
J Math Model Algor (2007) 6:509–528
DOI 10.1007/s10852-007-9058-5

Parallel Metaheuristics for Workforce Planning

Enrique Alba · Gabriel Luque · Francisco Luna

Received: 1 October 2005 / Accepted: 1 December 2006 /
Published online: 2 March 2007
© Springer Science + Business Media B.V. 2007

Abstract Workforce planning is an important activity that enables organizations
to determine the workforce needed for continued success. A workforce planning
problem is a very complex task requiring modern techniques to be solved adequately.
In this work, we describe the development of three parallel metaheuristic methods,
a parallel genetic algorithm, a parallel scatter search, and a parallel hybrid genetic
algorithm, which can find high-quality solutions to 20 different problem instances.
Our experiments show that parallel versions do not only allow to reduce the
execution time but they also improve the solution quality.

Key words workforce planning · parallel metaheuristics · parallel genetic
algorithm · parallel scatter search · parallel hybrid genetic algorithm

Mathematics Subject Classifications (2000) 68W15 · 90C27 · 90C59

1 Introduction

Decision making associated with workforce planning results in difficult optimization
problems because it involves multiple levels of complexity. The workforce planning
problem that we tackle in this paper consists of two sets of decisions: selection and
assignment. The first step selects an small set of employees from a large number

E. Alba (B) · G. Luque · F. Luna
Department of Languages and Computational Sciences,
University of Málaga, 29071 Málaga, Spain
e-mail: eat@lcc.uma.es

G. Luque
e-mail: gabriel@lcc.uma.es

F. Luna
e-mail: flv@lcc.uma.es

510 J Math Model Algor (2007) 6:509–528

of available workers and the second (decision) assigns this staff to the tasks to be
performed. The objective is to minimize the costs associated to the human resources
needed to fulfill the work requirements. An effective workforce plan is an essential
tool to identify appropriate workload staffing levels and justify budget allocations so
that organizations can meet their objectives.

The complexity of this problem does not allow the utilization of exact methods
for instances of realistic size. As a consequence, we firstly propose two parallel meta-
heuristic methods: a parallel genetic algorithm (GA) and a parallel scatter search
(SS). Two kinds of instances have been used to test our approaches. In “structured”
ones, there exist a relationship between the tasks duration and the time that a worker
can be assigned to them. On the other hand, this constraint is not considered in
“unstructured” ones any more, turning these instances more difficult to solve. The
development of these methods has the goal of providing a tool for finding high-
quality solutions to structured and unstructured instances of the workforce planning
problem (WPP). The preliminary results of these two algorithms, where the scatter
search approaches outperformed the genetic algorithms [3], have led us to begin to
work on the hypothesis that the improvement operator of SS could be the key com-
ponent provoking these enhancements. Therefore, in this article we present a new
hybrid genetic algorithm in which this operator is applied (with certain probability)
in its operator pool. The results will confirm our guess and represent a new state of
the art tool for this benchmark.

The organization of this paper is as follows. In next section we show a mathemati-
cal description of the WPP. In Section 3 and Section 4 we describe the parallel genetic
algorithm and the parallel scatter search, respectively. Then, in Section 5 we analyze
the results of these algorithms for the solution of the WPP, and finally, we give some
hints on future works and conclusions in Section 6.

2 The Workforce Planning Problem

The following description of the problem is taken from Glover et al. [5]. A set of jobs
J = {1, . . . , m} must be completed during the next planning period (e.g., a week).
Each job j requires dj hours during the planning period. There is a set I = {1, . . . , n}
of available workers. The availability of worker i during the planning period is si

hours. For reasons of efficiency, a worker must perform a minimum number of hours
(hmin) of any job to which he/she is assigned and, at the same time, no worker may be
assigned to more than jmax jobs during the planning period. Workers have different
skills, so Ai is the set of jobs that worker i is qualified to perform. No more than
t workers may be assigned during the planning period. In other words, at most t
workers may be chosen from the set I of n workers and the subset of selected workers
must be capable of completing all the jobs. The goal is to find a feasible solution that
optimizes a given objective function.

We use the cost cij of assigning worker i to job j to formulate the optimization
problem associated with this workforce planning situation as a mixed-integer pro-
gram. We refer to this model of the workforce planning problem as WPP:

xij =
{

1 if worker i is assigned to job j
0 otherwise

J Math Model Algor (2007) 6:509–528 511

yi =
{

1 if worker i is selected
0 otherwise

zij = number of hours that worker i is assigned to

perform job j

Q j = set of workers qualified to perform job j

Minimize
∑
i∈I

∑
j∈Ai

cij · xij (1)

Subject to ∑
j∈Ai

zij ≤ si · yi ∀i ∈ I (2)

∑
i∈Q j

zij ≥ dj ∀ j ∈ J (3)

∑
j∈Ai

xij ≤ jmax · y j ∀i ∈ I (4)

hmin · xij ≤ zij ≤ si · xij ∀i ∈ I, j ∈ Ai (5)∑
i∈I

yi ≤ t (6)
xij ∈ {0, 1} ∀i ∈ I, j ∈ Ai

yi ∈ {0, 1} ∀i ∈ I

zij ≥ 0 ∀i ∈ I, j ∈ Ai

In the model above, the objective function (1) minimizes the total assignment cost.
Constraint set (2) limits the number of hours for each selected worker. If the worker
is not chosen, then this constraint does not allow any assignment of hours to him/her.
Constraint set (3) enforces the job requirements, as specified by the number of hours
needed to complete each job during the planning period. Constraint set (4) limits
the number of jobs that a chosen worker is allowed to perform. Constraint set (5)
enforces that once a worker has been assigned to a given job, he/she must perform
such a job for a minimum number of hours. Also, constraint (5) does not allow the
assignment of hours to a worker that has not been chosen to perform a given job.
Finally, constraint set (6) limits the number of workers chosen during the current
planning period.

