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Abstract In practical data mining tasks, high-dimensional data has to be analyzed.
In most of the cases it is very informative to map and visualize the hidden structure
of a complex data set in a low-dimensional space. In this paper a new class of
mapping algorithms is defined. These algorithms combine topology representing
networks and different nonlinear mapping algorithms. While the former methods
aim to quantify the data and disclose the real structure of the objects, the nonlinear
mapping algorithms are able to visualize the quantized data in the low-dimensional
vector space. In this paper, techniques based on these methods are gathered and
the results of a detailed analysis performed on them are shown. The primary aim of
this analysis is to examine the preservation of distances and neighborhood relations
of the objects. Preservation of neighborhood relations was analyzed both in local
and global environments. To evaluate the main properties of the examined methods
we show the outcome of the analysis based both on synthetic and real benchmark
examples.
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1 Introduction

In practical data mining problems high-dimensional data has to be analyzed. Objects
to be analyzed are characterized with n variables, and each variable corresponds to a
dimension of the vector space. Because humans can not see high-dimensional data,
it is useful to map the high-dimensional data points into a low-dimensional vector
space.

The goal of dimensionality reduction is to map a set of observations from a
high-dimensional space (D) into a low-dimensional space (d, d � D) preserving as
much of the intrinsic structure of the data as possible. Let X = {x1, x2, . . . , xN} be a
set of the observed data, where xi denotes the i-th observation (xi = [xi,1, xi,2, . . . ,

xi,D]T). Each data object is characterized by D dimensions, so xi, j yields the j-th
( j = 1, 2, . . . , D) attribute of the i-th (i = 1, 2, . . . , N) data object. Dimensionality
reduction techniques transform data set X into a new data set Y with dimensionality
d (Y = {y1, y2, . . . , yN}, yi = [yi,1, yi,2, . . . , yi,d]T).

Three types of dimensionality reduction methods can be distinguished: (i) metric
methods that try to preserve the distances of the data defined by a metric, (ii) non-
metric methods that try to preserve the global ordering relations of the data, and
(iii) other methods that differ from the previously introduced two groups.

One of the most widely applied dimensionality reduction methods is Principal
Component Analysis (PCA) [13]. The PCA algorithm is also known as Hotteling
or as Karhunen-Loéve transform ([12, 13]). PCA differs from the metric and non-
metric dimensionality reduction methods, because instead of the preservation of
the distances or the global ordering relations of the objects it tries to preserve the
variance of the data. PCA represents the data as linear combinations of a small
number of basis vectors. This method finds the projection that stores the largest
variance possible in the original data and rotates the set of the objects such that
the maximum variability becomes visible. Geometrically, PCA transforms the data
into a new coordinate system such that the greatest variance by any projection of the
data comes to lie on the first coordinate, the second greatest variance on the second
coordinate, and so on. Independent Component Analysis (ICA) [4] is similar to PCA,
except that it tries to find components that are independent.

Multidimensional scaling (MDS) [3] refers to a group of unsupervised data
visualization techniques. There are two types of MDS: (i) metric MDS and (ii) non-
metric MDS. As MDS has a metric and a non-metric variant, it can also preserve the
pairwise distances or the rank ordering among the data objects.

The metric MDS discovers the underlying structure of data set by preserving
similarity information (pairwise distances) among the data objects. The metric
multidimensional scaling tries to optimize the cost function that describes how well
the pairwise distances in a data set are preserved. If the square-error cost is used, the
objective function (stress) to be minimized can be written as:

Emetric_MDS = 1
N∑

i< j
d∗2

i, j

N∑

i< j

(
d∗

i, j − di, j

)2
, (1)

where d∗
i, j denotes the distance between the vectors xi and x j, and di, j between yi and

y j respectively. N yields the number of the objects to be mapped.
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The metric MDS algorithm is an algebraic method that rests on the fact that matrix
Y containing the output coordinates can be derived by eigenvalue decomposition
from the scalar product matrix B = YYT . Matrix B can be found from the known
distances using the Young-Householder process [29].

In non-metric MDS, only the ordinal information of the proximities is used for
constructing the spatial configuration, thereby the non-metric MDS attempts to
preserve the rank order among the dissimilarities. The non-metric MDS finds a
configuration of points whose pairwise Euclidean distances have approximately the
same rank order as the corresponding dissimilarities of the objects. Equivalently, the
non-metric MDS finds a configuration of points, whose pairwise Euclidean distances
approximate a monotonic transformation of the dissimilarities. These transformed
values are known as the disparities. The non-metric MDS stress can be formulated
as follows:1

Enonmetric_MDS =
√
√
√
√

N∑

i< j

(
d̂i, j − di, j

)2
/

N∑

i< j

d2
i, j, (2)

where d̂i, j yields the disparity of xi and x j, and di, j denotes the distance between the
vectors yi and y j.

The main steps of the non-metric MDS algorithm are given in Algorithm 1.

Algorithm 1 Non-metric MDS algorithm

Step 1 Find a random configuration of points in the output space.
Step 2 Calculate the distances between the points.
Step 3 Find the optimal monotonic transformation of the proximities in order to

obtain the disparities.
Step 4 Minimize the non-metric MDS stress function by finding a new configura-

tion of points.
Step 5 Compare the stress to some criteria. If the stress is not enough small then

go back to Step 2.

