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Abstract The paper describes an adaptation of a memetic algorithm to the problem
of scheduling operations of Earth observation satellites. The adaptation uses a
systematic approach to the design of the recombination operator preserving im-
portant features common to both parents. The important features are identified
experimentally on the basis of correlations between the value of the objective
function and the similarity of good solutions. Our results indicate that this systematic
approach reduces the effort needed to design a high quality recombination operator
by avoiding not promising development directions.
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1 Introduction

This paper describes an adaptation of a memetic algorithm (MA) to the problem
of scheduling operations of Earth observation satellites. The main element of this
adaptation is a systematic approach to the design of the recombination operator on
the basis of fitness–distance correlation tests. This approach helped to design a well-
performing operator while avoiding intensive tests in a trial-and-error manner.

The problem considered here is that of ROADEF Challenge 2003 – an interna-
tional competition organized by the French Society of Operations Research and
Decision Analysis [19]. The problem has been formulated by two French space
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agencies ONERA and CNES. It is based on real problems arising in the management
of missions of Earth observation satellites. The problem has been simplified for the
purpose of the challenge, still being a relatively complicated combinatorial problem.

The paper is organized in the following way. In the next section the adaptation of
the MA algorithm to a given problem is outlined. In the third section, the challenge
problem is described. The adaptation of the MA framework to the challenge problem
is described in the fourth section. In the fifth section, the results of computational
experiments are presented. The last section contains conclusions.

2 Systematic Approach to the Adaptation of the MA Algorithm
to a Given Problem

Memetic algorithms (MAs) are relatively new metaheuristics that hybridize evo-
lutionary algorithms with local search, or more generally, with other local search
heuristics. Other frequently used names are Genetic Local Search or Hybrid Genetic
Algorithms. Methods of this type often perform very well when applied to combi-
natorial optimization problems, e.g., the traveling salesperson problems (TSP) [17],
the graph coloring problems [5], the quadratic assignment problems [18, 20], vehicle
routing problem [9], and the set covering problem [1]. The methods proved to be
successful in achieving a synergy between genetic/evolutionary methods and local
optimization.

From one point of view the MA may be interpreted as an evolutionary algorithm
working on a reduced search space containing local optima of a given problem
only. If local optima can be generated effectively, this reduction of search space
should improve the overall performance. Clearly, for many combinatorial problems
local optima can be generated very efficiently. For example, it is well known that
in the case of the TSP local search using two arcs exchange move converges in
O(N) iterations (N being the number of nodes). This requires evaluation of O(N3)
solutions. For the same problem, Boese et al. [2] estimated on the basis of their
experiment that local optima are concentrated in a subregion being just 1

1059 of the
total search space for instances with 100 nodes. For instances with 500 nodes this
value was estimated to 1

10468 . Thus, the use of local search can result in a significant
reduction of the search space at a relatively low computational cost.

From another point of view, the MA may be interpreted as a version of multiple
start (iterated) local search with improved starting solutions. Indeed, Jaszkiewicz
and Kominek [10] noticed that in the MA adapted to a vehicle routing problem,
both running time and the quality of solutions improves when local search is started
from solutions produced by recombination algorithm. Furthermore, a recombination
operator used in the MA does not need to produce very good solutions. It is enough
if it generates solutions that are close in the search space to the good ones and can
be efficiently improved by local search.

Although some metaheuristics, e.g. MA, are well recognized as effective tools for
various optimization problems, the “no free lunch” (NFL) theorem [22] clearly states
that there is no algorithm that outperforms all other algorithms when its performance
is averaged over all possible objective functions. Thus, all optimization algorithms,
including metaheuristics, are based on some, possibly implicit, assumptions; i.e. they
are appropriate for some classes of problems. The NFL theorem is based on an
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assumption of a uniform probability distribution over the set of all possible objective
functions. The probability distribution corresponding to the “real-life” problems can
be much different. The success of metaheuristics in many applications proves that
their assumptions are often met in practice.

