
J Math Model Algor (2008) 7:125–142
DOI 10.1007/s10852-008-9081-1

A Cooperative Search Method
for the k-Coloring Problem

Hend Bouziri · El-Ghazali Talbi · Khaled Mellouli

Received: 1 March 2007 / Accepted: 21 December 2007 /
Published online: 6 March 2008
© Springer Science + Business Media B.V. 2008

Abstract In this paper, a cooperative search method, based on a multi-agent struc-
ture is developed to deal with the k-coloring problem. Three agents coordinate using
an adaptive memory, a search agent, an intensification agent and a diversification
agent. We use the results of a preliminary fitness landscape study to adjust the
navigation strategy in the solution space and to fix the search parameters. Our
method provides competitive results and it is fast when compared with best existing
techniques on instances extracted from the second DIMACS challenge.
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1 Introduction

The graph coloring problem has many applications in scheduling, timetabling and
telecommunication. This problem and its various extensions are known to be
NP-hard. For this reason, exact algorithms can’t solve instances with more than 100
vertices. This motivates the use of metaheuristic methods.
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Many iterative search techniques have been developed for the graph coloring
problem. The main drawback of most of them, is that they are elaborated without
a specific knowledge of the search space structure. This should explain, why these
methods are efficient on some instances but provide poor results on others.

In this work, we attempt to analyse the landscape structure of the k-coloring
problem before developing a resolution search method. This method learns from
the landscape structure and re-uses best features in existing methods to be more
effective.

In the next section, we give the formulation of the problem. In Section 3, we
present some of the techniques already proposed for coloring graphs. Section 4
present the cooperative architecture of our new method. Section 5 is devoted to a
preliminary fitness landscape study of different instances. In Section 6, we provide
the implementation of the method according to the results of the landscape analysis.
Results of the resolution of some instances of the second DIMACS challenge1 are
reported in Section 7.

2 k-Coloring Problem

Given an undirected connected graph G = (V, E), the coloring of G which assigns k
colors to the vertices of the graph is termed k-coloring. Thus a k-coloring partitions
the vertices of a graph into k color classes. A proper coloring of a graph G, is an
assignment of colors to its vertices so that no two adjacent vertices in G have the
same color.

If two adjacent vertices v and w have the same color, then vertices v and w are
called conflicting vertices and the edge linking v with w is called a conflicting edge.
The chromatic number of a graph G is the minimum number χ for which G has a
χ -coloring.

Furthermore, the k-coloring problem can be seen as a decision problem, the
question to be answered is whether for some given k, a legal k-coloring exists. It
is well known that the k-coloring problem for general graphs is NP-complete and
that the graph coloring problem is NP-hard; only for a few special cases polynomial
time algorithms are known.

3 Resolution Techniques

Too many methods are proposed for the resolution of different variants of the graph
coloring problem. This is mainly due to its practical importance. We distinguish
between greedy methods and iterative search methods. In this section, we focus
our survey on well used methods known to be efficient in the resolution of several
instances of the graph coloring problem.

1http://mat.gsia.cmu.edu/COLOR/instances.html.

http://mat.gsia.cmu.edu/COLOR/instances.html
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3.1 Greedy Methods

The general idea of a greedy algorithm is to build up a solution, one element at
a time, by choosing the best possible element at each iteration. To deal with the
graph coloring problem, the algorithm starts with the creation of a permutation of
vertices, then the first vertex in the permutation is colored with the smallest color
from {1, .., k + 1}, such that no conflict is created. k is the last color used and in the
first step it is equal to 0. Once a vertex is colored, it is removed from the set of
vertices. These two steps are repeated with the remaining set of uncolored vertices.
Several different schemes have been used for the initial ordering.

Work on constructive methods still takes a great interest since search methods
are time consuming. Indeed, in many practical applications, it is preferable to have a
“satisfactory” solution with a short execution time than to wait in order to reach
a global solution. In addition, constructive methods such as XRLF or DSATUR
are very recommended as candidates to generate initial colorings in iterative search
methods. In fact, they enable the search process to begin from good and fast
constructed colorings.

