by
every particle first claiming the cell that it is located within, and then building the
particle’s boundary chain L i

B, based on this first claimed cell.
If the mesh is simply connected, then all cells are visited and eventually claimed.

The algorithm will always terminate so long as a particle cannot win back a cell that
it previously lost to another particle. This is always the case if the distance test is
consistent.

1A shared facet is a common edge in two dimensions and a common face in three dimensions.

J Math Model Algor (2009) 8:343–355 347

Step 1 Step 2 Step 3a b c

Fig. 2 Growth pattern for a single particle: light grey cells comprise the boundary chain list LB,
while dark cells are those already claimed by the particle. Cells marked with an X are members of
the newly claimed cell list LC , from the previous iteration (a–c)

The algorithm is summarized in Algorithm (1). The procedure initializeClaimed-
CellList simply returns a list containing the single cell in the mesh that the particle
pi is located in. The updateboundaryChain procedure returns a list of cells that are
the neighbors to all the cells in the newly claimed cell list L i

C for particle pi, that are
not already owned by the particle. The claimCells procedure traverses the cells in the
boundary chain list L i

B and will assign ownership of these cells to particle pi unless
the cell is owned by another particle. In this case, a battle for ownership ensues as
previously described.

In the case where two particles are located in the same cell, one or the other will
own that cell initially. However, each particle will have constructed boundary chains,
and both will attempt to claim the cells in the chain. Ownership of these cells will be
determined by distance tests. This way, a proper discrete Voronoi diagram will still

Fig. 3 A Voronoi battle: the
cells marked with an X
comprise the latest boundary
chain of particle B. Particle B
is attempting to claim a cell
owned by particle A, so there
must be a distance test to
resolve ownership. In this case,
δA < δB so particle A retains
ownership of the cell in
question

δ

δA

B

A

B

348 J Math Model Algor (2009) 8:343–355

Algorithm 1 Create Voronoi Diagram
for all pi ε P do

L i
C ⇐ initializeClaimedCellList(pi, M)

end for
while L i

C �= ∅ ∀ i do
for all pi ε P do

L i
B ⇐ updateBoundaryChain(L i

C, M, P)
L i

C ⇐ claimCells(L i
B, M, P)

end for
end while

be constructed. The figures in Fig. 4 show the convergence onto the exact Voronoi
diagram for the given set of points. Figure 4a is at very low resolution and shows that
one point (marked in white) is not resolved. i.e., it has claimed no cells in the Voronoi
diagram. The growth pattern from each point is contiguous over the grid because the
cells that are newly claimed are always neighbors to previously owned cells. When
growth areas collide, the final boundary between particles is determined by distance
tests. Therefore, the center of any claimed cells are closer to the particle that owns it
than to any other particle. Due to this property, as the grid resolution increases, the
approximate Voronoi diagram will always approach the exact Voronoi diagram. This
is demonstrated by comparing Fig. 4a to c where the grid resolution is successively
refined. Boundaries between particles are determined by interaction only between
nearby particles. This makes the algorithm local in nature. i.e., particles that are far
from each other do not interact. These properties make the DVC algorithm robust
in execution time.

2.2 Further Applications and Generalizations

Whilst initially used to develop a quadrature scheme for PIC methods, the nature of
the DVC algorithm has permitted its uses in numerous other areas related to our fluid
dynamics application. For such numerical methods, being able to perform efficient
calculations on a CPU as opposed to a GPU is important. Below, we list several

a b c d6x6 15x15 25x25 exact

Fig. 4 A successively refined discrete Voronoi diagram for 10 particles with various resolutions,
showing convergence to the exact Voronoi diagram on the right (a–d)

J Math Model Algor (2009) 8:343–355 349

Adaptive grid zooming in on an interface Adapative grid refiningVoronoi boundariesa b

Fig. 5 Illustration of the DVC algorithm on adaptive grids (a, b)

applications where the DVC algorithm has proven to be useful in the context of our
numerical method:

1. Irregular bounding domains on structured grids: Rather than having to mesh
an irregular shaped domain via an unstructured grid, one can employ a rec-
tangular grid of structured cells and simply “tag” regions with a unique index
which are considered part of the same domain. In this way, we only allow the
DVC algorithm to claim cells within the region possessing the same cell tag.
Fig. 6a demonstrates this idea. This concept has applications in free surface
simulations.