It can be shown, that the metric and non-metric MDS mappings are substantially
different methods. While the metric MDS algorithm is an algebraic method, the
non-metric MDS is an iterative mapping process.

Sammon mapping (SM) [22] is a nonlinear mapping method, that is closely related
to the metric MDS version described above. The aim of Sammon mapping is to
find the low-dimensional presentation of the input data set, such a way that the
corresponding distances approximate the original ones as well as possible. The
Sammon stress function can be written as:

ESM = 1
N∑

i< j
d∗

i, j

N∑

i< j

(
d∗

i, j − di, j

)2

d∗
i, j

, (3)

1Traditionally, the non-metric MDS stress is often called Stress-1 due to Kruskal [16].
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where N is the number of the objects to be mapped, d∗
i, j denotes the distance between

the vectors xi and x j, and di, j respectively for yi and y j. The only difference between
the stress functions of the Sammon mapping and the metric MDS (see Eq. 1) is,
that the errors in distance preservation are normalized by the distances of the input
data objects. Because of this normalization the Sammon mapping emphasizes the
preservation of small distances.

The minimization of the Sammon stress is an optimization problem. When the
gradient-descent method is applied to search for the minimum of Sammon stress, a
local minimum can be reached. Therefore a significant number of runs with different
random initializations may be necessary.

In the literature there are several neural networks proposed to visualize high-
dimensional data in low-dimensional space. The Self-Organizing Map (SOM) [15]
is one of the most popular artificial neural networks. The main disadvantage of SOM
is that it maps the data objects into a topological ordered grid, thereby it is needed to
utilize complementary methods (coloring scheme such as U-matrix) to visualize the
relative distances between data points on the map.

The Visualization Induced Self-Organizing Map (ViSOM) [28] is an effective
extension of SOM. ViSOM is an unsupervised learning algorithm, which is proposed
to directly preserve the local distance information on the map. ViSOM preserves the
inter-point distances as well as the topology of data, therefore it provides a direct
visualization of the structure and distribution of the data. ViSOM constrains the
lateral contraction forces between neurons and hence regularizes the interneuron
distances so that distances between neurons in the data space are in proportion to
those in the input space [28]. The motivation of the development of the ViSOM
algorithm was similar to the motivation of our work, but here the improvement of the
Topology Representing Network based data visualization techniques are in focus.

Dimensionality reduction methods in many cases are confronted with low-dimen-
sional structures nonlinearly embedded in the high-dimensional space. In these cases
the Euclidean distance is not suitable to compute distances among the data points.
The geodesic distance [2] is more suitable to catch the pairwise distances of objects
lying on a manifold, because it is computed in such a way that it always goes along
the manifold. To compute the geodesic distances a graph should be built on the data.

There are two basic variations to construct the neighborhood graphs of the objects:
(i) ε-neighboring and (ii) k-neighboring. In the case of the first approach objects xi

and x j are connected by an edge if d(xi, x j) < ε, where the distance of the objects xi

and x j is calculated as the Euclidean distance, and ε is a small real number. In the
second case objects xi and x j are connected by an edge if xi is among the k-nearest
neighbors of x j or x j is among the k-nearest neighbors of xi. The edges of the graph
are weighted with their Euclidean distance, so the geodesic distance is obtained as
the shortest path for each pair of points: given a set of objects (X), the geodesic
distance between two objects xi, x j ∈ X is the sum of the length of the shortest paths
of X joining xi and x j.

Although most of the algorithms utilize the neighborhood graphs for the con-
struction of the representative graph of the data set (e.g. Isomap [24], Curvilinear
Component Analysis (CCA) [5], Curvilinear Distance Analysis (CDA) [17]), there
are other possibilities to disclose the topology of the data. Topology representing
networks refers to a group of methods that generate compact, optimal topology
preserving maps for different data sets. Topology representative methods combine



J Math Model Algor (2008) 7:351–370 355

the neural gas (NG) [19] vector quantization method and the competitive Hebbian
learning rule [11]. For a given data distribution, first a cloud is created by running the
neural gas algorithm and then the topology is generated by the competitive Hebbian
learning rule. The methods generate their topology map as a result.

There are many methods published in the literature proposing to capture the
topology of the given data set. Martinetz and Shulten [20] showed how the simple
competitive Hebbian rule forms Topology Representing Network (TRN). Dynamic
Topology Representing Networks (DTRN) were introduced by Si at al. [23]. In their
method the topology graph incrementally grows by adding and removing edges and
vertices. Weighted Incremental Neural Network (WINN) [21] produces a weighted
connected net. This net consists of weighted nodes connected by weighted edges.

The aim of this paper is to analyze the different topology representing network
based data visualization techniques. Although topology representing networks are
able to disclose the structure of the data set to be analyzed, they are not able
to visualize the disclosed structure in a vector space with a dimension lower than
the initial dimension of the objects. Therefore, the topology representing network
based data visualization methods include two major parts: (1) they create a topology
network for disclosing the data structure, and (2) they utilize a dimensionality
reduction method for the low-dimensional representation. These two steps can be
performed simultaneously and sequentially, as well. In this paper we summarize
topology representing networks based visualization techniques, we specify their
implementation methods and perform an analysis on them. The analysis compares
the mapping qualities in the local environment of the objects and the global mapping
properties.