3.1.1 DSATUR

Brélaz [2] proposed a technique that re-orders vertices at each stage, according to
their saturation degree. He defines the saturation degree of a given vertex v as the
number of colors already used by its adjacent vertices. Initially, the vertices are
sorted by decreasing degree, and all saturations are zero, then the following routine
is repeated:

1. Find the node with the highest saturation degree and assign to it the smallest
color.

2. In case of a tie, the node with the highest degree (=number of neighbors that are
still in the uncolored subgraph) is chosen.

3. In case of a tie, a random node is chosen.

The saturation degree is calculated dynamically as the coloring is constructed.
Also, because of the random tie breaking, DSATUR is considered as a stochastic
algorithm. Brélaz shows that for bipartite graphs, this method is optimal.

3.1.2 Randomized Recursive Larger First

Recursive larger first method (RLF) is based on the notion of independent sets.
An independent set is the set of vertices U ∈ V such that no two vertices of U are
adjacent. The priority is assigned to independent subsets that contain the maximum
number of vertices. At each iteration, the maximum independent subset is identified,
and each vertex is colored by the same color, say c. In the next iteration, this subset
is removed from the set of vertices then another maximum independent subset
is defined and colored with the color c + 1. The number of maximal independent
subsets corresponds to the number of colors used.

XRLF is a randomized version of RLF, developed by Johnson, et al. [15]. It
combines an exhaustive search with a variant of RLF algorithm. It consists of
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extracting independent sets until the residual graph has less than 70 vertices, making
it possible to be colored with an exact coloring algorithm.

3.2 Iterative Search Methods

Metaheuristics can operate on complete or partial solutions which can violate con-
straints, they use a neighborhood operator to “navigate” from a solution to another
one and they stop if a satisfactory solution is found or a stopping criterion is satisfied.
Various techniques have been proposed to prevent the stagnation in local optima.

These iterative search methods have proved their efficiency in the resolution of
several instances of problems classified NP-hard. Three main metaheuristics are
proposed to deal with the k-coloring problem: simulated annealing (SA), tabu search
(TS) and genetic algorithm (GA). In the following, we present basic hybrids of
metaheuristics operating on single solutions or on a population of solutions.

3.2.1 SA Combined to XRLF

In the simulated annealing procedure proposed by Chams et al. [3], both pure
simulated annealing and an approach that combines XRLF and simulated annealing
are discussed. In the second method, XRLF is used to construct color classes until
the number of vertices in the graph is below a specified level. Simulated annealing is
then applied to color the remaining vertices.

3.2.2 Distributed Coloration Neighborhood Search

Morgenstern [18] explores another strategy which starts by an initial population of
proper partial k-colorings generated by XRLF. The objective is to maximize the
number of colored vertices. A simple simulated annealing scheme is applied to move
between partial solutions.

The neighborhood operator consists in assigning a color (say ci) to an uncolored
vertex (say v) and to remove the color on each adjacent node of the vertex v that
has the color ci, this type of move is called i-swap. The SA algorithm is run for a
predefined maximal number of iterations or until a certain solution quality threshold
is passed.

3.2.3 TabuCol

Herz and De Werra [12] proposed a procedure wherein a solution of a k-coloring
problem is encoded by a string s of size N (number of nodes), where s[i] ∈ {1, ..., k}
corresponds to the color of the node vi. The goal is to minimize the number of edges
connecting two nodes having the same color, a solution is then evaluated by:

f (s) =
k∑

j=1

|Ej|, (1)

where Ej is the set of edges of the graph G having both endpoints in V j, with V j is
the set of nodes having the color cj, j ∈ {1, ..., k}.
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The tabu search procedure started by assigning k colors randomly to the n vertices,
if this constitutes a proper k-coloring then the search process is restarted with (k − 1)

colors.
A neighboring solution s′ of a solution s is obtained by coloring a conflicting node

vi with a color c j different from its current color ci. The tabu algorithm consists in
generating a set of such neighbors, and then selecting the neighbor with the fewest
conflicts. After a move of vertex v from a color class Vi to V j, a tabu activation rule
forbids the move that returns v to Vi for a number of iterations called tabu tenure. The
procedure stops when f (s) = 0 or if a pre-specified number of iterations is reached
without finding a legal coloring for a given k.

