
J Math Model Algor (2007) 6:591–613
DOI 10.1007/s10852-007-9069-2

A GA Based Heuristic for the Vehicle Routing
Problem with Multiple Trips

S. Salhi · R. J. Petch

Received: 18 October 2006 / Accepted: 19 April 2007 /
Published online: 21 July 2007
© Springer Science + Business Media B.V. 2007

Abstract A variant of the classical vehicle routing problem, where vehicles can be
assigned to more than one route within a working time period, is investigated. A
hybrid Genetic Algorithm, which uses a new non-binary chromosome representation
and which is enhanced by a domain specific data structure, appropriate genetic
operators and a scheme for chromosome evaluation, is proposed. Test problems
from the literature are used to evaluate the performance of the proposed heuristic.
Encouraging results are obtained.

Keywords Heuristic · Genetic algorithm · Bin-packing · Multiple trip

Mathematics Subject Classifications (2000) 90B06 · 90B35 · 90B40 · 90C59

1 Introduction

This paper addresses the vehicle routing problem (VRP) where a vehicle (driver) is
not necessarily restricted to serve one route only. This is known as the vehicle routing
problem with multiple trips (VRPM). In other words, the problem is characterized
by vehicles and hence drivers working multiple routes or trips within a given time
period. In practice, multiple trip scheduling is important since significant cost savings
can be achieved if the number of vehicles and hence drivers are fully utilised. The
VRPM can be used for both strategic and tactical planning. Because a reduced
vehicle fleet size might be more desirable, a strategic VRPM objective accounts for

S. Salhi (B)
Centre for Heuristic Optimisation, Kent Business School,
The University of Kent, Canterbury, UK
e-mail: s.salhi@kent.ac.uk

R. J. Petch
OR Group, London Underground, London, UK

592 J Math Model Algor (2007) 6:591–613

both vehicle and scheduling costs. In this situation, there might be a trade off between
higher scheduling costs and lower vehicle and driver associated costs, the latter being
usually more significant. In practice, within a tactical distribution system, the fleet
might be fixed to the existing setup and so the objective is reduced to minimizing
scheduling costs.

This paper describes a hybrid Genetic Algorithm (GA) for the solution of this
VRPM. In order to draw comparisons with the benchmarks achieved from the liter-
ature a similar objective is chosen, i.e. the minimization of the maximum overtime
restriction for a prescribed number of vehicles.

The remaining of this section provides a brief review of the literature. This is
followed by Section 2 that presents the main aspects of the algorithm, its motivation
as well as the necessary notation. The main steps of the algorithm are described in
Section 3 and the computational results are given in Section 4. We summarize our
findings and highlight some research issues in the last section.

Although in practice multiple route assignment is common, there is a shortage of
papers covering this feature. The first work to explicitly address multiple trips was
made by Salhi [17] in the context of vehicle fleet mix. Limited to double trips, a
matching scheme is used to allocate pairs of routes to vehicles within a refinement
process. This problem was also tackled by Fleischmann [6] within a working paper
where the author attempts to generate a solution using a one-phase algorithm, by
integrating a greedy type heuristic with the need to assign routes to vehicles. Using a
saving measure with respect to pairs of customers, the feasibility of the assignment of
partially constructed routes to vehicles is assessed. The route assignment is achieved
by using the bin-packing heuristic best fit decreasing, BF D (see Martello and Toth
[9] for details). In this problem bins, items and corresponding weights are defined
as vehicles, VRP routes and driver time required to service routes respectively. A
two phase approach was proposed by Taillard et al. [21]. A set of VRP solutions
is constructed from a population of routes generated using the Tabu Search (T S)
heuristic of Rochat and Taillard [16] before bin-packing is used to allocate routes
to vehicles. Golden et al. [8] adopted this approach to solve a similar VRPM using
the minimax objective. This is a balancing problem which has a wide applicability. A
constructive and improvement heuristic was proposed by Brandao and Mercer [1].
They tackled multiple trips as part of a more extensive problem involving time
windows and vehicle fleet mix. Using real test data, results showed that their heuristic
produced savings of 20% when compared to the manual schedule. To compare with
the benchmark of Taillard et al. [21], Brandao and Mercer [2] modified their heuristic
to solve the classical VRPM. Their approach is based on the nearest neighbour
rule and the insertion criterion to assign customers to routes within vehicles. This
process is repeated until all unrouted customers are inserted. The improvement
phase attempts initially to remove overtime before reducing the routing cost within
a T S framework using two types of trial moves namely insert and swap. Petch
and Salhi [13] developed a multi-phase constructive heuristic which proved to be
successful. The heuristic integrates the approach of Taillard et al. [21] and that of
Brandao and Mercer [1] in as much as solution construction and improvement are
undertaken in a VRP and VRPM environment respectively. An interesting feature
of the methodology is the strategic use of existing heuristics to provide both diversity
and intensification. Recently Olivera and Viera [10] put forward an interesting
implementation of adaptive memory search for the VRPM. This is based on the

J Math Model Algor (2007) 6:591–613 593

same principle of Taillard et al. [21] with some enhancements incorporated. Initial
VRP solutions are constructed by the sweep algorithm which are then enhanced by
a tabu search. Several starting points are used to construct a family of solutions.
The memory is then constructed by the top solutions up to a certain memory size.
The routes are selected randomly from the memory and a bin packing procedure is
adopted to pack the routes into vehicles while introducing some refinements based
on reducing the driver overtime. The new routes are then fed back into the memory
and those routes belonging to the poorest solutions are discarded. The whole process
is executed for five runs. Excellent results are obtained.

2 Methodology

The power of GAs, as with other evolutionary methods, is that new solutions can be
developed simultaneously and derived from several solutions, two in the case of a
typical GA. For an overview of GA see Reeves [15] and Salhi [18], and for heuristic
search in general see Salhi [19].

In this section we briefly describe the proposed GA approach, then we introduce
the necessary notation including the objective function. We follow this by a subsec-
tion on defining our chromosome design and our step by step algorithm.

