
J Math Model Algor (2007) 6:411–431
DOI 10.1007/s10852-007-9061-x

Coevolutionary-based Mechanisms for Network
Anomaly Detection

Marek Ostaszewski · Franciszek Seredynski ·
Pascal Bouvry

Received: 1 November 2005 / Accepted: 1 December 2006 /
Published online: 22 March 2007
© Springer Science + Business Media B.V. 2007

Abstract The paper presents an approach based on the principles of immune systems
applied to the anomaly detection problem. Flexibility and efficiency of the anomaly
detection system are achieved by building a model of the network behavior based on
the self–nonself space paradigm. Covering both self and nonself spaces by hyperrec-
tangular structures is proposed. The structures corresponding to self-space are built
using a training set from this space. The hyperrectangular detectors covering nonself
space are created using a niching genetic algorithm. A coevolutionary algorithm is
proposed to enhance this process. The results of experiments show a high quality of
intrusion detection, which outperform the quality of the recently proposed approach
based on a hypersphere representation of the self-space.

Key words artificial immune systems · anomaly detection problem ·
self–nonself space paradigm · hyperrectangular detectors · coevolutionary
algorithms · computer networks

Mathematics Subject Classifications (2000) 90B18 · 90B20 · 90C99 · 68T20 · 68U20

M. Ostaszewski · P. Bouvry
Faculty of Sciences, Technology and Communication, University of Luxembourg,
6 rue Coudenhove Kalergi, 1359 Luxembourg-Kirchberg, Luxembourg

F. Seredynski (B)
Polish–Japanese Institute of Information Technology, Koszykowa 86,
02-008 Warsaw, Poland
e-mail: sered@ipipan.waw.pl

F. Seredynski
Institute of Computer Science, Polish Academy of Sciences, Ordona 21,
01-237 Warsaw, Poland

412 J Math Model Algor (2007) 6:411–431

1 Introduction

Security has become an extremely important topic in recent years, especially when
referring to computer systems connected to the Internet. Detection of intrusions in
computer networks turned out to be difficult task, mostly because the continuous
evolution of methods and tools used for unauthorized access to various network
resources. Many approaches have been applied to problem of the recognition of
malicious activities appearing in network traffic. Traditional methods are based on
the recognition of attack signatures [16], however the list of signatures must be
constantly updated to recognize new attacks. Additionally this method prevents only
against attacks that are on the signature list. Other methods of anomaly detection
like statistical model of the system behavior [6] and data mining analysis of network
traffic [11] have also been a subject of a research. However these approaches
introduce certain problems related to the computational complexity of analyzing
large amounts of data. Anomaly detection was also analyzed by methods based on
visualization [1]. Algorithms inspired by Nature are also being applied to domain of
network traffic anomaly detection: in particular, paradigms like genetic algorithms
and particle swarm search [5] or combining evolutionary algorithms with fuzzy set
theory [12].

An artificial immune system (AIS) is a computational paradigm based on abstract-
ing natural immunological processes [9], which can be applied to solve problems of
computer security, including the detection of intrusions and anomalies [10, 19]. AIS
offers alternative mechanisms to deal with unwanted activities in computer networks,
including generalization and recognition of previously unknown attacks. A recent
promising approach to network anomaly detection has been presented by [4], and
is based on a description of legitimate behavior using hypersphere structures. We
propose to use hyperrectangle structures to provide a more precise definition of
the normal traffic and coevolutionary-based mechanisms to enhance the process of
anomaly detection.

The paper is organized as follows: the coming section contains a short definition
of self–nonself paradigm, originated from AIS and its application to the network
anomaly detection. The principles of construction of an effective model of network
behavior called self space are presented in Section 3. Nonself space detectors
development, using niching genetic algorithm and coevolutionary techniques are
described in Section 4. Section 5 contains Nonself detection process using model of
abnormal network traffic. The results of the performed experiments are presented in
Section 6. Last section contains the conclusion and a discussion of further possibilities
of development of the presented approach.

2 Immune Anomaly Detection

Self–nonself paradigm offered by AIS methodology seems to be a proper guideline
for constructing a network behavior classification system. The self space corresponds
to the organism protected by its natural immune system, which consequently cannot
attack or define as enemy any defended cells. In the network domain, the self space
is defined on the basis of normal traffic and the nonself space contains all possible
threats and deviations. They are complementary, the same way it is for an organism

J Math Model Algor (2007) 6:411–431 413

and its environment in Nature. Self–nonself space principles are coupled with a
negative selection algorithm [8], which is used to construct detectors focused on
nonself space. An accurate model of a space is required to effectively deal with
an anomaly detection. Stibor et al. [18] indicate that the negative selection over
Hamming shape-space suffers from several weaknesses. In effect the model of the
space presented in [4] has been taken under consideration. Although [17] indicates
that real-valued negative selection may cause severe problems for system scalability
and detector set generation, a similar approach presented in this paper seems to be
worth of taking under consideration.

Main steps of the anomaly detection proposed in this paper are similar to negative
the selection algorithm proposed by [8], and go as follows:

– construct Self structures using normal network traffic
– construct Nonself detectors using obtained Self
– perform detection over network traffic using Nonself detectors.

The differences from actual negative selection lay in the description of the normal
activity and, in effect, in the construction of the Nonself detectors. Our work tends to
represent Self and Nonself as complementary, multidimensional subspaces of space
of all activities rather than a collection of strings. As it will be presented in following
sections, the process of matching of detector and examined structure is also slightly
different than the process of matching of strings.

