
J Math Model Algor (2008) 7:143–159
DOI 10.1007/s10852-008-9078-9

Scatter Search for the 0–1 Multidimensional
Knapsack Problem

Said Hanafi · Christophe Wilbaut

Received: 1 March 2007 / Accepted: 21 December 2007 /
Published online: 27 February 2008
© Springer Science + Business Media B.V. 2008

Abstract The evolutionary metaheuristic called scatter search has been applied suc-
cessfully to optimization problems for several years. In this paper, we apply the
scatter search technique to the well-known 0–1 multidimensional knapsack problem.
We propose a new relaxation-based diversification generator, which produces an
initial population with elite solutions. The computational results obtained for a set
of classic and correlated instances clearly show that (1) this generator can also be
used as a heuristic for solving the multidimensional knapsack problem; (2) using the
population produced by our generator as a starting point for the scatter search algo-
rithm leads to better performance. We also enhance the scatter search algorithm by
integrating memory and by using adapted intensification phases. Overall, the results
are interesting and competitive compared to other population-based algorithms, such
as genetic algorithms.
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1 Introduction

Scatter search (SC), which combines decision rules and problem constraints, has
its origins in surrogate constraint strategies. Scatter search is a population-based
metaheuristic that uses a reference set to keep the best solutions visited during the
search. The notion of best solutions is not limited to the objective value, but also
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takes solution diversity into account. In general, SC has the advantage of producing
a set of elite solutions from which the decision-maker can choose.

The original form of scatter search was proposed at the end of the 1970s [10],
though several efficient applications have been proposed more recently. For instance,
Gomes da Silva et al. [17] applied scatter search to the bi-criteria multidimensional
knapsack problem. Marti et al. [24] used it to solve the problem of assigning teaching
assistants to invigilate final exams at the University of Barcelona in Spain. They
formulated the problem as an integer program with a weighted objective function
combining the two objectives of the problem: maximizing the teaching assistant
preferences and minimizing their utilization. Laguna and Marti [21] have proposed
many useful implementations for SC, as well as many interesting illustrations.

Glover [14] proposed a template defining and implementing five main components
of scatter search and its generalization, path relinking. Our scatter search algorithm
is constructed according to these five components: (1) A diversification generation
method designed to produce a solution set that provides a reasonable representation
of the problem’s search space; (2) an improvement method intended to create better
feasible and infeasible solutions; (3) a reference set update method designed to create
and update the reference set; (4) a subset generation method intended to produce
subsets of the solutions in the reference set, which are then combined to create
new solutions; (5) a structured combination method designed to create new solutions
from the previous solution subsets.

The 0–1 multidimensional knapsack problem (MKP) is a well-known optimization
problem, which can be formulated as follows:

(MKP)

⎡
⎢⎢⎢⎢⎣

max
n∑

j=1
pjx j

subject to:
n∑

j=1
aijx j ≤ ci ∀i ∈ M = {1, . . . , m}

x j ∈ {0, 1} ∀ j ∈ N = {1, . . . , n}
where N = {1, . . . , n} is the set of items, M = {1, . . . , m} is the set of knapsack con-
straints, and all the data are non negative (i.e., pj ≥ 0, aij ≥ 0, ci ≥ 0, ∀i ∈ {1, . . . , m},
∀ j ∈ {1, . . . , n}). In this formulation, pj is the profit associated with item j ∈ N,
whereas ci is the capacity of knapsack i ∈ M, and aij is the consumption of resource
i ∈ M when item j is selected. Without loss of generality, we assume that

max{aij : j ∈ N} ≤ ci ≤
∑
j∈N

aij ∀i ∈ M.

The objective of the problem is to select a subset of items to maximize the profit
with respect to the knapsack constraints. In this paper, we also use the following
shortcut notation:

(MKP) max{pT x : Ax ≤ c; x ∈ {0, 1}n}.
Originally used as a capital budgeting model, the MKP is a general resource alloca-
tion model [23]. Applications range from cutting stocks [9] to the more recent daily
scheduling of satellite photographs [26]. Numerous heuristics and metaheuristics
have been applied to the MKP. Many of the most efficient methods for solving the
MKP have been presented and reviewed by Fréville [5] and Fréville and Hanafi [6].
To our knowledge, this is the first time that SC has been applied to the MKP. In our
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opinion, the comparison of the scatter search algorithm performance on this well-
known problem with the performance of other population-based algorithms provides
food for thought.