2.1 Approach

The classical GA usually requires a binary based chromosome representation. In
practice it is not always possible to convert a solution to a binary representation,
especially for order based problems like the VRPM. This has led to the development
of new chromosome representations with unique problem specific genetic operators.
A possible approach is the adaptation of the GA chromosome representation and
operators developed for the TSP. Potvin [14] describes several GA implementations
for the TSP but their adaptations to the VRPM are not obvious. This is primarily
due to the difficulty in managing a chromosome where customers are partitioned
to define the solution routes. Another approach is the partial use of the classical
representation. Although the practical implementation of a binary chromosome
representation is not possible in terms of codifying a unique solution, it is possible
to use the classical representation in association with constructive heuristics. An
example of this is a paper by Thangiah and Salhi [22] with respect to the VRP with
multiple depots. Here a classical GA is used to generate a sequence of angles about
the depots. This sequence, which describes a circle partition for each depot, is then
used as a basis for customer clustering. A solution is produced by generating a single
route for each cluster and a post-optimization is adopted to refine the solutions
further. A similar structure could be used for the VRPM, with the use of bin-
packing, but it can be restrictive, especially where a particular sector (partition) has a
relatively high density of customers hence multiple routes share the same sector. To
overcome this eventuality, we considered a variety of possible mapping techniques
to generate single route clusters. The first was to approximate a route by a unique
sector, with a given radius. A VRP solution could then be represented by a series
of sectors, some of which may overlap. An associated solution evaluation would

594 J Math Model Algor (2007) 6:591–613

consist of clustering to the nearest sector boundary. Another consideration was to
replace the sector by a single line approximation and then perform the same task.
A weakness associated with these approaches is the need to prescribe the number
of tours or routes generated within a solution as this value defines the chromosome
length. Similar quality VRPM solutions can have different numbers of routes. We
overcame this problem by developing a flexible non-binary chromosome structure
based upon the circle partition concept used in Thangiah and Salhi [22]. Instead
of fixing the chromosome length, the number of sectors can vary between solutions
and more importantly each sector can generate more than one route. Subsection 2.3
describes how this is performed.

2.2 Notations and Objective Function

T: The maximum regular travel time for a vehicle.
Q: Vehicle carrying capacity.
NV: The fleet size, which may be defined a priori or determined using

the heuristic.
NC: The number of customers to service.
θm: The angle of the mth customer wrt the origin, m = 1, . . . , NC.
np: The number of chromosomes in the population (population

size).
ng: The maximum number of generations used.
φi, j is the angle that defines the jth sector (sequence) within

chromosome i.
ki: The number of clusters in (length of) chromosome i, i =

1, . . . , np.
Xi represents the ith chromosome of a given population, where

i = 1, . . . , np. (This is defined as a sequence of strictly in-
creasing angles measured with respect to the depot, i.e., Xi =
{φi,1, φi,2, . . . , φi,ki}, where φi, j < φi, j+1, ∀ j = 1, . . . , ki − 1).

�g: The population (i.e., set of chromosomes) at the gth generation.
Pg: The corresponding set of solutions at the gth generation, g =

1, . . . , ng, derived from the set of chromosomes �g.
b fi, j: The bit fitness of the jth cluster of the ith chromosome.
NRi, j: The number of routes in cluster j of chromosome i.
(rl)i, j: The lth route of cluster j in chromosome i.
f : The fitness function.
NCij: The number of customers in sector j(j = 1, . . . , ki) of

chromosome i.
�i, j, j = 1, . . . , ki: The jth cluster in chromosome i.
q(j): The demand of the jth customer, j = 1, . . . , NC.
NR(i): The number of routes serviced by vehicle i, i = 1, . . . , NV.
NR: Number of routes within a solution.
SV RP: A VRP solution described as SV RP = {r1, . . . , rk, . . . , rNR},

where rk is the kth route.
vsi: A schedule of routes assigned to vehicle i described as vsi =

{ri,1, . . . , ri,k, . . . , ri,NR(i)}, where {ri,1, . . . , ri,k, . . . , ri,NR(i)} ⊆
SV RP.

J Math Model Algor (2007) 6:591–613 595

S: A VRPM solution described as followsS = {vs1, . . . , vsk, . . . ,

vsNV}.
VL(ri): The vehicle load required to service route i.
DT(vsi): The total driver time required to service schedule i.
DT(S): The total driver time required to service solution S.
�(vsi): The total driver time infeasibility for schedule i.
�(S): The total driver time infeasibility for solution S.
π(S): The maximum driver overtime for solution S.

The objective function is given as follows:

min {π(S)}
where π(S), which refers to the maximum driver overtime for solution S, is defined
as follows:

π(S) = max(0, max{DT(vsi) − T}i=1,...,NV) (1)

In the literature, the measure OT RT is used to describe the overtime requirement.
Computed using Eq. 2, OT RT provides a ratio of the driver allocated the most work
to T.

OT RT(S) = [max{DT(vsi)}i=1,...,NV]/T (2)

The relationship to π is given as follows and provides an alternative to Eq. 1.

π(S) =
{

(OT RT(S) − 1)T if OT RT(S) ≥ 1,

0 otherwise.

Note that OT RT(S) does not define the total amount of overtime present within
solution S but it provides the maximum (worst) overtime used in a given schedule.
In some circumstances it may be more practical to refer to the scheduled overtime
which is given by �(S), where �(S) = ∑NV

i=1 max(0, DT(vsi) − T). As an alternative
objective function, the scheduling cost for the VRPM is given in Eq. 3, where
factors φ and p are unit costs for regular driver time and driver overtime penalty
respectively.

C(S) =
NV∑
i=1

[φDT(vsi) + p � (vsi)] (3)

Note that when a solution S is allowed to use overtime, the legal overtime restriction
needs not be violated (say a maximum of two hours per driver per day).

2.3 Chromosome Design

If a circle, with its center the depot D, is traced upon the xy plane so that it
encompasses all customers, then it is apparent that each route or subset of routes
from a VRPM solution can be described by a sector. This observation is the germ for
the genetic approach we have adopted.

By partitioning the circle into sectors, a set of customer clusters is established
by assigning customers to the sector which they occupy. Provided routes can be

596 J Math Model Algor (2007) 6:591–613

Fig. 1 Circle partition
chromosome

x’

φ

y’

i,1

i,3

φ
i,2 φ

D

generated from each sector, an organic encoding or chromosome is defined by
describing the solutions underlying the circle partition. A partition can be described
as a sequence of strictly increasing angles measured with respect to the depot,
not necessarily 0. To simplify this process, for computational purposes, angles are
measured in integer degrees. Furthermore, to provide a unique description, integers
considered are those modulo 360. Figure 1 illustrates a chromosome representation
within the plane, where ki = 3.

Note that the coordinate system (x
′
, y

′
) has origin D such that (x

′
, y

′
, D) is a

translation of (x, y, 0). The chromosome design, unlike the one used by [22], does
not assume a sector sequence to start from a predefined position. For instance, the
chromosome population is restricted as φi,1 = 0 ∀i would not allow route formation
to cross the positive x′ axis. The removal of such a constraint can affect the solution
quality especially if customer density is large about the x

′
axis.

One may like to convert each angle measure to a binary form. This can be achieved
by transforming the parameter set [0, 359] to the parameter set generated from the
bit string of length l ∈ {1, 2, . . . , 8}. One of the difficulties we encounter is to find a
crossover operator which maintains a good schema. For this reason, we did not opt
for such a binary representation. Our representation is described in Section 3.4.

2.4 The Algorithm

The main steps of our GA are given in Fig. 2. In this subsection we provide a brief
description of the steps but the main explanations will be provided in the next section.