The same model may be used to optimize a different objective function. Let ĉij be
the cost per hour of worker i when performing job j. Then, the following objective
function minimizes the total assignment cost (on hourly basis):

Minimize
∑
i∈I

∑
j∈Ai

ĉij · zij (7)

Alternatively, pij may reflect the preference of worker i for job j, and therefore,
the following objective function maximizes the total preference of the assignment:

Maximize
∑
i∈I

∑
j∈Ai

pij · xij (8)

512 J Math Model Algor (2007) 6:509–528

When preference values are used, other objective functions may be formulated.
For instance, it may be desirable to maximize the minimum preference value for the
set of selected workers. In this paper, we assume that the decision maker wants to
minimize the total assignment costs as calculated in Eq. 1.

As pointed out in [10], this problem is related to the capacitated facility location
problem (CFLP) as well as the capacitated p-median problem [1, 9]. In fact, our
location-allocation problem reduces to a CFLP if the complicating constraints (4),
(5) and (6) are relaxed in a Lagrangean manner. In the context of the CFLP, implied
bounds are typically added to strengthen the linear programming (LP) relaxation of
the mixed-integer programming formulation. The equivalent bounds for the WPP
formulation are:

xij − yi ≤ 0 ∀i ∈ I, j ∈ Ai (9)

Also in the case of the CFLP, an aggregate capacity constraint is usually added to
the problem formulation in order to improve some Lagrangean bounds. Even in the
case of an LP approach this surrogate constraint can be helpful; it can be used for
generating possibly violated lifted cover inequalities. The form of such a constraint
for the WPP model is:

∑
i∈I

si · yi ≥
∑
j∈J

dj (10)

The difficulty of solving instances of the WPP with an optimization method is
related to the relationship between hmin and dj. In particular, problem instances for
which dj is a multiple of hmin (referred to as “structured”) are easier to handle than
those for which dj and hmin are unrelated (referred to as “unstructured”).

3 Genetic Algorithm

A genetic algorithm (GA) [7] is an iterative technique that applies stochastic oper-
ators on a pool of individuals (the population). Every individual in the population
is the encoded version of a tentative solution. Initially, this population is randomly
generated. An evaluation function associates a fitness value to every individual
indicating its suitability to the problem.

The genetic algorithm that we have developed for the solution of the WPP follows
the basic structured shown in Fig. 1. The population size for GAs used in this work is
400 individuals. This value and the specific values of the parameters in the following
sections as well have been obtained after preliminary experimentation.

Within the basic structure of the GA for solving the WPP, we have added context
information through a special solution representation and crossover operators with
improving and repairing mechanisms.

3.1 Representation

Solutions are represented as an n × m matrix Z , where zij represents the number of
hours that worker i is assigned to job j. In this representation, a worker i is considered

J Math Model Algor (2007) 6:509–528 513

Fig. 1 Basic GA structure

to be assigned to job j if zij > 0. A solution using this representation is shown in Fig. 2.
Therefore, the following relationships are established from the values in Z .

xij =
{

1 if zij > 0
0 otherwise

yi =
{

1 if
∑

j∈Ai
zij > 0

0 otherwise

3.2 Solution Evaluation

Solutions are evaluated according to the objective function (1) plus a penalty term.
The additional term penalizes violations of constraints (2), (3), (4) and (6). The penal-
ty coefficients that are multiplied by the constraint violations are p2, p3, p4, and p6.
Values for these coefficients have been set up to 50, 50, 200, and 800, respectively.
Before the fitness value is calculated, new trial solutions are subjected to a repair-
ing/improving operator that makes sure that constraint (5) is satisfied. This operator
also ensures that no worker is assigned to a job that he/she is not qualified to perform.

3.3 Repairing/Improving Operator

The purpose of this operator is to repair trial solutions in such a way that they either
become feasible with respect to the original problem or at least the infeasibility of
these solutions is reduced. The operator performs the four steps outlined in Fig. 3.

Fig. 2 An example of
a solution using the
representation presented
in this work

1 2 3 4 5 6 7 8 9

1 20 00 04 13 00 00 00 09 12

2

3

4

5

6

7

8

00 12 07 00 32 00 00 17 00

00 00 00 00 00 00 00 00 00

00 00 00 12 12 04 21 00 08

00 00 00 00 00 00 00 00 00

10 04 00 00 26 00 00 04 12

08 00 07 15 22 00 00 06 00

00 00 00 00 00 00 00 00 00

Tasks

W
o
rk

e
rs

514 J Math Model Algor (2007) 6:509–528

Fig. 3 Repairing/improving
operator

In the first step, this operator repairs solutions with respect to the minimum num-
ber of hours that a worker must work on any assigned job. The repair is done only
on those qualified workers that are not meeting the minimum time requirement. In
mathematical terms, if 0 < zij < hmin for i ∈ I and j ∈ Ai, then zij = hmin.

The second step takes care of assignments of workers to jobs for which they are
not qualified to perform. A value of zero is given to the corresponding entry in Z .
Using our notation, if zij > 0 for i ∈ I and j /∈ Ai, then zij = 0.

The third step considers that a worker is feasible if he/she satisfies constraints (2)
and (4). This step attempts to use up the capacity slack of feasible workers. The slack
time for worker i (i.e., si − ∑

j∈Ai
zij) is equally divided among his/her current job

assignments. This allows for a higher utilization of the workers that are currently
assigned to jobs and thus facilitating the satisfaction of constraint (6).