Metaheuristics define general schemes for the optimization procedures that have
to be adapted for specific problems. One direct conclusion from the NFL theorem
is that no such general scheme guarantees efficient optimization without appropriate
adaptation. Thus, the way a given metaheuristic is adapted to a particular problem
may have a crucial influence on its performance. This statement may be reinforced by
an experiment conducted by Michalewicz for a set of evolutionary algorithms [15, 16].
The experiment showed that maximum efficiency of such an algorithm is obtained if
it is totally adapted to a problem. Michalewicz concludes with words of Davis [3] that
if we shrink from adding problem-specific knowledge to genetic algorithms it is very
likely that they are worse than any reasonable optimization algorithm which takes
such knowledge into account.

The process of adapting a metaheuristic to a given problem is, however, a
challenging task even for problems with a simple definition. For example, efficient
algorithms for TSP [17] are the result of many of years of research on this problem.

In our opinion, in order to reduce the time needed to adapt efficiently a meta-
heuristic to a given problem, some general adaptation patterns should be derived
from the past successful works. This concept is similar to e.g. design patterns widely
used in software engineering [6]. In fact, the schemes of metaheuristics may also be
interpreted as design patterns.

In this paper, we use an adaptation pattern that allows systematic designing of
a distance preserving recombination operator for a given problem. The distance
preserving recombination operator [17] is an operator that guarantees (or at least
makes an effort to guarantee) preservation in the offspring of important features
common to both parents. At the same time, features considered to be not important,
do not need (and in fact should not be) to be preserved even if they were common to
both parents.

In order to explain this approach we will need to clearly define the terms “feature”
and “feature realization.” By feature we will understand a general attribute that may
be used to describe solutions of a given problem (regardless of their representation
in a given algorithm). For example, for the TSP the features could be arcs (pairs
of consecutive nodes in the solution) or node positions in the sequence of nodes
defining the solution. In the case of graph coloring problem the possible features
may be colors of particular nodes, or pairs, or groups of nodes with the same color.
One may use various features to describe solutions of a given problem.

By feature realization we will understand an instance of a given feature in a
concrete solution. For example, in the TSP the realization of arcs feature may be
an arc between nodes a and b , and the realization of positions feature may be
node c being at the l-th position in the sequence of nodes defining the solution.
Usually, a feature will have many realizations in a single solution. Now, we may state
more precisely that a distance preserving recombination operator should preserve
realizations of important features common to both parents.

The main question is what features are important for a given problem. Clearly,
preservation of common realizations of all possible features for a given problem
is not a good approach, since it would result in a very fast premature convergence
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of the evolutionary algorithm. In order to identify the important features we use
the concept of fitness–distance correlation test [10, 11]. This test checks if the
quality of solutions is correlated to their similarity to other good solutions. Such
correlation indicates that a trend may be noticed for better solutions to become
more and more similar. Note, however, that fitness–distance correlation tests were
originally proposed by as a measure of problem difficulty not as a mean of designing
recombination operators [11].

Fitness–distance correlation has been noticed for a number of problems. Boese
et al. [2] noticed it for the TSP. According to the results of Jones and Forrest [11],
some numerical optimization problems also exhibit the property fitness–distance
correlation. Merz and Freisleben [18] noticed fitness–distance correlation for the
quadratic assignment problems. Jaszkiewicz and Kominek [10], and Kubiak [12]
noticed fitness–distance correlation for two different variants of the vehicle routing
problem.

Of course, similarity of solutions may be measured in many ways taking into
account various features of solutions. We will assume that the similarity of two
solutions is measured by the number (or percentage) of common realizations of a
given feature. For the same problem the fitness–distance correlation may be noticed
for some features but not for others. Furthermore, it may be stronger for some
features than for others.

To test fitness–distance correlation we propose to calculate the correlation be-
tween the value of the objective function f for solution x and the average similarity of
all solutions not worse than f (x) denoted by ŝ( f (x)). Assume that a set C of solutions
is known. The average similarity is calculated as:

ŝ( f (x)) =
∑

y,z∈C| f (y)≥ f (x)∧ f (z)≥ f (x) s(y, z)
∣
∣
{ (

y, z
)) | y, z ∈ C ∧ f (y) ≥ f (x) ∧ f (z) ≥ f (x)

}∣
∣

where s(y, z) is similarity of y and z and objective function f is assumed to be
maximized. Since for the few best solutions in C, ŝ( f (x)) would be calculated on
the basis of a small number of solutions one could expect a high dispersion of this
value in this case. Thus, we have decided not to calculate it for the best 20 solutions.
The value of 20 is an arbitrary one, based on our observations that the dispersion of
the results becomes noticeably lower for other solutions.