Step 1 consists of the generation of an initial population. Steps 2 and 3 are the
main stages of the recursive process where new chromosomes are generated and
evaluated. Step 4 is the algorithm stopping criterion related to the maximum number
of generations, ng. Although it is common to use an additional stopping criterion

J Math Model Algor (2007) 6:591–613 597

Fig. 2 The GA heuristic

based on the convergence of the current population, for simplicity the first criterion
is adopted here given that new chromosomes are injected into the search to provide
diversity. Step 5, which could be optional is a post optimizer. In this step, a subset of
unique solutions S ∈ Png is improved using some refinement modules.

This new non-binary chromosome representation for the VRPM provides more
flexibility than similar methods developed for other related routing problems. The
heuristic can be classified either as a hybrid GA, since domain specific information is
used to guide the search, or as an adaptation of Scatter Search, where new solutions
are obtained through combinations of specific solution elements, see Glover [7] for
details. One of our aims in this study is to see how such an evolutionary technique
such as GA works for this type of routing problems.

3 Explanation of the Main Steps of the Algorithm

In the following subsections we provide some explanation for each of the steps.

3.1 Initial Population (Step 1)

A chromosome, which describes a circle partition, provides a basis for clustering
and eventually route generation. A consequence of such a structure is the loss of
uniqueness in terms of a corresponding solution. In other words, each sector cluster
could generate many different routes and therefore each chromosome can represent
many different solutions. This feature does present a weakness as it is difficult to
use an existing solution or population of solutions obtained by another heuristic.
Given a VRPM solution S, if we examine the routes and attempt to formulate a
circle partition X which best describes S, then the solution evaluation �−1(X) = S

′

is not necessarily equal to S. Nevertheless, in most cases the quality should be similar,

598 J Math Model Algor (2007) 6:591–613

Fig. 3 Generation of the initial population

although this is not guaranteed. We chose to make use of a random initial population
to avoid the problem of choosing the best partition to match a solution. This strategy
also allows the heuristic to be independent and therefore enables it to produce, from
such a starting point, a proposed solution to the VRPM. The algorithm developed
to generate the initial chromosome population is given in Fig. 3. In this scheme two
random parameter sets are generated; one to prescribe the number of sectors per
chromosome ki and the other to define each partition boundary φi, j. The bounds
used to prescribe ki are based on the maximum possible number of routes which a
solution could possibly require. This could be found by experience or through some
runs of a simple heuristic such as the Saving Method of Clarke and Wright [4].

3.2 Primary Evaluation Process (Steps 1, 3)

This section describes the evaluation process associated with a given population. It
provides not only an associated population of solutions but, more importantly, a set
of fitness values which can be used to measure the quality of each chromosome. Note
that this process is significantly different for subsequent generations due to the use of
data structure which we developed (see Subsection 3.4.5 for details). Figure 4 outlines
the evaluation process.

1: Construct clusters using the process as described in subsection 3.2.1.

2: Generate Cluster Routes using the saving heuristic.

3: Allocate Routes to Vehicles using the bin-packing transformation which is
briefly described in subsection 3.2.1.

4: Compute the fitness value using the transformation of function values, as
defined in subsection 3.2.2.

Fig. 4 Outline of the chromosome evaluation process

J Math Model Algor (2007) 6:591–613 599

3.2.1 Clustering and Route Generation

Given a chromosome Xi a corresponding solution Si is evaluated through a heuristic
process known as cluster first-route second. The customers are clustered by assigning
each one to the sector it occupies. For a given chromosome Xi = {φi,1, φi,2, . . . , φi,ki},
the corresponding sectors are defined as follows:

(φi, j, φi, j+1] j = 1, . . . , ki − 1

[0, φi,1] ∪ (φi,ki , 359] j = ki

This enables the assignment of boundary customers to be well defined, since the
chromosome angle sequences do not specify which sector a boundary customer
belongs to from the two choices available. Using this definition, the jth cluster in
chromosome i is defined by �i, j, j = 1, . . . , ki. This is formed using the criterion given
in expression (4), where m is a customer (i.e., m ∈ {1, . . . , NC}).

�i, j =
{

m : φi, j−1 < θm ≤ φi, j if 2 ≤ j ≤ ki,

m : 0 ≤ θm ≤ φi,1 or φi,ki < θm ≤ 359 otherwise.
(4)

In each cluster the Saving Heuristic of Clarke and Wright [4] is used to solve
a smaller VRP problem (SV RP)i, j, where (NC)i, j = |�i, j|. The union of routes
generated from each cluster can then be used within the bin-packing heuristic, as
described in Petch and Salhi [13], to provide the evaluated chromosome solution Si.

Bin Packing Transformations – This bin packing heuristic is based on the best fit
decreasing algorithm as used by Taillard et al. [21]. The idea is to assign routes
to vehicles according to minimal residual driver time. Improved rescheduling is
obtained by the reassignment of routes to vehicles. Refinement procedures that
reallocate customers between routes are not part of this simple transformation but
are an essential ingredient of the post optimiser which is used at the termination of
the GA (see Subsection 3.5).

3.2.2 Fitness Value

We adopt a two-stage objective function as follows: a primary objective function is
first used to find a solution which has minimum overtime requirement. If this solution
involves no overtime, a secondary objective that improves the scheduling cost (driver
time) is introduced. At this stage, only improving solutions which maintain feasibility,
i.e. require no overtime, are considered. We address this problem by introducing
a new function, given as follows, which integrates both elements of the two stage
objective.

fi = ξ DT(Si) + ηπ(Si) (5)

Each element of this function, DT and π , is weighted with a priority given to the
latter. We set ξ = 1 and η = 100, although the prescription is arbitrary provided that
π is given more priority within the objective. These two values also serve as a way of
approximately normalizing these two objective functions.

600 J Math Model Algor (2007) 6:591–613

To convert the function value to a standard fitness value we make use of the
following transformation:

Fi = [(ε(M − fi))
λ] ∀i

This fitness function enables the use of the roulette wheel selection process as
described in Subsection 3.4.1. The constant M can be prescribed arbitrarily provided
M > Max{ fi, i = 1, . . . , np} . A typical method is to set M at each generation
according to the value of the worst chromosome within the population. We chose
to simplify the process and set the value of M from the initial population. To allow
for the presence of solution deterioration in subsequent generations, we also allowed
for a large deterioration in the expression of M as

M = 3 × Max{ fi, i = 1, . . . , np}

As M − f ∗ can be too large, for computational reasons, we scaled down such
values using ε as the scaling factor. In our experiments a value of 1/1000 was
small enough to produce values of the order of 1–100. To discriminate between the
chromosomes especially as their fitness values can be rather close, we amplified such
values using a power factor, say λ. We set λ = 2 as this resolves our problem without
making the Fi values excessively large.

3.3 Chromosome Injection and Cloning (Step 2a)

This section describes two simple mechanisms employed within the GA heuristic in
order to maintain both solution quality and population diversity.