Our scatter search algorithm is based on the five components described above
to which we have added several specific ingredients for solving the MKP: (1) We
propose a new relaxation-based generator for producing an initial population of
elite solutions. As our computational results show, this generator improves the per-
formance of the scatter search algorithm. In addition, our generator can be used on its
own as a heuristic for solving the MKP; (2) we employ a common tool for knapsack
problem resolution: local search methods based on the efficiency of the variables;
(3) in our proposition, infeasible solutions are allowed to be part of the reference set;
(4) we implement a dynamic management of the reference set to avoid generating the
subsets more than once; (5) we propose enhancing the scatter search by introducing
memory and defining complementary intensification phases.

The remainder of the paper is organised as follows. Section 2 first describes several
existing diversification generators and then our new relaxation-based generator, and
present a comparison of the results of these generators. Section 3 presents the other
algorithm components, including the method for managing the reference set, while
Section 4 explains our proposed integration of additional components to enhance the
search. Section 5 reports the computational results obtained with our method on a
set of classic and correlated MKP instances, and Section 6 offers our conclusions and
provides some useful suggestions for future research.

2 Diversification Generators

The notion of diversity is important in heuristic search in general, and in scatter
search in particular, making the design of a suitable diversification generator par-
ticularly important for striking the correct balance between diversification and inten-
sification during the search. In other words, it is necessary to visit and retain both
diverse and elite solutions during the search. The first component in scatter search is
the method for generating an initial population of diverse solutions. This component
plays a key role since it is also applied every time the reference set converges to
restart the search. In this section, we present four diversification generators.

2.1 Random Generator

The first generator is a simple scheme that randomly chooses a subset of variables
to set at value 1 for every solution generated. Though the solutions obtained can
be feasible or infeasible, the advantages of this kind of generator are its simplicity
and the few parameters required. The generator’s main drawback is that it does not
ensure a high level of quality or diversity in the population generated.

2.2 Sequential Generator

The second generator, called the “sequential generator” in this paper, was proposed
by Glover [14]. This generator produces a set of solutions based on a seed solution
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x, the number of problem variables n, and a parameter denoted h∗. Two solutions x
′

and x
′′

are generated at each step according to the following rules:

x
′
1 = 1 − x1, x

′
1+ jh = 1 − x1+ jh, for j = 1, 2, . . . , j∗ = �n/h	 ,

where �α	 denotes the greatest integer less than α and h denotes the current iteration.
The other components in x

′
are the same as those in x. Solution x

′′
is then the com-

plement of x
′
[i.e., x

′′ = e − x
′
, where e = (11 . . . 1)].

Glover [14] provided an approximation of the total number of solutions generated
by the sequential generator: h∗ × (h∗ + 1). He also proposed adding a condition to
avoid duplicate solutions. However, this condition is not sufficient to avoid the dupli-
cation, as we show in the following expressions.

Let q = �n/2	, then n = 2q if n is even, or n = 2q + 1 if n is odd. The number of
distinct solutions generated by the sequential generator (denoted Dn,h∗ when h∗ and
n are fixed) is then determined by the following expressions:

Dn,1 = 1; Dn,2 = 3

Dn,h∗ = h∗(h∗ + 1) − 3 for h∗ = 3, . . . , q + 1

Dn,h∗ = (q + 1)(q + 2) − 3 + (n − q)(n − q + 1) − (n − h∗ + 1)(n − h∗ + 2)

for h∗ = q + 2, . . . , n

The number of duplicate solutions (denoted Rn,h∗ ) is determined by the following
expressions:

Rn,h∗ = 0 for h∗ = 1, 2, . . . , q + 1

Rn,h∗ = 2 × (h∗ − q)(h∗ − q − 1) if n is even and h∗ = q + 2, . . . , n

Rn,h∗ = 2 × ((h∗ − q)(h∗ − q − 2) + 1) if n is odd and h∗ = q + 2, . . . , n

It is also possible to modify the sequential generator to generate only distinct solu-
tions. This is a consequence of the experimental observation that duplicate solutions
are generated in groups when running the algorithm.

As the previous expressions show, the number of solutions generated increases
very quickly with n and h∗. When n ≤ 25, a large value of h∗ is necessary to generate
more solutions. On the contrary, a small value of h∗ (less than n/2) seems to be
enough to generate more solutions when n increases. This combination also ensures
that duplicate solutions will not be generated. Although the sequential generator is
a fast algorithm, it does not ensure the quality of the population generated.

2.3 Dichotomous Generator

Glover [14] also proposed another generator, called the “dichotomous generator”.
This generator partitions the variable set N into two subsets. Two solutions are then
produced by taking the complement of a seed solution over both subsets. This process
is repeated—partitioning of each of the subsets into another two subsets, generating
two solutions, and so on—until all the subsets contain only one variable. This genera-
tor constructs approximately 2 × (1 + log n) solutions. Like the sequential generator,
the dichotomous generator produces an initial population rapidly, but although it
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better controls the diversity of the generated population, it only produces a small
number of solutions and has no control over the solution quality.