3 Self Space Construction

Self space is constructed using the recorded parameters of the normal traffic that
describe the desired features of a model of regular behavior. Assuming that certain
number k of parameters of the network traffic will be measured in a defined time
interval, k-tuples of time series can also be defined as a set of points in k-dimensional
space, where every parameter from a set of measured parameters is a separate
dimension. Every one of these points describes a certain state of the monitored
network in a state space of all possible combinations of the chosen parameters
(after [4]).

Recording all regular values of network traffic is not enough to build proper
model of normal behavior. Additionally, it is required to enhance the model by
a generalization ability. This can be achieved by describing incoming values that
are recognizable as similar to Self, and not only the exact same than those already
recorded. The acceptable values are varying from recorded ones in a certain range,
i.e. a level of deviation from given data that can be defined with a parameter,
henceforth called variability parameter v. It was used by [4] as a parameter of
spherical shape for Self. In their design v is the radius of a hypersphere centered in
the recorded state, and hyperrectangular Nonself detectors (design and development
of detectors is covered in following section). A spherical construction of Self has
a drawback when it comes to the detector construction, because the generated
detectors have no chance to cover the Nonself space completely. Figure 1a illustrates
this case. As one may see, there are subspaces that cannot be covered by the
detectors due to the shape conflict between the structures used for Self and Nonself
description. Additionally, hyperspherical construction of Self cannot distinguish

414 J Math Model Algor (2007) 6:411–431

Fig. 1 Self space and detector
sets for a spherical
b rectangular construction
of Self

between the different dimensions providing only one value (hyperradius) for every
dimension. Figure 1b presents our approach to construct a hyperdimensional space,
where a dimension (in this case 2D) depends on the number of parameters used
for monitoring process. The parameter v describes the similarity degree by defining
intervals of similarity for every recorded state. These intervals may have different
values for every dimension taken into consideration and allow to construct more
accurate Self. Henceforth, v for k parameters (dimensions) is defined as a vector
v = (v1, . . . , vk), with every value of variability vi responding to certain, monitored
parameter.

Main steps of the process of Self development can be enclosed in the following
algorithm (henceforth referred as Self Development Algorithm):

Self Development Algorithm:
1: Select Initial data = TCP data collected in real system

(tcpdump format)
2: Select set of monitored traffic parameters P = {P1 ... Pk}
3: Select time interval �t for counting parameters from P
4: Calculate time series R using Initial data, P and �t
5: Normalize R to [0.0,1.0] interval
6: Select value w of sliding window for R transformation

6a: if w>1 then transform R into W
6b: else W = R

7: Calculate training set TR and testing set TS from W
8: Calculate variability parameter v using TR
9: Select scale factor sf for v
10: Construct Self using TR, sf and v
11: Adjust Self using TS, sf and v.

Parameters of set P in step 2 are variables used for description of network traffic,
and their values are measured and counted every �t, creating in step 4 k-variate
time series of n entries (tuples) R = r1, r2, . . . , rn where ri = (rP1

i , rP2
i , . . . , rPk

i). As it
was mentioned above, every ri is treated as a point in k-dimensional state space, and
will be also referred as a state. Time series R is then normalized to [0.0,1.0] interval,
taking into account every of parameters from P.

J Math Model Algor (2007) 6:411–431 415

A sliding window transformation of R into W in step 6a is performed using
parameter w to achieve temporary aggregations among values of time series. Trans-
formed time series W that can be also described as windowed time series is created
from R in following way:
W = {(r1, . . . , rw), (r2, . . . , rw+1), . . . , (rn−w+1, . . . , rn)}, what can be written as W =
{rw1, . . . , rwm}, where m = n − w + 1 and rwi = ri+ri+1+··· +ri+w

w
. Taking into account,

that state ri consists of k elements, sliding window transformation is performed for
every of them independently, giving rwi = (rwP1

i , . . . , rwPk
i). For sliding window size

w = 1 every recorded state remains unchanged and ri = rwi therefore windowed time
series W are identical to time series R, what is illustrated in step 6b.

It is necessary to emphasize, that a sliding window transformation preserves the
k-dimensional structure of the state space, but modifies a number and values of
time series tuples – states. Time series of recorded three parameters, i.e. R1 ={(rP1

i ,
rP2

i , rP3
i), (rP1

i+1, rP2
i+1, rP3

i+1), (rP1
i+2, rP2

i+2, rP3
i+2)}, and a sliding window of a size equal

to 3 will create transformed time series Rw1 = {(rP1
i + rP1

i+1 + rP1
i+2)/3, (rP2

i + rP2
i+1+

rP2
i+2)/3, (rP3

i + rP3
i+1 + rP3

i+2)/3}, giving one averaged tuple instead of three. Dasgupta
and Gonzalez [4] apply different kind of sliding window fashion to achieve aggre-
gations between parameters. A number of P elements is increased by treating
succeeding values of monitored parameters in sliding window as additional para-
meters. Data from previous example will create a 9-dimensional tuple, R1 = {rP1

i , rP2
i ,

rP3
i , rP4

i , rP5
i , rP6

i , rP7
i , rP8

i , rP9
i }, where rP1

i , rP2
i , rP3

i are rP1
i , rP1

i+1, rP1
i+2, rP4

i , rP5
i , rP6

i are
rP2

i , rP2
i+1, rP2

i+2 and rP7
i , rP8

i , rP9
i are rP3

i , rP3
i+1 ,rP3

i+2. This transformation also gives one
tuple, but with a different structure, and monitoring n parameters with a window
size w creates n ∗ w−dimensional state space and greatly increases computational
complexity.

The construction of the Self space is based only on a normal traffic data, which
has to be divided into two subsets, training and testing. The first one is used for
constructing a model, the second one for validating it. Assigning W elements to TR
and TS stated in step 7 is performed randomly according to the defined proportions.
Having TR and TS, the next step of Self space development is the computation of v.
In contrary to authors in [4] this approach takes into account calculation of v on the
basis of normal traffic data.