Other notations –

igen: The current generation.
nI : The number of chromosomes to inject into the population.
nCI : The number of generations when the injection of the new chromosomes

takes place.
nc: The number of chromosomes clones used.
n finish: The number of generations within the injection mechanism.
l1, l2: The number of good chromosomes, and the number of good and

mediocre (reasonable) chromosomes when both are put together
respectively.

ng, nm, nb : The number of chromosomes generated from the good, mediocre and
bad sections of the current population.

npc is the number of partner choices (say npc = 0.10np).
� ⊆ �g represents a set of partners (i.e., |�| = npc).

Figure 5 provides a formulation of such mechanisms within the context of the
current generation igen. Note that each mechanism requires the prescription of a set
of parameters. The particular values chosen are given in the computational results
section.

J Math Model Algor (2007) 6:591–613 601

Fig. 5 Injection and cloning at generation igen

Composition of a New Chromosome

Injection The first mechanism, which we call ‘injection,’ is primarily used to diver-
sify the search process. Random chromosomes are injected into the new generation
at regular generation intervals, nCI , before the GA reaches a prescribed number of
generations, n finish < ng. This stopping point was introduced to allow an element of
standard convergence. Note that the time of injection and the number of injected
chromosomes could be made dynamic dependent on the solution quality of the
population at a given generation. For ease of implementation we adopted this simple
form using regular injection.

Cloning The second mechanism, which we call ‘cloning,’ is the process of copying
chromosomes from the current population, igen, into the new generation. Note that
when injection is used, the number of chromosome clones nc is reduced. Instead of
selecting the best chromosomes, the cloning mechanism is based upon maintaining
a variety of quality chromosomes. The chromosomes are ranked according to fitness
and then partitioned into three groups [1, l1], [l1 + 1, l2] and [l2 + 1, np]. We then

602 J Math Model Algor (2007) 6:591–613

Fig. 6 New generation
composition Λ

Bad

Good

Reasonable
New

Λ
Present Generation New Generation

n c

n p

l1

l2

n I

to be injected every
Random chromosomes

GenerationsnCI

n
g

n
m

n
b

i gen
i

gen+1

select a proportion of chromosomes within each group, say ng, nm and nb respec-
tively. For simplicity we set l1 = (1/3)np and l2 = (2/3)np. The chosen chromosomes
are selected randomly as indicated in steps 5, 7 and 9 of Fig. 5. Note that the most
superior chromosome is cloned systematically to retain the best solution throughout
the search. Figure 6 illustrates the composition of the new chromosome set �i+1

indicating the parameters in relation to both chromosome cloning and injection.
The values of these proportions are based upon a limited preliminary experimen-

tation and will be given in the computational result section.

3.4 Genetic Engineering (Step 2b)

This section describes the process developed to generate offspring or new chromo-
somes which form the bulk of the composition of a new generation. The process, re-
ferred to as ‘Genetic Engineering,’ consists of a crossover type operator, Extraction,
a mutation based operator Mutate and a corresponding decision framework used to
direct the operations. This framework enables the propagation operators to construct
offspring which maintain the superior genetic code from within one of the parents.

3.4.1 Parent Selection (Parent Suitability)

Within a typical GA a chromosome pair, say Xi, X j ∈ �g where �g is the chro-
mosome population at generation g, is needed in order to generate a new chro-
mosome. Moreover, these parents are selected using a random process which is
usually weighted according to fitness. A problem with using such a mechanism, in
this context, is the formation of a chromosome pair without concern for genetic

J Math Model Algor (2007) 6:591–613 603

suitability. We address this problem by allowing a subset of partners, � ⊆ �g, to
be selected so that a more attractive mate can be found for a given potential parent
Xi. The definition of what is deemed attractive is given in Subsection 3.4.4. The key
selection mechanism consists of the commonly used roulette wheel process.

The partner set � is constructed in such a way that there is no chromosome
duplication. Moreover, |�| = npc, i.e. the number of partner choices is restricted to
a subset of the population size. This value, which is considered to be a proportion of
np, can be arbitrarily chosen but needs to be relatively small, say 10% of np.

3.4.2 Operator Extraction

The operator Extraction is the primary operator used to generate a new offspring.
Given two chromosomes Xi and X j ∈ � defined by the decision framework (see
Subsection 3.4.4 for details), Extraction performs a variant of the two-point
crossover. Unlike the usual mechanism, where genetic material is exchanged, Extrac-
tion does not exchange but replaces. In other words, a single offspring is produced
instead of two. Furthermore, the replacement genetic material may be of different
length and position within the mate chromosome X j. Extraction is used to add a
series of sectors, from a chosen partner X j, into the chromosome Xi by overwriting
the corresponding sectors. In other words, a sequence of angles is transplanted in
the angle composition of chromosome Xi. Any angles which fall within the sequence
range are removed.

Consider the following two examples where the new offspring X
′

is derived from
parent Xi and its partner X j. Note that each of the parents have their corresponding
crossover points marked by [or] and that they are not necessarily at the same points.

Example 1 Let parent 1 be Xi = {[45, 70, 100], 150, 300} and its partner X j =
{[20, 110], 160, 210, 290, 330}. The offspring is then X

′ = {20, 110, 150, 300}. The first
four sectors delimited by three angles of Xi namely 45,70 and 100 are (300-45);(45-
70);(70-100) and (100-150) have been changed to three new sectors (300-20);(20-
110) and (110-150) by the introduction of the two corresponding angles from X j

namely 20 and 110. Here, the sector (150,300) has not been affected. Note that the
chromosome Xi has 5 clusters (45, 70] ∪ (70, 100] ∪ (100, 150] ∪ (150, 300] ∪ (300, 45]
whereas its offspring X ′ has only 4 clusters defined by (20, 110] ∪ (110, 150] ∪
(150, 300] ∪ (300, 20].

Example 2 Consider the same Xi and X j as in example 1 but with a crossover point
at angle 45 and 300 for the former and 110 and 290 for the latter. Let parent 1 be
Xi = {45], 70, 100, 150, [300} and its partner X j = {20, 110], 160, 210, [290, 330}. For
instance, in this case the removal of the sector (300, 45] followed by the addition of
sectors (20, 110] ∪ (290, 330] produces a new offspring X

′ = {20, 110, 150, 290, 330}

3.4.3 Operator Mutate

Mutate is the mutation type operator used within the GA. As with the mutation
operators developed for the binary representation, a mutation rate is used to test
each bit for mutation. In our case, a bit string φi, j represents an angle and therefore
a bit could technically mutate in such a way that φ

′
j ∈ [0, 359]. We restrict this range

604 J Math Model Algor (2007) 6:591–613

Fig. 7 Mutate implementation
of chromosome i with ki
clusters

to the bounds of the local sectors. This was done so that the sequence of angles is
not distorted and sector length for the chromosome considered for mutation is also
maintained. Figure 7 outlines the implementation of the operator Mutate. Note that
the mutation probability ξ is defined uniquely for the chromosome considered for
mutation, dependent upon the number of bits or sectors.