2.4 Relaxation-based Generator

Our proposed generator, called the “relaxation-based generator” in this paper, gen-
erates an initial population that produces interesting solutions in terms of objective
value. As we show in the computational experiments, it enables the scatter search
algorithm to visit elite solutions more quickly. To describe this generator, we first
need to introduce the notion of reduced problems. Such problems are defined from
a feasible problem solution y and a variables subset J, and can be expressed as:

(MKP(y,J)) max
{

pT x : Ax ≤ c; x j = y j ∀ j ∈ J, x ∈ {0, 1}n
}

(1)

Our relaxation-based generator (see Algorithm 1) seeks to determine a feasible solu-
tion for every problem variable (loop for in line 2). To do this, it associates the
reduced problem MKP(e − y, { j}) with the variable x j. A feasible solution of the
MKP is generated from the problem MKP(e − y, { j}) by applying the following
procedure (lines 3–5).

– Step1: solve the LP-relaxation of the problem MKP(e − y, { j}) and retain an
optimal solution x̄ (note that it is possible to use another relaxation).

– Step2: construct the reduced problem obtained from the MKP and from x̄ by
fixing all the variables with the value 0 or 1 in x̄.

– Step3: solve exactly the reduced problem obtained in Step2.

An optimal solution of the reduced problem is then added in the population P and
the process is repeated. To define solution y in (1), the above procedure is applied
to the original problem (when j = 0 in line 2) in order to obtain an initial feasible
solution for the MKP. This solution is then used to construct the reduced problem
associated with every problem variable (when j > 0 in line 2).

Algorithm 1 The relaxation-based generator
Require: The MKP instance
Ensure: a solution set P

1: y = 0; J = 
; P = 
;
2: for j = 0 to n do
3: Let x̄ be an optimal solution of the LP-relaxation of MKP(e − y, J);
4: I = { j ∈ N : x̄ j ∈ {0, 1}};
5: Let x be an optimal solution of MKP(x̄, I);
6: if x /∈ P then
7: P = P ∪ {x};
8: end if
9: if j = 0 then

10: y = x;
11: end if
12: J = { j + 1};
13: end for
14: return P
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Obviously, since this generator requires the solving of several reduced problems,
its temporal complexity will increase compared to the previous generators. However,
with the linear programming relaxation, the reduced problems have at most m
variables, which is generally small for the MKP compared to n. To give an idea of the
practical complexity of the reduced problems solved in Algorithm 1, on average, the
first reduced problem generated from x̄ can be solved exactly in less than 3 seconds
for the largest instances described in Section 5 (with n = 500 and m = 30) with a
branch-and-bound method. It is however worth noting that these instances would
require several hours to be solved exactly using a branch-and-bound method [6].

The Algorithm 1 can be repeated while the best generated solution is improved
since the reduced problems in lines 3–4 depend on the initial solution. It is also
possible to apply the following classic reduction property.

Proposition 1 For every j ∈ N and every feasible solution y of the MKP, if
v(MKP(e − y, { j})) ≤ pT y, then either x j = y j in any optimal solution of the MKP,
or y is an optimal solution of the MKP, where v(P) is the optimal value of problem P.

Proof It is trivial to note that the reduced problem MKP(e − y, { j}) corresponds to
the initial problem in which only variable x j is set to the value 1 − y j. If the optimal
value of this problem is less than the value of y, it is not possible to obtain a better
value than cT y by setting x j = y j. �

Proposition 1 remains valid if we replace v(MKP(e − y, { j})) by an upper bound
of the problem MKP(e − y, { j}). In our experiments we used the linear programming
relaxation of these problems.

2.5 Evaluation

Preliminary results showed us that the relaxation-based generator produces elite
populations in terms of quality. Thus this generator is used to generate an initial
population of the algorithm.

When applying the scatter search algorithm, it happens that the reference set
converges (when there is no new solution to add). At this moment it is necessary
to apply a diversification generator to restart the search. In this section we compare
the generators described above (i.e. the random, the sequential and the dichotomous
generator) according to their performance. The aim is to apply the most efficient
generator among the 3 candidates. We evaluate the performance of a generator
according to two criteria : the quality and the diversity of the population generated.

We have first to explain how we evaluate the diversity of a population. To measure
the diversity between two solutions x and y, we use the Hamming distance d(x, y):

d(x, y) =
∑
j∈N

∣∣x j − y j
∣∣ .

