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Abstract One of the basic operations in communication networks consists in estab-
lishing routes for connection requests between physically separated network nodes.
In many situations, either due to technical constraints or to quality-of-service and
survivability requirements, it is required that no two routes interfere with each
other. These requirements apply in particular to routing and admission control in
large-scale, high-speed and optical networks. The same requirements also arise in
a multitude of other applications such as real-time communications, vlsi design,
scheduling, bin packing, and load balancing. This problem can be modeled as a
combinatorial optimization problem as follows. Given a graph G representing a
network topology, and a collection T = {(s1, t1) . . . (sk, tk)} of pairs of vertices in G
representing connection request, the maximum edge-disjoint paths problem is an
NP-hard problem that consists in determining the maximum number of pairs in
T that can be routed in G by mutually edge-disjoint si − ti paths. We propose an
ant colony optimization (aco) algorithm to solve this problem. aco algorithms are
approximate algorithms that are inspired by the foraging behavior of real ants. The
decentralized nature of these algorithms makes them suitable for the application to
problems arising in large-scale environments. First, we propose a basic version of
our algorithm in order to outline its main features. In a subsequent step we propose
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several extensions of the basic algorithm and we conduct an extensive parameter
tuning in order to show the usefulness of those extensions. In comparison to a multi-
start greedy approach, our algorithm generates in general solutions of higher quality
in a shorter amount of time. In particular the run-time behaviour of our algorithm is
one of its important advantages.

Keywords Ant colony optimization · Maximum edge-disjoint paths problem

Mathematics Subject Classifications (2000) 90-08 · 68Wxx · 68T20

Abbreviations
EDP (maximum) edge-disjoint paths problem
SGA Simple Greedy Algorithm
MSGA Multi-start Greedy Algorithm
ACS Ant Colony System
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1 Introduction

One of the basic operations in communication networks consists in establishing
routes for connection requests between physically separated network endpoints that
wish to establish a connection for information exchange. Many connection requests
occur simultaneously in a network, and it is desirable to establish routes for as
many requests as possible. In many situations, either due to technical constraints
or just to improve the communication, it is required that no two routes interfere
with each other, which implies not to share network resources such as links or
switches. This scenario can be modeled as follows. Let G = (V, E) be an edge-
weighted undirected graph representing a network in which the nodes represent the
hosts and switches, and the edges represent the links. The weight w(e) ∈ R+ of an
edge e ∈ E corresponds to the distance between its endpoints. Let T = {(s j, t j ) | j =
1, . . . , |T|; s j �= t j ∈ V} be a list of commodities, i.e., pairs of nodes in G, representing
endpoints demanding to be connected by a path in G. T is said to be realizable in G
if there exist mutually edge-disjoint (respectively vertex-disjoint) paths from s j to t j

in G, for every j = 1, . . . , |T|. Deciding whether a given set of pairs is realizable in
a given graph is one of Karp’s original NP-complete problems [25] (other references
on the computational complexity of the problem are [34, 43]). The problem remains
NP-complete for various graph types such as, for example, two-dimensional meshes.

The combinatorial optimization version of this problem consists in satisfying as
many of the requests as possible, which is equivalent to finding a realizable subset
of T of maximum cardinality. An EDP solution S to the combinatorial optimization
problem is a set of disjoint paths, in which each path satisfies the connection request
for a different commodity. The objective function value f (S) of a solution S is
defined as

f (S) = |S| . (1)

In general, the “disjointness” of paths may refer to nodes or to edges. We decided
to consider the latter case, because it seems of higher importance in practical
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applications. We henceforth refer to our problem as the maximum edge-disjoint paths
(EDP) problem. In the extreme case in which the list of commodities is composed
by repetitions of the same pair (s, t), the problem is known as edge-disjoint Menger
problem. The EDP problem is a simpler version of the more general unsplittable flow
problem, in which demands, profits, and capacities are considered to be one.

The EDP problem is interesting for different research fields such as combinatorial
optimization, algorithmic graph theory and operations research. It has a multitude
of applications in areas such as real-time communications, vlsi-design, scheduling,
bin packing, load balancing, and it has recently been brought into focus in works
discussing applications to routing and admission control in modern networks, namely
large-scale, high-speed and optical networks [1, 3, 4, 37]. Concerning real-time
communications, the EDP problem is very much related to survivability and informa-
tion dissemination. Concerning survivability, having several disjoint paths available
may avoid the negative effects of possible failures occurring in the base network.
Furthermore, to communicate via multiple disjoint paths can increase the effective
bandwidth between pairs of nodes, reduce congestion in the network and increase
the velocity and the probability of receiving the information [24, 39]. This becomes
especially important nowadays due to the type of information that circulates over
networks (e.g., media files), which requires fast, qualified and reliable connections.

To the best of our knowledge, there is a lack of efficient algorithms for tackling the
EDP problem. Except for greedy approaches (which we will mention in Section 3),
our preliminary ant colony optimization (ACO) approach presented in [7] is the
only existing method.1 aco [16, 18] is a recent metaheuristic for solving hard
combinatorial optimization problems. Except for the application to combinatorial
optimization problems (see [19] for an extensive overview) the method has also
gained recognition for the applications to adaptive routing in static and dynamic
communication networks [14, 15]. aco algorithms are composed by independently
operating computational units that generate a global perspective without the
necessity of direct interaction. They provide several advantageous features – such as,
for example, the usage of only local information – that are useful when applications
in large-scale environments are concerned in which the computation of global
information is often too costly.

Organization The paper is organized as follows. In Section 2 we deal with the
complexity of the EDP problem, including an overview on approximability results.
Existing results show that the EDP problem is not only NP-complete, but it is
also hard to obtain good approximation schemes for it. In Section 3, we outline a
(multi-start) greedy approach for the purpose of benchmarking our aco algorithm.
Section 4 is devoted to the detailed introduction of our aco approach. The algorithm
is developed incrementally; starting from a basic aco approach, we introduce features
that, as we show in the experimental part, help greatly on solving the EDP problem.
The experimental evaluation of our approach is presented in Section 5. Besides the
creation of a benchmark set of instances, we conducted an extensive tuning of the

1In [36], a multi-colony ACO approach for the EDP problem was presented. However, the aim of
this paper was not to solve the EDP problem but rather to explore the feasibility of multi-colony
systems. Therefore, only toy examples of graphs of up to 20 nodes with two or three commodities
were considered.
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considerable number of algorithm parameters. The details on the parameter tuning
process are reported on in [8]. In Section 6, we conclude and point out possible lines
for future research.

2 Understanding the Complexity of the Problem

The decisional version of the EDP problem was early known to be NP-complete [25]
in arbitrary graphs. The problem remains NP-complete for specific types of graphs
such as planar graphs [34, 43], series-parallel graphs (a.k.a. partial 2-trees) [35],
and grid graphs [30, 32]. A more detailed classification of the complexity of the
optimization version of the problem can be obtained with the help of approximation
algorithms. Approximation algorithms tackle optimization problems in polynomial
time (w.r.t. the length of the input) and output a solution that is guaranteed to be
at some bounded quality difference to the optimal solution. “Close” has some well-
defined sense called the approximation ratio (or performance guarantee).