The organization of this paper is as follows. Section 2 introduces the Topology
Representing Network, and Section 3 gives an overview of the related mapping
methods. Section 4 introduces the measurement of the mapping quality and gives
application examples to show the results of the analysis. Section 5 concludes the
paper.

2 Topology Representing Network

Although, the Topology Representing Network (TRN), Dynamic Topology Repre-
senting Network (DTRN) and Weighted Incremental Neural Network (WINN) algo-
rithms are quite similar, the TRN algorithm [20] gives the most robust representation
of the data. In the following we introduce this method in detail.

Given are a set of data (X = {x1, x2, . . . , xN}, xi ∈ R
D, i = 1, . . . , N) and a set of

codebook vectors (W = {w1, w2, . . . , wn}, wi ∈ R
D, i = 1, . . . , n) (N > n). The algo-

rithm of the Topology Representing Network (TRN) [20] distributes the pointers
wi between the data objects by the neural gas algorithm, and forms connections
between them by applying the competitive Hebbian rule. The TRN algorithm firstly
selects some random points (units) in the input space. The number of units (n) is a
predefined parameter. The algorithm then iteratively selects an object from the input
data set randomly and moves all units closer to this pattern. After this step, the two
units closest to the randomly selected input pattern will be connected. Finally, edges
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exceeding a predefined age (iteration count) are removed. This iteration process is
continued until a termination criterion is satisfied. The run of the algorithm results in
a Topology Representing Network that means a graph G = (W, C), where W denotes
the nodes (codebook vectors, neural units, representatives) and C yields the set of
edges between them. The detailed description of the TRN algorithm can be found in
Algorithm 2.

Algorithm 2 TRN algorithm

Step 1 Initialize the codebook vectors w j ( j = 1, . . . , n) randomly. Set all connec-
tion strengths ci, j to zero. Set t = 0.

Step 2 Select an input pattern xi(t), (i = 1, . . . , N) with equal probability for each
x ∈ X.

Step 3 Determine the ranking ri, j = r(xi(t), w j(t)) ∈ {0, 1, . . . , n − 1} for each code-
book vector w j(t) with respect to the vector xi(t) by determining the
sequence ( j0, j1, . . . , jn−1) with

‖xi(t) − w j0(t)‖ < ‖xi(t) − w j1(t)‖ < . . . < ‖xi(t) − w jn−1(t)‖. (4)

Step 4 Update the codebook vectors w j(t) according to the neural gas algorithm by
setting

w j(t + 1) = w j(t) + ε · e− r(xi (t),w j(t))

λ(t)
(
xi(t) − w j(t)

)
, j = 1, . . . , n (5)

Step 5 If a connection between the first and the second closest codebook vector to
xi(t) does not exist already (c j0, j1 = 0), create a connection between them
by setting c j0, j1 = 1 and set the age of this connection to zero by t j0, j1 = 0.
If this connection already exists (c j0, j1 = 1), set t j0, j1 = 0, that is, refresh the
connection of the codebook vectors j0 - j1.

Step 6 Increment the age of all connections of w j0(t) by setting t j0,l = t j0,l + 1 for all
wl(t) with c j0,l = 1.

Step 7 Remove those connections of codebook vector w j0(t) the age of which
exceed the parameter T by setting c j0,l = 0 for all wl(t) with c j0,l = 1 and
t j0,l > T.

Step 8 Increase the iteration counter t = t + 1. If t < tmax go back to Step 2.

The algorithm has many parameters. The number of the iterations (tmax) and
the number of the codebook vectors (n) are determined by the user. Parameter λ,
step size ε and lifetime T are dependent on the number of the iterations. This time
dependence can be expressed by the following general form:

g(t) = gi

(
g f

gi

)t/tmax

(6)

where gi denotes the initial value of the variable, g f denotes the final value of the
variable, t denotes the iteration counter, and tmax denotes the maximum number of
iterations. (For example for parameter λ it means: λ(t) = λi(λ f /λi)

t/tmax .) Paper [20]
gives good suggestions to tune these parameters.
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3 Topology Representing Network Based Mapping Algorithms

In the literature, there are only a few methods published that utilize the topology
representing networks to visualize the data set in the low-dimensional vector space.
Online Visualization Neural Gas (OVI-NG) [7] is a nonlinear projection method, in
which the codebook positions are adjusted in a continuous output space by using
an adaptation rule that minimizes a cost function that favors the local distance
preservation. As OVI-NG utilizes Euclidean distances to map the data set, it is not
able to disclose the nonlinearly embedded data structures. The Geodesic Nonlinear
Projection Neural Gas (GNLP-NG) [8] algorithm is an extension of OVI-NG, that
uses geodesic distances instead of the Euclidean ones. Abreast with these algorithms,
the authors of this paper have developed a new group of the mapping methods, called
Topology Representing Network Map (TRNMap) [25, 26]. TRNMap also utilizes the
Topology Representing Network and the resultant graph is mapped by MDS into
a low-dimensional vector space. Hence TRNMap utilizes geodesic distances during
the mapping process, it is a nonlinear mapping method, which focuses on the global
structure of data. As the OVI-NG is not able to disclose the nonlinearly embedded
manifolds, in the following, we will not deal with this method.