Then the value

d(x, P) = Min{d(x, y) : y ∈ P}
is used to measure the distance between solution x and population P.
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Table 1 Evaluation of the
diversification generators δd δp δp + δd

Random 0.37 0.49 0.86
Seq. 0.05 0.63 0.68
Dicho. 0.90 0.37 1.27

Let � = {P1, P2, . . . , Pk} be a set of populations. To evaluate the diversity of
population Pi among �, we calculate the following value δd(Pi):

δd(Pi) = d(Pi) − dmin

dmax − dmin
,

where d(Pi) = ∑
x∈Pi

d(x, Pi), dmin = min j=1,...,k{d(Pj)}, and dmax = max j=1,...,k{d(Pj)}.
In the same way we can evaluate the quality of population Pi among � by calcu-

lating the following value δp(Pi):

δp(Pi) = p(Pi) − pmin

pmax − pmin
,

where p(Pi) = ∑
x∈Pi

pT x, pmin = min j=1,...,k{p(Pj)}, and pmax = max j=1,...,k{p(Pj)}.
Campos et al. [3] used a similar method to evaluate the performance of a generator

for the linear ordering problem.
We evaluated the generators on a set of 55 small MKP instances [1], with several

seed solutions for the sequential and the dichotomous generators, and several runs
for the random generator. Then we calculated the previous values δd, δp and the
value δp + δd obtained for each generator on the 55 instances. We give in Table 1
the average values obtained respectively by the random generator, the sequential
generator and the dichotomous generator.

Table 1 shows that the dichotomous generator obtained, on average, the best
population in terms of diversity, which can be explained by the fact that every
generated solution maximizes the minimum Hamming distance between all the
other generated solutions in the population (see Glover [14]). If both criteria are
considered, then this generator obtains much better results than the sequential and
random generators. For these reasons, we decided to use the dichotomous generator
to restart the search when the reference set converges.

3 Other Components of the Scatter Search Algorithm

3.1 Improving the Solutions

After the diversity generation method, the next component is the improvement
method. As the improvement phase is called regularly while the scatter search
algorithm is running, we chose to use a simple local search method based on the
heuristic k-opt. In this method, k objects are retrieved from the solution and then,
if possible, one or more other objects are added. This k-opt heuristic, with k = 1,
was applied to the feasible solutions during our experimentation. When a solution
was infeasible, a simple greedy heuristic was applied to transform it into a feasible
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solution, or at least into a solution near the feasible domain, given the use of
infeasible solutions explained below. The greedy heuristic is based on the efficiency
E j of variable x j, which is defined as:

E j = pj∑
i∈M

μiaij
(2)

where μ is a multiplier of dimension m. In practice, μi is the shadow price of the ith
constraint in the linear programming relaxation of the problem. A list of E j values
is maintained in increasing order. In the greedy algorithm, variables are eliminated
starting from the top of the list. The same principle is applied in the local search
algorithm, but the items are inserted into the current solution starting from the
bottom of the list.

3.2 Updating the Reference Set

The third component is the reference set update method, which creates and main-
tains the reference set during the search. We propose using three types of solu-
tions: (1) elite solutions, chosen according to their objective value only; (2) diverse
solutions, chosen according to their diversity; and (3) infeasible solutions, chosen
according to their distance from the feasible domain. Infeasible solutions are intro-
duced in the reference set because visiting this kind of solutions has proved to
be useful for solving the MKP, in particular algorithms (see for example, Glover
and Kochenberger [15], Hanafi and Fréville [18], Li and Curry [22]). The results
presented in Section 5 show that using infeasible solutions can also be effective in
a scatter search context.

The diversity of the reference set is based on the Hamming distance (see
Section 2.5). Then, the diversity d(P) of the population P is defined as:

d(P) = Max{Min{d(x, y) : y ∈ P} : x ∈ P}
This max–min measure has already been used with success by Marti et al. [24]. A
solution is inserted into P if it increases the diversity of P, or in other words, if
the value d(P) is increased or if the minimum distance between the candidate and
the other solutions in the reference set is larger than the current minimum distance
between two solutions in the reference set.

3.3 Generating the Subsets

The fourth SC component is the subset generation method. The solution combina-
tion methods in scatter search are not limited to combining just two solutions and
therefore the subset generation method in its more general form consists of creating
subsets of different sizes. As proposed by Glover [14], 4 types of solution subsets are
used in our method, each containing 2, 3, 4 and k solutions respectively (k = 5 up to
the size of the reference set).

Since the total number of subsets associated with the reference set increases
very quickly with the number of solutions in the reference set, it is typically rec-
ommended to only create a part of the subsets as follows: all the subsets of type 1
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(with 2 elements) are generated. Then the subsets of type 2 are derived from the
previous subsets by augmenting each 2-element subset to include the best solution
not in this subset. The same principle is applied for generating the subsets of type 3.
Finally subsets of type 4 consist of the best k elements, for k = 5 to the size of the
reference set.