The last step starts with a partial order of the workers in such a way that those
which provoke the largest constraint violation with respect to constraints (2) and
(4) tend to appear at the top of the list. This is not a complete order relationship
because the operator accounts for a certain amount of randomness in this step. Once
the partial order is established, a process of reducing the infeasibility of workers

1 2 3 4 5 6 7 8 9

1 20 00 04 13 00 00 00 09 12

2

3

4

5

6

7

8

00 12 07 00 32 00 00 17 00

00 00 00 00 00 00 00 00 00

00 00 00 12 12 04 21 00 08

00 00 00 00 00 00 00 00 00

10 04 00 00 26 00 00 04 12

08 00 07 15 22 00 00 06 00

00 00 00 00 00 00 00 00 00

Tasks

W
o
rk

e
rs

1 2 3 4 5 6 7 8 9

1

2

3

4

00 00 00 00 00 00 00 00 00

10 04 00 00 26 00 00 04 12

08 00 07 15 22 00 00 06 00

00 00 00 00 00 00 00 00 00

5

6

7

8

20 00 04 13 00 00 00 09 12

00 12 07 00 32 00 00 17 00

00 00 00 00 00 00 00 00 00

00 00 00 12 12 04 21 00 08

Tasks

W
o

rk
e

rs

1 2 3 4 5 6 7 8 9

1 20 00 04 13 00 00 00 09 12

2

3

4

5

6

7

8

00 12 07 00 32 00 00 17 00

00 00 00 00 00 00 00 00 00

00 00 00 12 12 04 21 00 08

00 00 00 00 00 00 00 00 00

10 04 00 00 26 00 00 04 12

08 00 07 15 22 00 00 06 00

00 00 00 00 00 00 00 00 00

Tasks

W
o
rk

e
rs

Tasks

W
o

rk
e

rs

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

00 00 00 00 00 00 00 00 00

10 04 00 00 26 00 00 04 12

08 00 07 15 22 00 00 06 00

00 00 00 00 00 00 00 00 00

20 00 04 13 00 00 00 09 12

00 12 07 00 32 00 00 17 00

00 00 00 00 00 00 00 00 00

00 00 00 12 12 04 21 00 08

Cross

Fig. 4 An example of application of the crossover operator

J Math Model Algor (2007) 6:509–528 515

Fig. 5 Crossover operator

is applied. The process of reducing the violation of constraints (2) and (4) is only
applied if it does not provoke new violations of constraints (3) and (5).

3.4 Crossover Operator

A special crossover operator has been designed for the solution of WPP. The op-
erator employs a parameter ρc that may be interpreted as the probability that two
solutions exchange their current assignments for worker i. The process is summarized
in Fig. 5 and an example is shown in Fig. 4.

Given two solutions Z 1 and Z 2, the crossover operator in Fig. 5 selects, with
probability ρc, a worker i. In the experimentation section, this value is set up to 0.8.
If the worker is selected, then the job assignments of solution Z 1 are exchanged with
the assignments of solution Z 2. The rand() function in Fig. 5 generates a uniform
random number between 0 and 1.

3.5 Mutation Operator

In addition to the crossover operator described above, our GA implementation
includes a mutation operator. This mechanism operates on a single solution by ex-
changing the job assignments of two workers. The job exchange occurs with proba-
bility ρm, as shown in Fig. 6. An example of this operator is shown in Fig. 7.

Given a solution Z , the mutation operator considers all workers and jobs that the
workers are qualified to perform. A random worker k is chosen from the list of quali-
fied workers and the exchange of job assignments is considered. For experiments, we
set up ρm to 0.2. As before, the rand() function returns a uniform random number
between 0 and 1.

Fig. 6 Mutation operator

516 J Math Model Algor (2007) 6:509–528

1 2 3 4 5 6 7 8 9

1 20 00 04 13 00 00 00 09 12

2

3

4

5

6

7

8

00 12 07 00 32 00 00 17 00

00 00 00 00 00 00 00 00 00

00 00 00 12 13 04 21 00 08

00 00 00 00 00 00 00 00 00

10 04 00 00 26 00 00 04 12

08 00 07 15 22 00 00 06 00

00 00 00 00 00 00 00 00 00

Tasks

W
o
rk

e
rs

1 2 3 4 5 6 7 8 9

1 20 00 04 13 00 00 00 09 12

2

3

4

5

6

7

8

00 12 07 00 32 00 00 17 00

00 00 00 00 00 00 00 00 00

00 00 00 12 22 04 21 00 08

00 00 00 00 00 00 00 00 00

10 04 00 00 26 00 00 04 12

08 00 07 15 13 00 00 06 00

00 00 00 00 00 00 00 00 00

Tasks

W
o
rk

e
rs

Fig. 7 An example of application of the mutation operator. The current task assignment for worker
4 and task 5 (dark-grey background) is randomly exchanged with the assignment of other qualified
worker (worker 7 in this example) of task 5

3.6 Parallel GA

A parallel GA (PGA) [2] is a procedure that consists of multiple copies of an im-
plementation (typically serial) of a genetic algorithm. The individual GAs include
an additional communication phase that enables them to exchange information. A
PGA is characterized by the nature of the individual GAs and the type of communi-
cation that is established among them. Our particular implementation is a distributed
GA (dGA), which allows for an efficient exploitation of machine clusters. Typically,
dGAs consist of a small number of independent GAs that periodically exchange
information. Each individual GA operates on a considerably large population. Since
we want to compare against the sequential GA, PGAs use the same population size,
but now the whole population of the sequential GA is split into as many subpopula-
tions as processes involved in the parallel computation.

To fully characterize a dGA, the migration policy must be established, which is
related to the connection topology of the set of individual GAs. The policy dictates
when migration occurs, the number and identity of the individuals that will be ex-
changed and also determines the synchronization scheme. Our implementation uses
a unidirectional ring topology, where each GA receives information from the GA
immediately preceding it and sends information to the GA that is immediately after
it. At each migration operation which is carried out every 15 generations, one single
solution is selected from the population (via binary tournament) and sent to the
corresponding neighbor. The newly reached solution replaces the worst individual
in the target population if it is better.