Definition 1 (ρ-approximation algorithm for a problem P) Given an approximation
ratio ρ > 1 and any problem instance x of P, a ρ-approximation algorithm for an
optimization problem P outputs, in polynomial time, a solution to x of cost at most
ρ times the optimum.

NP-hard problems vary greatly in their approximability; some can be approxi-
mated to arbitrary factors while some can essentially not be approximated at all.
The problems which are approximable within a ρ > 1 belong to the complexity class
APX. The class PTAS is a particular subclass of APX 2 which includes problems that
admit a polynomial-time approximation scheme.

Definition 2 (Poly-time approximation scheme for a problem P) Given any fixed 1 >

ε > 0, a polynomial-time approximation scheme (PTAS) for an optimization problem
P is a (1 + ε)-approximation algorithm for P.

These algorithms are desirable because one can get arbitrarily close to an optimal
solution. A problem is said to be APX-hard (w.r.t. the PTAS-reducibility) if there
exists some constant ε > 0 such that it is NP-hard to obtain a (1 + ε)-approximation
algorithm, i.e., it is NP-hard to obtain a PTAS. This means that those problems
are even hard to approximate, since no PTAS can be obtained efficiently unless
P = NP [2]. For several types of graphs, the EDP problem belongs to the class of
APX-hard problems [20, 22, 23, 31]. This fact explains the notorious hardness of
the EDP problem in terms of approximation, despite the attention and effort that
researchers have put on it. Interestingly, for the specific case of complete graphs, we
are not aware of any inapproximability results. In particular, it is not even known
whether the problem in complete graphs is APX-hard.

The approximability of the EDP problem has been tackled by greedy algorithms,
LP relaxations, and rounding. In directed arbitrary graphs, the approximability was

2Unless P = NP, the approximability class PTAS is strictly contained in the class APX.
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settled for some time by the �(|E|1/2−ε)-hardness results in [23] and the O(
√|E|)

approximation results in [6, 26, 27, 29, 40]. Those approximation bounds were
recently applied in [12] to arbitrary dense graphs and improved down to sub-linear.
The recent work in [42] trims slightly these bounds via LP rounding and a deeper
analysis of a greedy algorithm. However, better approximation ratios have been
achieved for some specific types of graphs, such as (sub-)classes of planar graphs (e.g.,
grid graphs, trees, rings, densely-embedded, plane switch, etc.), complete graphs,
random graphs, and expander graphs. Also better performance guarantees are
obtained for commodity-restricted versions of the problem, for example for the edge-
disjoint Menger problem [11, 38, 45]. We address the reader to [13, 27] for recent
summaries of the successive achievements concerning the approximation ratios.

3 Greedy Algorithms

A greedy heuristic is a constructive algorithm that builds a solution step-by-step
starting from an empty solution. At each construction step, an element from a finite
set of solution components is added to the current partial solution. The element to
be added is chosen at each step according to some greedy function, which lends the
name to the algorithm. Advantages of greedy heuristics are that they are usually
easy to implement and that they are fast in execution. The disadvantage is that
the quality of the solutions provided by greedy algorithms can be quite far from
optimal. Due to the fact that the EDP problem usually has to be solved in rather large
graphs, research has focused on the development of greedy algorithms. Many of the
approximation ratios cited in Section 2 have been calculated when analyzing greedy
algorithms. Examples are the simple greedy algorithm (sga) [26] (see Section 3.1),
its constrained variant the bounded-length greedy algorithm [26, 28], and the greedy
path algorithm [12, 27]. Due to its lower time complexity when compared to the other
greedy approaches we decided to implement sga and a multi-start version, which we
both outline in the following.

3.1 The Simple Greedy Algorithm and its Multi-start Version

The sga algorithm (see Algorithm 1) is a natural way of approximating the EDP
problem that works as follows. It starts with an empty solution S. Then, it proceeds

Algorithm 1 Simple greedy algorithm (SGA) for the EDP problem
input: a problem instance (G, T), consisting of a graph G and a commodity list T
S ← ∅, Ê ← E
for j = 1, . . . , |T| do

if s j and t j can be connected by a path in G = (V, Ê) then
Pj ← shortest path from s j to t j in G = (V, Ê)

S ← S ∪ Pj, Ê ← Ê \ {e | e ∈ Pj}
end if

end for
output: the solution S
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Algorithm 2 Multi-start simple greedy algorithm (MSGA) for the EDP problem
input: a problem instance (G, T, Nperm), where Nperm is the number of restarts
Sbest ← ∅
T1 ← T
for i = 1 to Nperm do

Si ← Simple Greedy Algorithm SGA(G,Ti) {See Algorithm 1}
if f (Si) > f (Sbest) then

Sbest ← Si

end if
if i < Nperm then

π ← random permutation of |T|
Ti+1 ← (π(1), π(2), . . . , π(|T| − 1), π(|T|))

end if
end for
output: Sbest

through the commodities in the order that is given as input. For routing each
commodity T j ∈ T, it considers the graph G without the edges that are already in the
paths of the solution S under construction. The shortest path between s j and t j (with
respect to the edge-weights) is assigned as path for the commodity T j = (s j, t j ). Note
that the algorithm is deterministic and that the quality of the solutions it provides
depends heavily on the order in which the commodities are treated. In addition to its
simplicity, the sga algorithm can be naturally considered an on-line algorithm.

Observe that the sga algorithm is deterministic and that the quality of the
solutions it provides depends heavily on the order in which the commodities are
treated. A simple way of overcoming that dependence on the order is to develop
a multi-start version of the sga by permuting the order of the commodities for each
restart. This approach is pseudo-coded in Algorithm 2, in which Nperm denotes the
number of restarts, Si denotes the solution under construction in the embedded sga,
and Sbest denotes the best solution found so far. In the following, we refer to this
algorithm as multi-start greedy algorithm (msga).

3.2 The Greedy Algorithms are Non-optimal

Due to the deterministic decisions that greedy algorithms take during the solution
construction, it is sometimes not possible for them to find an optimal solution. This
is also the case for the sga and msga greedy algorithms presented here. Consider for
example the instance of the EDP problem depicted in Fig. 1, which consists in the
depicted graph and the set T = {(v1, v7), (v8, v14), (v15, v21)} of three commodities
to join. The optimal solution in which all three commodities are connected is also
shown in bold font in Fig. 1. This solution is found by our aco algorithm, which
is presented next, in a small amount of time (less than 30 ms.). Observe however,
that there is no way for any of the greedy algorithms, neither sga nor msga, to
find the solution of size greater than two. Since these greedies are based on the
shortest paths, the algorithms will tend to connect the commodities through non-
consecutively-numbered vertices. For example, when trying to connect first the
commodity (v1, v7), the sga algorithm will establish the path {v1, v9, v10, v5, v6, v7}.
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Fig. 1 Instance of the EDP
problem with T =
{(v1, v7), (v8, v14), (v15, v21)}.
Neither sga nor msga can find
the optimal solution depicted
in bold font

This excludes edge {v9, v10} as a possibility for being used in other paths, which
makes it impossible to build disjoint paths simultaneously for the remaining two
commodities, independently of which one is built next. Analogous situations occur
when starting from any of the other two commodities.

4 An Ant Colony Optimization Approach

Ant colony optimization (aco) [19] is inspired by the foraging behavior of real ants.
This behavior enables an ant colony to find shortest paths between food sources and
their nest. While walking from food sources to the nest and vice versa, ants deposit
a chemical substance called pheromone on the ground. When they decide about a
direction to go, they choose probabilistically paths marked by strong pheromone
concentrations. This behavior is the basis for a cooperative interaction which leads
to the emergence of shortest paths.