3.4.4 Decision Framework (Chromosomes Selection)

The decision framework is the name given to the process of establishing how
and if an operator, particularly Extraction, is implemented. Whereas traditional
crossover type operators are initiated without domain specific information, the
decision framework does allow such information into the picture. The motivation for
developing this framework is the reluctance to use a random crossover mechanism
in the traditional sense. Although such operators are extremely powerful, their use
within this particular chromosome design is inappropriate. This is because vital
sections of genetic code, i.e. sector sequences, can be corrupted once a random
crossover is performed.

Bit Fitness The decision framework makes use of a bit measure. The concept of
bit measure can then identify sectors or sequences of sectors that are both good and
bad. This can be achieved in a number of ways and here we present a measure which
relates to vehicle under utilization, see expression (6). The bit value representing
a given sector, say j, in a given chromosome, say i, refers to the sum of the empty
vehicle capacity for each route, say l, generated from that sector.

b fi, j =
{∑(NR)i, j

l=1 [Q − VL((rl)i, j)] if NCi, j > 0,

0 otherwise.
(6)

This measure is important since it identifies sectors producing routes which are
not efficient. If a route is not efficient, it could be that there is only a few customers

J Math Model Algor (2007) 6:591–613 605

within the sector and therefore a reasonable strategy would be to increase the sector
size. Note that in the case where a sector produces more than one route another
possible solution would be to reduce the sector size. For simplicity we chose to limit
the choice to that of sector expansion. Another possible bit fitness measure could be
related to the overtime restriction π . This can be defined by the driver allocated the
most work.

Once the parent selection process had been carried out, we have the parent
chromosome Xi and a subset of potential mate chromosomes �, such that Xi �= X j ∈
�. We use a sector replacement based on the bit fitness as defined in Eq. 6. Figure 8
outlines the decision framework for any such replacement with respect to the parent
Xi and mate X j ∈ �. The framework uses probability acceptance pe and pm for the
operators Extraction and Mutate respectively.

Initially, the worst sector in terms of vehicle load under utilization, i.e. maximum
chromosome bit measure, is identified for replacement. Note that the prescription of

Fig. 8 Decision framework

606 J Math Model Algor (2007) 6:591–613

the associated sector boundaries, φu and φl , takes into account the removal of the
sector which crosses the positive x

′
axis.

In Fig. 8, steps 3, 4 and 5 determine which sequence of sectors from which
chromosome mate X j is a candidate for replacement. For each chromosome X j,
the associated sector sequence, such that the removed sector is expanded from both
sides, is identified. The algorithm then simply selects the most improved replacement
in terms of bit measure. Note that this process can yield the removal of more than
one sector, since the new sector could violate local sectors.

3.4.5 Enhancing Efficiency using Two Data Structures

Once a new offspring chromosome has been constructed, using the operator Extrac-
tion, the next step is to derive the associated solution and to measure its fitness. This
derivation makes use of two independent data structures to provide a more efficient
implementation of the evaluation process outlined in Fig. 4.

(1) The first consists of data storage with respect to the routes developed within
each sector of the chromosome. This information is extremely important since
many sectors, and therefore routes generated, will remain unchanged from
those of its parents. Since each sector cluster can be viewed as an independent
VRP, we can adapt the storage data structure, described in Petch and Salhi [13],
and in Osman and Salhi [11].

(2) The second data structure is used to assist the cluster process. When a series
of sectors are transplanted into a chromosome, two new sectors are formed.
Figure 9 illustrates that these sectors are local to the sector series insertion.

Fig. 9 Localized new sectors

D x’

Inserted Sector

y’

J Math Model Algor (2007) 6:591–613 607

A simple data structure is developed to examine whether all customers fall within
a given sector �i, j or not. The structure consists of a matrix n,o which holds lists of
customers m ∈ {1, . . . , NC} which are characterized by their integer angle θm. If ρn is
the cardinality of the list for angle n, n = 0, . . . , 359, then if ρn > 0 then o = 1, . . . , ρn.
To access the customers with a sector defined by, say, �i, j = θm : φi, j < θm ≤ φi, j+1

only values ranging from m = φi, j + 1 to φi, j+1 are considered. Since the process
of clustering is undergone several times, the advantage of such a data structure
becomes more and more significant. Using these data structures, route allocation to
vehicles and fitness value computation are achieved using steps 3 and 4 of the primary
evaluation process as outlined in Fig. 4.

3.5 Improvement Modules (Step 5)

We make use of a set of refinement modules developed by Petch and Salhi [13] to
provide post optimisation. This is a composite heuristic that consists of five modules
which are briefly given below.

Meiosis – divides a route to generate two new tours, similar to route split in Salhi
and Rand [20].

VRP-partition – consists of a set of VRP refinement modules which are used to
improve the particular assignment of routes for a given driver based on bin-packing
ideas.

Donate, Exchange and Donate–exchange – these three refinements consist of a
variety of customer reallocation transformations. These include the idea of inserting
customers from one route to another, swapping customers between routes, among
others. In addition, new routes can also be originally constructed by providing
dummy or empty routes for each driver.

4 Computational Experience

The GA heuristic was tested using the adapted VRP data sets taken from
Christofides et al. [3] namely CMT1 to CMT5, and CMT11 and CMT12 and those
by Fisher [5] such as F71 and F134. The number of instances generated from
each problem is given in Table 1 under the heading ‘NC,’ totalling 104 individual

Table 1 The number of infeasible solutions found by the proposed GA and the other benchmarks

BP NC # instances GA T LG BM PS OV

CMT1 50 8 3 3 2 4 2
CMT2 75 14 6 3 2 2 1
CMT3 100 12 4 4 1 2 0
CMT4 150 16 8 4 2 3 1
CMT5 199 20 11 1 2 6 0
CMT11 120 10 5 1 1 2 0
CMT12 100 12 2 4 3 1 1
F71 71 6 3 3 2 2 1
F134 134 6 0 0 0 0 0
Overall 104 42 23 15 22 6

608 J Math Model Algor (2007) 6:591–613

instances. The associated algorithms were coded in Fortran 90 and executed on a
Ultra Enterprise 450 dual processor at 300 MHz. The performance of the proposed
heuristic is assessed empirically by a comparison to the benchmarks found by Taillard
et al. [21], Brandao and Mercer [2], Petch and Salhi [13], and Olivera and Viera [10].
These are referred as (T LG), (BM), (PS) and (OV) respectively. The following
parameter prescriptions were set to generate computational results. These can be
categorized according to their association as follows:

– General type parameters: np = 100, ng = 100 and n finish = (0.8)ng

– Cloning: nc = (0.2)np, ng = (0.5)nc, nm = (0.3)nc and nb = (0.2)nc

– Injection: nI = (0.5)nc, nCI = (0.1)ng

– Genetic Engineering: pe = 0.8, pm = 0.2 and npc = (0.2)np

The values chosen were based on a limited experimentation and therefore more
suitable choices may be possible.