4 Scatter Search

Scatter Search (SS) [6] is also a population-based metaheuristic that uses a reference
set to combine its solutions and construct others. The method generates a reference
set from a population of solutions. Then a subset is selected from this reference set.
The selected solutions are combined to get starting solutions to run an improvement
procedure. The result of this improvement can motivate the updating of the reference
set. A pseudo-code of the scatter search is shown in Fig. 8. The procedures involved
by the SS method are the following:

– Initial population creation: The first step of this technique is to generate an initial
population which is the base set to build the Reference Set. This population

J Math Model Algor (2007) 6:509–528 517

Fig. 8 Basic SS structure

must be a wide set of disperse (non similar) solutions. However, it must clearly
include also good quality solutions. A simple method to create this population is
to use a random generation one (disperse solutions) and then improving some of
the solutions to obtain high quality ones. However, other several strategies can
be applied to get a population with these properties using problem (heuristic)
information.

– Reference Set update and creation: SS operates on a small set of solutions, the
RefSet, consisting of the “good” solutions found during the search. The “good”
solutions are not limited to those with the best objective values. By “good” solu-
tions we mean solutions with the best objective values as well as disperse solutions
(to escape local optimality and diversify the search). In general, the RefSet is
composed of two separate subsets: one subset for the best solutions (RefSet1)
and another for diverse solutions (RefSet2). This reference set is created from the
initial population and it is updated when a new solution is generated. Also, this set
is partially reinitialized when the search has stagnated. In our experiments, we use
an small RefSet composed of eight solutions (|Ref Set1| = 5 and |Ref Set2| = 3).

– Subset generation: This procedure operates in the reference set to produce sub-
sets of its solutions as a basis for creating combined solutions. In this work, we
generate all pairwise combinations of solutions (28 subsets) and then we apply
the solution combination operator to them.

– Solution combination: It transforms a given subset of solutions into one or more
combined solution vectors.

– Improvement method: This procedure transforms the current solution into an
enhanced solution.

To solve the WPP with SS, we have used the same representation, fitness eval-
uation, repairing operator, and crossover operator that we used with GA imple-
mentation (Sections 3.1, 3.2, 3.3, and 3.4, respectively). These operators have been
utilized because they perform an exhaustive and structured search but with new ideas
extending SS. The rest of implementation issues are described in the next subsections.

4.1 Initial Population

In our case, the initial population is composed of 15 random solutions which are
later enhanced by the improvement method described in the next subsection, and

518 J Math Model Algor (2007) 6:509–528

then inserted into the initial population. As in the GA, we want to remark here
that the entire parameterization of SS has been tuned properly after preliminary
experimentation.

4.2 Improvement Method

A special improvement operator has been designed for the solution of the WPP. The
operator employs a parameter ρi that may be interpreted as the probability that a
worse solution replaces a better solution. The process is summarized in Fig. 9.

Given a solution Z , the improvement operator generates a neighbor (we use the
mutation operator described in Section 3.5). If this new solution Z ′ is better than the
original solution Z , we accept that solution and the process is repeated for MaxIter
iterations. This method also accepts a worse solution with certain probability defined
by ρi. As before, the rand() function returns a uniform random number between 0
and 1, and f itness() returns the objective fitness value achieved by a solution. Our SS
algorithm will perform 50 iterations of this process and the probability of accepting
a worse solution (ρi) is 0.1 to escape from local optima.

4.3 Parallel SS

Several parallel implementations of the basic scheme of SS have been proposed in
the literature [4]. We are interested in obtaining a parallel method which allows us
not only to reduce the execution time but also to improve the solution quality. Hence,
we rule out the master-slave model since its numerical performance is the same as the
sequential one.

We have used a distributed model, i.e., we have several sequential SS running in
parallel that periodically exchange information (one single solution from RefSet).
The connection topology is the same as in the PGA. Binary tournament is used for
choosing the migrant, which promotes high quality solutions from RefSet1 likely to
be selected. In the target SS algorithm, the method for updating the RefSet is applied
in order to insert the migrant solution.

In this method, the number of evaluations performed in each step is related to the
number of subsets generated. Therefore, we reduce the number of subsets generated
by each independent SS so that the computational effort is the same as the sequential
version. In concrete, the number of subsets generated is the number of subsets of the
serial version (a predefined value) divided by the number of islands. In this case, we
choose the subset randomly, but we do not allow the same subset to be selected two
or more times.

Fig. 9 Improvement operator

J Math Model Algor (2007) 6:509–528 519

5 Computational Experiments

In this section we first present the problem instances used. Then, we analyze the
behavior of the algorithms with respect to, on the one hand, their ability to find
accurate solutions and, on the other hand, the time needed to reach these solutions.

The algorithms in this work have been implemented in C++ and executed on a
cluster of Pentium 4 at 2.8 GHz with 512 MB of memory which run SuSE Linux 8.1
(kernel 2.4.19-4GB). The interconnection network is a Fast-Ethernet at 100 Mbps.

5.1 Problem Instances

In order to test the merit of the proposed procedure, we generated artificial problem
instances. Given the values of n, m, and t the problem instances were generated with
the following characteristics:

si = U(50, 70)

jmax = U(3, 5)

hmin = U(10, 15)

Category(worker i) = U(0, 2)

P(i ∈ Q j) = 0.25 · (1 + Category(worker i))

dj = max
(

hmin, U
(

s · t
2 · m

,
1.5 · s · t

m

))

where s =
∑

i si

n
and

∑
j dj

s · t
≤ α

cij = |Ai| + dj + U(10, 20)

The generator establishes a relationship between the flexibility of a worker and
his/her corresponding cost (salary). That is, workers that are able to perform more
jobs are more expensive. We solve 10 structured plus other 10 unstructured problems
which have been called s1 to s10 and u1 to u10, respectively. The ten unstructured
problems were generated with the following parameter values: n = 20, m = 20, t =
10 and α = 0.97.

Note that the problem generator uses α as the limit for the expected relative load
of each worker. The set of ten structured problems was constructed using the same
parameter values but hmin was set to 4 and the dj values were adjusted as follows: dj =
dj − mod(dj, 4), where mod(x, y) calculates the remainder of x/y. All 20 instances
were generated in such a way that a single value for the total number of available
hours (si) is drawn and assigned to all workers.