The algorithm provides very interesting results even for large problems. Experi-
ments show that it outperforms simulated annealing on several instances.

3.2.4 EA with a Knowledge-Augmented Crossover

In the implementation of Ferland and Fleurent [6] of the evolutionary algorithm,
a knowledge-augmented crossover operator is used. It consists of defining a set of
conflicting nodes. An offspring from two parents is generated by coloring the node
in one parent using the color supplied by the other parent if it is conflict free for
the later.

When a node is in conflict in both parents, the algorithm selects the least
frequently used color among adjacent nodes in either parent. Each of the remaining
nodes is colored using colors of one of the parents selected randomly as in the
uniform crossover. A mutation operator is applied to each generated individual.

Ferland and Fleurent also use the tabu search algorithm as a mutation operator
in the genetic algorithm. Experiments show that this genetic hybrid performs slightly
better than the multi-start tabu search.

Moreover, the authors propose to extract stable sets by a modified version of
Stabulus (defined by Friden et al. in [7]) with a different objective function, then to
run TabuCol to color the residual graph. This technique improves clearly the results
on random large graphs.

3.2.5 Greedy Randomized Adaptive Search Procedure

This method (GRASP for short), proposed by Laguna and Marti [17], consists of
two phases: construction phase and improvement phase. In the construction phase,
the GRASP uses a randomized version of the RLF to construct initial colorings and
uses the objective function to rank all candidate solutions. The best coloring is then
selected.

The improvement step consists of a local search procedure. Its input is the graph
G = (V, E) and a valid c-coloring V1, .., Vc. The output is the k-coloring V1, .., Vk

with k ≤ c. The goal is to reduce the size of the current coloring. GRASP repeats
these two steps and finally returns the best solution encountered.

Experiments show that if the amount of time in the improvement time phase is
limited, metaheuristics (namely tabu search and simulated annealing) are not able
significantly to improve the performance of the overall method when compared with
simple descent mechanisms.
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3.2.6 Hybrid Evolutionary Algorithm

This algorithm (HEA for short) is proposed by Galinier and Hao [8]. It begins with
creating an initial population of solutions. A local search operator is then applied
to each individual of the population for a given number of iterations. At each
generation, two parents are selected to perform a specialized crossover operator
called GPX (Greedy Partition Crossover), the generated child is improved by the use
of the local search again. The population is updated by including this new individual
in a replacement phase. This procedure is repeated until a stopping criterion is
satisfied.

Results show that HEA outperforms previous methods for many instances of the
DIMACS challenge for the graph coloring problem. For all the tested instances HEA
is faster in finding the colorings.

3.2.7 An Adaptive Memory Algorithm

To follow the crossover idea proposed in HEA, Galinier proposed, later in [9], an
adaptive memory algorithm (AMACOL). It is a hybrid evolutionary heuristic that
used a central memory containing pieces of solutions. During each generation, the
algorithm creates an offspring solution s, applies a local search operator on s and
updates the central memory with the resulting solution. In the context of k-coloring,
stable sets corresponds to pieces of solutions. The results are comparable to those
obtained by the HEA technique.

4 A New Cooperative Search Method

We have concluded from the survey of main existing approaches proposed for
coloring graphes, the following observations:

– Hybrids that combine evolutionary and local search are the best among iter-
ative search methods in the resolution of the graph coloring problems. The
experiments, on several schemes of hybrids, showed the benefits of working
on a population of solutions and evolving with it during the search process.
Furthermore, the use of an appropriate crossover enhances considerably the
efficiency of the evolution. This is basically the contribution of Galinier in his
HEA method.