2. Irregular grids: For the sake of clarity, the DVC algorithm has been analyzed
using regular grids only, but it should be noted that any mesh that is simply
connected can be used. All that is required is a notion of local connectivity to
define the neighbors to cells so that the boundary chains can be constructed and
traversed. For example, in Fig. 5a the grid used is adaptively refined towards and
interface. In Fig. 5b the grid is adaptively refined to better resolve the boundaries
between cells in the Voronoi diagram, while in Fig. 6b the grid is an unstructured
triangular mesh.

Using tagged cells to create Voronoi diagram on an Generalized Voronoi diagram
masks unstructured grid

a b c

Fig. 6 Illustration of various applications of the standard DVC algorithm (a–c)

350 J Math Model Algor (2009) 8:343–355

3. Generalized Voronoi diagrams: In the DVC algorithm described, a Euclidean
distance was employed to resolve “battles”. Any metric can be used, thus
enabling generalized Voronoi diagrams to be constructed as in Fig. 6c

4. Parallel Voronoi diagrams: The DVC algorithm is local in nature. This makes it
straight-forward to implement a parallel implementation of the DVC algorithm:
One can divide up the total mesh across processors letting each Voronoi region
grow independently. Only those regions that collide with processor boundaries
need be communicated to neighboring processors. This means that arbitrarily
large Voronoi diagrams may be calculated using many processors in parallel.

3 Empirical Characteristics of Algorithm

We require a fast and robust algorithm for the computation of approximate Voronoi
diagrams that easily yields certain geometrical information: the Voronoi region
volumes as well as the location of their centroids. From Fig. 7 we see that this
information can be gained with only a small overhead. Several existing discrete
Voronoi algorithms of note are the JF algorithm [7], the range culling method of
[9] and the adaptive algorithm of [19]. The JF algorithm appears to be quite fast
while the method of [9] does not suffer from the errors of the JF algorithm. We
require a method that runs efficiently on a CPU within the context of a numerical
simulation, as opposed to a GPU. The DVC algorithm is error free (it will always
converge to the exact Voronoi diagram) and is significantly faster than the JF
algorithm when implemented on a CPU (Fig. 8). The JF algorithm relies on its
efficient propagation of seed information across a grid which is suited for the parallel
nature of a GPU, whilst the DVC algorithm significantly reduces the number of
distance tests performed on the CPU. A comparison of the number of distance tests
performed can be seen in Fig. 9.

If there are many particles for each cell in the grid, the DVC algorithm will scale
linearly in time with the number of particles as all the boundary chains are the
same size and the number is proportional to the number of particles. If there are
very few particles compared to the mesh cells then the DVC algorithm will scale
linearly with respect to the grid size. The usual application of the DVC algorithm
lies between these limits. Figures 10 and 11 show some representative times of how

Fig. 7 Total median run times
for the DVC algorithm
showing only a slight overhead
to compute volumes and
centroidal information in two
dimensions for a 1024 × 1024
grid for various particle
densities

100 101 102 103

Cells per particle

0.3

1

4

T
ot

al
 r

un
-t

im
e

(s
) With centroid and volumes

Without centroid and volumes

J Math Model Algor (2009) 8:343–355 351

Fig. 8 Total run time for the
JF vs the DVC algorithms for
two dimensions on a CPU for
a 1024 × 1024 grid

103 104 105 106

Number of particles

10 1

10 0

10 1

T
ot

al
 ti

m
e

(s
ec

s)

DVC

JF

_

Fig. 9 Number of distance
tests for the JF vs the DVC
algorithms for two dimensions
for a 1024 × 1024 grid

1000 2000 3000 4000 5000 6000 7000 8000 9000 1 10 4

Number of particles

0

10

20

30

40

D
is

ta
nc

e
te

st
s

pe
r

ce
ll

DVC

JF

×

Fig. 10 Median total time in
μs for construction of Voronoi
diagrams for random particles
in two dimensions as function
of grid size for 10, 100, 1000
and 10000 particles

352 J Math Model Algor (2009) 8:343–355

Fig. 11 Median total time in
μs for construction of Voronoi
diagrams for random particles
in three dimensions as function
of grid size for 10, 100, 1000
and 10000 particles

the algorithm scales for the construction of Voronoi diagrams for various resolutions
and numbers of particles. The left hand part of the graph shows constant times for
Voronoi diagrams with large numbers of particles compared to the grid resolution
whilst the right hand side shows the timing lines converging when the grid resolution
is large compared to the number of particles.