In aco algorithms, artificial ants incrementally construct a solution by adding
appropriately defined solution components to the current partial solution. Each of
the construction steps is a probabilistic decision based on local information, which is
represented by the pheromone information. The exclusive use of local information
is certainly a desirable property for algorithms that are aimed for the application to
problems for which the computation of global information is costly. This property
makes aco algorithms a natural choice for the application to the EDP problem.

4.1 The Basic ACO Algorithm

In the following we outline our aco approach, which is based on a decomposition
of the EDP problem. Each problem instance P = (G, T) of the EDP problem can
be naturally decomposed into |T| subproblems P j = (G, T j ), with j ∈ {1, . . . , |T|},
by regarding the task of finding a path for a commodity T j ∈ T as a problem itself.
With respect to this problem decomposition, we use a number of |T| ants each of
which is assigned to exactly one of the subproblems. Therefore, the construction of
a solution consists of each ant building a path Pj between the two endpoints of her
commodity T j. Obviously, the subproblems are not independent as the set of |T|
paths constructed by the ants should be mutually edge-disjoint.

4.1.1 Ant Solutions

A solution S constructed by the |T| ants is a set of not necessarily edge-disjoint
paths that contains a path for each commodity. We henceforth refer to them as
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ant solutions. From each ant solution a valid EDP solution can be produced by
iteratively removing the path which has most edges in common with other paths,
until all remaining paths are mutually edge-disjoint.

The objective function f (·) of the problem (see Eq. 1) is characterized by having
many plateaus when it is applied to ant solutions. This is because many ant solutions
will have the same number of disjoint paths. Thus, a consequence of decomposing the
EDP problem is the need to define a more fine-grained objective function f a(·) for
ant solutions. Therefore, referring to f (S) as a first criterion, we introduce a second
criterion C(S), which is defined as follows:

C(S) =
∑

e∈E

⎛

⎝max

⎧
⎨

⎩0,

⎛

⎝
∑

P j∈S

δ j(S, e)

⎞

⎠ − 1

⎫
⎬

⎭

⎞

⎠ , where

δ j(S, e) =
{

1 : e ∈ Pj ∈ S
0 : otherwise.

This second criterion quantifies the degree of non-disjointness of an ant solution. If
all the paths in a solution S are edge-disjoint, C(S) is zero. In general, C(S) increases
when increasing the usage of common edges in S. Therefore, based on the idea that
“the fewer edges are shared in a solution, the closer the solution is to disjointness,”
a comparison operator f a(·) that differentiates between ant solutions can be defined
as follows. For two ant solutions S and S′, it holds that f a(S) > f a(S′) if, and only if,

( f (S) > f (S′))︸ ︷︷ ︸
1st criterion

or (( f (S) = f (S′) and (C(S) < C(S′))︸ ︷︷ ︸
2nd criterion

. (2)

4.1.2 Pheromone Models

The problem decomposition as described above implies that we use a pheromone
model τ j for each subproblem P j. Each pheromone model τ j consists of a
pheromone value τ

j
e for each edge e ∈ E. The set of |T| pheromone models is

henceforth denoted by τ = {τ 1, . . . , τ |T|}. Our aco algorithm is implemented in the
hyper-cube framework (HCF) [9], which is a way of implementing aco algorithms
such that the pheromone values are bounded between 0 and 1. Furthermore, we
borrow an idea from so-called MAX -MIN Ant Systems (MMASs) [41] and
introduce pheromone value limits τmin = 0.001 and τmax = 0.999 in order to prevent
that the algorithm converges to a solution.

4.1.3 Algorithm Framework and Components

Algorithm 3 is a high level description of our aco algorithm. Two different ant
solutions are kept in the algorithm: Sibest is the iteration-best solution, i.e., the best
ant solution generated in the current iteration, and Sgbest is the best-so-far solution,
i.e., the best ant solution found since the start of the algorithm.

In the following, we give a high-level description of the algorithm. The main
procedures used by the algorithm are explained in detail in the following of the
section. First, all the variables are initialized. In particular, the pheromone values
are set to their initial value τmin by the procedure InitializePheromoneValues(τ ).
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Algorithm 3 Basic ACO algorithm for the EDP problem
input: a problem instance (G, T)

Sgbest ← ∅
InitializePheromoneValues(τ )
while termination conditions not met do

π ← (1, 2, . . . , |T| − 1, |T|)
for i = 1 to Nsols do

Si ← ∅
for j = 1 to |T| do

Pπ( j ) ← ConstructFullPath(sπ( j ), tπ( j ))
Si ← Si ∪ {Pπ( j )}

end for
if i < Nsols then π ← GenerateRandomPermutation(|T|)

end for
Choose Sibest ∈ {Si | i = 1, . . . , Nsols} such that

f a(Sibest) ≥ f a(S), ∀S ∈ {Si | i = 1, . . . , Nsols}
if f (Sibest) > f (Sgbest) then Sgbest ← Sibest

UpdatePheromoneValues(τ ,Spbest)
end while
output: the EDP solution generated from the best solution Sgbest

Second, Nsols ant solutions are constructed per iteration. To construct a solution,
each ant applies the functionConstructFullPath(sπ( j ), tπ( j )), where π is a permutation
of T. At each iteration, the first of those Nsols ant solutions is constructed by
sending the ants in the order in which the commodities are given in T. For each
further ant solution construction in the same iteration, the order π in which the
ants construct a path for their commodity is randomly generated by the function
GenerateRandomPermutation(|T|). Third, the value of the variables Sibest and Sgbest

is updated. Finally, the pheromone values are updated depending on the edges in-
cluded in Sgbest. The algorithm is iterated until some opportunely defined termination
conditions are satisfied, and it returns the EDP solution generated from the ant
solution Sgbest.

The main procedures of our algorithm are outlined more in detail in the following.

InitializePheromoneValues(τ ) initializes all the pheromone values τ
j

e ∈ τ j ∈ τ to the
value τmin. (see Section 4.1.2.)

ConstructFullPath(sπ( j ), tπ( j )). For constructing a path between the endpoints of the
commodity (sπ( j ), tπ( j )), an ant first chooses randomly to start either from the source
sπ( j ) or the target tπ( j ). Then, the ant iteratively moves from node to node using
available edges that are not already in the path Pπ( j ) under construction, and that
are not labelled forbidden by a backtracking move. Backtracking is done in case the
ant finds itself in a node in which all the incident edges have been used, or if all the
incident edges are labelled forbidden. Note, that with this strategy the ant will find
a path between source and target, if there exists one. Otherwise, the ant returns an
empty path and the iterative process is also stopped. In the following the current
node is denoted by vc, the goal node is denoted by vg, and the set of allowed edges
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in G (i.e., those incident to vc which were not used yet in the path and not labelled
as forbidden) is denoted by I�

vc
.