On the basis of previous works of Merz and Freisleben [17, 18], Jaszkiewicz and
Kominek [10], and Kubiak [12] we formulate the following adaptation pattern for
(hybrid) evolutionary algorithms:

1. Generate sets of good and diversified solutions for a set of instances of a given
problem.

2. Formulate a number of hypotheses about solution features important for a given
problem and define similarity measures based on these features.

3. For each feature and each instance test the importance of this feature by a
correlation between the value of the objective function and the similarity of good
solutions. The similarity is measured with respect to this feature.

4. Design a distance preserving recombination operator assuring (or aiming at)
preservation of common instances of features for which positive correlations
were observed. The operator may preserve common instances of several
features.
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To our knowledge this pattern was used for the first time by Merz and Freisleben
[17] for the TSP. On the basis of results of the experiment of Boese et al. [2], Merz
and Freisleben designed a very successful recombination operator preserving arcs
common to both parents. Jaszkiewicz and Kominek [10] considered four features
for a version of the vehicle routing problem and concluded that the recombination
operator should preserve all of the features.

3 Scheduling of Earth Observation Satellites Operations

The subject problem is a simplification of a real problem in the management of
Earth observation satellites. In particular, we just consider a single revolution of the
satellite. Below, we define it formally.

Given:

– A number Nr of requests for satellite pictures that may be satisfied fully or
partially (a request defines an area to be photographed),

– A number Ns of strips that can be used to acquire the requests,
– A number Npa = 2Ns of possible strips acquisitions (each strip can be acquired

in by moving the camera in one of the two possible directions),

find a subset of acquisitions and their feasible schedule that maximizes the gain of
the satellite operator.

Each request is defined by a number of strips. A strip is a relatively thin and long
rectangle (approximately, of course, because of the Earth shape) that the satellite
may acquire at a time moving the camera along it. The two possible acquisitions
correspond to starting from one or another end of the strip. The acquisitions have
durations and time windows in which they are physically possible. Furthermore, a
switching time may be calculated for each pair of acquisitions. The gain correspond-
ing to a given request is a nonlinear function of the percentage of the request realized
(photographed). More precisely, it is a piece wise linear function going through
points (0, 0), (0.4, 0.1), (0.7, 0.4), and (1, 1). This means, for example, that if 40%
of the request surface is realized, only 10% of the gain corresponding to this request
is achieved. The total gain is the sum of gains for particular requests. Some of the
requests require stereoscopic pictures. In this case pairs of twin strips are defined.
The twin strips have to be either realized both or not realized at all. A detailed
description of the problem is publicly available at [19].

The challenge problem has some similarities with task scheduling on a single
machine, with time windows and switching times [4]. However, in this case, not
all acquisitions (tasks) have to be scheduled. In fact, for the considered instances
only a small number of them are selected and scheduled. Furthermore, the objective
function is different from those typically used in scheduling.

The problem resembles also the vehicle routing problem with time windows and
service times [21]. In this case, acquisitions would correspond to nodes to be visited,
their durations to service times at the nodes, and switching times to travel times
between nodes. However, in most versions of the vehicle routing problem all nodes
have to be visited.

An analogy to the knapsack problem may also be noticed [14]. In the challenge
problem one needs to select a subset of items (acquisitions) maximizing their value
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and subject to some constraints. However, both the constraints and the objective
function are much more complicated than in knapsack problem.

Finally, there are some important similarities with an only recently studied trip
planning problem [8] that also involves selection of attractions (acquisitions) and
their scheduling. There are, however, significant differences in definition of some
constraints and objective functions.

4 Adaptation of the MA to the Challenge Problem

Our adaptation of the MA to the challenge problem involves the definition of a
method for finding initial solutions, the definition of a local search method, the
definition of a recombination operator, and the selection of the general scheme of
the MA algorithm. Below we define the elements in more detail.

4.1 Generation of Initial Solutions

The initial solutions are generated by a greedy insertion heuristic. In each iteration,
the heuristic inserts a single acquisition to the solution. All acquisitions that can be
inserted without violating constraints are evaluated. For each acquisition all feasible
insertion positions in the current sequence of selected acquisitions are evaluated.