The storage requirement of the DVC algorithm may be proportional to either
the number of grid cells or the number of particles, depending on which domi-
nates. The algorithm is not useful if there are many more particles than there are cells
in the grid. Therefore it is reasonable to take the storage to be initially proportional
to the number of particles as we require that the number of grid cells be proportional
to the latter. The additional storage due to the boundary chains used in the construc-
tion of the Voronoi diagram is shown in Fig. 12. The lines quickly converge on an
upper limiting line. Whilst not shown here, we note that grid resolutions greater than
1003 exhibit essentially identical behavior to the 1003 line shown in Fig. 12. The upper
limiting lines for the newly claimed cell list and the boundary chain for reasonably
high resolutions as in Figs. 13 and 14 show that the additional storage for the chains
is bounded per particle. Therefore we may take the storage to be O(n), where n is
the number of particles.

Fig. 12 Median relative
maximum size of boundary
chains per cell for three
dimensions for varying grid
resolutions showing quick
convergence to a particular
line

J Math Model Algor (2009) 8:343–355 353

Fig. 13 Median relative
maximum size of boundary
chains per cell for two
dimensions

Fig. 14 Median relative
maximum size of boundary
chains per cell for three
dimensions

Fig. 15 Median percentage of
resolved particles as a function
of the number of grid cells per
particle for two dimensional
Voronoi diagrams

100 101 10 2

Cells per particle

70

80

90

100

R
es

ol
ve

d
pa

rt
ic

le
s

(%
)

354 J Math Model Algor (2009) 8:343–355

Fig. 16 Median percentage of
resolved particles as a function
of the number of grid cells per
particle for three dimensional
Voronoi diagrams

10 0 10 1 10 2

Cells per particle

70

80

90

100

R
es

ol
ve

d
pa

rt
ic

le
s

(%
)

In Figs. 15 and 16 it can be seen that if there are ten or more grid cells per particle
on average, then the particles in the discrete Voronoi diagram are almost always
resolved. In some cases it may desirable to resolve every particle in the diagram.
In this case one would create a grid that has at least ten times the number of cells
as there are particles, and then check to see if all the particles are resolved. If any
particles were not resolved, Figs. 15 and 16 indicate that one would only need to
increase the grid size by a modest amount to ensure that every particle is resolved.

4 Conclusion

The DVC algorithm described is a fast and robust method for the construction of
discrete Voronoi diagrams. The method provides a volumetric representation of
the Voronoi cells by utilizing a grid which partitions the domain. The underlying
grid used to define the Voronoi diagram may be structured or unstructured. The
DVC algorithm is well suited for use in large scale numerical computations as
its performance is not dependent on computer architecture, is easy to implement
and is efficient. Whilst originally devised for constructing integration schemes for
the PIC finite element method of [1] in two and three dimensions, the algorithm’s
flexibility makes it applicable within the context of other numerical schemes. Further
applications of the DVC algorithm will be given elsewhere (also see the PhD thesis
by [18]).

Acknowledgements We would like to acknowledge the use of AuScope facilities at Monash
University. AuScope Ltd is funded under the National Collaborative Research Infrastructure
Strategy (NCRIS) an Australian Commonwealth Government Programme. We acknowledge the
support of the ARC grants LP0347688 and DP044997.