At each construction step, the choice of where to move to has a certain probability to
be done deterministically. This is a feature we adopt from a particularly effective
aco variant called Ant Colony System (acs) which was proposed by Dorigo and
Gambardella in [17]. We draw a random number drate between 0 and 1. If drate ≤ 0.75
(where 0.75 was chosen by parameter tuning as outlined in Section 4 and [8]), the
next edge to join path Pπ( j ) under construction is chosen deterministically:

e∗ = {vc, u} ← argmax {τ j
e · p(De)

β · p(Ue)
γ | e ∈ I�

vc
} , (3)

where p(De) is a value that determines the influence of the distance from vc via
u to the goal vertex vg, and p(Ue) is a value that determines the influence of the
overall usage of edge e, which is the information whether e is already used in the
path of another ant for the same solution. The parameters β > 0 and γ > 0 weight
the influence of these two terms. The length of the shortest path between two vertices
u and v in G is henceforth denoted by σ(u, v). The terms p(De) and p(Ue) are defined
as follows:

p(De={vc,u}) ←
(
σ(u, vg) + w(e)

)−1

∑
e′={vc,u′}∈I�

vc

(
σ(u′, vg) + w(e′)

)−1

p(Ue) ← U(e)−1
∑

e′∈I�
vc

U(e′)−1 , in which

U(e) =
{

2 : e already used in Si

1 : otherwise

If drate > 0.75, the next edge e∗ is chosen according to the following transition
probabilities:

p(e | I�
vc

) = τ
j

e · p(De)
β · p(Ue)

γ

∑

e′∈I�
vc

τ
j

e′ · p(De′)β · p(Ue′)γ
,∀ e ∈ I�

vc
(4)

If the probability of doing a deterministic construction step is too high, there is the
danger that the algorithm gets stuck in low quality regions of the search space. On
the other side, doing deterministic construction steps bears the potential of leading
the algorithm quite quickly to good areas of the search space. In our experiments (see
Section 4 and [8]) we found 0.75 to be a good trade-off. Concerning the composition
of the transition probabilities, the use of the pheromone information τ

j
e ensures the

flexibility of the algorithm, whereas the use of p(De)
β ensures a bias towards short

paths, and p(Ue)
γ ensures a bias towards disjointness of the |T| paths constituting

a solution.
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After every ant has constructed its path and the solution S is completed, we apply
another feature of acs, namely the evaporation of some amount of pheromone from
the edges that were used by the ants. Given a solution S, the evaporation is done as
follows:

τ j
e ←

{
(1 − erate) · τ

j
e : e ∈ Pπ( j ) ∈ S, j = 1, . . . , |T|

τ
j

e : otherwise.
(5)

The reason for this pheromone evaporation is the desire to diversify the search in
each iteration. After parameter tuning we chose a setting of erate = 0.10.

UpdatePheromoneValues(τ ,Supdate). As it is usual in acs algorithms, in our basic aco
algorithm only the ant solution Sgbest is used for updating the pheromone values for
all j ∈ {1, . . . , |T|} as follows:

τ j
e ← max

{
τ j

e + ρ · (
1 − τ j

e

)
, τmax

} ∀ e ∈ Pj, (6)

where ρ ∈ (0, 1] is a constant value which is called learning rate in algorithms that are
implemented in the hyper-cube framework. For all our experiments we have set ρ to
0.1.

4.2 Motivation for Additional Algorithmic Features

The direct application of a basic aco scheme to a problem achieves sometimes
quite good results. However, the algorithms’ performance can often be improved
by applying some additional features to the search process, especially when a rather
unusual problem such as the EDP is tackled. In this section, we describe how
the basic aco approach introduced in Section 4.1 may be enriched with different
strategies that modify the way the algorithm explores the solution space. In the
following we propose four additional features, explaining why these features might
lead to an improvement, before we outline the implementation of these features
more in detail in the subsequent section.

Sequential versus parallel solution construction For constructing a solution, method
ConstructFullPath(sπ( j ), tπ( j )) as applied in the basic aco algorithm (see Algorithm 3)
considers one commodity after the other, and constructs for each commodity a path
between its endpoints before the next commodity is considered. In the following we
refer to this way of constructing solutions as the sequential way. As an alternative
we propose to construct paths for all the commodities in parallel. Hereby, at each
constructing step each ant changes its partial path by either adding exactly one
edge, or by doing a backtracking move. Note that there is a considerable difference
in the influence of the edge-usage information between sequential and parallel
construction. This changes the dynamics of the search process and might lead to
different results.

The use of a candidate list strategy A candidate list strategy is a mechanism to restrict
the number of available choices to be considered at each construction step. Usually
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this restriction applies to a number of the best choices with respect to their transition
probabilities (see Eq. 4). For example, in the case of the application of acs to the
travelling salesman problem the restriction to the closest cities at each construction
step improved the final solution quality as well as it led to a significant speedup of
the algorithm (see [21]). The reasons for that are as follows: First, in aco algorithms
each choice has a positive probability to to selected. However, in order to construct
high quality solutions it is often enough to consider only the “good” choices at each
construction step, and, therefore, to consider choices with a low probability is often
a waste of time. Second, to consider less choices at each step speeds up the solution
construction.

Different search phases characterized by the pheromone update In general, the
pheromone update procedure is an important component of every aco algorithm. In
fact, it determines to a large degree the failure or the success of the algorithm. Most
of the existing generic variants of ACO only differ in the pheromone update. In
the case of the EDP application, we propose a pheromone updating scheme that is
based on the following idea. In our basic algorithm, all the paths of the ant solution
Sgbest are used for updating the pheromone values (including the non-disjoint
paths). However, at the beginning of the search it might be better not to use these
non-disjoint paths for updating in order to maintain a higher degree of freedom
for finding also edge-disjoint paths for the commodities that initially prove to be
problematic. Therefore, we propose a first phase of the algorithm in which only
disjoint paths are used for updating the pheromone values, followed by a second
phase which is initiated when no improvements can be found over a certain time.
In this second phase, all the paths are used for updating the pheromone values. In
a way, in the first phase of the algorithm we try to improve the first criterion of the
objective function (while disregarding the second one), and in the second phase
we try to improve also the second criterion. Once the second phase leads to an
improvement also in terms of the first criterion, the algorithm changes back to the
first phase.

Partial destruction of solutions (escape mechanism) One of the main problems of
metaheuristic search procedures is to detect situations in which the search process
gets stuck, i.e., when some local minimum is reached. Most of the successful applica-
tions incorporate algorithm features to escape from these situation once detected. In
case of our algorithm for the EDP problem we propose a partial destruction of the
disjoint part of the solution which is used for updating the pheromone values. This
mechanism is initiated once the algorithm was unable to improve the currently best
solution for a number of subsequent applications of first and second phase. Similar
ideas are applied in backtracking procedures, or in the perturbation mechanism of
local search based methods, such as iterated local search or variable neighborhood
search (see [10]).