Insertion of an acquisition increases the gain objective but it also consumes the
time of the satellite. The consumed satellite time (including switching time) may be
different depending on the insertion position. Thus, the insertion of an acquisition at
a given position is evaluated by the ratio of the gain increase over the satellite time
change. In each iteration the greedy insertion heuristic selects the acquisition and
insertion position with the highest evaluation.

The greedy insertion heuristic is a deterministic procedure (unless more than one
insertion have the same best evaluation). In order to obtain a dispersed sample of
initial solutions, the greedy insertion heuristic is not started from the empty solution.
Instead a number of randomly selected acquisitions are inserted at randomly selected
feasible positions before applying the insertion heuristic. The number of randomly
selected acquisitions was set to Ns/10, however, the final method was very robust
with respect to this parameter.

We identify feasible insertion positions by exploiting time constraints which
resulted in a significant improvement of the efficiency of this method.

4.2 Local Search

Local search uses a neighborhood operator that inserts an unselected acquisition into
the solution. If necessary, a number of already selected consecutive acquisitions are
removed from the solution to maintain feasibility.

The new acquisition is inserted in place of removed ones. For each acquisition
to be inserted, all potential minimal sets of consecutive acquisitions to be removed
are considered. We attempt to reduce the set of acquisitions considered for removal
taking into account time constraints.
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A greedy version of the local search is used. The acquisitions to be inserted are
analyzed starting from a random position and the first move that improves the gain
is performed. Only feasible moves are performed.

4.3 Recombination Operators

We have identified five potential important features of solutions in the subject
problem:

1. Acquisitions selected for realization (i.e. placed in the final solution). The hy-
pothesis is that good solutions tend to have the same acquisitions selected. This
hypothesis has been formulated on the basis of the analogy to the knapsack prob-
lem where selected items is known to be an important feature. The corresponding
similarity measure counts the percentage of acquisitions being common to both
parents.

2. Requests selected for realization. The hypothesis is that good solutions tend
to have the same requests realized. Note that the requests may be realized
only partially. Thus, two versions of the corresponding similarity measure were
used, taking into account either the realized (photographed) surface in square
kilometers, or the realized percentage of each request. This hypothesis has
also been formulated on the basis of the analogy to the knapsack problem.
Obviously, this feature is related to feature 1, however, since a given request may
be realized by various acquisitions (partial realization, acquisitions in opposite
directions) we have decided to also test this feature. The corresponding similarity
measure counts the total surface or total normalized surface of common requests
selected for realization. The total surface is expressed in surface units, while the
normalized surface as a ration of the realized (photographed) surface over the
total surface of a given request.

3. Pairs of consecutive selected acquisitions. The intuition behind this hypothesis is
that switching times between some acquisitions are very small (the final position
of an acquisition is very close to the beginning position of the other one) and they
should be usually scheduled consecutively in good solutions. This is an analogy
to the vehicle routing problem. The corresponding similarity measure counts the
percentage of pairs of acquisitions selected in both parents and being consecutive
in both solutions.

4. Sequences of (consecutive or not) pairs of selected acquisitions. The hypothesis is
that good solutions tend to order selected acquisitions similarly. The correspond-
ing similarity measure counts the percentage of pairs of acquisitions selected in
both parents and being sequenced in the same way in both solutions.

5. Starting time windows of acquisitions resulting from the solution. The solution
is defined as a schedule of selected acquisitions. The schedule, in general, does
not define precise starting times for each acquisition but rather some time
windows for the starting times. These time windows are, of course, included
in the original time windows defined in the problem instance. The hypothesis
is that these time windows tend to become similar in good solutions. The
corresponding similarity measure is the average distance between central points
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of time windows corresponding to the same selected acquisitions. There are two
versions of this measure taking into account the distances in seconds or distances
normalized with respect to the time window duration.

Fitness–distance correlation tests have been performed on six instances delivered
by the challenge organizers and based on real data. Some basics characteristics of the
instances are summarized in Table 1.