3.1 Geodesic Nonlinear Projection Neural Gas

While the TRN algorithm creates only the topology representing network of the
objects, the GNLP-NG method maps this representative graph as well. The GNLP-
NG algorithm is a nonlinear mapping procedure, which includes the following two
major steps: (1) creating a topology representing network to depict the structure
of the data set, and (2) mapping this approximate structure into a low-dimensional
vector space.

The first step utilizes a modified TRN algorithm for building the connectivity
graph of the representative codebook vectors. The applied combination of the
neural gas method and the Hebbian rule differs slightly from the TRN algorithm: it
connects not only the first and the second closest codebook vectors to the randomly
selected input pattern (xi(t)) (Step 5 in the TRN algorithm (see Algorithm 2)), but it
creates other edges, as well. The establishment of these complementary edges can be
formalized in the following way:

– for k = 2, . . . , kmax

Create a connection between the k-th nearest unit (w jk ) and the k + 1-th nearest
unit (w jk+1 ), if it does not exist already, and the following criterion is satisfied:

‖w jk − w jk+1‖ < ‖w j0 − w jk+1‖ (7)

Else create a connection between codebook vectors w j0 and w jk+1 .
Set the ages of established connections to zero. If the connection already exists,
refresh the age of the connection by setting its age to zero.

The parameter kmax is an accessory parameter compared to the TRN algorithm. In
[8] it is suggested to set kmax = 2. This extra step amends the 5-th step of the TRN
algorithm.
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Furthermore GNLP-NG increments not only the ages of all connections of w j0
(see Step 6 in Algorithm 2), but it also extends this step to the k-th nearest unit as
follows:

– Increment the age of all edges emanating from w jk , for k = 1, . . . , kmax:

t j0,l = t j0,l + 1,∀l ∈ Nw jk
, (8)

where Nw jk
is the set of all direct topological neighbors of w jk .

This extra step amends the 6-th step of the TRN algorithm (see Algorithm 2).
During the mapping process (second major part of the GNLP-NG algorithm) the

GNLP-NG algorithm applies an adaptation rule for the codebook positions in the
projection space. It minimizes the following cost function:

EGNLP−NG = 1

2

n∑

j=1

∑

k �= j

(
d j,k − δ j,k

)2
e−

( r j,k
σ(t)

)2

, (9)

where r j,k = r(x j, wk) ∈ {0, 1, ..., n − 1} denotes the rank of the k-th codebook vector
with respect to the x j using geodesic distances, and σ is a width of the neighborhood
surround. d j,k denotes the Euclidean distance of the codebook positions y j and yk

defined in the output space, δ j,k yields the geodesic distance between codebook
vectors w j and wk measured in the input space.

According to the previously presented overview, the GNLP-NG first determines
the topology of the data set by the modified TRN algorithm and then maps this topol-
ogy based on the graph distances. The whole process is summarized in Algorithm 3.

Algorithm 3 GNLP-NG algorithm

Step 1 Determine the topology of the data set based on the modified TRN
algorithm.

Step 2 Compute the geodesic distances between the codebook vectors based on
the connections (ci, j) of the previously calculated topology representing
network. Set t = 0.

Step 3 Initialize the codebook positions y j, randomly.
Step 4 Select an input pattern xi(t) with equal probability for each x ∈ X.
Step 5 Find the codebook vector w j0(t) in the input space that is closest to xi(t).
Step 6 Generate the ranking using geodesic distances in the input space

r j0, j = r(w j0(t), w j(t)) ∈ {0, 1, . . . , n − 1} for each codebook vector w j(t) with
respect to w j0(t).

Step 7 Update the codebook positions in the output space:

y j(t + 1) = y j(t) + α(t)e
−

(
r j0 , j
σ(t)

)2

(d j0, j − δ j0, j)

d j0, j
(y j0(t) − y j(t)) (10)

Step 8 Increase the iteration counter t = t + 1. If t < tmax go back to Step 4.
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In this algorithm the parameter α is the learning rate, σ is the width of the
neighborhood, and they typically decrease with the number of iterations, t, in the
same way as Eq. 6. Dj,k denotes the Euclidean distance of the codebook positions
z j and zk defined in the output space. The codebook positions mean the mapped
codebook vectors in the output space. δ j,k yields the geodesic distance between
codebook vectors w j and wk measured in the input space, and m j yields the ranking
value of the codebook vector w j. Paper [8] gives an extension to the GNLP-NG, to
tear or cut the graphs with non-contractible cycles.

3.2 Topology Representing Network Map

Topology Representing Network Map (TRNMap) refers to a group of nonlinear
mapping methods, which combines the TRN algorithm and the MDS method to
visualize the data structure to be analyzed. It results in a new visualization map, called
Topology Representing Network Map (TRNMap). TRNMap is a self-organizing
model with no predefined structure which provides an expressive presentation of
high-dimensional data in low-dimensional vector space. The dimensionality of the
input space is not restricted. Although we can get arbitrary dimensional output map
as a result, in this paper the 2-dimensional output map is recommended.