5.2 Results: Workforce Planning Performance

The resulting workforce plannings computed by both GA and SS approaches are
analyzed in this section. All the algorithms stop after 800,000 function evaluations
have been computed. This guarantees that they all are able to converge. The
configuration setting is shown in Table 1. These values were obtained experimentally.
Values in the tables are average results over 30 independent runs. Since we deal

520 J Math Model Algor (2007) 6:509–528

Table 1 Parameter settings
Parameter GA SS

Population size 400 Initial Pop. = 15
RefSet = 8

ρc 0.8 –
ρm 0.2 –
Subset generated – All 2-elements subsets (28)
ρi – 0.1

with stochastic algorithms, we have carried out an statistical analysis of the results
which consists of the following steps. First a Kolmogorov–Smirnov test is performed
in order to check whether the variables are normal or not. Since all the Kolmogorov–
Smirnov normality tests in this work were not successful, we use a non-parametric
test: Kruskal–Wallis (with 95% of confidence).

We here remark that the parallel versions of GA and SS have been executed not
only in parallel, but also on a single processor. The first reason that motivates these
experiments is to check that the parallel search model is independent of the com-
puting platform. As expected, the corresponding tests included in the KW2 columns
of Tables 2 and 3 indicate that no statistical difference exists between them (“−”
symbols). In effect, this confirms that they are the same numerical model. As a
consequence, in order to compare sequential vs. parallel versions of each algorithm,
we have considered only the results of the parallel executions of PGA and PSS (i.e.,

Table 2 GA results for structured and unstructured problems

Prob. Seq. GA PGA-4 PGA-8 KW3

1 p. 4 p. KW2 1 p. 8 p. KW2

s1 963 880 879 − 873 873 − +
s2 994 943 940 − 920 922 − +
s3 1,156 1,013 1,015 − 1,018 1,016 − +
s4 1,201 1,036 1,029 − 1,008 1,003 − +
s5 1,098 1,010 1,012 − 998 1,001 − +
s6 1,193 1,068 1,062 − 1,042 1,045 − +
s7 1,086 954 961 − 960 953 − +
s8 1,287 1,095 1,087 − 1,068 1,069 − +
s9 1,107 951 956 − 984 979 − +
s10 1,086 932 927 − 924 926 − +
u1 1,631 1,386 1,372 − 1,302 1,310 − +
u2 1,264 1,132 1,128 − 1,153 1,146 − +
u3 1,539 1,187 1,193 − 1,254 1,261 − +
u4 1,603 1,341 1,346 − 1,298 1,286 − +
u5 1,356 1,241 1,252 − 1,254 1,246 − +
u6 1,205 1,207 1,197 − 1,123 1,116 − +
u7 1,301 1,176 1,179 − 1,127 1,121 − +
u8 1,106 1,154 1,151 − 1,123 1,128 − −
u9 1,173 950 938 − 933 935 − +
u10 1,214 1,160 1,172 − 1,167 1,163 − +

J Math Model Algor (2007) 6:509–528 521

we do not use the 1p. columns) and therefore the statistical test just involves three
datasets (column KW3). In the second place, running parallel models in a single
CPU will allow us to perform the execution time analysis of the algorithms properly
(see Section 5.3 for the details). The result of the best algorithm for each instance is
marked in “italicized.” Let us discuss them in separate sections.

5.2.1 GA Results

The first conclusion that can be drawn from Table 2 is that any PGA configuration
is able to solve the considered WPP better than the sequential GA, and statistical
confidence exists for this claim (see “+” symbols in column KW3). The unstructured
problem u8 stands for the exception but it can be ruled out since the Kruskal-Wallis
test is negative (“−” symbol in column KW3), thus indicating that the algorithms
are not statistically different from each other. Specially accurate solutions have been
computed by the PGA in unstructured instances u1, u3, and u9, where the reductions
in the planning costs are above 20%.

If we now compare PGAs among them, Table 2 shows that PGA-8 found the best
solutions for 13 out of 20 WPP instances, while PGA-4 was only able to find the
best plannings in 6 out of 20. This holds specially for the structured problems where
PGA-8 gets the best workforce plannings in 8 out of 10 instances. However, it is
also noticeable that differences between solutions from PGA-4 and PGA-8 are very
small, thus showing that both algorithms have a similar ability for solving the WPP.

Table 3 SS results for structured and unstructured problems

Prob. Seq. SS PSS-4 PSS-8 KW3

1 p. 4 p. KW2 1 p. 8 p. KW2

s1 939 896 901 − 861 862 − +
s2 952 904 905 − 916 913 − +
s3 1,095 1,021 1,019 − 1,005 1,001 − +
s4 1,043 1,002 991 − 997 994 − +
s5 1,099 999 1,007 − 1,009 1,015 − +
s6 1,076 1,031 1,034 − 1,023 1,022 − +
s7 987 956 942 − 941 933 − +
s8 1,293 1,113 1,120 − 1,058 1,062 − +
s9 1,086 948 950 − 952 950 − +
s10 945 886 891 − 915 909 − +
u1 1,586 1,363 1,357 − 1,286 1,280 − +
u2 1,276 1,156 1,158 − 1,083 1,078 − +
u3 1,502 1,279 1,283 − 1,262 1,267 − +
u4 1,653 1,363 1,356 − 1,307 1,305 − +
u5 1,287 1,176 1,192 − 1,175 1,169 − +
u6 1,193 1,168 1,162 − 1,141 1,136 − −
u7 1,328 1,152 1,151 − 1,084 1,076 − +
u8 1,141 1,047 1,039 − 1,031 1,033 − +
u9 1,055 906 908 − 886 883 − +
u10 1,178 1,003 998 − 952 958 − +

522 J Math Model Algor (2007) 6:509–528

5.2.2 SS Results

We can start analyzing the results of SS (Table 3) in the same way as GA results
and state the same conclusions, i.e., parallel SS configurations always get the best
solutions versus SS for all the WPP instances and also with statistical confidence
(“+” symbols in column KW3). There are some particular instances in which PSS
was able to reduce the planning costs significantly with respect to the sequential
SS, e.g. s8, from 1,293 down to 1,048 (reduction of 18%) or u4, from 1,653 down
to 1,305 (reduction of 21%). Averaging over structured and unstructured instances,
the best PSS configuration reduces WPP costs of sequential SS in 8.35% and 14.98%,
respectively.