For each instance, 1,000 local optima were generated. Equal solutions were then
filtered out. Since, it is expected that the populations of the evolutionary algorithm
will contain mainly very good solutions the calculations have also been made for
the 200 best solutions only. The correlations are presented in Table 2 and Table 3.
Each row corresponds to an instance and each column to a similarity measure. Each
entry is a correlation between f (x) and ŝ ( f (x)). The results for a single (largest)
instance are also presented in Fig. 1. Each point corresponds to a single solution. The
horizontal axis represents the objective function value of a given solution f (x), and
the vertical axis represents ŝ ( f (x)). The figure includes all solutions including the 20
best in C. One may notice a high dispersion of these values for the best few solutions.

In most cases significant correlations have been noticed. In general, the correla-
tions are stronger when only the first 200 solutions are taken into account. On the
basis of the results it has been concluded that the recombination operator should
preserve the following features:

– Acquisitions common to both parents (note that this should also assure preser-
vation of requests realization, thus there is no need to consider this feature
separately),

– Sequences of any two pairs of acquisitions common to both parents,
– Pairs of consecutive selected acquisitions common to both parents,
– Time windows positions.

However, in order to test the systematic approach to the design of recombination
operators, several recombination operators preserving various features have been
designed. The operators are described below. Note, however, that only one of the
operators has been designed for the purpose of the challenge (operator C). The other
operators were designed afterwards for the purpose of this paper.

Table 1 Characteristics
of the instances used in
fitness–distance
correlation tests

Instance code Number of requests Number of strips

2_13_111 68 106
4_17_186 77 147
3_25_22 150 342
2_15_170 218 295
2_26_96 336 483
2_27_22 375 534
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Table 2 Results of the fitness distance correlation tests for all 1,000 solutions

Key

Instance 2_13_111 4_17_186 3_25_22 2_15_170 2_26_96 2_27_22
SelAcq 0.972 0.929 0.933 0.927 0.902 0.885
ReqRea-ns 0.952 −0.119 0.848 0.945 0.920 0.933
ReqRea-s 0.978 −0.276 0.959 0.946 0.887 0.845
ConAcq 0.936 0.855 0.918 0.937 0.866 0.603
SeqAcq 0.981 0.775 0.907 0.978 0.874 0.942
Twin-nd 0.966 0.212 0.853 0.930 0.824 0.561
TWin-d 0.965 0.922 0.875 0.938 0.781 0.713

Instance instance code, SelAcq selected acquisitions, ReqRea-ns requests selected for realization
(normalized surface), ReqRea-s requests selected for realization (surface), ConAcq pairs of consecu-
tive selected acquisitions, SeqAcq sequences of pairs of selected acquisitions, TWin-nd starting time
windows (normalized distances), TWin-d starting time windows (distances).

Operator A

This operator preserves acquisitions common to both parents. Its steps are summa-
rized below:

1. Find the set of acquisitions selected in both parents.
2. Consider the acquisitions in a random order and insert each of them at the best

possible position.
3. Add further acquisitions using the greedy insertion heuristic.

Operator B

This operator preserves acquisitions common to both parents and sequences of any
two pairs of acquisitions common to both parents. Its steps are summarized below:

1. Find a set of acquisitions selected in both parents.
2. Schedule these acquisitions preserving common sequences.
3. Add further acquisitions using the greedy insertion heuristic.

In step 2 of this operator, the algorithm presented in Pseudocode 1 is used. The
algorithm builds a new sequence S from two sequences S1 and S2. If element a

Table 3 Results of the fitness distance correlation tests for the best 200 solutions

Key

Instance 2_13_111 4_17_186 3_25_22 2_15_170 2_26_96 2_27_22
SelAcq 0.957 0.950 0.958 0.959 0.985 0.988
ReqRea-ns 0.823 0.857 0.964 0.305 0.975 0.978
ReqRea-s 0.885 0.630 0.621 0.972 0.980 0.973
ConAcq 0.944 0.929 0.932 0.887 0.985 0.969
SeqAcq 0.872 0.882 0.513 0.814 0.954 0.506
Twin-nd 0.975 0.874 0.936 0.972 0.971 0.712
TWin-d 0.970 0.941 0.984 0.963 0.970 0.783

Instance instance code, SelAcq selected acquisitions, ReqRea-ns requests selected for realization
(normalized surface), ReqRea-s requests selected for realization (surface), ConAcq pairs of consecu-
tive selected acquisitions, SeqAcq sequences of pairs of selected acquisitions, TWin-nd starting time
windows (normalized distances), TWin-d starting time windows (distances).
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Fig. 1 Results for instance 2_27_22. The horizontal axis represents the objective function value of a
given solution f (x), and the vertical axis represents ŝ ( f (x)). Key: a selected acquisitions, b requests
selected for realization (normalized surface), c requests selected for realization (surface), d pairs
of consecutive selected acquisitions, e starting time windows (normalized distances), f starting time
windows (distances)
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precedes element b in both sequences then a precedes b also in the new sequence,
otherwise the sequence of the two elements will depend on the greedy insertion
heuristic.