The method for constructing the TRNMap (TRNMap algorithm) is based on
graph distances, therefore it is able to handle a set of data lying on a low-dimensional
manifold that is nonlinearly embedded in a higher-dimensional input space. For the
preservation of the intrinsic data structure, TRNMap computes the dissimilarities of
the data points based on the graph distances. To compute the graph distances, the set
of data is replaced by the graph resultant of the TRN algorithm applied on the data
set. The edges of the graph are labeled with their Euclidean length and Dijkstra’s
algorithm [6] is run on the graph, in order to compute the shortest path for each pair
of points. The TRNMap algorithm utilizes the group of multidimensional scaling
mapping algorithms to give the low-dimensional representation of the data set. If
the aim of the mapping is the visualization of the distances of the objects or their
representatives, the TRNMap utilizes the metric MDS method. On the other hand, if
the user is only interested in the ordering relations of the objects, the TRNMap uses
non-metric MDS for the low-dimensional representation. As a result it gives compact
low-dimensional topology preserving feature maps to explore the hidden structure of
data. In the following the TRNMap algorithm is introduced in detail.

To avoid the influence of the range of the attributes, a normalization procedure is
suggested as a preparing step (Step 0). After the normalization, the algorithm creates
the topology representing network of the input data set (Step 1). It is achieved by
the use of the Topology Representing Network proposed by Martinetz and Shulten
[20]. If the resultant graph is unconnected, the algorithm connects the subgraphs
by linking the closest elements (Step 2). Then the pairwise graph distances are
calculated between every pair of representatives (Step 3). Next, the original topology
representing network is mapped into a 2-dimensional graph (Step 4). The mapping
method utilizes the similarity of the data points provided by the previously calculated
graph distances. This mapping process can be carried out by the use of metric or non-
metric multidimensional scaling, as well. For the expressive visualization, component
planes are also created by the D-dimensional representatives (Step 5). A component
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plane displays the value of one component of each node. If the input data set has D
attributes, the TRNMap component plane includes D different maps according to
the D components. The structure of these maps is the same as the TRNMap map,
but the nodes are represented in greyscale.

Algorithm 4 Topology Representing Network Map algorithm

Step 0 Normalize the input data set X.
Step 1 Create the Topology Representing Network of X by the use of the TRN

algorithm [20]. Yield M(D) = (W, C) the resulting graph, let wi ∈ W be the
representatives (codebook vectors) of M(D). If exists an edge between the
representatives wi and w j (wi, w j ∈ W, i �= j), ci, j = 1, otherwise ci, j = 0.

Step 2 If M(D) is not connected, connect the subgraphs in the following way:

While there are unconnected subgraphs (m(D)

i ⊂ M(D), i = 1, 2, . . .):
(a) Choose a subgraph m(D)

i .
(b) Let the terminal node t1 ∈ m(D)

i and its closest neighbor
t2 /∈ m(D)

i from:
‖t1 − t2‖ = min‖w j − wk‖, t1, w j ∈ m(D)

i , t2, wk /∈ m(D)

i
(c) Set ct1,t2 =1.

End while

Yield M∗(D) the modified M(D).

Step 3 Calculate the geodesic distances between all wi, w j ∈ M∗(D).
Step 4 Map the graph M(D) into a 2-dimensional vector space by metric or non-

metric MDS based on the graph distances of M∗(D).
Step 5 Create component planes for the resulting Topology Representing Network

Map based on the values of wi ∈ M(D).

The parameters of the TRNMap algorithm are the same as those of the Topology
Representing Networks algorithm. The number of the nodes of the output graph (n)
is determined by the user. The bigger the n the more detailed the output map will be.
We suggest the choice n = 0.2N. If the number of the input data elements is high, it
can result in numerous nodes. In these cases, it is practical to decrease the number
of the representatives and iteratively run the algorithm to capture the structure more
precisely. Values of the other parameters of TRN (λ, the step size ε, and the threshold
value of edge’s ages, T) can be the same as proposed by Martinetz & Schulten [20].

The TRNMap algorithm has different variations based on the mapping used. If
the applied MDS is a metric MDS method, the mapping process will preserve the
pairwise distances of the objects. On the other hand, if the TRNMap algorithm
applies a non-metric MDS, the resultant map tries to preserve the global ordering
relations of the data.