The fact that the combination methods (see the next section) used are not based
on random ensures that the combined solution(s) obtained for a given subset does
not change if the combination method is applied more than once. Therefore, once
a given subset is created, there is no merit in creating it again. It is why we chose a
dynamic method to avoid this situation. The dynamic management is realized using
two vectors. The first maintains the last iteration in which a position in the reference
set was changed (Iter), and the second maintains the last iteration in which a subset
type was generated (Subset). It is easy to determine whether or not a solution
associated with an index j in the reference set (1 ≤ j ≤ number of solutions in the
reference set) has to be considered for a given type of subset i (1 ≤ i ≤ 4) by checking
whether Subset[i] ≤ Iter[ j]. If this condition is satisfied, then the solution stored in
location j has been modified since the last time the subsets of type i were generated.

3.4 Combining the Solutions

The fifth component of the scatter search algorithm is the solution combination
method. Our algorithm uses two combination methods depending on the size of the
solution subsets. The first combination method is based on a score in the range [0; 1]
associated with every variable of the problem for a given solution subset S. When the
score of variable x j is greater than 0.5, then x j = 1 in the new solution. Laguna and
Marti [21] have defined a score s j of variable x j for the knapsack problem as follows:

s j =
∑
x∈S

pT x × x j

∑
x∈S

pT x
(3)

We propose a new score s j obtained from formula (3) by integrating the objective
coefficient pj to accentuate the impact of variable x j on the solutions in the subset S
as follows:

s j =
∑
x∈S

(pT x × x j + (1 − 2x j)pj)

∑
x∈S

pT x

It is obvious that the score-based combination can produce one of the initial
solutions, particularly for type 1 subsets with only two solutions. We thus decided
to apply this method to type 2, 3 and 4 subsets.

For type 1 subsets, we implemented an algorithm based on star paths [13].
Glover et al. [16] showed that the combination of star paths with scatter search
allows generating a set of diverse solutions for the 0–1 mixed integer programming
problems. A star path is defined as a sequence of integer solutions between an initial
solution x1 and a final solution x2.

A set of solutions is generated on the path according to a sequence of directional
roundings. A directional rounding is defined relative to a base point (not necessarily
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an integer), x0, and an initial point (x1 in our case). The directional rounding asso-
ciated with x0 and x1 generates the solution y such that, for all j ∈ N:

y j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 if x1
j > x0

j

0 if x1
j < x0

j

x0
j if x1

j = x0
j and x0

j ∈ {0, 1}
r(x0

j) otherwise

where r(x0
j) refers to simple rounding.

A star path is defined as a set of vectors associated with a line between x1 and the
final solution x2 obtained from a sequence of directional roundings using x0 as a base
point (for more details, the reader is referred to Glover et al. [16]).

In our experiments, we used an optimal solution of the linear programming relaxa-
tion as base point and the two solutions of the subset as initial solution and final
solution. We implemented a simple version of the star-path method because, given
that type 1 subsets are more numerous than other subsets, we needed a quick algo-
rithm to avoid slowing down the SC algorithm. In practice, we retained a small
number of solutions (the best ones) generated along the star path.

4 Additional Components to Enhance Scatter Search

A set of preliminary experiments was conducted on the set of small instances men-
tioned in Section 2.5 in order to try to adjust some of the algorithm parameters. We
compared the algorithms’ performance in terms of quality and diversity. Our results
are summarized below, but more details are available in Wilbaut [29].

We began by varying the types of solutions in the reference set. Our results clearly
demonstrated that retaining only elite or diverse solutions makes the quality of the
results deteriorate, whereas using both elite and diverse solutions improves the qual-
ity of the results. This outcome confirms the lesson #6 in Laguna and Armentano [20],
indicating that it is necessary balance the number of elite and diverse solutions in
the reference set. In addition, it appears that integrating infeasible solutions into the
reference set produces even better results, which validates the potential of using the
information contained in infeasible MKP solutions. However, the simple version of
scatter search was not able to solve all the instances considered in these experiments.
To allow all the instances to be solved, we propose to strengthen the use of memory
and the use of intensification phases into the algorithm.