Pseudocode 1 Sequence recombination

Operator C

This operator preserves acquisitions common to both parents, sequences of any two
pairs of acquisitions if the same in both parents, and pairs of consecutive selected
acquisitions if the same in both parents. Its steps are summarized below:

1. Find a set of acquisitions selected in both parents.
2. Schedule these acquisitions preserving common sequences.
3. Mark as locked those consecutive pairs of acquisitions that were also consecutive

in both parents.
4. Add further acquisitions using the greedy insertion heuristic with the additional

condition that locked pairs of consecutive acquisitions cannot be broken.

Operator D

This operator preserves only acquisitions common to both parents and time windows
positions. Its steps are summarized below:

1. Find a set of acquisitions selected in both parents.
2. Reduce the original time windows of common acquisitions.
3. Consider the acquisitions in a random order and insert each of them at the best

possible position.
4. Add further acquisitions using the greedy insertion heuristic.

In step 2 of this operator, the feasible time window for each acquisition common
to both parents is reduced with respect to the original time windows defined in the
problem instance. The beginning of the time window t′0 is set to:

t′0 = t0 + min
(
t1
0, t2

0

)

2

where t0 is the original beginning of the time window, t1
0 and t2

0 are beginnings of the
time windows corresponding to this acquisition in parents 1 and 2, respectively.



36 J Math Model Algor (2008) 7:25–42

The end of the time widow t′e is set to:

t′e = te + max
(
t1
e , t2

e

)

2

where te is the original end of the time window, t1
e and t2

e are ends of the time windows
corresponding to this acquisition in parents 1 and 2, respectively.

Operator E

This operator preserves acquisitions common to both parents, sequences of any
two pairs of acquisitions if the same in both parents, pairs of consecutive selected
acquisitions if the same in both parents, and time windows positions. Its steps are
summarized below:

1. Find a set of acquisitions selected in both parents.
2. Reduce the original time windows of common acquisitions.
3. Schedule these acquisitions preserving common sequences.
4. Mark as locked those consecutive pairs of acquisitions that were also consecutive

in both parents.
5. Add further acquisitions using the greedy insertion heuristic with the additional

condition that locked pairs of consecutive acquisitions cannot be broken.

We formulate a hypothesis that operator E should assure the best performance
of the MA, since it uses all important features of the solutions. Note, however, that
in the challenge, operator C was used. This was caused by the fact that a systematic
error has been made by the author in calculation of the correlations for time windows
related features. In result, the positive correlations were not noticed during the
preparation of algorithm for the challenge.

4.4 Local Search Improvement

The performance of local search has been further improved with the concept of
candidate moves. The idea is to heuristically identify a set of promising candidate
moves. Non-candidate moves may also be evaluated, but the evaluation probability
is 10% only.

The definition of candidate moves is strictly related to the recombination op-
erators and the importance of the “acquisitions selected for realization” feature.
Candidate moves are the moves that insert acquisitions that were present in at least
one of the parents. The use of candidate moves significantly improved efficiency of
local search without any noticeable deterioration of the results.

4.5 General Algorithm

The above described operators have been used within a general scheme of the algo-
rithm which could be classified as a hybrid evolutionary algorithm with full elitism
and island population model. The islands create a directed ring and periodically
exchange their best solutions (see Fig. 2). The details of the algorithm are presented
in Pseudocode 2. The island model has been selected in order to reduce dispersion
of results being achieved by a corresponding algorithm with a single population.
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Fig. 2 Island population
model

The dispersion or results in the latter case was very high. The introduction of the
island model resulted in a significant improvement of the results variation, although
the best results remained at the same level. Of course, it may be the case that
other approaches like reduction of the elitism would also be helpful but they were
not tested.