Table 1 Systematic overview of the Topology Representing Network based mapping methods

Algorithm Topology learning Distance measure Mapping

GNLP_NG Modified TRN Geodesic Iterative adaptation rule
DP_TRNMap TRN Geodesic Metric MDS
NP_TRNMap TRN Geodesic Non-metric MDS
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(b) TRN of Swiss roll (n = 200)
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Fig. 1 The Swiss roll data set, its TRN and its GNLP-NG and DP_TRNMap projections (a–d)

Table 1 gives a systematic overview of GNLP-NG, metric TRNMap (DP_-
TRNMap, DP from distance preserving) and non-metric TRNMap (NP_TRNMap,
NP from neighborhood preserving). This table summarizes the applied topology
learning methods, distance measures, and mapping techniques.
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Fig. 2 Component planes of the metric MSD based Topology Representing Network Map of the
Swiss roll data set (a–c)
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Table 2 Values of Sammon stress, metric MDS stress and residual variance of GNLP-NG and
TRNMap algorithms on the Swiss roll data set

Algorithm Sammon stress Metric MDS stress Residual variance

GNLP-NG 0.00103 0.00055 0.00170
DP_TRNMap 0.00096 0.00043 0.00156
NP_TRNMap 0.00095 0.00045 0.00155

4 Analysis of the Topology Representing Network Based Mapping Methods

The aim of this section is to analyze the Topology Representing Network based
mapping methods that are able to unfold the nonlinearly embedded manifolds. The
mapping qualities are analyzed based on the following aspects:

– preservation of distance and neighborhood relations of data, and
– preservation of local and global geometry of data.

The distance preservation of the methods to be analyzed is measured by the
metric MDS stress function, Sammon stress function and residual variance. The
neighborhood preservation and the local and global mapping qualities are measured
by functions of trustworthiness and continuity.

4.1 Mapping Quality

The metric MDS stress function (see Eq. 1) and Sammon stress function (see Eq. 3)
have been shown in Section 1. The residual variance is defined as:

1 − R2
(
D∗

X , DY
)
, (11)

where DY denotes the matrix of Euclidean distances in the low-dimensional output
space (DY = [di, j]), and D∗

X = [d∗
i, j] is the best estimation of the distances of the data

to be projected. R is the standard linear correlation coefficient, taken over all entries
of D∗

X and DY .
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Fig. 3 Trustworthiness and continuity of GNLP-NG and TRNMap methods as a function of the
number of neighbors k, for the Swiss roll data set (a, b)
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Table 3 CPU time for
different mappings of the
Swiss roll data set (n = 200)

Algorithm CPU time (s)

GNLP-NG 140.9313
DP_TRNMap 18.2989
NP_TRNMap 18.2209

A projection is said to be trustworthy [14, 27] if the nearest neighbors of a
point in the reduced space are also close in the original vector space. Let n be the
number of the objects to be mapped, Uk(i) be the set of points that are in the k
size neighborhood of the sample i in the visualization display but not in the original
data space. The measure of trustworthiness of visualization can be calculated in the
following way:

M1(k) = 1 − 2

nk(2n − 3k − 1)

n∑

i=1

∑

j∈Uk(i)

(r (i, j ) − k) , (12)

where r(i, j ) denotes the ranking of the objects in the input space.
The projection onto a lower dimensional output space is said to be continuous

[14, 27] if points near to each other in the original space are also nearby in the output
space. Denote Vi(k) the set of those data points that belong to the k-neighbors of data
sample i in the original space, but not in the visualization. The measure of continuity
of visualization is calculated by the following equation:

M2(k) = 1 − 2

nk(2n − 3k − 1)

n∑

i=1

∑

j∈Vk(i)

( r̂ (i, j ) − k) , (13)

where r̂(i, j ) is the rank of the data sample i from j in the output space.

Fig. 4 GNLP-NG and
TRNMap visualizations
of the Wisconsin breast
cancer data set (a–c)

–3 –2 –1 0 1 2 3 4 5
–2

–1

0

1

2

3

4

5

6

7

(a) GNLP-NG

–4 –3 –2 –1 0 1 2 3 4
–3

–2

–1

0

1

2

3

4

(b) DP_TRNMap

–6 –5 –4 –3 –2 –1 0 1 2 3
–5

–4

–3

–2

–1

0

1

2

3

(c) NP_TRNMap



364 J Math Model Algor (2008) 7:351–370

Table 4 The values of the Sammon stress, MDS stress and residual variance of different mapping
algorithms on the Wisconsin breast cancer data set (n = 35)

Algorithm Sammon stress MDS stress Residual variance

GNLP-NG 0.02996 0.02764 0.09733
DP_TRNMap 0.01726 0.01075 0.04272
NP_TRNMap 0.01822 0.01077 0.03790

4.2 Analysis of the Methods

In this subsection the mapping qualities of GNLP-NG and TRNMap methods are
analyzed. The common parameters of GNLP-NG and TRNMap algorithms were in
the simulations set as follows: tmax = 200n, εi = 0.3, ε f = 0.05, λi = 0.2n, λ f = 0.01,
Ti = 0.1n, T f = 0.05n. The auxiliary parameters of the GNLP-NG algorithm were
set as αi = 0.3, α f = 0.01, kmax = 2, σi = 0.7n and σ f = 0.1.

On visualization results presented in the following the class labels are also pre-
sented. The representatives are labeled based on the principle of the majority vote:
(1) each data point is assigned to the closest representative; (2) the representatives
are labeled with the class label that occurs most often among its assigned data point.

The Swiss roll data set (see Fig. 1a) is a typical example of the nonlinearly
embedded manifolds. This data set contains a 2-dimensional manifold nonlinearly
embedded in the 2-dimensional vector space. All objects belongs to 1 class. In this
example the number of data points is 2000 and the number of the representatives was
chosen to be n = 200.