4.1 Using Memory

Search memory is often used in tabu search [11, 12]. We propose using frequency
memory to modify the order of the variables during the improvement phases, which
would prevent multiple visits to the same local optimum when the local search-based
heuristics are applied. This is achieved by sorting the variables according to their
efficiency and memory information. The aim is to take into account the history of the
search to guide the improvement phases.
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The value f j, corresponding to the number of times the variable x j is fixed to value
0 or 1 in the reference set for all the variables, is maintained, and thus the vector f of
dimension n sums all the solutions recorded in the reference set. Then the value F R j,
associated with variable x j, is computed according to its frequency and efficiency:

F R j = αR j + (1 − α)F j (4)

where R j = E j∑
j∈N

E j
, F j = f j∑

j∈N
f j

and α ∈ [0; 1].
Initially, the value of α is set to 1 because there is no information from the fre-

quency. The value of α then decreases during the search (each time the reference set
converges) to give more importance to the search memory (α = α – 0.1, up to α = 0.2).
The values F R j are used during the improvement phases, with formula (4) replacing
formula (2) when sorting the variables.

4.2 Defining Other Intensification Phases

We also propose integrating adapted intensification phases into the algorithm so
that the information associated with the reference set can be used before restarting
the search. Two procedures are applied to generate elite solutions from the search
history before generating a new reference set when this set converges.

The first procedure, which is described in Algorithm 2, solves exactly a small size
problem generated from the frequency memory described above, starting from an
initial null solution (y = 0). In the first step, an attempt is made to set n1 variables
to value 1 while still respecting the knapsack constraints [lines 2–4; variables are
considered in the decreasing order of (4)]. Next, a subset of variables is released
according to a parameter (n∗ in Algorithm 2, though we used the value 10 in our
experiments). The most undecided variables when the variables are sorted according
to (4) are chosen to be released. In lines 10–11, the reduced problem is finally solved.

It is possible to refine the number of variables to be set to value 1 (n1 in
Algorithm 2) by computing bounds on the sum of the variables in an optimal solution
of the MKP. A lower (respectively an upper) bound on this sum can be obtained by
solving the following linear program [LS; resp. (US)]:

(LS)

⎡
⎢⎢⎢⎢⎣

n = min
n∑

j=1
x j

s.t.: Ax ≤ c
1 + px∗ ≤ px
x j ∈ [0, 1] , j ∈ N

(US)

⎡
⎢⎢⎢⎢⎣

n = max
n∑

j=1
x j

s.t.: Ax ≤ c
1 + px∗ ≤ px
x j ∈ [0, 1] , j ∈ N

where x∗ is the best feasible solution (see, for example, Fréville and Plateau [7] or
Vasquez and Hao [27]).

When we apply Algorithm 2, the value of parameter n1 is chosen in the range[
n; n

]
.

We also introduce another intensification process that applies a path relinking
between the reference set solutions. Path relinking is a metaheuristic that is related
to scatter search [14]. Since we did not want to slow the algorithm down, we imple-
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Algorithm 2 Intensification by solving a reduced problem

Require: The MKP instance, an expected number of variables set at ’1’ n1, the size of the
reduced problem n∗

Ensure: a feasible solution y
1: y = 0;
2: for j = 1 to n do
3: if Ay + A j ≤ c then
4: y j = 1 (where A j corresponds to (a1j; a2j;. . . ; amj);
5: end if
6: end for
7: if ey < n1 then
8: n∗ = n∗ + n1 − ey;
9: end if

10: Let z be an optimal solution of the reduced problem MKP(y, N − Ñ)
11: where Ñ = {�n/2	 − �n∗/2	 ; . . . ; �n/2	 + �n∗/2	}, when the variables are sorted

according to (4)
12: return z

mented a simple version, as shown in Algorithm 3. To create the path (lines 2–3),
Algorithm 3 modifies every distinct variable between the initial solution x and the
final solution y one after the other, and then it activates a local search around the
solutions generated on that path (line 5, where LS(z, F) corresponds to a call to the
local search algorithm on solution z, but only for subset F).

The results of Algorithm 3 depend partially on the order of the variables in line 2
and partially on the local search algorithm used in line 5. In our implementation, we
considered the variables set to value 1 (resp. 0) in the decreasing (resp. increasing)
order of (4). The local search algorithm is based on the same principle as the one
used in the improvement phase (see Section 3.1). Algorithm 3 also maintains all the
solutions generated between x and y in a pool P. In practice, the size of P is limited to
10 elements (i.e., the best solutions), and the local search algorithm does not need to
be applied to every solution, but only when the best solution on the path is improved.

Algorithm 3 Intensification with path relinking
Require: the initial solution x and the final solution y
Ensure: the set of generated solutions P

1: z = x; P = 
; F = 
;
2: for j ∈ N : x j �= y j do
3: z j = 1 - z j;
4: F = F ∪ { j};
5: z∗ = LS(z,F);
6: add z∗ to P;
7: end for
8: return P;

The two intensification methods described above are applied each time the refer-
ence set converges. Then, when we integrated the use of memory and these processes
into the scatter search algorithm, we were able to solve exactly all the small MKP
instances used during the preliminary experiments.
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Before reporting our computational results in the next section, we would like to
review the components used in all our scatter search implementations:

– The dichotomous generator is used to construct a new reference set when it
converges (Section 2.3).