In step 8 elements of v are calculated, using states from TR. First, for every state
form TR a set of states being its closest neighbors (ClosestSet) is built. Then for
every parameter from P a minimal distance is found, and such a vector of minimal
values is then added to set of minimal distances MinSet. MinSet is then used for
calculation of standard deviation for every parameter from P giving in effect the
variability vector v. Algorithm of v construction goes as follows:

Variability Calculation Algorithm:
minDist[PSize], v[PSize], MinSet = null, ClosestSet = null
for each State → st from TR

cSet = set of States closest to st from TR\{st}
ClosestSet.add(cSet)
for i = 1 to PSetSize

for each State → clst from ClosestSet
minVal = st.valueOfParameter(i) – clst.valueOfParameter(i)
if minFinal > minVal then minFinal = minVal

416 J Math Model Algor (2007) 6:411–431

minDist[i] = minFinal
MinSet.add(minDists)

for i = 1 to numOfParams
for each minDist → tab from MinSet

stDev =calculateStandardDeviation(tab[i])
v[i] = stDev.

An additional parameter, scaling factor sf is needed to provide a control over Self
development. It was stated, that v describes the similarity of incoming patterns of
network behavior to those already recorded. Therefore, v has a clear impact on the
tolerance level of future detection process, allowing or disallowing certain patterns
to be considered as normal. The parameter sf, defined in step 9 is a coefficient that
scales v and provides more, or less tolerant Self .

Having v scaled with sf parameter, step 10 describes initial Self construction. For
every state from TR set a structure is created consisting of two vectors, low and
high of P size, where a pair low j and high j describes an interval for the parameter j
considered as normal. These two vectors are constructed using elements from TR, rwi

and v, that low = (rwP1
i − v1, . . . , rwPn

i − vn) and high = (rwP1
i + v1, . . . , rwPn

i + vn).
Structure consisting of these two vectors is then added to Self set.

Finally, in step 11, Self space is adjusted using previously created test set TS. Every
element from TS is being checked, if it is covered by Self structures created on the
basis of TR, i.e. if it fits all low and high intervals of any structure from Self. If it is
not the case, a new structure is created, for an element from testing set by applying
v, as it was done for structures from TR.

4 Nonself Space Construction

Nonself space is complementary to Self, therefore it should contain all unwanted
patterns of the network traffic, i.e. values of incoming time series that will be
anomalous. As it was presented in the previous section, Self consists of interval
vectors, built for every state from training set and some states from testing set.
Self development effects with numerous hyperrectangles of the same size (couple
of thousands, or even more – see, Section 6.1). It would be desirable, to cover the
Nonself space with few detectors of different sizes, most likely covering more space
than Self structures (see Fig. 1). This means, that a Nonself detector will also be
hyperrectangular structure based on low and high vectors, but with a more flexible
construction, without using an unique parameter, in contrary to using v for Self.
Dasgupta and González [4] proposed a genetic algorithm with sequential niching
(NGA) for this purpose, that is solving a multimodal and multiobjective problem,
what is also applied in our work.

Having Self developed using a certain scale of v, a subset of Nonself detectors
is constructed as a complementary space to Self. It is also possible to develop
additional detector sets, with different scale factor values, obtaining various security
models. Figure 2a illustrates Self for a relatively small value of sf and, in effect, v,
which implies that the detectors of Nonself have a greater possibility of raising a
false alarm (false positive error), but less risk of leaving any anomaly undetected
(false negative error) [7]. On the other hand, Fig. 2b, shows a higher false negative
ratio, with a lower number of false positives. Figure 2c presents a Self constructed

J Math Model Algor (2007) 6:411–431 417

Fig. 2 Self space and detector sets for a low and b high value of v, and c detection levels in summary

for two combined sf values, and shows, that the detector sets are different, like in the
Nonself classification process. One can see that scaled v used for the construction
of Self influences the tolerance, and allows to construct complex security model.
Therefore the process of Nonself space detectors construction can be described by
the following algorithm (henceforth referred as Nonself Development Algorithm):

Nonself Development Algorithm:
1: Select set of security levels SecLevels = {sf1 . . . sfm}

– set of scaling factors in ascending order
2: Select set of detector levels DetLevels = {Nonself1 . . . Nonselfm}

corresponding to security levels – SecLevels elements
3: Select parameters of NGA for detector set construction

3a: if (coevolutionary NGA) then
select coevolutionary population set CoPopulation
select coevolution parameters

4: Calculate v for normal traffic
5: for i=1 to m do

5a: Construct Self using v ∗ sfi from SecLevels
5b: Construct Nonself using NGA applied to Self
5c: DetLevelsi = Nonself.

Step 1 of the algorithm is definition of security levels, and immediately after, in
step 2 there is set of detector sets (initially empty), corresponding to the SecLevel
values. The security levels have to be sorted out by a growing value of v that
were used to construct Self. The highest level defines the set most tolerant to
abnormalities.

4.1 Niching Genetic Algorithm

Step 3 is the definition of the parameters that control the work of NGA used for the
Nonself construction. Creating a detector set is a complex multiobjective problem.