References

1. Moresi, L., Dufour, F., Mühlhaus, H.B.: A lagrangian integration point finite element method for
large deformation modeling of viscoelastic geomaterials. J. Comput. Phys. 184, 476–497 (2003)

2. Hughes, T.J.R.: The Finite Element Method: Linear Static and Dynamic Finite Element Analy-
sis. Prentice-Hall, Englewood Cliffs (1987)

J Math Model Algor (2009) 8:343–355 355

3. Tzionas, P.G., Thanailakis, A., Tsalides, P.G.: Collision-free path planning for a diamond-shaped
robot using two-dimensional cellular automata. IEEE Trans. Robot. Autom. 13(2), 237–250
(1997)

4. Tsai, Y.: Rapid and accurate computation of the distance function using grids. J. Comput. Phys.
178(1), 175–195 (2002). ISSN 0021-9991. doi:10.1006/jcph.2002.7028

5. Bespamyatnikh, S., Segal, M.: Fast algorithms for approximating distances. Algorithmica 33, 263–
269 (2002)

6. Mauch, S.: A fast algorithm for computing the closest point and distance transform. Technical
report, Caltech (2000)

7. Rong, G., Tan, T.S.: Jump flooding in GPU with applications to Voronoi diagram
and distance transform. In: I3D ’06: Proceedings of the 2006 Symposium on Interactive
3D Graphics and Games, pp. 109–116. ACM, New York (2006). ISBN 1-59593-295-X.
doi:10.1145/1111411.1111431

8. Rong, G.: Jump flooding algorithm on graphics hardware and it’s applications. Ph.D. thesis,
National University of Singapore (2007)

9. Sud, A., Govindaraju, N., Manocha, D.: Interactive computation of discrete generalized Voronoi
diagrams using range culling. In: Proc. 2nd International Symposium on Voronoi Diagrams in
Science and Engineering. Hanyang University, October 2005

10. Mirtich, B.: V-clip: fast and robust polyhedral collision detection. ACM Trans. Graph. 17(3),
177–208, July (1998)

11. Sud, A., Govindaraju, N., Gayle, R., Kabul, I., Manocha, D.: Fast proximity computation among
deformable models using discrete Voronoi diagrams. ACM Trans. Graph. 25(3), 1144–1153
(2006). ISSN 0730-0301. doi:10.1145/1141911.1142006

12. Hu, S.Y., Liao, G.M.: Scalable peer-to-peer networked virtual environment. In: NetGames ’04:
Proceedings of 3rd ACM SIGCOMM Workshop on Network and System Support for Games,
pp. 129–133. ACM, New York (2004). ISBN 1-58113-942-X. doi:10.1145/1016540.1016552

13. Adamatzky, A.I.: Voronoi-like partition of lattice in cellular automata. Math. Comput. Model.
23(4), 51–66 (1996)

14. Adamatzky, A.I., Holland, O.: Voronoi-like nondeterministic partition of lattice by collectives
of finite automata. Math. Comput. Model. 28(10), 73–93 (1998)

15. Aurenhammer, F.: Voronoi diagrams—a survey of a fundamental geometric data structure.
ACM Comput. Surv. 23(3), 345–405 (1991). ISSN 0360-0300. doi:10.1145/116873.116880

16. Okabe, A., Boots, B., Sugihara, K.: Spatial Tessellations: Concepts and Applications of Voronoi
diagrams. Wiley, New York (1992). ISBN 0-471-93430-5

17. Sambridge, M.S., Braun, J., McQueen H.: Geophysical parametrization and interpolation of
irregular data using natural neighbours. Geophys. J. Int. 122, 837–857 (1995)

18. May, D.A.: Ph.D. thesis, Monash University (2008)
19. Vleugels, J., Overmars, M.: Approximating Voronoi diagrams of convex sites in any dimension.

Int. J. Comput. Geom. Appl. 8(2), 201–221 (1998)
20. Kenneth, E., Hoff, I., Keyser, J., Lin, M., Manocha, D., Culver, T.: Fast computation of

generalized Voronoi diagrams using graphics hardware. In: SIGGRAPH ’99: Proceedings of
the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 277–286.
ACM/Addison-Wesley, New York (1999). ISBN 0-201-48560-5. doi:10.1145/311535.311567

http://dx.doi.org/10.1006/jcph.2002.7028
http://dx.doi.org/10.1145/1111411.1111431
http://dx.doi.org/10.1145/1141911.1142006
http://dx.doi.org/10.1145/1016540.1016552
http://dx.doi.org/10.1145/116873.116880
http://dx.doi.org/10.1145/311535.311567

	A Fast Robust Algorithm for Computing Discrete Voronoi Diagrams
	Abstract
	Introduction
	The Discrete Voronoi Chain Algorithm
	Algorithmic Description
	Further Applications and Generalizations

	Empirical Characteristics of Algorithm
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