Pseudocode 2 General scheme of the MA with island population model
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The parameters were set experimentally on the basis of the best choice principle. The
number of islands was set to 5, population size for each island to 50, the maximum
running time to 300s (PC~1000MHz), the migration period to 100 iterations, and
local search probability to 2,5%.

5 Results

5.1 Challenge Results

There were two stages of the challenge – qualification stage and final stage. All
registered teams were allowed to take part in the qualification stage. Among thirty
one registered teams eighteen decided to submit their programs for the qualification
stage. Eleven teams were qualified to the final stage. In the qualification stage,
eight instances known in advance to the participants were used. Ten instances
used in the final stage were not known to the participants. In both stages, the
challenge organizers performed their own calculations using programs delivered by
the participants. The organizers specified the maximum running time. The results
were compared against some reference results obtained for the same instances by
an existing algorithm (its details are not known to the participants). Note, that all
participants of the final stage obtained results much better than the reference results.

Both deterministic and nondeterministic methods were allowed. The nondeter-
ministic methods were run ten times on each instance. The overall evaluation of
deterministic methods was calculated in the following way:

Evaluation = 100 × 1

10

10∑

i=1

(ValSoli − Vali)
Vali

where ValSoli is the objective function value generated by the algorithm for the i-th
instance, Vali is the reference objective value for this instance.

The overall evaluation of nondeterministic methods was calculated in the
following way:

Evaluation = 100 × 1

100

10∑

i=1

10∑

j=1

(
ValSolij − Vali

)

Vali

where ValSolij is the objective function value generated by the algorithm for the i-th
instance in j-th run.

The summary of the final stage results is presented in Table 4. Note that all of the
results improve the reference results by at least 23%. Note also, that all evaluations
except of the last team are relatively close. The gap for the ten best teams is lower
than 3% which is relatively low value in comparison to the improvement over the
reference results.
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Table 4 Results of the final stage

Summary

Team 1 (best) 2 3 4 5 (author) 6 7 8 9 10 11
Evaluation 31.76 30.84 30.28 30.1 29.91 29.88 29.84 29.69 29.22 29.08 23.56

5.2 Additional Evaluation of the Recombination Operators

In order to further evaluate the systematic approach to the design of the recombi-
nation operators, the five operators described in Section 4.3 have been tested in an
additional experiment. The experiment has been performed on the set of instances
used in the final stage of the challenge. The same evaluation procedure has been
used. Ten runs of each algorithm have been made. The running time was the same
(300 s) on a comparable machine, slightly slower than 1,000 MHz in fact.

In addition, the MA algorithm was compared with iterated generation of initial
solutions (IGIS) with the same time limit. The initial solutions were generated by the
greedy insertion heuristic and then local search was applied with 2.5% probability,
i.e. the same as used after the recombination. The results are summarized in Table 5.
In addition, we used t-test in order to test if the differences in performance are

Table 5 Results of the additional experiment (standard deviations are given in brackets)

Instance Ref OpA OpB OpC OpD OpE IGIS

2_28_111 641971585 28.81 35.15 34.81 32.79 35.32 22.93
(1.635) (0.655) (0.782) (1.683) (0.529) (1.729)

2_28_140 688993450 19.82 20.24 20.30 20.40 20.71 18.15
(0.384) (0.082) (0.238) (0.295) (0.303) (0.270)

2_28_155 754868831 20.74 24.32 24.26 24.26 24.34 15.25
(0.463) (0.191) (0.000) (0.000) (0.233) (1.478)

2_28_170 643688604 39.97 41.20 41.93 38.58 42.26 34.49
(0.699) (2.013) (1.855) (0.960) (1.645) (1.654)

2_28_170 643688604 39.97 41.20 41.93 38.58 42.26 34.49
(0.699) (2.013) (1.855) (0.960) (1.645) (1.654)

2_28_37 632923003 47.72 50.78 51.19 47.39 50.88 36.37
(1.206) (0.915) (1.099) (1.232) (1.390) (1.829)

2_28_66 686621650 32.37 35.87 35.55 33.24 36.22 26.42
(2.232) (0.976) (0.857) (2.593) (1.088) (2.888)