– Constructive methods such as XRLF or DSATUR are very recommended as
candidates to generate initial colorings in iterative search methods, especially
DSATUR. In fact, they enable the search process to begin from good and
fast constructed colorings. Experiments on several methods show that using
DSATUR to generate initial solutions can improve the search process in time
and quality.

– Every search process is an alternate between diversification and intensification.
This differs according to the considered problem and even to the treated
instance. For this, we consider that, the architecture proposed in [1] is a good
illustration of this alternate. Thus an iterative search process involves three
agents that interact using a memory to store the history of the search process.



J Math Model Algor (2008) 7:125–142 131

         Adaptive Memory

Agent

    Search Agent

Global
Frequency
Marix

Best 

Diversification

Solutions 
from unexplored
Regions

Initial 
Solutions Good

Solutions

Promising 
Solutions

Frequency
Local

Matrix

SolutionPopulation

Intensification AgentDSATUR

Landscape Analysis

Fig. 1 A cooperative search method for the graph coloring problem

Consequently, we will focus our study on the elaboration of a cooperative search
method based (CSM for short) operating on a multi-agents structure for the reso-
lution of the k-coloring problem. It is composed of three agents: the intensification
agent, the search agent and the diversification agent. To implement the agents, we
have adapted existing methods that have proved their efficiency in previous studies
on many hard instances of the graph coloring problem.

The chosen cooperative multi-agents architecture, called CO-SEARCH, is pro-
posed originally by Bachelet and Talbi [1] for the quadratic assignment problem.
Weinberg [19] re-used this model to solve the frequency assignment problem mod-
elled as a set T-coloring problem.

The three agents interact using an adaptive memory as it is illustrated by Fig. 1.
Since in a search technique, our purpose is to navigate efficiently across the different
types of relief to reach the lowest point, we claim that it is essential to know which
structure we will navigate, otherwise, the search will be done blindly. So, before fixing
our navigation strategy, we perform a preliminary analysis of the k-coloring fitness
landscape. This is precisely the goal of the next section.

5 A Preliminary Fitness Landscape Analysis

The fitness landscape is basically defined by three parameters:

1. The representative space corresponding to the set of points that our cooperative
search method (CSM) tries to visit. These points correspond to the space of
k-colorings, given k the number of colors and a graph G. To avoid the solution
symmetry in the search, we consider one solution as the set of colorings generat-
ing the same partition of vertices.

2. The neighboring operator that allows the move from a point to another one.
In our investigation of the graph coloring landscape, we use the neighborhood
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operator that changes a color of a node with another one. Thus, at each move a
node is removed from a class color to be assigned to another one.

3. The fitness function which assigns a value to each point of the search space [16].
The goal of the search process, in our study, is to obtain a proper coloring, given
a graph G and k colors to be assigned to each node. Thus the fitness function is
given by the formula (1). The value of the fitness at each point corresponds to its
altitude in the landscape.

Many attempts have already been performed to analyse the search space of the
graph coloring problem such as the work of Hertz et al. [14]. In our analysis, we use
some statistical tools to provide an idea as clear as possible of the structure of the
k-coloring landscape.

5.1 Experimental Setup

Three families of graphs were chosen for our computational testing: Leighton
graphs, flat graphs and random graphs. The instances are extracted from the second
DIMACS benchmark challenge.

Columns 1 to 5, in Table 1, show for each studied graph, respectively, its name,
the number of vertices, the number of edges, its chromatic number (or its best known
lower bound when the chromatic number is unknown) [5] and the best coloring found
in the literature.