4.3 The Result: An Extended ACO Algorithm

In the following we outline in more detail our extended aco algorithm including the
additional features motivated in the previous section. The extended algorithm (for
the pseudo-code see Algorithm 4) is based on the basic aco algorithm as described
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Algorithm 4 Extended ACO algorithm for the EDP problem
input: a problem instance (G, T)

Sgbest ← ∅, Spbest ← ∅, ccrit1 ← 0, ccrit2 ← 0
all_update ← false
InitializePheromoneValues(τ )
while termination conditions not met do

π ← (1, 2, . . . , |T| − 1, |T|)
for i = 1 to Nsols do

Si ← ConstructSolution(G,π ) {See Algorithm 5}
if i < Nsols then π ← GenerateRandomPermutation(|T|)

end for
Choose Sibest ∈ {Si | i = 1, . . . , Nsols} s.t. f a(Sibest) ≥ f a(S), ∀S ∈ {Si | i =
1, . . . , Nsols}
if f (Sibest) > f (Sgbest) then Sgbest ← Sibest

if f a(Sibest) > f a(Spbest) then
ccrit2 ← 0
Spsave ← Spbest

Spbest ← Sibest

if f (Sibest) > f (Spsave) then
Supdate ← ExtractDisjointPaths(Spbest) {First phase}
ccrit1 ← 0
all_update ← false

else
ccrit1 ← ccrit1 + 1

end if
if all_update then Supdate ← Spbest {Second phase}

else
ccrit2 ← ccrit2 + 1

end if
if all_update then

if ccrit2 > c2max then
Spbest ← DestroyPartially(Spbest) {Escape mechanism}
Supdate ← ExtractDisjointPaths(Spbest)
ccrit2 ← 0, ccrit1 ← 0

end if
else

all_update ← (ccrit1 > c1max)

end if
UpdatePheromoneValues(τ ,Supdate)

end while
output: the EDP solution generated from the best solution Sgbest

in Section 4.1 (see Algorithm 3). Three different solutions are kept in the algorithm.
In addition to the ant solutions Sibest and Sgbest, we keep an ant solution Spbest, which
is the currently best solution, i.e., the best ant solution generated since the last escape
action (see below). Note that the solution Spbest takes over the role of solution
Sgbest when compared to the basic aco algorithm. Sgbest is only used to keep the best
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solution found. Additionally, two parameters ccrit1 and ccrit2 are introduced. When
the algorithm is in the first phase (i.e., the phase in which only the disjoint paths of
solution Spbest are used for updating), ccrit1 counts the number of successive iterations
without improvement of the first criterion of the objective function. Similarly, when
the algorithm is in the second phase (i.e., all paths of Spbest are used for updating)
ccrit2 counts the number of successive iterations without improvement of the second
criterion. Limits c1max (for ccrit1) and c2max (for ccrit2) are used to determine when
the algorithm should change phases. In the following we explain in more detail the
features of the extended algorithm.

Solution construction (including the candidate list strategy) The solution construction
of our extended aco algorithm is performed in method ConstructSolution(G,π ),
which includes the possibility of a sequential as well as the one of a parallel
solution construction. Algorithm 5 shows a high-level description of the extended
solution construction mechanism. Two (setup) parameters are needed: the parameter
constructiontype, which determines whether the construction is done sequentially (i.e.,
constructiontype = sequential) or in parallel (i.e., constructiontype = parallel), and
the parameter candidatesListsize, which configures the candidate list strategy. This
strategy restricts the set of candidate edges I�

vc
that can be considered at every

Algorithm 5 Method ConstructSolution(G,π ) of Algorithm 4.
input: a graph G from a problem instance (G, T), and a permutation π of T.
S ← ∅
if constructiontype=sequential then

for j = 1 to |T| do
Pπ( j) ← ConstructFullPath(sπ( j), tπ( j))
S ← S ∪ {Pπ( j)}

end for
else if constructiontype=parallel then

for j = 1 to |T| do
Pπ( j) ← ∅

end for
nb_paths_ f inished ← 0
j ← 0
repeat

if not isFinishedPath(Pπ( j+1)) then
Pπ( j+1) ← ExtendOneStepPath(Pπ( j+1),τπ( j+1))
if isFinishedPath(Pπ( j+1)) then

nb_paths_ f inished ← nb_paths_ f inished + 1
S ← S ∪ {Pπ( j+1)}

end if
end if
j ← ( j + 1)mod|T|

until nb_paths_ f inished = |T|
end if
output: an ant solution S
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construction step in one of the three following ways: Either (1) the two best choices
are considered (i.e., the two choices that have a higher transition probability p(· | I�

vc
)

than the others), or (2) the 50% best choices, or (3) all the choices (which is, in
fact, the setting of the basic aco algorithm). This means that candidatesListsize ∈
{2, 50%, all}. The procedures of Algorithm 5 work as follows:

– ConstructFullPath(sπ( j), tπ( j)). This method is the same as in the basic aco algo-
rithm just that candidate list strategies might be applied.

– isFinishedPath(Pπ(k)). This method returns a boolean value indicating whether
the path Pπ(k) is finished, i.e., whether a path could be established from sπ(k) to
tπ(k), or if it was determined that no path exists.

– ExtendOneStepPath(Pπ( j+1),τπ( j+1)). This method tries to extend the path
Pπ( j+1), i.e., the path under construction by the ( j + 1)-th ant, by adding exactly
one edge. Otherwise, it performs a backtracking step. Note that also in this
method the use of the candidate list strategies applies.

Implementation of two algorithm phases and an escape mechanism In the fol-
lowing we outline the implementation of the two phases of our algorithm (as
motivated in the previous section). The pheromone update performed in func-
tion UpdatePheromoneValues(τ ,Supdate) of Algorithm 4 works in the same way as

Algorithm 6 Method DestroyPartially (Spbest) of Algorithm 4. ExtractDisjoint-
Paths(Spbest) implements the process of returning a valid EDP solution from an
ant solution as explained in Section 4.1.1. The method Cost(Stemp) returns the
number of disjoint paths in Stemp. The methods ChoosePathAtRandom(Stemp) and
ChooseLongestPath(Stemp) return, respectively, a randomly chosen disjoint path of
Stemp and the longest disjoint path of Stemp. The method ResetPheromoneModel(τ i)
resets to τmin all the pheromone values of the pheromone model τ i, i.e., τ i

e ←
τmin, ∀e ∈ E.

input: an ant solution Spbest

if destructionrate > 0 then
Spbest ← ExtractDisjointPaths(Spbest)
nbpaths ← 
destructionrate· Cost(Spbest)�
nbremoved ← 0
repeat

if destructiontype=random then
Pi ← ChoosePathAtRandom(Spbest)

else if destructiontype=longest then
Pi ← ChooseLongestPath(Spbest)

end if
Spbest ← Spbest \{Pi}
ResetPheromoneModel(τ i)
nbremoved ← nbremoved + 1

until nbremoved = nbpaths

end if
output: the solution Spbest partially destroyed
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explained in Section 4.1.3, except for the following difference: The solution Supdate

that is used for updating is obtained in different ways, depending on the search phase
in which our algorithm is at the moment of the update.

As mentioned above, our algorithm works in two phases based on the two criteria
of function f a(·) (see Eq. 2). First, it tries to improve only the first criterion. For
this purpose, solution Supdate that is used for updating the pheromone values is
obtained by applying function ExtractDisjointPaths(Spbest), which implements the
process of returning a valid EDP solution from the ant solution Spbest as explained
in Section 4.1.1. If for a number of c1max iterations the first criterion could not be
improved, then the algorithm tries to improve the second criterion. For this purpose,
solution Supdate that is used for updating the pheromone values is a copy of the current
solution Spbest, including possibly non-disjoint paths. In case of success, the algorithm
jumps back to the first phase trying to improve again the first criterion. Otherwise,
if for a number of c2max iterations the second criterion could not be improved, some
of the paths from the EDP solution that can be produced from Spbest are deleted
from Spbest. This action, which is performed by function DestroyPartiallySpbest of
Algorithm 4, can be seen as a mechanism to escape from the current area of the
search space.