2_28_7 714878886 28.02 33.43 34.45 33.84 34.58 22.66
(4.323) (2.492) (2.015) (2.570) (2.302) (3.890)

2_28_81 728186221 15.85 20.54 20.25 19.59 20.69 11.20
(1.352) (0.485) (0.380) (0.377) (0.000) (1.060)

3_28_155 380505982 16.12 21.43 21.44 21.13 21.44 15.37
(2.379) (0.021) (0.000) (0.958) (0.000) (2.145)

3_28_96 396698443 14.94 15.48 15.48 14.99 15.48 13.97
(0.212) (0.000) (0.000) (0.000) (0.000) (1.170)

Average 26.44 29.84 29.96 28.62 30.19 21.68
(1.488) (0.783) (0.723) (1.067) (0.749) (1.811)

Instance instance code, Ref reference value, OpA MA operator A, OpB MA operator B, OpC
MA operator C, OpD MA operator D, OpE MA operator E, IGIS integrated generation of initial
solutions
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statistically significant. For each instance and each algorithm series of 10 results have
been compared. The differences were statistically significant at level 0.05 in the case
of all of the ten instances for the following pairs of algorithms: MA operator B >

IGIS, MA operator C > IGIS, MA operator E > IGIS, MA operator D > IGIS,
MA operator C > MA operator A, MA operator E > MA operator A. In 9 cases
the following differences were significant: MA operator A > IGIS, MA operator B
> MA operator A.

On the basis of the results, the following observation could be made:

– All versions of the MA perform better than iterated generation of initial
solutions.

– Operators preserving more significant features perform in general better than
operators preserving less features.

– MA with operator E preserving all features is, on average, the best performer,
however, on many instances the differences between MA with operators B, C
and D are relatively low and not statistically significant.

After finishing the main experiment some additional experiments have been made
with a goal of finding a similarity measure with no noticeable correlation with the
objective function value. However, such correlations were found for any realistic
measures (i.e. measures that do not transform solution features to some random
values), e.g. the percentage of common acquisition positions or the percentage of
common bits in time windows starting/ending times. This shows that good solutions
of this problem converge in many aspects. Note, however, that in the case of the
additional measures, dispersions of their values were very low. Of course, we do
not claim that such measures do not exist. There still may exist some other realistic
measures that were not tested by us, with no correlation with the objective function
value.

6 Conclusions

The main goal of the systematic approach to the adaptation of the MA algorithm
to a given problem presented in this paper is to reduce the effort needed to design
a high quality algorithm. By effort we mean both designer time and the time of the
computational experiments. Of course, one may argue that the proposed systematic
approach is also a trial-and-error method alike trial-and-error evaluation of various
recombination operators. However, the number of potential features to be tested
for a given problem is much lower than the number of possible recombination
operators. Furthermore, tests for a given feature require much shorter calculations
than evaluations of recombination operators with the full algorithm.

In the described case, the systematic approach allowed avoiding many not promis-
ing paths in the development of the algorithm. The average results of the designed
algorithm are less than 2% below the best results achieved in the challenge.

The results of the additional experiments indicate that preservation of significant
common features indeed improves performance of the recombination operators,
however, with inclusion of additional features the improvements in the performance
become lower.
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The algorithm described did not produce best results in the ROADEF Challenge.
The author is at the opinion, however, that there is a place in the literature for papers
studying influence of particular design elements on the performance of optimization.
This paper focuses on the design of recombination operators. On the other hand,
papers presenting the best results often propose algorithms that differ from others
in many aspects, and it is difficult to judge which of the elements are crucial for the
overall performance. The results of the proposed MA algorithm could probably be
further improved by investing more effort for example in the design of local search.
In fact, the winning algorithm in ROADEF Challenge 2003 [13] used an advanced
local search with a large long term memory within the general scheme of simulated
annealing.

In the future we would like to use fitness–distance correlation tests in systematic
design of other promising methods based on the idea of preservation of some
common features of good solutions, e.g. path relinking [7] or probe method.

There is also a need for more systematic and based on stronger theoretical basis
approach for quantitative evaluation of similarity measures. The approach applied
in this paper is rather an “engineering one” based on both correlations and visual
evaluation. The quantitative approach should probably take also into account the
range of changes of a given measure.
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