Turning to compare PSS-4 and PSS-8 between them, Table 3 shows that no con-
clusion can be draw concerning the structured problems since both algorithms get
the best solutions for 5 out of 10 instances. However, PSS-8 always reaches the best
workforce planning in the case of the unstructured problems, so (as with PGA-8) we
can conclude a slight advantage of PSS-8 over PSS-4.

5.2.3 GA vs. SS

In this section we want to compare both GA and SS approaches for solving WPP.
Since there are many different problem instances and analyzing them thoroughly
would hinder us from drawing clear conclusions, we have summarized in Table 4 the
information of Tables 2 and 3 as follows: we have normalized the resulting planning
cost for each problem instance with respect to the worst (maximum) cost obtained by
any proposed algorithm, so we can easily compare without scaling problems. Then,
values in Table 4 are average values over all the structured and unstructured WPP
instances.

A clear conclusion that can be reached is that all SS configurations outperform
the corresponding GA ones, that is, considering all structured and unstructured WPP
instances, SS gets better solutions than the GA. It is worth mentioning differences be-
tween sequential approaches in structured problems (normalized average is reduced
from 0.9994 down to 0.9410) and eight island based parallel algorithm in unstructured
problems, where PSS-8 normalized costs are 4.4% lower than PGA-8 ones. These
results allow us to conclude that SS is a more promising approach for solving this
workforce planning problem. Although it can be explained because of the search
model of SS by itself, we want to thoroughly discuss this fact. We conjecture that
the improvement operator of SS could be responsible for such enhancements since

Table 4 Average results for structured and unstructured problems

Problems s1 – s10 u1 – u10

Algorithm GA SS GA SS

Sequential 0.9994 0.9410 0.9896 0.9744
1 p. 0.8858 0.8743 0.8885 0.8605

4 Islands 4 p. 0.8847 0.8747 0.8879 0.8598
1 p. 0.8783 0.8677 0.8735 0.8308

8 Islands 8 p. 0.8776 0.8663 0.8718 0.8292

J Math Model Algor (2007) 6:509–528 523

adjusting the number of iterations that it performs was the most sensitive parameter
in the preliminary experimentation. We will research on this in Section 5.4. Now, let
us continue with our analysis, this time from the wall-clock point of view.

5.3 Results: Computational Times

In order to have a fair and meaningful wall-clock time comparison when dealing with
such stochastic algorithms, we need to consider exactly the same algorithm and then
only change the number of processors, because comparing against the sequential
versions would lead to misleading results [2]. Consequently, we have also executed
parallel versions of both GA and SS also in a single CPU as shown in Table 5, where
we include the average execution times at which the best solution is found during
the computation of all the algorithms over 30 independent runs. The same statistical
tests have been performed as in the previous section.

If we analyze the execution times of those algorithms being run on a single CPU, it
can be seen that sequential optimizers are faster than the monoprocessor execution
of any of their parallel version. In order to provide this claim with confidence, we
include in column KW6 the result of the statistical test using all the results computed
with one single CPU. The “+” symbols in this column indicate that all the execution
times are different with statistical significance. This holds for 17 out of 20 instances
and 15 out of 20 ones in GA and SS, respectively. The overload of running the several
processes of the parallel versions on a single CPU is the main reason for their slower
execution. However, sequential algorithms for instances s6 and u8 in GAs and s4, s7,
s10, u3, and u8 in SS obtain longer execution times than the parallel versions with
4 islands. The point here is that a trade-off exists between the overload due to the
number of processes and the ability of the algorithms to easily reach the optimal
solution. While the former issue tends to increase the computational time, the latter
is a way of reduce it. Results in both tables point out that the computing overload
is a very important factor because sequential algorithms usually perform faster than
parallel algorithms on one processor.

Analyzing the absolute execution times, one can see the GAs generally get shorter
execution times than SS algorithms when the computing platform is composed of
just one CPU. However, these differences vanish and even get reversed when we
move to actually parallel computing platforms (see columns “4 CPUs” and “8 CPUs”
in Table 5). In general, execution times are very similar and differences are not
statistically significant in many cases (see “−” symbols in columns KW2).

Two metrics have been used in order to enrich our understanding of the effects of
parallelism on the parallel algorithms of this work: the parallel efficiency (η) and the
serial fraction (sf) [8]. If we consider that N is the number of processors and sN is
the speedup (sN = t̄1 CPU/t̄N CPUs), the two metrics can be defined as:

η = sN

N
=

t̄1 CPU
t̄N CPUs

N
(11)

sf =
1

sN
− 1

N

1 − 1
N

. (12)

Table 6 includes the resulting values of the metrics. Values of the parallel effi-
ciency show that all the parallel versions of GA and SS are able to profit quite well