Function DestroyPartially(Spbest), whose pseudo-code is outlined in Algorithm 6,
has two different setup parameters: (1) The parameter destructionrate determines how
many of the disjoint paths are destroyed, and (2) parameter destructiontype indicates
which paths to destroy. We chose the following three settings for destructionrate: 0,
0.25, and 0.5, where 0 means that none of the paths is destroyed (i.e., the escape
mechanism is not applied), 0.25 means that 25% of the paths are destroyed, and
similarly for 0.5. Concerning parameter destructiontype, we propose two different
schemes: (1) Setting destructiontype = random causes the destruction of randomly
selected paths, whereas (2) setting destructiontype = longest initiates the destruction
of the longest paths, i.e., those paths with the highest number of edges. The second
setting assumes that the longer a path is, the more restrictions it introduces to assure
disjointness of the paths that still conflict with others. Thus, by removing the longest
disjoint paths, the number of total edges available is maximized.

5 Experimental Evaluation

In the following we first outline the characteristics of our problem instances (see
Section 5.1), before we describe in Section 5.2 the parameter setting for our aco
algorithms. The tuning process is documented in detail in [8]. Finally, in Section 5.3
we present the experimental evaluation of our aco approaches in comparison to
the results obtained by the greedy approaches that we outlined in Section 3. All
the algorithms in this paper were implemented in C++ and compiled using GCC
2.95.2 with the -o3 option. The experiments have been run on a PC with Intel(R)
Pentium(R) 4 processor at 3.06 GHz and 900 Mb of memory running a Linux
operating system and with 1.98 processor load. Moreover, our algorithms were all
implemented on the same data structures. Information about the shortest paths in
the respective graphs is provided to all of them as input. Notice however that, while
the greedy approaches need to partially recompute this information after the routing
of each commodity, this is not necessary for our aco algorithm.
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Fig. 2 Graphs generated with BRITE. These graphs consist of a two-level top–down hierarchical
topology (Autonomous System level plus router level), which are typical for Internet topologies

5.1 Problem Instances

In [7] we proposed a first set of benchmark instances for the EDP problem in order to
experimentally evaluate our preliminary aco approach. This set of instances includes
three graphs representing different communication networks. Two of them, namely
graph3 and graph4, were created by researchers of the Computational Optimization
& Graph Algorithms group of the Technische Universität Berlin. Their structure
resembles parts of the communication network of the Deutsche Telekom AG in
Germany. The third graph, namely bl-wr2-wht2.10-50.rand1,3 was created with the
network topology generator BRITE [33]. With the same network topology genera-
tor, but with different topology properties, we now generated more graphs, namely
AS-BA.R-Wax.v100e190, AS-BA.R-Wax.v100e217, bl-wr2-wht2.10-50.rand2, and
bl-wr2-wht2.10-50.sdeg (see Fig. 2). More information about the options chosen
to generate these topologies with BRITE is provided in Table 2. Additionally to
these graphs, we have also considered two mesh graphs , one of size 15 × 15 (graph

3In [7], this graph was just called bl-wr2-wht2.10-50.
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Table 1 Main quantitative measures of our graphs

Graph |V| |E| min. Degree max. Diameter Clustering
avg. coefficient

graph3 [7] 164 370 1 4.51 13 16 0.226
graph4 [7] 434 981 1 4.52 20 22 0.156
AS-BA.R-Wax.v100e190 100 190 2 3.80 7 11 0.379
AS-BA.R-Wax.v100e217 100 217 2 4.34 8 13 0.411
bl-wr2-wht2.10-50.rand1 [7] 500 1020 2 4.08 13 23 0.102
bl-wr2-wht2.10-50.rand2 500 1020 2 4.08 11 27 0.097
bl-wr2-wht2.10-50.sdeg 500 1020 2 4.08 14 28 0.086
mesh15x15 225 420 2 3.73 4 28 0
mesh25x25 625 1200 2 3.84 4 48 0

mesh15x15), and one of size 25 × 25 (graph mesh25x25). All these new graphs,
together with the three graphs used in [7], define the topologies of the instances
to be used in our experiments. Table 1 shows their main features and quantitative
measures.

An instance of the EDP problem consists of a graph and a set of commodities.
For each of the nine graphs we have therefore randomly generated different sets
of commodities. Hereby, we made the size of the commodity sets dependent on
the number of vertices of the graph.4 For each graph G = (V, E) we generated 20
different instances with 0.10|V|, 0.25|V| and 0.40|V| commodities. This makes a sum
of 60 instances for each graph, and 540 instances altogether.

5.2 Tuning of the Algorithm Parameters

Due to the relatively high number of algorithm parameters it was not feasible to
tune all the parameter values together. In order to ease the task of parameter tuning
we first divided the set of parameters into two subsets. The first subset consists of
parameters which are in our opinion not critical, in the sense that appropriate values
can easily be found. These parameters are τmin and τmax for limiting the pheromone
values, Nsols (the number of solution constructions per iteration), the learning rate
ρ, and the maximum number of non-improving iterations for the first and second
algorithm phase, namely c1max, and c2max respectively. For these parameters we chose
values that we found to be well-working after preliminary tests.

The remaining parameters, which define our extended aco approach in terms
of its added features, are the following ones: drate is the proportion of deter-
ministic construction steps; β and γ balance the influence of the distance to the
goal vertex and the overall usage of edges, respectively; erate determines how
much pheromone is evaporated from the edges belonging to the current best
solution; constructiontype specifies the strategy followed for constructing the paths
of a solution; candidatesListsize specifies the size of the candidate lists; the vari-
able distinguishphase1 indicates whether to use the two search phases based on

4Note that this is different to what we did in [7], where we used fixed commodity set sizes independent
of the graph sizes. The drawback of fixed number of commodities is that instances composed by
bigger graphs are easier to solve than instances composed by smaller graphs.
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the improvement of the two criteria of the objective function; destructionrate and
destructiontype indicate how much of the current best solution must be destroyed and
how this destruction should be performed.

For the purpose of tuning the remaining parameters we used all the instances
derived from graph AS-BA.R-Wax.v100e190.5 First, we applied the extended aco
approach with all possible combinations of parameter value settings to all the 60
instances. Then, we progressively fixed parameter values in the following way. At
each step i, we chose the parameter pi (from the ones that still needed a value) for
which we could see a clearer result than for the rest. Note that this process was rather
based on personal judgment than on mathematical rigor. Hereby, the i-th parameter
pi is decided according to the experimental results obtained for those experiments
in which the previously treated parameters p1, . . . , pi−1 have their fixed value, and
the rest of parameters pi+1, pi+2, . . . , etc. can have any allowed value. In those cases
in which the analysis of only one parameter did not provide enough information to
decide for a value, we studied the combined influence of two or more parameters
with respect to the rest.

The complete tuning process is documented in [8]. Here we only show some
illustrating examples. The first parameter for which we chose a value was parameter
distinguishphase1, which has settings {yes, no}. Some results of our experiments are
shown in Fig. 3 in the form of box-plots. When analyzing the box-plots it becomes
clear that both in terms of solution quality and computation time better results are
obtained when setting distinguishphase1 to yes. We use this setting for deciding a value
for all the remaining parameters. Thus only the results of experiments for which
distinguishphase1 is set to yes are considered in the following.