As both GNLP-NG and TRNMap methods are based on the creation of the
Topology Representing Network, Fig. 1b shows the TRN of the Swiss roll data set.
In Fig. 1c–d the GNLP-NG projection and the 2-dimensional metric MDS based
TRNMap visualization of the Swiss roll data set are shown. As the metric MDS and
the non-metric MDS based mappings of the resultant TRN in this case give very
similar results in the mapped prototypes, the resultant TRNMap visualizations are
not distinguishable by human eye. Thereby Fig. 1d can be seen as the result of the
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Fig. 5 Trustworthiness and continuity as a function of the number of neighbors k, for the Wisconsin
breast cancer data set (n = 35) (a, b)
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Table 5 Values of Sammon stress, MDS stress and residual variance of different mapping algorithms
on the Wisconsin breast cancer data set (n = 70)

Algorithm Sammon stress MDS stress Residual variance

GNLP-NG 0.06293 0.05859 0.22249
DP_TRNMap 0.01544 0.00908 0.03370
NP_TRNMap 0.02279 0.01253 0.02887

non-metric MDS based TRNMap algorithm as well. It can be seen that GNLP-NG
and TRNMap mappings can uncover the structure of data in essence.

The visualization of the Topology Representing Network Map also includes the
construction of the component planes. The component planes arising from the metric
MDS based TRNMap are shown in Fig. 2. The largest value of the attributes of
the representatives corresponds to the black and the smallest value to the white
dot surrounded by a grey circle. Figure 2a shows that alongside the manifold the
value of the first attribute (first dimension) initially grows to the highest value, then
it decreases to the smallest value, after that it grows, and finally it decreases a little.
The value of the second attribute is invariable alongside the manifold, but across the
manifold it changes uniformly. The third component starts from the highest value,
then it falls to the smallest value, following this it increases to a middle value, and
finally it decreases a little.

Table 2 shows the error values of distance preservation of different mappings.
Although, GNLP-NG and TRNMap methods show similar performances in distance
preservation, the TRNMap methods show somewhat better performance.

Figure 3 shows the neighborhood preservation mapping qualities of the methods
to be analyzed. The continuity and the trustworthiness of GNLP-NG and TRNMap
mappings do not show a substantive difference, the qualitative indicators are greater
than 0.998. It means, that all methods to be examined have found the embedded
manifold. Trustworthiness and continuity are functions of the number of neighbors
k. As small k-nn-s the local reconstruction performance of the model is tested, while
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Fig. 6 Trustworthiness and continuity as a function of the number of neighbors k, for the Wisconsin
breast cancer data set (n = 70) (a, b)
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Table 6 CPU time for
different mappings of the
Wisconsin breast cancer
data set

Algorithm CPU time (s)
n = 35 n = 70

GNLP-NG 4.3680 14.2117
DP_TRNMap 2.4180 6.0528
NP_TRNMap 2.7924 6.3648

at larger k-nns the global reconstruction is measured. It can be seen, that the GNLP-
NG method shows better performance in the local area than the TRNMap mappings.

Table 3 shows the CPU time for different mappings of the Swiss roll data set.
It can be seen that the TRNMap algorithms produce faster the visualization results
than the GNLP-NG method.

In this example, it has been shown that GNLP-NG and TRNMap methods
are able to uncover non-linearly embedded manifolds; these methods show good
performance both in topology and distance preservation, and the component planes
of the TRNMap provide useful facilities to unfold the relations among the features.

The Wisconsin breast cancer database is a well-known diagnostic data set for breast
cancer compiled by Dr William H. Wolberg, University of Wisconsin Hospitals
[10, 18]. This data set contains 9 attributes and class labels for the 683 instances of
which 444 are benign and 239 are malignant. The number of the nodes in this case
was reduced to n = 35 and n = 70.

To get a compact representation of the data set to be analyzed, the number of the
neurons was initially chosen to be n = 35. TRNMap and GNLP-NG visualizations of
the Wisconsin breast cancer data set are shown in Fig. 4. The results of the several
runs seem to have drawn a fairly wide partition and another compact partition. In
these figures the representatives of the benign class are labeled with squares and
representatives of the malignant class with circles.

As it can be seen in Fig. 4, the resultant plots suggest that the data can be divided
into two or three clusters. Among these clusters one is related to the class benign.

Fig. 7 GNLP-NG and
TRNMap visualizations
of the Iris data set (a–c)
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Fig. 8 Trustworthiness and continuity of GNLP-NG and TRNMap methods as a function of the
number of neighbors k, for the Iris data set (a, b)

This information has been confirmed by other data-driven models, like classifiers
initialized by decision trees [1].

Table 4 shows the numerical evaluation of the distance preservation capabilities of
the mappings. It can be seen that TRNMap mapping methods show better mapping
qualities.

The quality of the neighborhood preservation of the mappings is shown in Fig. 5.
It can be seen, that the NP_TRNMap and DP_TRNMap methods give better
performances at larger k-nn values. On the other hand, in most cases, the GNLP-
NG technique gives better performance at the local reconstruction.