418 J Math Model Algor (2007) 6:411–431

The goal is to cover the space as large as possible with detectors that avoid Self
elements and cover an unique space, without overlaying the same part Nonself.
A population of NGA consists of individuals constructed from a pair of vectors,
reflecting high and low values of a conditional part of a detector. Therefore, a
real-coded NGA [13] has to be applied to this problem, as long as vectors of real
values ([0.0, 1.0] interval) are used. NGA has to deal with a multiobjective problem
and for this reason sequential niching method [2] has been applied to cover the
different subspaces of Nonself with volumes as large as possible. During each run
of NGA the fitness function is modified in order to focus the process of searching
for new detectors in the subspaces that are not covered by the previously evolved
detectors. NGA schema, using a set of Self structures, goes as follows:

Niching Genetic Algorithm (NGA):
Self, Nonself =null, numAtt=0, numDet=0
while numDet < maxDet and numAtt < maxAtt

runGA(Self)
D ← best evolved detector
fit = calculateFitness(D)
if fit > minFit

Nonself.addDetector(D)
numAtt = 0

else
numAtt = numAtt + 1

end while
return Nonself.

The parameter minFit is the minimal value of fitness expected from evolved
detector, maxAtt and numAtt are, respectively, the maximum and the current
number of attempts to evolve a single detector and maxDet and numDet are,
respectively, the maximum and the current number of detectors in the detector set.
Details on selection of NGA parameters are presented in Section 6.1.

The fitness is computed by taking under consideration three factors, as shown
below:

Volume calculation – a volume of a given detector is calculated as follows:

Volume(D) =
n∏

i=1

(highi − lowi),

where high and low are elements of the vectors on the positions corresponding to the
used parameters.

Overlaying with Self structures – a volume of the space overlayed with Self is
computed as follows:

Sel f Overlay(D) =
m∑

i=1

(D ∩ xsi),

where xsi is a Self structure.

J Math Model Algor (2007) 6:411–431 419

Overlaying with already developed detectors – a volume of the space overlayed by
already developed detectors is calculated as follows:

DetectorOverlay(D) =
k∑

i=1

(D ∩ Dk).

The fitness of a single detector is calculated from the equation

Fitness(D) = Volume(D) − (Sel f Overlay(D) + DetectorOverlay(D)).

4.2 Coevolutionary Mechanism in the Detector Generation Process

Defined in step 3a of Nonself Development Algorithm coevolutionary NGA is our
proposition for enhancing Nonself detector generation process using coevolutionary
mechanisms. Although NGA tends to cover all Nonself in the most efficient way,
this process is unsupervised and the goal for created detectors is based only on
constraints. The criterion of volume does not specify, which exact subspace of search
space detector should cover, therefore a goal is not precisely defined. Additional
information could lower the computational cost of the generation process and, in
effect, give more specialized detectors covering certain subspaces in Nonself. For that
purpose a coevolutionary algorithm is used. Coevolution is relatively new research
paradigm in the field of evolutionary computation. The basic idea is taken from the
world of Nature, where two or more coexisting species are constraining one other
to evolve better features. Among many coevolution models, one seems to be useful
to the detector generation problem. Predator–prey paradigm [15] describes a model,
where individuals of one type (predators) are trying to catch individuals of another
type (preys). The population of the first species develops features that allow it to
catch its prey easily, and attributes of the second one evolve to make escape from a
predator possible. Applying this process to the detector generation mechanism could
improve it, by providing a certain goal in search space. Coevolution allows controlling
the process, by enforcing on generated detectors certain features, indicating areas to
cover. Some definitions [15] have to be assumed to apply coevolutionary algorithms
to the detector generation problem:

Constraint Satisfaction Problem (CSP): a class of problems effectively solvable by
coevolutionary algorithms. The first of two coevolving populations is a population
of solutions (henceforth called Solutions), and the other one is a population of
constraints (henceforth called Constraints) that Solutions have to fit. Because of their
static nature, Constraints cannot evolve but their fitness can be also evaluated.
Encounter: a confrontation between individuals from Solutions and Constraints
results in the a victory of one and the loss of the other. A Solution wins if it fits
given Constraint, and loses if Constraint cannot be satisfied by a given solution.
LifeTime Fitness Evaluation (LTFE): in opposite to the classic GA, every individual
is tested multiple times and has a list of his encounters that changes, as it might be
said, through its lifetime. A fitness is calculated on the basis of confrontations with
individuals from coevolving population. LTFE regulates a number of confrontations,
and thus, affects calculated fitness. Probability of choice to encounter depends on
fitness, therefore, even if Constraints cannot evolve, winning ones are tested more
frequently against Solutions.

420 J Math Model Algor (2007) 6:411–431

To apply the coevolutionary algorithm to the detector generation problem, the
second population has to be assumed, named CoPopulation in step 3a. To define
the proper constraints for the detectors, a set of anomalies has to be constructed.
Similarly to the predator–prey, the proposed model considers a situation when
individuals from the detector set (Solutions) try to intercept individuals from a set
of anomalies (Constraints). An anomaly (individual) is defined as a certain state
from Nonself space in the form of a vector a = (a1, ..., an), where ai is a value for
corresponding parameter. An encounter between a detector and an anomaly leads
to an assessment checking if the anomaly is placed inside the subspace covered by
the detector. The detector wins the encounter if it intercepts the given anomaly,
otherwise the constraining state is the winner. The proposed coevolutionary
algorithm can be defined as follows:

for each Detector → det from DetectorSet
for i=1 to LTFE

anom = AnomalySet.chooseAccordingToFitness()
result = encounter(det, anom)
det.updateHistory(result)
anom.updateHistory(result)

AnomalySet.updateFitness().

Although anomalies are constant, they have their own fitness based on results
of encounters. They are chosen to further encounters on the basis of their fitness, so
anomalies that avoid detectors more efficiently are chosen and tested more often.
A fitness of a given detector is finally computed after running the coevolutionary
algorithm as follows:

FinalFitness(D) = (1 + EncounterHistory(D)) ∗ Fitness(D),

where EncounterHistory(D) is a function returning the summarized effect of all
encounters for a given detector.