– The reference set is composed of 40 (resp. 20) solutions when n = 100 (resp.
n > 100).

– A dynamic management is used to generate the solution subsets (Section 3.3).
– A score-based combination method is used to combine subsets with more than

two solutions, and a star path combination method is used for type 1 subsets
(Section 3.4).

5 Computational Results

All the results presented in this paper were obtained with a Pentium IV 3.4GHz,
using algorithms coded in C++ language. The algorithms were validated on a set of
correlated instances available in the OR-Library [1], composed of 270 MKP instances
generated according to the procedure proposed by Fréville and Plateau [8]. The
instances were generated by varying combinations of constraints (m = 5, 10, 30) and
variables (n = 100, 250, 500), with 30 instances generated for every n-m combination.

We first compare in Table 2 the results obtained by the relaxation-based generator
used alone (rows “GP”) and the scatter search algorithm used alone (rows “SC”)
with other optimisation methods proposed for solving the MKP. Here the initial
population of the scatter search algorithm is obtained by applying the dichotomous
generator. In Table 2, rows “GAP” correspond to the average percent deviation from
the optimum values of the LP-relaxations (since the optimum solution values are not
known for all the instances). Row “GAPI” reports the results when elite, diverse
and infeasible solutions were used in the scatter search implementation (whereas
row “GAP” refers to the results when only elite and diverse solutions are used).
Rows “CPU” report the average computational times in seconds of the algorithms.
Rows “GACB” and “GAPHV” present the average difference from the LP-value
for genetic algorithms proposed by Chu and Beasley [4] and Haul and Voß [19],
respectively. We consider these algorithms useful for comparison purposes since they

Table 2 Results of the new generator and scatter search on the OR-Library

Size of n 100 250 500 100 250 500 100 250 500

the Pb. m 5 10 30

GP GAP 0.66 0.18 0.06 1.10 0.36 0.15 1.73 0.68 0.34
CPU 1 4 60 1 6 81 15 86 430

SC GAPI 0.59 0.19 0.08 0.96 0.38 0.21 1.71 0.82 0.55
GAP 0.59 0.18 0.08 0.98 0.39 0.21 1.71 0.83 0.56
CPU 21 54 422 26 69 341 39 87 342

GACB 0.58 0.14 0.05 0.94 0.30 0.13 1.69 0.67 0.35
GAHV 0.72 0.36 0.34 1.26 0.74 0.64 2.14 1.36 1.20
ADP N/A N/A N/A N/A N/A N/A N/A 0.97 0.52
Ra-Ps 0.60 0.17 0.09 1.17 0.45 0.20 2.23 1.38 0.82
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are also population-based methods and have obtained valuable results for the MKP.
Row ADP gives the results obtained with the approximate dynamic programming
method proposed by Bertsimas and Demir [2], and Ra-Ps reports the results obtained
with the metaheuristic, randomized priority search, recently proposed by Moraga
et al. [25]. Each value in Table 2 is an average over 30 instances.

The primary conclusions that can be drawn from Table 2 are as follows. First, the
new generator obtains good quality solutions, particularly for the larger instances.
It dominates all the other methods reported in Table 2 excepted the Chu and
Beasley’s genetic algorithm and the RA-Ps when m = 5 and n < 500. In addition,
the computational effort associated with this generator is not excessive, even for
the largest instances (m = 30). Though it is difficult to compare the execution times
of several algorithms since they were not all executed on the same computer, it is
nonetheless noteworthy that the RA-PS algorithm’s run times ranged from 7 to 35
min per instance on a Pentium IV 1.6Ghz compared to run times ranged from 1 to 7
min for our generator on a Pentium IV 3.4GHz. Thus, it appears that our generator
could be very useful for generating an initial elite population for the scatter search
algorithm, as well as for solving the MKP if used only as a heuristic.

Second, the scatter search algorithm obtained encouraging results when applied
alone. It dominates the Haul and Voß’s genetic algorithm and obtains better solu-
tions than the RA-Ps algorithm for a large part of the instances. It also obtains better
solutions than the Bertsimas and Demir’s approach for n = 250 and m = 30, but it is
not the case for the largest instances. However, the Chu and Beasley’s algorithm
clearly dominates this implementation of scatter search. Table 2 also shows that
when infeasible solutions are used in the reference set, on average, better results
are obtained. More precisely, the version with infeasible solutions obtains 127 best
solutions, whereas the version without infeasible solutions finds 65 best solutions only
(the other 78 solutions are the same).