Second, we decided for a value for parameter drate. This parameter has five
possible settings: {0,0.25,0.5,0.75,1}. Figure 4 depicts results of the experiments
obtained for the tuning of this parameter. The results show that determinism is
needed, although not too much. There is no difference between the quality of the
solutions obtained for values 0.25, 0.5, and 0.75. However, the setting of drate to 0.75
needs less computational time in order to reach the same solution quality (see Fig. 4).

After fixing parameter values for β and γ to 1, it still remained to fix a parameter
value for the candidate list size, the destruction rate, the destruction type and
the solution construction mechanism. An initial separate study of them was not
conclusive, since these parameters seemed to be strongly related. Furthermore, the
experiments for the instances derived from graph AS-BA.R-Wax.v100e190 did not
provide much information. We used graph4 for continuing the tuning, since this
graph proved to be difficult for a preliminary version of our aco approach [7], which
lacked most of the additional features of the extended aco. Figure 5 shows results
(under different destruction rates) concerning the joined analysis of the candidate
list size, the destruction type and the solution construction strategies, for the 20
instances composed by graph4 and 173 commodities. First, the results displayed in
this figure show that parallel solution construction seems to have advantages over
the sequential construction, independently of the destruction rate. It can also be
observed that, the higher the number of considered candidates is, the lower is the
quality of the solutions obtained. Concerning the destruction type, to destroy the

5Note that the computation time limits are the same as described in Table 4.
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Fig. 3 Results concerning the setting of parameter distinguishphase1. The box-plots show results
of all experiments concerning the instances with 25 commodities derived from graph AS-BA.R-
Wax.v100e190 in terms of the best found solutions, respectively the times at which these solutions
were found, of the extended aco algorithm. In each graphic, the left box-plot (labelled as yes) shows
the case in which only the disjoint paths of the ant solution contribute to the update of the pheromone
(1st phase); the right box-plots (labelled as no) show the case in which the whole ant solution is used
for updating the pheromone

longest paths in the solution generally provides slightly better results than destroying
some paths chosen at random.

The final parameter setting is summarized in Table 3.

(a) (b)

Fig. 4 Results concerning the setting of parameter drate when having fixed distinguishphase1 to yes.
The box-plots show results of all experiments concerning the instances with 25 commodities derived
from graph AS-BA.R-Wax.v100e190 in terms of the best found solutions, respectively the times at
which these solutions were found, of the extended aco algorithm. In each graphic, the five box-plots
show the results when considering 0%, 25%, 50%, 75% and 100% determinism, respectively



382 J Math Model Algor (2007) 6:361–391

5.3 Experiments and Results

We applied the algorithms presented in this work to all the instances exactly once.
First, we applied msga with 50 restarts (i.e., Nperm = 50) to each of the 540 instances.
The computation time of msga was used as a maximum CPU time limit for both

SEQ
2 candidates

Considering the candidate list strategy 
 (graph4, 173 pairs, 1st phase YES, beta 1, gamma 1, 

 drate 0.75, erate 0.10, destrate 0) 

Candidates considered

si
ze

 (
nb

. d
is

jo
in

t p
at

hs
)

PAR SEQ
50% candidates

PAR SEQ
all candidates 2 candidates 50% candidates all candidates

PAR

75
80

85
90

SR

Considering the candidate list strategy 
 (graph4, 173 pairs, 1st phase YES, beta 1, gamma 1, 

 drate 0.75, erate 0.10, destrate 0.25)

Candidates considered

si
ze

 (
nb

. d
is

jo
in

t p
at

hs
)

SL PR PL SR SL PR PL SR SL PR PL

75
80

85
90

Considering the candidate list strategy 
 (graph4, 173 pairs, 1st phase YES, beta 1, gamma 1, 

 drate 0.75, erate 0.10, destrate 0.5) 

si
ze

 (
nb

. d
is

jo
in

t p
at

hs
)

75
80

85
90

2 candidates 50% candidates all candidates
SR

Candidates considered

SL PR PL SR SL PR PL SR SL PR PL

(a) (b)

(c)

Fig. 5 Results concerning the joined analysis of the candidate list size, the destruction type and
the sequential/parallel solution construction strategies, under different destruction rates. The box-
plots show results of all experiments concerning the instances with 173 commodities derived from
graph graph4. The x-axis shows different sizes for the candidate lists (i.e., 2 candidates, 50% of the
candidates, and all the candidates), together with the different solution construction strategies and
the destruction criteria. Hereby we use the abbreviations SR, SL, PR, and PL, where S stands for
sequential, P for parallel, L for longest path destruction, and R for random path destruction
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Table 3 Final parameter setting for the extended aco algorithm

Parameter/property Tuning domain Chosen value

τmin – 0.001
τmax – 0.999
Nsols – 10
ρ – 0.1
c1max, c2max – 20 for both
drate {0, 0.25, 0.50, 0.75, 1} 0.75
β, γ {0.1, 1, 10} for both 1 for both
erate {0.01, 0.05, 0.10} 0.10
constructiontype {sequential, parallel} parallel
candidatesListsize {2, 50%, all} 2
distinguishphase1 {yes, no} yes
destructionrate {0, 0.25, 0.50} 0.25
destructiontype {random, longest} longest

Note that for the simple aco we chose the same values for parameters τmin, τmax, Nsols, ρ, c1max, c2max,
drate, β, γ , and erate as for the extended aco

versions of the aco algorithm. We present the results as averages over the 20
instances of each combination of graph and commodity number in Table 4 and
Table 5. The layout of these tables is explained in their caption. In Table 4, we report
the results of our experiments for graphs graph3, graph4, AS-BA.R-Wax.v100e190,
AS-BA.R-Wax.v100e217, and bl-wr2-wht2.10-50.rand1. The experiments for the
remaining graphs are reported in Table 5, in which we have omitted the results of
the experiments with the simple aco algorithm since, as it can be seen in Table 4, it
does never get better results than the extended aco or the msga greedy.

Concerning the comparison between sga and msga, we observe a clear advantage
of msga. This means that the order in which the commodities are treated is crucial in
achieving a good performance. However, as there is no obvious way of determining
a good commodity order beforehand, the only way of exploiting this knowledge is
by randomly permuting the commodity list and running msga. The prize we have to
pay for exploiting this knowledge is the increased computation time. Concerning the
comparison of the two aco approaches (see Table 4), we can observe that the features
that distinguish the extended aco from the simple aco approach are of great benefit.
The extended aco approach consistently obtains better solution qualities in less
computational time. When comparing the simple aco approach with the msga greedy
algorithm, we can observe that the former, although being more sophisticated, does
not achieve a better performance. For the graphs representing Internet topologies,
both the msga and the simple aco approach perform very similar. For the other
graphs, the msga is often faster.