524 J Math Model Algor (2007) 6:509–528

T
ab

le
5

E
xe

cu
ti

on
ti

m
e

(i
n

se
co

nd
s)

fo
r

st
ru

ct
ur

ed
an

d
un

st
ru

ct
ur

ed
pr

ob
le

m
s

P
bm

4
Is

la
nd

s
8

Is
la

nd
s

K
W

6

Se
qu

en
ti

al
1

C
P

U
4

C
P

U
s

1
C

P
U

8
C

P
U

s

G
A

SS
K

W
2

P
G

A
-4

P
SS

-4
K

W
2

P
G

A
-4

P
SS

-4
K

W
2

P
G

A
-8

P
SS

-8
K

W
2

P
G

A
-8

P
SS

-8
K

W
2

s1
61

72
+

62
74

+
17

19
+

66
77

+
9

10
+

+
s2

32
49

+
32

53
+

9
14

+
37

58
+

6
8

+
+

s3
11

1
11

4
−

11
3

11
8

+
29

31
+

11
5

12
7

+
15

17
+

+
s4

87
86

−
93

84
+

24
23

−
95

87
+

13
13

−
+

s5
40

43
−

41
45

+
13

12
−

46
47

−
9

7
+

+
s6

11
0

12
1

+
10

9
12

2
+

34
33

−
11

4
12

8
+

18
18

−
+

s7
49

52
+

53
47

+
16

14
+

57
55

−
9

8
+

+
s8

42
46

−
45

48
−

13
13

−
48

50
−

7
7

−
+

s9
67

70
+

73
71

−
21

19
+

76
74

−
13

10
+

+
s1

0
10

2
10

5
+

10
5

10
1

+
28

28
−

10
9

10
6

+
16

15
−

+
u1

95
10

2
+

98
10

8
+

29
29

−
10

2
11

1
+

16
16

−
+

u2
87

94
+

89
95

+
28

26
+

92
99

+
15

14
−

+
u3

51
58

+
55

55
−

17
17

−
59

59
−

10
11

+
+

u4
79

83
+

79
86

+
26

24
+

86
92

+
15

15
−

+
u5

57
62

+
62

62
−

21
18

+
63

68
+

12
10

+
+

u6
75

11
1

+
72

11
5

+
20

30
+

70
11

9
+

13
16

+
+

u7
79

80
−

81
81

−
24

24
−

89
83

+
15

14
−

+
u8

89
12

3
+

88
11

8
+

23
35

+
92

12
3

+
14

20
+

+
u9

72
75

−
78

77
−

22
22

−
85

80
+

13
12

−
+

u1
0

95
99

+
96

96
−

25
28

−
99

10
1

+
13

17
+

+

J Math Model Algor (2007) 6:509–528 525

Table 6 Parallel efficiency and serial fraction for structured and unstructured problems

Problem PGA-4 PSS-4 PGA-8 PSS-8

η sf η sf η sf η sf

s1 0.91 0.032 0.97 0.009 0.91 0.012 0.96 0.005
s2 0.88 0.041 0.94 0.018 0.77 0.042 0.90 0.014
s3 0.97 0.008 0.95 0.016 0.95 0.006 0.93 0.010
s4 0.96 0.010 0.91 0.031 0.91 0.013 0.83 0.027
s5 0.78 0.089 0.93 0.022 0.63 0.080 0.83 0.027
s6 0.80 0.082 0.92 0.027 0.79 0.037 0.88 0.017
s7 0.82 0.069 0.83 0.063 0.79 0.037 0.85 0.023
s8 0.86 0.051 0.92 0.027 0.85 0.023 0.89 0.017
s9 0.86 0.050 0.93 0.023 0.73 0.052 0.92 0.011
s10 0.93 0.022 0.90 0.036 0.85 0.024 0.88 0.018
u1 0.84 0.061 0.93 0.024 0.79 0.036 0.86 0.021
u2 0.79 0.086 0.91 0.031 0.76 0.043 0.88 0.018
u3 0.80 0.078 0.80 0.078 0.73 0.050 0.67 0.070
u4 0.75 0.105 0.89 0.038 0.71 0.056 0.76 0.043
u5 0.73 0.118 0.86 0.053 0.65 0.074 0.85 0.025
u6 0.90 0.037 0.95 0.014 0.67 0.069 0.92 0.010
u7 0.84 0.061 0.84 0.061 0.74 0.049 0.74 0.049
u8 0.95 0.015 0.84 0.062 0.82 0.031 0.76 0.042
u9 0.88 0.042 0.87 0.047 0.81 0.031 0.83 0.028
u10 0.96 0.013 0.85 0.055 0.95 0.007 0.74 0.049

from the parallel computing platform. Averaging over all the problems, PGA-4 gets
an η value of 0.87, while PSS-4 obtains 0.90. If we consider now the paralleliza-
tion based on 8 islands, PGA-8 reaches a parallel efficiency of 0.79 whereas PSS-8
achieves a value of 0.85 (also averaging over all the problems). From these average
values we can conclude that PSSs profit better from the parallel platform than PGAs
although the latter ones are faster in terms of absolute running times.

If we compare the parallel efficiency of the algorithms when the number of proces-
sors increases, it can be seen in Table 6 that there is a reduction in the values of this
metric and the average values presented previously also support this claim. Here,
the serial fraction metric plays an important role. If the values of this metric remain
almost constant when using a different number of processors in a parallel algorithm,
it allows us to conclude that the loss of efficiency is because of the limited parallelism
of the model itself and not because our implementation. For example in the instance
s5 with PGAs: the parallel efficiency is reduced by 15% (from 0.78 in PGA-4 down to
0.63 in PGA-8) while the serial fraction is almost the same (0.089 in PGA-4 against
0.080 in PGA-8), confirming the previous hypothesis that the loss of efficiency is due
to the parallel model.

5.4 A New Hybrid GA

We suggested in Section 5.2.3 that the better workforce planning performance
reached by the SS algorithm did lie in the improvement operator used. In order
to further investigate this fact, we have developed a new hybrid genetic algorithm
(hGA) in which the SS improvement method has been incorporated into the GA

526 J Math Model Algor (2007) 6:509–528

main loop as an evolutionary operator. Specifically, the local search algorithm is
applied just after the recombination and mutation operators by using a predefined
probability which has been set up to ρh = 10

population_size . The experiments conducted
in the following go towards validating the previous claim, so neither the parallel ver-
sions are executed on a single processor nor the computational times are presented:
only the workforce planning performance is studied for the new hGA, the GA and
the SS. This section is therefore intended to be an extension of all the previous work
done in the paper. The results of the new hGA are included in Table 7. The stopping
condition of all these algorithms is the same as in the previous experiments: reaching
a predefined number of function evaluations. In the parallel versions, the hGA also
follows the island model described in Section 3.6.