Figure 10 illustrates a typical convergence behaviour observed for the GA. The
graph, which is based on the base problem CMT5 where NC = 200, measures the
best solution, in terms of OT R, found thus far at each generation 1, . . . , ng. This is
accompanied by the average OT R found within the given generation population set
�. Note that despite the use of chromosome injection, the average solution quality
has a similar path as the most superior member of the population. This behaviour
is evidence of population convergence. It can be observed that although we used
100 generations, in most cases a good solution is found before 50 generations have
elapsed and hence this information could be used to cut down on the number of

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

0 20 40 60 80 100

O
T
R

Generation

Best Solution
Average Solution

Fig. 10 Typical behaviour of the GA (use of CMT5, where T = 678)

J Math Model Algor (2007) 6:591–613 609

Table 2 Average CPU time (s) of the proposed GA and the other benchmarks

BP NC # instances GA T LG BM PS OV+

CMT1 50 8 15.89 300 150 108 16
CMT2 75 14 30.01 420 300 330 29
CMT3 100 12 70.02 1,440 600 828 27
CMT4 150 16 206.42 3,060 1,500 984 68
CMT5 199 20 483.56 3,960 3,750 2,454 125
CMT11 120 10 1,131.61 2,700 1,500 2,430 28
CMT12 100 12 45.31 1,380 600 120 27
F71 71 6 93.31 1,560 150 258 13
F134 134 6 584.20 4,500 4,800 810 31

+Refers to the time of the best run only.

generations if necessary. Such a reduction in computing time could obviously be
used to improve further the results by experimenting with other parameter values
or simply by applying more intensive post optimisation.

When comparing against the benchmarks we do so with respect to overtime
restriction only as this is the measure which is recorded in the literature. The average
overtime restriction π for the GA is 1.52% compared to 0.86, 0.53, 0.72 and 0.09%
for benchmarks T LG, BM, PS and OV respectively. Moreover, if we consider the
number of instances tested where no overtime was required, the GA produces 61%
compared to 78% from T LG, 86% from BM, 78% from PS and 94% from OV.
The number of infeasible solutions reported by each of the five methods is given
in Table 1.

Though in general, the GA does not perform as well as the benchmarks, it does
produce several equal quality results in certain base problems. In addition, when the
GA produces a solution requiring overtime the corresponding overtime restriction
is usually relatively small, approximately less than 4% of T. This small margin could
easily be reversed if more intensive refinements are used. Note also that in this paper
we also report, see Table 3 in the Appendix, the detailed results for each instance
whether the OTR value is smaller or larger than 1. In our view, such information is
useful to other researchers who like to use these results as benchmarks since in the
published literature only those instances whose OTR value is larger than 1 are given
but not the others (the previous authors considered solutions with an OTR value less
than 1 to be feasible and hence did not report them).

The results with respect to CPU time, measured in seconds, are given in Table 2.
The results show that the GA is relatively quicker than the first three benchmarks

except the OV heuristic which seems to be much faster but the OV reported time is
based on the best run only and not over all the five runs (in other words such times
need to be approximated by a factor of 5). However, such a comparison may not be
strictly informative due to the different computer power of the machines used. It is
also worth noting that the efficiency of the implementation of this GA is partially due
to the important data structure designed in this work for generating offsprings. The
use of the post-optimisation also contributed to improving the solutions though not
significantly, see Petch [12] for more details. At the time of the revision of this paper
we were informed about the recent work of Olivera and Viera [10] in which newer
results were found. We revised this paper accordingly.

610 J Math Model Algor (2007) 6:591–613

5 Conclusion and Possible Further Research

In this work we examine the use of a population-based heuristic such as GA to
solve the VRP with multiple trips. In our view this is the first attempt that uses an
evolutionary type method contrarily of the other which are mainly either tabu search-
based or multi-level type heuristics. Using the test problems, we found that the GA
generates a significant number of reasonable quality solutions in a short time period
when compared to most benchmarks from the literature. Although, on average, the
present implementation of our GA does not outperform the best benchmarks, the
proposed heuristic produced reasonably good results in most instances. In addition,
this GA has strong potential for future development, both in terms of the creation of
new chromosomes and the coding structure.

In this study, we introduced a number of parameters which, in some ways,
make the results sensitive to changes. However, it will be interesting to understand
the practical meaning of each of these parameters and assign appropriate values
accordingly. In other words, the values of some of the parameters would be set a
priory whereas the values for the remaining ones could be obtained dynamically.
It will also be interesting to assess the effect of each of the modules and especially
the impact of the post optimisation by conducting additional experiments. In the
proposed GA implementation, we inject the new chromosomes randomly and in
a periodic manner. An investigation to determine dynamically the time for using
the injection process as well as the number, type (random, high quality, etc.) and
frequency could be worth pursuing. It may also be useful to explore other ways of
clustering rather than limiting the search to the sectors as proposed here. This can be
critical as the routes may not necessarily belong to well defined and restricted sectors
as attempted in this study.

Acknowledgements The authors would like to thank the referees for their constructive comments
that improved both the content as well as the presentation of the paper.

Appendix

Detailed Computational Results

The following series of Tables provides a comprehensive set of results of the OTR
for the GA heuristic. The Table columns are described as follows:

BP: Base problem tested taken from Christofides et al. [3] and
Fisher [5].

T: The maximum regular travel time for a vehicle.
NC: The number of customers.
NV: The fleet size required.
C: Scheduling cost including overtime.
OT R: The ratio of the driver allocated the most work to T.
GA, T LG, PS and OV refer to the present GA heuristic, the heuristic by Taillard

et al. [21], the heuristic by Brandao and Mercer [2], the
heuristic by Petch and Salhi [13] and the heuristic by
Olivera and Viera [10] respectively.

J Math Model Algor (2007) 6:591–613 611

Table 3 The OTR Results of the GA and other benchmarks

BP T NV C GA T LG BM PS OV

CMT1 551 1 546.28 0.991 ≤ 1 ≤ 1 ≤ 1 ≤ 1
(NC = 50) 275 2 552.76 1.003 ≤ 1 ≤ 1 1.004 ≤ 1

184 3 586.32 1.030 1.115 1.041 1.026 1.024
138 4 632.54 1.056 1.027 1.027 1.085 1.027
577 1 547.14 0.948 ≤ 1 ≤ 1 ≤ 1 ≤ 1
289 2 549.42 0.955 ≤ 1 ≤ 1 ≤ 1 ≤ 1
192 3 560.26 0.989 1.050 ≤ 1 ≤ 1 ≤ 1
144 4 566.86 0.996 ≤ 1 ≤ 1 1.031 ≤ 1