This way, the generated individuals are focused on certain subspaces, and spe-
cialized in capturing states from Nonself defined as the coevolving population. This
process is similar to vaccination: the way the specialization of antibodies in the
human immune system is achieved by presenting negative examples. The details on
the selection of coevolutionary parameters and CoPopulation design are covered in
Section 6.4.

5 Detection Process

Having m detector sets, one set for each security level, constructed using the
Nonself Development Algorithm, the Nonself detection process will be performed
by checking every state of the monitored time series and returning the proper level of
danger caused by them, as follows: analyse(statei) = max({num(DetLevels)} ∪ {0}),
where num(DetLevels) returns the index of detector set that raises an alarm. The
detector set of certain security level l can be defined as follows: DetLevelsl =
{D1, . . . , Dn}, where Dj : i f statei is intercepted then Nonself, and intercepted(statei)

returns true or false result of following formula: stateP1
i ∈ [low1

j, high1
j] ∧ . . . ∧

J Math Model Algor (2007) 6:411–431 421

statePk
i ∈ [lowk

j , highk
j]. A single detector classifies if a given state is captured by the

covered space defined in the conditional part by the two vectors high and low. The
construction of a space from the junction of intervals in every dimension is similar to
the case of Self elements.

Therefore, incoming network traffic is monitored and modified according to
parameters used in Self Development Algorithm, i.e. using the same P, �t, w and
normalization parameters. Then, transformed values are compared to see, if any of
detectors at any level will intercept this state.

Additional parameter, that describes anomaly detection process is an interval of
alarm counting �ta = c ∗ �t and c = 1, 2... . It describes a number of time intervals
�t over which results will be summed, and presented. If the coefficient c is equal to
1, alerts will be presented on the fly, according to time series interval. If c > 1 then a
certain delay is introduced, after which the sum of the alerts is presented.

6 Experimental Results

A number of experiments have been performed to find out the effectiveness of
self–nonself approach to the anomaly detection problem, based on hyperrectangular
Self structures and involving the coevolutionary algorithm. The Self space for this
experiment was constructed using real-world data [14] and according to the steps of
the Self Development Algorithm introduced in Section 3. Step 1 data was the first
week of the collected outside network traffic using tcpdump, which was unaffected
by anomalies, and for one of chosen computers figuring IP 172.16.114.50 (marx). The
set P in step 2 was constructed of the number of bytes per second (P1), the number
of packets per second (P2) and the number of ICMP packets per second (P3). Time
interval in step 3, �t, was equal to 1 second. In effect time series R was constructed,
with states of the system taking form of the triplet ri = {rP1

i , rP2
i , rP3

i } as a point
in the 3-dimensional space. The Self structures created from the first week data in a
proportion 70:30 of training (TR) to testing (TS) sets (step 7). Further experiments
involve different sf and and w values, but if it is not explicitly mentioned, w and sf
are by default equal to 1. A number of Self structures for this default configuration
was about 5,800.

6.1 Experiment #1 – Generation of the Detector Set for Different sf Values

In the first experiment GA was used for the development of self space and detector
sets for different values of sf. NGA was run with the maximum number of runs equal
to 20, the maximum number of attempts to evolve a rule is equal to 15, the number
of generations is equal to 750 and a population size equal to 100. The following GA
operators have been used [13]: a tournament selection with the tournament size equal
to 2, vector crossover, Gaussian mutation with probability 0.1 and border mutation
with border values 0 and 1, and probability 0.01.

Figure 3 shows the comparison between the covered Nonself space with the
detectors developed for the case of two values of sf. Figures 3a and 3b show only
a part of the generated detectors. The size of the detector set in both cases is equal
to 15. Incase of small (0.3) value of sf the number of Self structures was greater,
about 5,900.

422 J Math Model Algor (2007) 6:411–431

Fig. 3 Self space and detector sets for sf equal to a 0.3 and b 1.0

6.2 Experiment #2 – Anomaly Detection Process for Different sf and w Values

Detector sets generated by NGA have been used to anomaly detection process on
the second week of mentioned, MIT data. To avoid gaps that could be observed on
Fig. 3 greater maximum number of detectors was introduced, namely equal to 50.
This number is over 100 times smaller than Self size.

The second week contains five simulated attacks, one for every day of the network
traffic, as shown in Table 1.

The parameter �ta was equal to 60 ∗ �t, so alerts generated by detectors are
gathered over 1 min time interval. The results of monitoring the anomaly detection
process are presented in Figs. 4 and 5. Figure 4a presents anomalies detected by
the set of detectors for sf = 0.3 and w = 1, and Fig. 4b for w = 3. Figure 5 presents
detection effects for the set with sf = 1.0 and w = 1 (Fig. 5a), and w = 3 (Fig. 5b).
The analysis of these figures indicates greater sensitivity of detectors constructed
for Self with w = 3, what can be explained, if temporal patterns are taken under
consideration. With a larger window size, one can intercept time dependencies
between preceding and succeeding states, what is impossible for the detectors based
on w = 1.