Table 1 The experimental protocol

Instances Nodes Edges χ values Best k

DSJC125-1 125 1,472 ≤ 5 5
DSJC125-5 125 7,782 ≤ 10 17
DSJC250-9 125 13,922 ≤ 30 44
DSJC250-1 250 64,336 ≤ 8 8
DSJC250-5 250 31,336 ≤ 11 28
DSJC250-9 250 55,794 ≤ 35 72
DSJC500-1 500 24,916 ≤ 12 6
DSJC500-5 500 125,248 ≤ 16 49
DSJC500-9 500 224,874 ≤ 42 127
flat300-28-0 300 21,695 28 31
le450-5a 450 5,714 5 5
le450-5b 450 5,734 5 5
le450-5c 450 9,803 5 5
le450-5d 450 9,757 5 5
le450-15a 450 8,168 15 15
le450-15b 450 8,169 15 15
le450-15c 450 16,680 15 15
le450-15d 450 16,750 15 15
le450-25a 450 8,260 25 25
le450-25b 450 8,263 25 25
le450-25c 450 17,343 25 25
le450-25d 450 17,425 25 25
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For each graph G of Table 1, we define an instance by the pair (G, k), where
k corresponds to column 5 of the table (the number of colors used to solve the k-
coloring problem). We start experiments by the generation of an initial population of
random solutions for each instance . Then we apply a rapid descent method on each
individual to get a local population. Experiments are performed on 100 solutions
generated randomly and on the 100 corresponding local solutions. At each step, we
choose the best solution among neighboring ones.

Furthermore, we perform a correlation structure study to analyze the trajectories
on the fitness landscapes associated to different instances. This analysis starts by the
generation of a random point (a random k-coloring of the graph). The walk is then
performed by the application of the neighborhood operator at each step. During this
process, the fitness of the resulting points are computed and recorded.

5.2 Fitness Diversity

The fitness of a solution (a k-coloring) corresponds to its altitude in the landscape.
Then we can study the “relief” of the fitness landscape by measuring the fitness
diversity. The coefficient of variation cv is often used in statistic to compare the
variability of populations in term of dispersions.

The sample coefficient of variation is the sample standard deviation (sf ) divided by
the sample mean ( f̄ ), where n is the sample (population) size:

cv = s f

f̄
,

with s f =
√∑n

i=1( fi− f̄ )2

n−1 and f̄ =
∑n

i=1 fi

n . In these formula, fi corresponds to the fitness
of the k-coloring ci. In the context of the fitness landscape, the coefficient of variation
should compare the dispersion of “fitnesses” relatives to different instances. For a
given instance (which corresponds to a given landscape), more the cv is near zero,
less the fitnesses are dispersed.

In Fig. 2, we illustrate the coefficient of variation of local solutions relative to
the instances of Table 1. We can see that almost all coefficients of variation are

Fig. 2 Coefficient of variation
c.v. of different instances
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Fig. 3 The trajectory of the
multi-starting tabu search
algorithm in coloring le450-15c
graph with 16 colors
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near zero. This shows that for all the tested instances, the fitness are gathered near
their mean. This should be interpreted by the fact that locally, optimal solutions
(not necessarily proper ones) have the same fitness. We can conclude then that the
landscape structure of the graph coloring problem can be seen as a set of plateaux.

This kind of landscape confirms the importance of re-starting from different points
when dealing with coloring problems. Thus, it is essential to our method to contain a
diversification tool to escape to other more promising regions in the landscape.

Indeed, many authors such as in [10], noticed that the objective function decreases
dramatically in the early stages of the search and the search procedure generally uses
most of its time trying to eliminate the last conflicting nodes.

Figure 3 shows that when coloring the le450-15c graph for example, the search
drops rapidly and stagnates. It requires four restarting points to reach the region
where an optimal solution is detected. It is clear that if we omit the re-starting
procedure, the search will stagnate for long time in the same region.