CMT2 877 1 869.06 0.991 ≤ 1 ≤ 1 ≤ 1 ≤ 1
(NC = 75) 439 2 865.48 0.987 ≤ 1 ≤ 1 ≤ 1 ≤ 1

292 3 877.07 1.003 ≤ 1 ≤ 1 ≤ 1 ≤ 1
219 4 856.77 0.991 ≤ 1 ≤ 1 ≤ 1 ≤ 1
175 5 904.98 1.022 ≤ 1 ≤ 1 ≤ 1 ≤ 1
146 6 1,021.29 1.068 1.032 1.031 1.019 ≤ 1
125 7 1,056.34 1.102 1.073 1.088 1.064 1.009
919 1 869.73 0.946 ≤ 1 ≤ 1 ≤ 1 ≤ 1
459 2 881.50 0.963 ≤ 1 ≤ 1 ≤ 1 ≤ 1
306 3 869.11 0.968 ≤ 1 ≤ 1 ≤ 1 ≤ 1
230 4 880.90 0.972 ≤ 1 ≤ 1 ≤ 1 ≤ 1
184 5 883.29 0.997 ≤ 1 ≤ 1 ≤ 1 ≤ 1
153 6 914.25 1.024 ≤ 1 ≤ 1 ≤ 1 ≤ 1
131 7 966.43 1.036 1.023 ≤ 1 ≤ 1 ≤ 1

CMT3 867 1 845.33 0.975 ≤ 1 ≤ 1 ≤ 1 ≤ 1
(NC = 100) 434 2 850.65 0.987 ≤ 1 ≤ 1 ≤ 1 ≤ 1

289 3 872.73 1.006 ≤ 1 ≤ 1 ≤ 1 ≤ 1
217 4 874.80 1.011 ≤ 1 ≤ 1 ≤ 1 ≤ 1
173 5 964.79 1.056 1.062 ≤ 1 1.52 ≤ 1
145 6 927.87 1.050 1.032 1.003 1.001 ≤ 1
909 1 845.33 0.930 ≤ 1 ≤ 1 ≤ 1 ≤ 1
454 2 872.11 0.962 ≤ 1 ≤ 1 ≤ 1 ≤ 1
303 3 869.48 0.966 ≤ 1 ≤ 1 ≤ 1 ≤ 1
227 4 878.00 0.982 ≤ 1 ≤ 1 ≤ 1 ≤ 1
182 5 901.30 0.999 1.010 ≤ 1 ≤ 1 ≤ 1
151 6 861.76 0.998 1.012 ≤ 1 ≤ 1 ≤ 1

CMT4 1,080 1 1,064.06 0.985 ≤ 1 ≤ 1 ≤ 1 ≤ 1
(NC = 150) 540 2 1,065.86 0.987 ≤ 1 ≤ 1 ≤ 1 ≤ 1

360 3 1,103.50 1.009 ≤ 1 ≤ 1 ≤ 1 ≤ 1
270 4 1,149.41 1.031 ≤ 1 ≤ 1 ≤ 1 ≤ 1
216 5 1,216.00 1.054 ≤ 1 ≤ 1 ≤ 1 ≤ 1
180 6 1,179.41 1.036 ≤ 1 ≤ 1 ≤ 1 ≤ 1
154 7 1,312.08 1.090 1.033 1.071 1.072 1.002
134 8 1,284.01 1.100 1.075 1.031 1.058 ≤ 1

1,131 1 1,088.93 0.963 ≤ 1 ≤ 1 ≤ 1 ≤ 1
566 2 1,070.50 0.954 ≤ 1 ≤ 1 ≤ 1 ≤ 1
377 3 1,077.24 0.969 ≤ 1 ≤ 1 ≤ 1 ≤ 1
283 4 1,119.05 0.995 ≤ 1 ≤ 1 ≤ 1 ≤ 1
226 5 1,085.38 0.972 ≤ 1 ≤ 1 ≤ 1 ≤ 1
189 6 1,112.03 0.985 ≤ 1 ≤ 1 ≤ 1 ≤ 1
162 7 1,211.54 1.032 1.010 ≤ 1 1.005 ≤ 1

612 J Math Model Algor (2007) 6:591–613

Table 3 (continued)

BP T NV C GA T LG BM PS OV

141 8 1,332.05 1.076 1.029 ≤ 1 ≤ 1 ≤ 1
CMT5 1,356 1 1,347.34 0.994 ≤ 1 ≤ 1 ≤ 1 ≤ 1
(NC = 199) 678 2 1,346.63 0.994 ≤ 1 ≤ 1 ≤ 1 ≤ 1

452 3 1,418.62 1.006 ≤ 1 ≤ 1 ≤ 1 ≤ 1
339 4 1,451.94 1.029 ≤ 1 ≤ 1 ≤ 1 ≤ 1
271 5 1,460.75 1.030 ≤ 1 ≤ 1 1.007 ≤ 1
226 6 1,476.94 1.036 ≤ 1 ≤ 1 ≤ 1 ≤ 1
194 7 1,427.52 1.023 ≤ 1 ≤ 1 1.008 ≤ 1
170 8 1,465.44 1.038 ≤ 1 ≤ 1 1.015 ≤ 1
151 9 1,477.54 1.047 ≤ 1 1.056 1.024 ≤ 1
136 10 1,602.40 1.076 1.024 1.051 1.064 ≤ 1

1, 421 1 1,340.44 0.943 ≤ 1 ≤ 1 ≤ 1 ≤ 1
710 2 1,399.65 0.987 ≤ 1 ≤ 1 ≤ 1 ≤ 1
474 3 1,409.37 0.993 ≤ 1 ≤ 1 ≤ 1 ≤ 1
355 4 1,397.60 0.987 ≤ 1 ≤ 1 ≤ 1 ≤ 1
284 5 1,411.19 0.996 ≤ 1 ≤ 1 ≤ 1 ≤ 1
237 6 1,377.07 0.981 ≤ 1 ≤ 1 ≤ 1 ≤ 1
203 7 1,394.73 0.999 ≤ 1 ≤ 1 ≤ 1 ≤ 1
178 8 1,416.27 1.001 ≤ 1 ≤ 1 ≤ 1 ≤ 1
158 9 1,440.64 1.013 ≤ 1 ≤ 1 ≤ 1 ≤ 1
142 10 1,506.95 1.034 ≤ 1 ≤ 1 1.018 ≤ 1

CMT11 1,094 1 1,088.26 0.995 ≤ 1 ≤ 1 ≤ 1 ≤ 1
(NC = 120) 547 2 1,139.70 1.014 ≤ 1 ≤ 1 ≤ 1 ≤ 1

365 3 1,117.96 1.009 ≤ 1 ≤ 1 ≤ 1 ≤ 1
274 4 1,206.41 1.052 1.020 1.011 1.052 ≤ 1
219 5 1,670.45 1.202 ≤ 1 ≤ 1 1.037 ≤ 1

1,146 1 1,088.26 0.950 ≤ 1 ≤ 1 ≤ 1 ≤ 1
573 2 1,110.10 0.975 ≤ 1 ≤ 1 ≤ 1 ≤ 1
382 3 1,088.56 0.973 ≤ 1 ≤ 1 ≤ 1 ≤ 1
287 4 1,141.62 1.001 ≤ 1 ≤ 1 ≤ 1 ≤ 1
229 5 1,092.95 0.992 ≤ 1 ≤ 1 ≤ 1 ≤ 1