Figure 5 indicates that monitoring using both detector sets would result in discov-
ering all five attacks, though having relatively high level of sf. As one may notice,
some peaks in these figures (1,485 and 4,491 min in Fig. 4a, 4,498 in Fig. 5a and 1,487
in Fig. 5b) are groups of multiple lines. After the analysis of Table 1 it is possible to
notice, that the duration of attacks 2 and 4 was relatively long and that the system

Table 1 MIT second week attacks

Day Name Type Start Duration

1 Back DoS 9:39:16 00:59
2 Portsweep Probe 8:44:17 26:56
3 Satan Probe 12:02:13 02:29
4 Portsweep Probe 10:50:11 17:29
5 Neptune DoS 11:20:15 04:00

J Math Model Algor (2007) 6:411–431 423

Fig. 4 Attacks detected using sf = 0.3 and w equal to a one and b three

raised more than one alarm during the monitoring process. Those attacks on Figs. 4b
and 5b are indicated as groups of lines having an alarm number equal to or larger than
10, what makes them look like bold lines. An interesting fact can be observed after
the comparison of alarms raised for each attack – obviously, the probe attacks are
recognized with a greater accuracy than DoS attacks. Additionally, the window size
seems to have optimal values for every attacks, as it may be observed in Fig. 5, where
w = 1 manages to capture the first attack, but misses the last one, and for w = 3 the
first attack remains unreported, but last one is displayed. An interesting case is the
attack number three, indicated with a great strength in every parameter configuration
though relatively short duration time. It may be explained by dependencies between
an attack type and the structure and parameters used in Self construction.

More experiments were performed, concerning larger w parameter and more sf
values were carried out. In effect ROC (Receiver Operating Characteristics) [7]
diagram has been constructed. It is presented on Fig. 6 and shows the classification
performance of the detector sets for a given window size equal to 1, 3, 5 and 7,
respectively. Points marked on each curve correspond to sf values equal to 1.3, 1.0,
0.7 and 0.3, respectively. One can notice that for a given window size the detection
rate grows, when value of sf decreases. It is worth noticing that the window size
influences the precision of detection, and that the detector set constructed for w = 7
performs well even for relatively high sf, what results in decreasing the number of
false alarms.

6.3 Experiment #3 – Anomaly Detection Process for Spherical Construction
of Self

The approach presented by [4] is based on the detector sets developed for Self
shaped as hyperspheres, which are created using a given state of the system as a cen-

Fig. 5 Attacks detected using sf = 1.0 and w equal to a one and b three

424 J Math Model Algor (2007) 6:411–431

Fig. 6 ROC diagram for
different w sizes

ter and single value of v as a hyperradius. Experimental results presented by [4] show
that a hyperspherical design of Self was sufficient to indicate four attacks at most,
with a window size equal to 3, and three with a window size equal to 1. Experiments
carried out for this paper include also the construction of Self with hyperspheres, and
the detector generation for this purpose. Figure 7 presents detected anomalies for sf
equal to 0.5 with w = 1 (Fig. 7a) and w = 3 (Fig. 7b). Because of the proposed way
of computing v and different sliding window method, the results differ from those
presented in [4], while in both cases with hyperspherical Self construction the system
was unable to discover all five attacks. However, probe attacks were clearly indicated,
what suggests, that the combination of these parameters works well with this kind of
attack, regardless of Self design applied.

6.4 Experiment #4 – Coevolution Effectiveness for Randomly Generated
Set of Anomalies

Mechanisms of coevolution have been tested to check, if there is a possibility of
applying it to enhance the detector generation process. A set of 1,000 randomly
generated vectors (Set A) from Nonself has been assumed as the second population

Fig. 7 Sphere detectors efficiency for sf = 0.5 and w equals a one and b three

J Math Model Algor (2007) 6:411–431 425

coevolving with the population of generated detectors (CoPopulation – see Nonself
Development Algorithm, Section 4). Set A was constructed as follows:

Self; SetA = null
DetectorSet = runNGA(Self)
for i=1 to 1000 do

repeat
anomaly = generateRandomState()

while anomaly.isCapturedBy(Self)
SetA.add(anomaly)

return SetA.

The detector generation process has been slightly altered for the coevolutionary
NGA. After every run of NGA it was checked if all anomalies are already inter-
cepted. If so, the algorithm was terminated. After the generation of a detector set
using both coevolutionary and classic NGA, this set has been tested against the Set
A, to check how many of elements have been covered.

Table 2 presents the results of the performed experiments, and the best of them
have been highlighted. The detector sets have been developed for three different
number of generations and for three different values of LTFE parameter. One
additional detector set has been generated using standard NGA, without coevolution
mechanism, marked with “ — ” symbol in LTFE column. The number of anomalies
that have been covered differs, but the gain brought by coevolutionary NGA is
insignificant, and for 500 generations classic NGA surpasses one with coevolution.
These results can be explained by the random generation of the anomaly set. The
distribution of states in Nonself is regular, and classic NGA, while trying to cover the
largest space possible, intercepts also states generated without any specialization.

6.5 Experiment #5 – Coevolution Effectiveness for a Specialized Set of Anomalies

An alternative set of anomalies (Set B) has been generated and used as coevolving
population in the coevolutionary mechanism. Set B was specialized as follows:

Table 2 Performance of
detector sets for randomly
generated set of anomalies

Generations LTFE Anomalies intercepted

100 5 866
10 899
20 928
— 895

300 5 981
10 962
20 982
— 972

500 5 963
10 961
20 973
— 987

426 J Math Model Algor (2007) 6:411–431

Self; SetB = null
DetectorSet = runNGA(Self)
for i=1 to 1000 do

repeat
anomaly = generateRandomState()

while anomaly.isCapturedBy(Self)
or anomaly.isCapturedBy(DetectorSet)

SetB.add(anomaly)
return SetB.