Table 3 presents the final results obtained with the scatter search algorithm. In
this version, scatter search is applied from with the initial population generated

Table 3 Final results of scatter search on the OR-Library

Size of n 100 250 500 100 250 500 100 250 500

the Pb. m 5 10 30

GP GAP 0.66 0.18 0.06 1.10 0.36 0.15 1.73 0.68 0.34
CPU 1 4 60 1 6 81 15 86 430

FSC GAP 0.58 0.15 0.05 0.94 0.31 0.13 1.68 0.66 0.33
CPU 25 52 205 45 195 872 81 308 1338

GACB 0.58 0.14 0.05 0.94 0.30 0.13 1.69 0.67 0.35
HTS N/A N/A 0.04 N/A N/A 0.10 N/A N/A 0.28
Cplex 0.58 0.14 0.05 0.94 0.29 0.12 1.70 0.64 0.33
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by the new relaxation-based generator. It is why we recall the results obtained by
this generator (rows GP). Then we give the results of the final scatter search (rows
“FSC”) in which we added the following components:

– Use memory information to reorder the variables when the reference set con-
verges (Section 4.1).

– Apply the adapted intensification phases each time the reference set converges
to take into account the memory information contained in the reference set
(Section 4.2).

The number of iterations of the scatter search algorithm was set according to the
size of the instances and is included in [2*n;5*n]. As in Table 2, all the CPU times
are in seconds, and the quality of the solutions is compared to the LP-value of the
instance. In this table we also introduce in row “VV” the results obtained by the
hybrid tabu search-based algorithm developed by Vasquez and Vimont [28], and we
report in row “Cplex” the results obtained with the software CPLEX of Ilog. We
allowed CPLEX the same computational time to solve the instance that we allowed
our own algorithm.

Rows FSC show the positive impact of our specific components on the perfor-
mance of the scatter search algorithm. If we compare the rows GAP of GP and FSC,
we can conclude that our modifications allow the algorithm to improve the initial
population given by our relaxation-based generator, and thus obtain good final
solutions. If the results of the final solutions are compared in terms of quality with
the results of other algorithms, the Vasquez and Vimont’s algorithm is better for
the largest instances with n = 500. However, the computational effort needed to
produce these solutions (several hours on a Pentium IV 2GHz) is far in excess of the
computational effort needed by our algorithm. The results mentioned by Chu and
Beasley and those obtained by CPLEX seem to be on the same order of magnitude.
To give an idea of the performance of our algorithm when compared to the Chu
and Beasley’s algorithm (resp. CPLEX), our algorithm obtains the same objective
function value for 128 (resp. 120) instances and better ones for 67 (resp. 29) instances.
In other words, 195 (resp. 149) solutions have at least the same objective value over
the 270 instances. The average difference between our method and the Chu and
Beasley’s one (resp. CPLEX) is about −0.01 (resp. 0.01).

With respect to computational time, as shown in Table 3, our algorithm does not
require an excessive effort since, on average, it does not exceed 25 min for the largest
instances (note that row CPU of FSC reports the total computational effort for the
algorithm, including the effort for the relaxation-based generator). The CPU times
for the scatter search algorithm also depend on the size of the problem to which it is
applied. By applying the reduction procedure (Lemma 1 in Section 2), the variables
can be set definitively at their optimal values, particularly for m = 5.

These results show that scatter search can be applied efficiently for solving the
MKP and can even rival other methods. In particular, it seems that both introducing
more memory and producing an initial elite population enhance the results of
scatter search.
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6 Conclusions

In this paper, we proposed a scatter search algorithm for solving the 0–1 multidimen-
sional knapsack problem. To our knowledge, this is the first time that the scatter
search approach has been applied to this problem. Our algorithm is constructed
along the same general lines proposed by Glover [14]. We first proposed a new
relaxation-based generator that solves a series of small problems in order to obtain
an elite population. According to our computational results, this generator clearly
guides the scatter search algorithm to visit elite solutions more quickly. Then we
proposed to enhance the scatter search algorithm by using infeasible solutions in
the reference set, by using search memory information and by integrating adapted
intensification phases. The results obtained on a classic set of correlated instances
show that our algorithm outperforms other population-based methods for solving
the multidimensional knapsack problem. The final compromise between the quality
of the solutions and the computational effort seems to be worthwhile.

One direction for future research is to investigate the possibilities of integrating
more search memory, particularly during the diversification phases. This can be done
either by modifying the existing generators or by proposing new ones. It would also
be possible to integrate memory into the combination methods. Another direction
for research may be to explore the influence of the number of elite, diverse and
infeasible solutions in the reference set. Modifying the proportion of the different
types of solutions may have an impact on the search. It would also be worthwhile
to propose an adaptive component, which regularizes the number of each type of
solutions according to the evolution of the search.
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