Fig. 4 The mean of distances
variation for random and
Leighton graphs
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5.3 Coloring Diversity

A solution differs from another one by its partitioning of nodes into color classes.
Thus, to measure the diversity of solutions (colorings) in the landscape, we use the
mean of distances d̄ between all possible pairs of colorings d(ci, cj) in the landscape.
Given n the number of individuals in a population P, d̄ is given by:

d̄ = 2

n(n − 1)

∑

i=1

∑

j<i

d
(
ci, cj

)
.

Where the distance d between colorings c1 and c2 is the minimal number of node
moves between color classes needed to obtain c2 from c1.

Results reveal, as Fig. 4 shows, that the mean of distances remains basically the
same for Leighton graphs and changes with instances for random graphs. This can be
interpreted by the fact that for Leighton graphs (which are structured) same sets of
nodes seem to be always together (frozen same sets) and distances between solutions
remain the same.

Hamiez and Hao [11] and Culberson [4] showed the existence of a particular set
of vertices, that are always in the same color class, when solutions are generated.
This set is called the frozen same set. Culberson [4] mentioned that frozen same sets
can be detected rapidly by greedy algorithms. This insights us to use random initial
solutions when dealing with random graphs and to use greedy methods when we want
to generate initial colorings for Leighton graphs.

To confirm these assumptions, we compare the behavior of the search by the use
of the DSATUR method as initial solution generating method and its behavior when
using a random initial population. We perform the tests on a Leighton graph (le450-
5c) and two random graphs (DSJC125-5 and DSJC125-9).

Figure 5 clearly shows that the use of the DSATUR as initial population genera-
tion method improves the results of the search agent. However, for random graphs in
Fig. 6, we obtain similar results when using DSATUR or generating randomly initial
solutions.

Fig. 5 The comparison of the
algorithm trajectory when
using the DSATUR or random
generation of initial solutions
for the le450-5c graph
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Fig. 6 The comparison of the
algorithm trajectory when
using the DSATUR or random
generation of initial solutions
for random graphs DSJC125-5
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In this sense, many authors, as in [10], noticed that the use of a greedy method to
generate initial solutions can be avoided since, in many cases, random initial solutions
lead to similar results in time and qualities. But they do not explain this behavior; nor
for which graphs it is true. They just concluded it by experiments.

5.4 Search Walk Length

Hordijk [13] defines the correlation length as the largest time lag i for which the
correlation between two points i steps apart is still statistically significant. That is the
quicker the correlogram drops to zero, the less the correlation length is. Table 2
shows the correlation length for some k-coloring instances. More the correlation
length is high, the flatter the landscape is. This means that it needs longer search
walk to be explored.

Table 2 Correlation length
of some instances Graph Correlation length

le450-5c 130
le450-15c 214
le450-25a 838
le450-25b 396
le450-25c 249
flat300-28-0 202
DSJC125-1 65
DSJC125-5 151
DSJC125-9 370
DSJC250-5 678
DSJC250-9 150
DSJC500-1 452
DSJC500-5 847
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6 The Implementation of the Cooperative Search Method

Now that the general structure of the k-coloring landscape is defined, we can derive
how the method defined in Fig. 1 has to work.

6.1 The Global Navigation Strategy

The steps followed by our cooperative search method are illustrated by the
Algorithm 1. If the graph is structured, we begin by a modified version of DSATUR.
The version is modified to provide a complete coloring even if it isn’t proper.
However, if the graph is random, the initial population of solutions is generated
randomly.

Algorithm 1 The cooperative search method

Input: A graph G=(N,E), k the number of colors.
popi ←− constructed either randomly or by DSATUR
S∗ ←− the best individual in popi

while the stopping criterion is not satisfied do
if Stagnation then

popi ←− Diversification(popv)
end if
popv ←− Search(popi)
if d̄(popv) is high then

Intensification(popv)
end if
SV ←− the best individual in popv

if fitness (SV) ≤ fitness (S∗) then
S∗ ←− SV

end if
popi ←− popv

end while
Return(S∗)

When the search agent leads to the same quality population for a given number of
iterations (we reach a stagnation phase), we have to restart the navigation process in
an other region, this is precisely the diversification agent mission.