The distribution of anomalies from Set B is irregular and some of its elements
belong to areas, where detectors are harder to develop, for example, in small
subspaces between Self structures. Results of the conducted experiments are
presented in Fig. 8. The second experiment including coevolution shows a significant
advantage of coevolutionary NGA and proves that the additional population can
stimulate the detector generation process. Even a relatively small number (100)
of generations allowed the coevolutionary NGA to obtain better results than
the classic NGA with 750 generations and, consequently with less computational
cost. Furthermore, one can notice that the efficiency of coevolution is LTFE
dependent, but also depends on the number of generations, and results for more
than 300 generations are worth further study. Another concern is a tradeoff between
coevolution efficiency and detector fitness, calculated on the basis of various factors
(see Section 4), which may cause worse performance of coevolutionary detectors
development.

6.6 Experiment #6 – Coevolution Effectiveness for Less Restrictive Detector
Overlay Criteria

The influence of detector overlay factor on the coevolution performance has been
examined. The detector generation criteria were less strict, allowing overlying a
certain percent of its volume between detectors. Set B was used for the coevolution

Fig. 8 Comparison of
coevolution efficiency with
classic NGA approach

J Math Model Algor (2007) 6:411–431 427

mechanisms. Figure 9 illustrates dependencies between LTFE factor and the number
of anomalies intercepted for three certain overlay tolerance levels. As one may see,
efficiency of capturing anomalies rises with tolerance for other detectors in the set,
what can be explained by the difference of goals between NGA and the coevolu-
tionary mechanism. The first one tends to cover a space as large as possible, without
overlaying already covered detectors. For the second one the goal is to capture some
points enclosed in certain subspaces, and these are more important than the volume
of detector. Therefore, the development of coevolutionary stimulated detectors that
includes constraints of the classical NGA, restrains them from covering anomalies, if
it would lead to overlap detector spaces.

It is worth noticing that the growing level of the overlay tolerance is related to the
smoothness of lines, along with the efficiency of the detector set. It proves that a high
sensitivity for overlapping of detectors may interfere and cause bad performance
of coevolutionary stimulation in search for certain anomalies. Only three LTFE
values are presented for tolerance level 0.75, showing the most significant peak for a
given interval. These values seem to be optimal for the corresponding experiments
presented below.

6.7 Experiment #7 – Initial Population Generation Process

Results presented in experiment #6 suggest, that some of the anomalies are impossi-
ble to reach for detectors overlapping with each other, even for a high tolerance level.
This suggests, that unreachable points lay in vicinity of self structures, and cannot be
captured because of the criterion of avoiding self space. To improve performance of
NGA looking for nonself detectors, a new initial population generation mechanism
has been developed. For every run of NGA, an initial population of detectors was
generated in such a way, that none of them overlap with self space structures, or any
detectors developed in previous runs. This process (henceforth called constrained
generation) has been applied to the coevolutionary NGA to search for new detectors
rather in uncovered space, and to lower the probability of the development of

Fig. 9 Comparison of
coevolution efficiency for
detector overlay tolerance

428 J Math Model Algor (2007) 6:411–431

improper detectors, overlapping with self, or detector structures. Figure 10 illustrates
the performance of coevolutionary NGA based upon a constrained initial popula-
tion, and the results for all three LTFE values are very similar. Although constrained
generation offers greater efficiency, not entire Set B was covered. This indicates
that some of anomalies are close enough to self states and still cause interferences
for nonself detectors while intercepting them. Constraint generation seems to be a
good method for narrowing the search space, but not sufficient. LTFE factor has
small influence on interception process of the most difficult group, even taking into
account a greatly increased fitness due to the captured anomalies. It plays no role if
the detector covers Self space.

Vertebrate immune systems develop antibody detectors using libraries of genes,
providing immature antigens with certain knowledge and information. This mecha-
nism has been adapted to computer science domain as the gene libraries paradigm
[3]. Our work introduces a simplified version of this method for improving the
coevolution process, therefore to provide population of NGA with sufficient infor-
mation. A different method of the initial population generation has been designed
(henceforth called library generation), with only one library of information. It was
constructed using unintercepted anomalies of Set B, treating them as information
about the detector construction. As mentioned in Section 3, a detector is constructed
using two vectors, high and low, and library generation process is based on a specific
construction of the detectors, assuming for these vectors two randomly chosen, but
different elements of library – anomaly vectors. Detectors constructed this way will
not necessarily be correct, but infuse certain information into the population. This
kind of a detector is constructed only with certain probability, which grows with
a number of detectors developed, due to succeeding reduction of the anomalies
set, and those most difficult that are left to find. Figure 11 presents the results of
experiment involving library generation. Probability increment after single detector
development was equal to 0.01.

As one may notice, the performance is improved by the library-generated popu-
lation, and for the value of starting probability 0.3 and 0.35 it was possible to cover

Fig. 10 Coevolution efficiency
for constrained generation
of detectors

J Math Model Algor (2007) 6:411–431 429

Fig. 11 Coevolution efficiency
for library generation of
detectors

all presented anomalies using developed detector sets. This mechanism seems to be
efficient and using a properly constructed anomaly set it can boost the efficiency of
entire detection system.

Figure 12 presents the results of comparing three different methods of initial
population generation: unsupervised, constrained and library generation. All meth-
ods seem to have similar progress, but constrained generation method offers better
results, while library generation is the best in terms of number of covered anomalies.
Analysis of Fig. 12 indicates that a group of about 980 anomalies is easier to reach
by generated detectors, and they present groups, that can be covered by a single
detector. The group of anomalies possible to reach only by library-generated popu-
lation is spread into subspaces that are hard to reach: every new detector manages
to cover only few of them, and over half of all Nonself detectors developed with
last method is covering these 20 anomalies. It proves that this particular coevolution

Fig. 12 Comparison of
efficiency of three different
initial population generation
processes

430 J Math Model Algor (2007) 6:411–431

method assures both effectiveness and accuracy, because a low number of detectors
capture anomalies easier to cover, and those that are difficult to cover are captured
as well, but with additional number of detectors.