CMT12 861 1 819.97 0.952 ≤ 1 ≤ 1 ≤ 1 ≤ 1
(NC = 100) 430 2 821.33 0.956 ≤ 1 ≤ 1 ≤ 1 ≤ 1

287 3 826.98 0.977 ≤ 1 ≤ 1 ≤ 1 ≤ 1
215 4 824.57 0.991 ≤ 1 1.012 ≤ 1 ≤ 1
172 5 869.45 1.015 1.050 1.036 ≤ 1 ≤ 1
143 6 898.88 1.029 1.064 1.072 1.029 1.014
902 1 819.97 0.909 ≤ 1 ≤ 1 ≤ 1 ≤ 1
451 2 829.54 0.936 ≤ 1 ≤ 1 ≤ 1 ≤ 1
301 3 851.16 0.956 ≤ 1 ≤ 1 ≤ 1 ≤ 1
225 4 821.53 0.958 ≤ 1 ≤ 1 ≤ 1 ≤ 1
180 5 833.85 0.984 1.003 ≤ 1 ≤ 1 ≤ 1
150 6 855.36 0.982 1.014 ≤ 1 ≤ 1 ≤ 1

F71 254 1 254.22 1.000 ≤ 1 ≤ 1 ≤ 1 ≤ 1
(NC = 71) 127 2 266.13 1.020 1.031 1.011 1.020 ≤ 1

85 3 266.85 1.020 1.075 1.011 1.020 1.020
266 1 254.07 0.955 ≤ 1 ≤ 1 ≤ 1 ≤ 1
133 2 254.07 0.979 ≤ 1 ≤ 1 ≤ 1 ≤ 1
89 3 256.53 0.985 1.027 ≤ 1 ≤ 1 ≤ 1

J Math Model Algor (2007) 6:591–613 613

Table 3 (continued)

BP T NV C GA T LG BM PS OV

F134 1, 221 1 1,190.21 0.975 ≤ 1 ≤ 1 ≤ 1 ≤ 1
(NC = 134) 611 2 1,194.24 0.990 ≤ 1 ≤ 1 ≤ 1 ≤ 1

407 3 1,199.86 0.990 ≤ 1 ≤ 1 ≤ 1 ≤ 1
1, 279 1 1,183.00 0.925 ≤ 1 ≤ 1 ≤ 1 ≤ 1

640 2 1,199.64 0.940 ≤ 1 ≤ 1 ≤ 1 ≤ 1
426 3 1,215.43 0.962 ≤ 1 ≤ 1 ≤ 1 ≤ 1

References

1. Brandao, J., Mercer, A.: A tabu search algorithm for the multi-trip vehicle routing and scheduling
problem. Eur. J. Oper. Res. 100, 180–191 (1997)

2. Brandao, J., Mercer, A.: The multi-trip vehicle routing problem. J. Oper. Res. Soc. 49, 799–805
(1998)

3. Christofides, N., Mingozzi, A., Toth, P.: The vehicle routing problem. In: Combinatorial Opti-
mization, pp. 313–338. Wiley, Chichester (1979)

4. Clarke, G., Wright, J.: Scheduling of vehicles for a central depot to a number of delivery points.
Oper. Res. 12, 568–581 (1964)

5. Fisher, M.: Optimal solution of vehicle routing problems using minimum k-trees. Oper. Res.
42(4), 626–646 (1994)

6. Fleischmann, B.: The vehicle routing problem with multiple use of vehicles. Working paper,
Fachbereich Wirschaftswissenschaften, Universitat Hamburg (1990)

7. Glover, F.: A template for scatter search and path relinking. In: Artificial Evolution. Lecture
Notes in Computer Science, pp. 13–54. Springer, Berlin Heidelberg New York (1998)

8. Golden, B., Laporte, G., Taillard, E.: An adaptive memory heuristic for a class of vehicle routing
problems with minmax objective. Comput. Oper. Res. 24, 445–452 (1997)

9. Martello, S., Toth, P.: Knapsack Problems. Wiley, Chichester (1990)
10. Olivera, A., Viera, O.: Adaptive memory progarmming for the vehicle routing problem with

multiple trips. Comput. Oper. Res. 34, 28–47 (2007)
11. Osman, I., Salhi, S.: Local search strategies for the mix fleet routing problem. In: Rayward-Smith,

V.J., et al. (eds.) Modern Heuristic Search Methods, chap. 8, pp. 131–154. Wiley, Chichester
(1996)

12. Petch, R.: Constructive and population based heuristics for the vehicle routing problem with
multiple trips. Ph.D. thesis. University of Birmingham, UK (2001)

13. Petch, R., Salhi, S.: A multi-phase constructive heuristic for the vehicle routing problem with
multiple trips. Discrete Appl. Math. 133, 69–92 (2004)

14. Potvin, J.: Genetic algorithms for the traveling salesman problem. Ann. Oper. Res. 63, 339–370
(1996)

15. Reeves, C. (ed.): Modern Heuristic Techniques for Combinatorial Problems. Blackwell, Oxford,
UK (1995)

16. Rochat, Y., Taillard, E.: Probabilistic diversification and intensification in local search for vehicle
routing. Heuristics 1, 147–167 (1995)

17. Salhi, S.: The integration of routing into the location-allocation and vehicle composition prob-
lems. Ph.D. thesis, University of Lancaster, pp. 198–208 (1987)

18. Salhi, S.: Heuristic search methods. In: Marcoulides, G. (ed.) Modern Methods for Business
Research, chap. 6. Lawrence Erlbaum, London (1998)

19. Salhi, S.: Heuristic search methods: the science of tomorrow. In: Salhi, S. (ed.) Keynote Papers
at OR48, pp. 39–58. Operational Research Society, Bath (2006)

20. Salhi, S., Rand, G.: Incorporating vehicle routing into the vehicle fleet composition problem. Eur.
J. Oper. Res. 66, 313–330 (1993)

21. Taillard, E., Laporte, G., Gendreau, M.: Vehicle routing with multiple use of vehicles. J. Oper.
Res. Soc. 47, 1065–1070 (1996)

22. Thangiah, S., Salhi, S.: Genetic clustering: an dadptive heuristic for the multi depot vehicle
routing problem. Appl. Artif. Intell. 15, 361–383 (2001)

	A GA Based Heuristic for the Vehicle Routing Problem with Multiple Trips
	Abstract
	Introduction
	Methodology
	Approach
	Notations and Objective Function
	Chromosome Design
	The Algorithm

	Explanation of the Main Steps of the Algorithm
	Initial Population (Step 1)
	Primary Evaluation Process (Steps 1, 3)
	Clustering and Route Generation
	Fitness Value

	Chromosome Injection and Cloning (Step 2a)
	Genetic Engineering (Step 2b)
	Parent Selection (Parent Suitability)
	Operator Extraction
	Operator Mutate
	Decision Framework (Chromosomes Selection)
	Enhancing Efficiency using Two Data Structures

	Improvement Modules (Step 5)

	Computational Experience
	Conclusion and Possible Further Research
	Appendix
	Detailed Computational Results

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