At each iteration, a local population is provided by the use of the search agent.
If the members of the population are well diversified (d̄ is high), we recombine the
qualities of the current population to improve the search agent work. This constitutes
the intensification agent mission.

Once the global search strategy is defined, we can specify in detail the role of each
component of our cooperative search method presented in Fig. 1.
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6.2 The Adaptive Memory

The adaptive memory plays an important role in coordinating the different agents
of the model. It stores information that the method requires to navigate efficiently
in the landscape. This memory contains the following information.

– The constraint matrix which is consulted to see whether two nodes are connected
by an edge.

– The frequency matrix F which preserves the most frequently visited regions.
Each cell F(i, j ) contains the number of times the node i and the node j are
assigned to the same color class. When the search process starts, all the cells of
the frequency matrix are initialized to zero. Then, each time a node i is assigned
to a color class c, every cell F(i, j ) is incremented by one if j have also the color
c. A such implementation of the frequency matrix can avoid symmetrical regions
that represent same partitions of nodes.

– The mean of distances of the current population is computed dynamically to
measure its diversity. Also, the fitnesses are stored in successive iterations to
detect stagnation phases.

6.3 The Search Agent

We choose to use the tabu search technique as search agent. This choice is motivated
by two factors. The first one, is that this technique uses an efficient local diversifi-
cation tool, the tabu list, that enables the search to be guided in a rugged structure.
The second factor, is that the method is simple to be implemented and shows good
performance when tested in several works [8–10, 12].

The neighborhood operator consists of moving a node from a color class to
another one without checking if the node is in conflict or not. For the implementation
of the tabu list, we use a matrix of N × k, where N is the number of nodes in the graph
and k the number of color classes. When the search procedure starts, all the cells of
the matrix are initialized to zero. Each time a node i is colored with the color j in the
tabu search, the cell (i, j ) in the matrix is incremented by one. When the value of the
cell (i, j ) reaches the size of the tabu list, it is set to zero.

The search agent explores the local region for a maximal number of iterations
corresponding to the walk length L, which depends on the correlation length of the
corresponding instance (as it was mentioned in Section 5.4). By experimentation, we
fix L as:

L � correlationlength × 100.

The aspiration criterion in our implementation is simple, it consists on suspending
the tabu status of a move if it leads to a coloring better than the best one encountred
during the search process.

6.4 The Diversification Agent

In the preliminary landscape study, we have concluded that the common point
between k-coloring landscapes is that they are composed of rugged plateaux.
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For this reason, we need a tool to leave current plateau, each time we find that the
search is stagnated without improving the results.

The role of the diversification agent is to lead the search to reach unexplored
plateaux. The problem here is that the good qualities found till now, will be lost if
we choose to restart the search process randomly, thus, we say that the aim of the
diversification agent, is to diversify not to randomize. Consequently, we choose to
preserve the maximal sized color classes, in the best solutions.

To complete the construction of the new starting solutions, the agent consults
the frequency matrix F. Each uncolored node i (not affected to the maintained
partitions) is assigned to the same partition as the node j such that F(i, j ) is minimal,
where j �= i.

6.5 The Intensification Agent

This agent is implicated to improve local solutions found by the search agent. If the
region is promised (high mean distance with near optimal solution), we intensify the
search process by the use of a genetic procedure. We use a standard genetic schema.

At each generation, the genetic algorithm uses a probabilistic selection to choose
the two parents. The GPX crossover operator is used to provide a child which will
replace the worst individual in the population. The goal is to preserve good qualities
in parent solutions. The evolutionary process operates on fixed sized population and
stops when a “homogenous” population is reached.

7 Experiments and Result Analysis

In this section, we report the results provided by our cooperative search method
(CSM) on some of the instances already studied in Section 5.