To examine the robustness of the methods to be analyzed, another number of the
representatives has also been tried. In the second case the number of the representa-
tives was chosen to be n = 70. Table 5 and Fig. 6 show the numerical evaluations of
the methods in this case (other parameters were not changed). As quality measures
of neighborhood preservation of the TRNMap methods move between 0.95 and 1
in both cases (n = 35, and n = 70), the TRNMap method provides good mapping
results in both cases (see Figs. 5 and 6). Compared to this, the GNLP-NG method
shows a quite bad mapping result in the case of n = 70 (Fig. 6). This fact is confirmed
by the error values of the distance preservation, as well (Table 5). Therefore, both
the error values and the functions show that the GNLP-NG method has fallen in a
local minimum. This could be caused by the fact that GNLP-NG applies a gradient
based iterative optimization procedure that can be stuck in local minima. Therefore
we can say that TRNMap methods appear to be much less sensitive to the number of
the mapped codebooks than the GNLP-GL method.

Table 7 Values of Sammon stress, MDS stress and residual variance of different mapping algorithms
on the Iris data set (n = 70)

Algorithm Sammon stress MDS stress Residual variance

GNLP-NG 0.00711 0.00324 0.00914
DP_TRNMap 0.00230 0.00062 0.00183
NP_TRNMap 0.00426 0.00163 0.00491
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Table 8 CPU time for
different mappings of the
Iris data set (n = 200)

Algorithm CPU time (s)

GNLP-NG 2.6988
DP_TRNMap 0.9360
NP_TRNMap 1.7472

The CPU time of different mappings have been also analyzed (see Table 6). The
DP_TRNMap and NP_TRNMap require significantly shorter calculation than the
GNLP-NG method.

To show the correctness of the previous observations, one more application exam-
ple is presented. The Iris data set [9] (http://www.ics.uci.edu) contains measurements
on three classes of iris flowers. The data set was made by measurements of sepal
length and width and petal length and width for a collection of 150 irises. The data
set contains 50 samples from each class of iris flowers (iris setosa, iris versicolor and
iris virginica). The goal is to distinguish the three different types. Iris setosa is easily
distinguishable from the other two types, but iris versicolor and iris virginica are very
similar to each other. This data set has been analyzed many times to illustrate various
clustering methods.

The number of the representatives in this case was chosen to be n = 25. Results
of the different mapping methods can be seen in Fig. 7. Visualization results meet
a priori expectations. In all the three cases we can see a well separated class
(iris setosa), and another group that contains the representatives of the classes
iris virginica and iris versicolor. Figure 7 shows that the NP_TRNMap and the
DP_TRNMap methods separate the representatives of iris setosa from the other
two classes better than the GNLP-NG method. Figure 8 shows the neighborhood
preservations of the mapping algorithms. It confirms the previous statement, that
the GNLP-NG mapping shows better performance in the local area than TRNMap
methods.

Table 7 summarizes the error values of the studied methods. The error values also
confirm that the TRNMap methods have better mapping qualities than the GNLP-
NG based visualization. Table 8 presents CPU time used for different mappings of
the Iris set. Similarly to the previous examples TRNMap methods need shorter time
to produce results.

The mapping methods have also been tested on other benchmark examples, and
the results confirmed the previous statements.

5 Conclusion

In this paper we have defined a new class of mapping methods, that are based on
the topology representing networks. To detect the main properties of the topology
representing network based mapping methods, an analysis was performed on them.
The primary aim of this analysis was to examine the preservation of distances and
neighborhood relations of data. Preservation of neighborhood relations was analyzed
both in local and global environments. It has been shown that: (1) Multidimensional
scaling is an effective method to form a low-dimensional map of the TRN based on
the calculated graph distances. (2) Metric mapping based algorithms (e.g. TRNMap

http://www.ics.uci.edu
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based on metric MDS) directly minimize the stress functions, so their performance
appears to be the best in distance perseveration. (3) In point of neighborhood
preservation GNLP-NG mapping shows better performance in the local area than
TRNMap methods. (4) MDS-based techniques can be considered as global recon-
struction methods, hence in most cases they give better performances at larger
k-nn values. (5) Comparing TRNMap and GNLP-NG methods, it can be seen that
TRNMap methods are more robust to the initialization parameters. MDS-based
techniques are much less sensitive to the number of the mapped codebook vectors
than the GNLP-NG technique, which tends to give worse performances when the
number of codebook vectors is increased. This could be caused by the fact that
GNLP applies a gradient based iterative optimization procedure that can be stuck
in local minima. (6) The GNLP-NG needs more computational time, than the MDS
based TRNMap methods. (7) The quality of the TRN has a significant role in the
exploration of the hidden structure of the data. When classical TRN is used, the user
(the knowledge worker) only receives numerical feedback about the result of the
algorithm. The main benefit of the proposed visualization based approach is that the
resulting figures can serve as a visual feedback for the user. Hence, interactive data
mining can be realized as the user can immediately evaluate the resulting figures and
see the effects of the parameters. Comparing these plots to each other and to the a
priori knowledge of the knowledge worker a proper model can be fine tuned.

As a future topic, we plan to compare the ViSOM and the proposed TRNMap
methods.
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