7 Conclusion

The results of the conducted experiments indicate that the detectors generated by
NGA proved to be effective, and hyperrectangular Self structures construction made
a precise detection process possible. The presented approach is efficient and allows
capturing all five kinds of simulated attacks in MIT data. While the hyperspherical
design of Self, as presented by [4] made possible to indicate only four out of five
attacks, and applied for Self development and NGA presented in this paper, three
of them. It also has been shown that the coevolutionary mechanisms can enhance
the detectors generation process and in the result can make detection process more
effective against given patterns of attacks. Gathering data about some of those
patterns in the form of coevolving sets can give in effect detector sets containing
knowledge about attack subspaces. This mechanism can be compared to vaccine,
which makes natural immune system more effective against certain illnesses.

The variability parameter v has been proven to be an important factor in the
detector development process by influencing the Self volume. This parameter is re-
sponsible for adjusting the false alarms levels. Therefore, an algorithm for computing
v from learning is very important in the attempt to improve the detection ability of a
system, and the application of the statistical approach presented by [17] seems to be
interesting in this context.

Further research may involve different parameter types and greater number of
them. The analysis of the detection process data shows, that the system performs
very effective in the case of Satan attack in a relatively short duration time, and has
more problems with attacks like Portsweep or Neptune, although their duration last
several times longer (see Table 1). Looking for dependencies between parameters
and attack types is also a promising field of the research.

References

1. Axelsson, S.: Visualising intrusions: watching the webserver. In: Proceedings of the 19th Interna-
tional Information Security Conference (2004)

2. Beasley, D., Bull, D.R., Martin, R.R.: A sequential niche technique for multimodal function
optimization. Evol. Comput. 2(1), 101–125 (1993)

3. Cayzer, S., Smith, J., Marshall, J., Kovacs, T.: What have gene libraries done for AIS?
In: Proceedings of the 4th International Conference on Artificial Immune Systems (2005)

4. Dasgupta, D., González, F.: An immunity-based technique to characterize intrusions in computer
networks. IEEE Trans. Evol. Comput. 6(3), 1081–1088 (2002)

5. Dozier, G.V., Brown, D., Hurley, J., Cain, K.: Vulnerability analysis of AIS-based intrusion
detection systems via genetic and particle swarm red teams. In: Proceedings of the 2004 IEEE
Congress on Evolutionary Computation (2004)

6. Eskin, M.: Anomaly detection over noiosy data using probability distributions. In: Proceedings
of the 17th International Conference on Machine Learning. (2000)

7. Fawcett, T.: ROC graphs: Notes and practical considerations for data mining researchers. Tech-
nical Report HPL-2003-4 (2003)

8. Forrest, S., Perelson, A., Allen, L., Cherukuri, R.: Self–nonself discrimination in a computer.
In: Proceedings of IEEE Symposium on Research in Security and Privacy (1994)

9. Garret, S.M.: How do we evaluate artificial immune systems? Evol. Comput. 13(2) (2005)

J Math Model Algor (2007) 6:411–431 431

10. Glickman, M., Balthrop, J., Forrest, S.: A machine learning evaluation of an artificial immune
system. Evol. Comput. 13(2), (2005)

11. Lee, W., Stolfo, S., Mok, K.: Mining in a data-flow environment: experience in network intrusion
detection. In: Proceedings of the 5th International Conference on Knowledge Discovery and
Data Mining (1999)

12. Leon, E., Nasraoui, O., Gomez, J.: Anomaly detection based on unsupervised niche clustering
with application to network intrusion detection. In: Proceedings of the 2004 IEEE Congress on
Evolutionary Computation (2004)

13. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, Berlin
Heidelberg New York (1992)

14. MIT: http://www.ll.mit.edu/IST/ideval/index.html (1999)
15. Paredis, J.: Constraint satisfaction with coevolution. In: New Ideas in Optimization, McGraw-

Hill, New York (1999)
16. Roesch, M.: Snort – lightweight intrusion detection for networks. In: Proceedings of the 13th

Systems Administration Conference (1999)
17. Stibor, T., Timmis, J., Eckert, C.: A comparative study of real-valued negative selection to

statistical anomaly detection techniques. In: Proceedings of the 4th International Conference
on Artificial Immune Systems (2005)

18. Stibor, T., Timmis, J., Eckert, C.: On the appropriateness of negative selection defined over
hamming shape-space as a network intrusion detection system. In: Proceedings of the 4th In-
ternational Conference on Artificial Immune Systems (2005)

19. Wierzchon, S.T.: Artificial immune systems. Theory and application (in Polish). Warsaw, Poland:
Exit (2001)

http://www.ll.mit.edu/IST/ideval/index.html

	Coevolutionary-based Mechanisms for Network Anomaly Detection
	Abstract
	Introduction
	Immune Anomaly Detection
	Self Space Construction
	Nonself Space Construction
	Niching Genetic Algorithm
	Coevolutionary Mechanism in the Detector Generation Process

	Detection Process
	Experimental Results
	Experiment #1 -- Generation of the Detector Set for Different sf Values
	Experiment #2 -- Anomaly Detection Process for Different sf and w Values
	Experiment #3 -- Anomaly Detection Process for Spherical Construction of Self
	Experiment #4 -- Coevolution Effectiveness for Randomly Generated Set of Anomalies
	Experiment #5 -- Coevolution Effectiveness for a Specialized Set of Anomalies
	Experiment #6 -- Coevolution Effectiveness for Less Restrictive Detector Overlay Criteria
	Experiment #7 -- Initial Population Generation Process

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