More in detail, we can observe that in 21 out of 27 cases the extended aco
approach beats all the other algorithms. The extended aco approach is on average
better than msga (0.87% better in the case of 10% of the pairs, 7.98% in the case
of 25% of the pairs, and 14.22% in the case of 25% of the pairs). In some cases, the
extended aco approach is even much better than the msga, e.g., for graph4 and 173
commodities it is 15.07% better, for mesh15x15 and 90 commodities it is 18.87%
better, and formesh25x25 and 250 commodities it is 29.79% better. Additionally,the
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(a)  Example of the evolution of the quality of the current best solution Spbest 
and the best-so-far solution Sgbest during the search (left), and the number 
of shared edges (2nd criterion) of the solution Spbest (right). The behavior 
shown here corresponds to the application to one of the 20 instances composed 
by graph 4 and a list of 173 commodities. All the curves are smoothed with 
gnuplots' sbezier function.

(b) Zoom on the 700 first (left) and the 700 last (right) iterations of Sub- 
figure a.  On the left, the best solution found is quickly improved.  At 
about iteration 250, the algorithm destroys part of the Spbest solution, which 
produces an instantaneous worsening in the quality (left); another solution 
destruction takes places around iteration 550, which helps in achieving an 
improvement soon afterwards (left). Analogous effects can be observed around 
iteration 950 and 1250 (right). When contrasting with Subfigure a (right), 
we can observe that there exists an (inverted) relation between the number 
of edges shared and the quality of the solutions obtained. Thus validating our 
choice of the 2nd criterion as a part of the objective function.

Fig. 6 A representative example of the behavior of the extended aco algorithm. The effect of the
mechanism for the partial destruction of the current best solution can be clearly observed. It is also
interesting to observe the evolution of the second criterion as a measure for disjointness

extended aco approach needs in general lesser computation time than the msga,
except for the mesh graphs. This advantage in computation time increases with
increasing number of commodities. Exceptions are some of the results for small
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number of commodities, namely for 10% of the number of nodes of the graphs. For
this combination msga has often slight advantages over the extended aco approach.
Therefore, we recommend to use a greedy approach when easy problem instances
are concerned. However, the average results for instances with a higher number of
commodities show a clear advantage of the extended aco in contrast to msga, both
in quality and time.

Mesh graphs deserve a special attention, since the behavior of the algorithms on
them is different than on the graphs emulating Internet topologies. For mesh graphs,
the extended aco needs more time but in contrast the quality of the solutions that it
obtains is often much better than the ones obtained by the msga. In particular this
is the case when the number of commodities is high. Although mesh graphs are not
representative of large communication networks like the Internet, it is a topology
quite used in clusters dedicated to parallel computing.

Another interesting observation concerns the results of the extended aco al-
gorithm in comparison to the results of our preliminary aco approach from [7],
for which we noticed considerable difficulties when applied to instances derived
from graph4. In [7] we conjectured that these difficulties result from the fact that
graph4 has some nodes with a very high degree. This is because, first, these nodes
are important connectivity points and are often in the shortest paths between two
vertices of the graph, and second, because the higher the degree of a vertex, the lesser
the probability of choosing a particular outgoing edge in the construction mechanism.
More precisely, when constructing a path and being in one of these vertices, in order
to choose a good outgoing edge the algorithm has possibly to be lucky, especially
in early stages of the search process when the pheromone values are similar. We
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(a) Example of the evolution in time of the quality of the solution Sgbest. The 
behavior shown here corresponds to the application to one of the 20 instances 
composed by graph 4 and a list of 173 commodities.

(b) Zoom on the first 25 seconds of Subfigure a. The time needed to obtain 
good solutions is clearly smaller for the ACO approaches. Note that in the first 
seconds the performance of the SGA and the MSGA are identical due to dealing 
with the same permutation of the commodities.

Fig. 7 A representative example of the run-time behavior of the algorithms presented in this work.
All the curves are smoothed with gnuplots’ sbezier function
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can observe that our extended aco algorithm does not show this behaviour. The
additional features added to the simple aco approach, in particular the usage of
candidate lists, have helped on overcoming these difficulties concerning graph4. In
general, the additional features of our extended aco approach proved to be useful
for the problem resolution. An example for the usefulness of the solution destruction
mechanism is shown in Fig. 6.

Finally, an additional analysis concerns the run-time behaviour of our algorithms.
Figure 7 shows that both aco approaches find relatively good solutions already after
a very short computation time. In general, already the first solutions produced by
the aco are quite good, whereas the greedy approaches reach a comparable solution
quality only much later in time. This property of our aco approach is a desirable
feature in the context of communication networks since the (already good) quality
of the solutions that are found after a short execution time might be often sufficient
in practice.

6 Conclusions and Further Work

In this paper we have proposed an ant colony optimization (aco) approach to
tackle the maximum edge-disjoint paths problem. To the best of our knowledge this
is – except for our own preliminary approach from [7] – the first application of ant
colony optimization, and more in general of any any metaheuristic, to this version
of the problem. Our approach is based on a decomposition of the maximum edge-
disjoint paths problem into subproblems. We have compared our algorithm to a
multi-start greedy approach which is based on a greedy approach that was developed
for approximation purposes.

First, we introduced a basic aco approach in order to be able to focus on
important algorithmic features such as the solution construction and the pheromone
update. Then, we proposed several extensions and additional features: concerning
the solution construction process, we proposed (1) the parallel construction of all
paths (in contrast to their sequential construction), and (2) the use of candidate list
strategies for the exploitation of the promising choices at each construction step.
Concerning the search dynamics, we proposed (1) the use of two search phases that
aim at the improvement of the two different criteria of the objective function, and
(2) the partial destruction of the currently best solution as an escape mechanism. We
have shown that these features help on improving the performance of the algorithm
without spending more computation time. Rather on the contrary, the extended aco
approach needs less computation time than the simple version in order to reach its
best solutions. The results showed that our extended aco approach has in general
advantages over the multi-start greedy approach in terms of solution quality as well
as in terms of computation time. Furthermore, the results indicate that also in the
run-time behavior the aco approach is superior to the multi-start greedy approach.
Already in early stages of a run, the aco algorithm provides relatively good solutions.
This might prove beneficial for an online-version of our algorithm, in which speed is
an issue. The fact that our algorithm only uses local information for building paths, is
another advantage, because the computation of shortest path information is costly.

There are many possible directions for future work. From the algorithmic point
of view, it would be interesting to study other possible greedy approaches including,
for example, length restrictions on the routes. As observed in Kleinberg [26], length
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constraints can transform tractable disjoint paths problems into NP-hard variants
(e.g., even the source-single sink case is NP-hard.) Furthermore, the relatively high
degree of determinism used in our aco approach might suggest ideas for new greedy
approaches. Concerning nature-inspired metaheuristics, it would be of high interest
to explore the potential advantages of having multiple ant colonies or particle
swarms. A first attempt on using more than one ant colony was recently done in [36].
However, the aim in [36] was not to solve the EDP problem but rather to explore the
feasibility of multi-colony systems. Therefore, only toy examples of graphs of up to 20
nodes with two or three commodities were considered there. One of the drawbacks
of having multiple colonies is the increase of the computational requirements of the
algorithm, which may not be affordable when time matters.

Further improvements should be tried also in order to tackle generalizations of
the problem based on real-life features of nowadays networks (e.g., congestion, free
bandwidth, adversarial traffic, etc.), which are specially interesting and challenging.
To be tackled via ant colony optimization, this will require some changes to the
aco approach, since ants will require a whole range of other types of locally
available information. It will also be interesting to observe the behavior of our aco
approach when applied in dynamically changing networks in which the adaptation
to a changing environment is required. The nature of aco makes it a promising
candidate for it.
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