Results are gathered in Table 3. For a given instance, column 1 to 4, correspond,
respectively to the name of the graph, the chromatic number (the lower bound, if
the chromatic number is unknown), the number of used colors k, the number of
iterations of the CSM algorithm (see Algorithm 1).

Because of the random feature of our cooperative search method, we ran it for
five times for each k-coloring instance and we report, in column 5 of the table, the
fitness of the best coloring. We note that the number of iterations that requires our
method is small, despite the combinatorial feature of the problem.

The comparison of our results with the best ones is reported in Table 4. For a given
graph, column 1 to 4, correspond, respectively to the name of the graph, the lower
number of colors used in the literature, the number of the colors provided by HEA
[8] and the number of colors provided by our method CSM.

The reported results show clearly that our method provides colorings that are
competitive with the best existing methods. In fact, for example, Galinier needed
490,000 iterations to color DSJC250-5 with 28 colors. However, CSM needed 1,000
iterations to color the same graph with 29 colors at a cost of only two conflicting
edges. In the case of Leighton graphs, CSM colored the graph le450-25c with 26
colors after only 40 iterations and HEA needed 800,000 iterations to color the same
graph with the same number of colors. We compare our results with those of Galinier,



140 J Math Model Algor (2008) 7:125–142

Table 3 Results of the
cooperative search method Graph χ values k values #iter Best f

le450-5c 5 5 100 0
le450-15c 15 15 100 76

16 68 0
le450-25a 25 25 6 0
le450-25b 25 25 12 0
le450-25c 25 25 1,000 2

26 40 0
flat300-28-0 28 31 1,000 11

32 20 0
DSJC125-1 5 5 160 0
DSJC125-5 12 16 50 9

17 100 0
DSJC125-9 30 42 200 2

43 100 1
44 2 0

DSJC250-5 13 29 1,000 2
30 50 0

DSJC250-9 35 71 1,000 2
72 100 0

DSJC500-1 6 12 100 25
13 75 3
14 2 0

DSJC500-5 16 49 100 25
50 100 6
51 5 0

because he developed the most recently efficient method. Also, his method is a
hybrid local search. The reported results show clearly our method provides colorings
that are competitive with the best existing methods.

Furthermore, we see that they are very close to outperform best colorings on some
instances.

Table 4 Comparison of the
results of the cooperative
search method with the best
known ones

Graph Best k HEA CSM

le450-5c 5 5 5
le450-15c 15 15 16
le450-25a 25 – 25
le450-25b 25 – 25
le450-25c 25 26 26
flat300-28-0 31 31 32
DSJC125-1 5 – 5
DSJC125-5 17 – 17
DSJC125-9 44 – 44
DSJC250-5 28 – 30
DSJC250-9 72 – 72
DSJC500-1 12 – 14
DSJC500-5 48 49 51
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8 Conclusion

In this paper, we have developed a new cooperative search method to solve the k-
coloring problem. It is based on the cooperation between three agents: the search
agent, the intensification agent and the diversification agent. Results on several
instances extracted from the second DIMACS challenge, are competitive with the
best known ones and are obtained in lower time. This effectiveness can be explained
by three factors.

1. The cooperative structure, since to find a solution in a search space, we need to
alternate our search strategy between looking for good regions, intensifying the
search if the region is promising and diversifying the search if we are blocked in
the same region. In addition, CSM operates on a population of k-colorings.

2. Avoiding solution symmetry either in the study of the fitness landscape and in
the implementation of diversification structures, namely the frequency matrix
and the tabu tenure.

3. The preliminary fitness landscape study helped us in determining the global
navigation strategy, in the generation of initial solutions and in fixing the search
length.

As perspectives, the robustness and the effectiveness of our approach motivate the
use of similar approaches to deal with other combinatorial optimization problems.
The agents will be chosen according to specified problem and the navigation strategy
has to be adapted to the corresponding fitness landscape structure. Another promis-
ing search axis in this field is to implement the cooperative multi agents structure on
a distributed system.
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