Let us start analyzing the workforce planning performance for the structured in-
stances. As it happened with the GA, the sequential hGA is always outperformed
by its two parallel versions. These performance improvements range from 1% in
s4 to 21.3% in s8 (6.46% on average over all the structured instances). Concerning
PhGA-4 and PhGA-8, the latter computes the highest performance workforce plan-
ning in 6 out of the 10 structured instances, but now differences are smaller (0.75%
on average). The diversity introduced by the parallel models is clearly the responsible
for this results. The explanation for this claim concerns the loss of diversity provoked
by the newly introduced improvement operator and, consequently, the parallel hGA
models counteract to some extent the increasingly chance of getting trapped in a local
minimum.

In the case of the unstructured instances, the previous claims are even more evi-
dent. Here, PhGA-8 gets the best planning performance in 10 out of the 10 instances,
and with statistical confidence (“+” symbols in the last column). With respect to

Table 7 Hybrid GA results for structured and unstructured problems

Prob. Seq. hGA PhGA-4 PhGA-8 KW3

s1 913 870 867 +
s2 959 912 920 +
s3 1,056 1,021 1,001 +
s4 1,007 999 997 +
s5 1,103 998 1,006 +
s6 1,084 1,040 1,034 +
s7 954 933 933 +
s8 1,295 1,077 1,067 +
s9 985 948 952 +
s10 934 903 891 +
u1 1,375 1,361 1,280 +
u2 1,193 1,176 1,098 +
u3 1,509 1,204 1,187 +
u4 1,670 1,342 1,286 +
u5 1,189 1,173 1,170 +
u6 1,193 1,174 1,128 +
u7 1,288 1,163 1,106 +
u8 1,076 1,055 1,041 +
u9 927 894 883 +
u10 1,205 1,086 998 +

J Math Model Algor (2007) 6:509–528 527

Table 8 Average results for structured and unstructured problems

Problems s1 – s10 u1 – u10

Algorithm GA SS hGA GA SS hGA

Sequential 0.9989 0.9405 0.9202 0.9735 0.9744 0.9309
4 Islands 0.8842 0.8743 0.8691 0.8877 0.8590 0.8626
8 Islands 0.8771 0.8658 0.8641 0.8711 0.8284 0.8294

the sequential hGA, a noticeable reduction has been reached in u3 and u4 (27.12%
and 29.86%, respectively). Averaging over all the instances, PhGA-8 has been able
to reduce the planning costs a percentage of 12.6%. Comparing the two parallel
versions, differences now are not that smaller, e.g. reaching almost 9% in u10 (from
1,086 down to 998). We can therefore conclude that diversity is even more decisive
when solving the unstructured version of the WPP with the new hybrid GA.

In order to compare this new proposal against the previously presented algorithms
we have followed the same approach as in Section 5.2.3: we have normalized with
respect to all the maximum (worst) values, thus avoiding scaling problems. The
results are presented in Table 8. Note that the values for GA and SS are different
from those included in Table 4 since the values used for normalization have changed.

If we have a look at the sequential versions of the three algorithms, it can be
noticed that hGA outperforms GA and SS in both structured and unstructured
instances. This also holds for the parallel models with 4 island in the structured
instances. However, the PSS is the best parallel algorithm with 4 islands when
solving the unstructured instances (an average value of 0.8590 against 0.8877 of GA
and 0.8626 of hGA). The resulting values of the normalized workforce planning
performance in the parallel models with 8 islands keep the same behavior: parallel
hGA improves upon both parallel GA and parallel SS in the structured instances
whereas SS is the best approach in the unstructured ones. The point here is that
the differences are tighter. We can conclude that the hGA can profit from using the
improvement operator because it always outperforms the GA approach. Concerning
SS, hGA is able to always reach improved workforce plannings in the sequential case
and in the structured instances.

Summarizing we can conclude that hGA is the best algorithm among all the
sequential algorithms used. Concerning parallel versions, a clear conclusion is that
parallel versions always outperform serial ones. Among the parallel methods, PGA
is the worst while the PSS achieves the best accuracy, obtaining a slightly better
performance than PhGA.

6 Conclusions

In this article we have addressed and solved a workforce planning problem. To
achieve this goal we have used two parallel metaheuristics: a parallel GA and a
parallel SS. The development of these parallel versions of a genetic algorithm and
a parallel scatter search aims at tackling problems of realist size.

The conclusions of this work can be summarized attending to different criteria.
Firstly, as it was expected, the parallel versions of the methods have reached an

528 J Math Model Algor (2007) 6:509–528

important reduction of the execution time with respect to the serial ones. In fact,
our parallel implementations have obtained a very good speedup (nearly linear). In
several instances, we have noticed a moderate loss of efficiency when increasing the
number of processor from four to eight. But this loss of efficiency is mainly due to
the limited parallelism of the program, since the variation in the serial fraction was
negligible.

Secondly, we have observed that the parallelism did not only allow to reduce
the execution time but it also allowed to improve the quality of the solutions. Even
when the parallel algorithms were executed in a single processor, they outperformed
the serial one, proving clearly that the serial and the parallel methods are different
algorithms with different behaviors.

Thirdly, we have noticed that SS results outperformed GA ones for both kind
of instances, structured and unstructured ones. The search scheme followed by
SS seems to be more appropriate to the WPP than GA one. We have studied
whether the improvement operator used by SS is beneficial to this problem, and
demonstrated that a hybridization of GA with this local search mechanism provokes
an improvement in the quality of the solutions. Indeed, this hybridization has allowed
to ameliorate the performance of the “pure” GA in both structured and unstructured
instances, whereas it was only able to outperform GA in the structured problems and
SS only in the sequential version.

As future work, we plan to apply these techniques to tackle instances ten times
larger than those solved here (i.e., n ≈ m ≈ 200).

Acknowledgements The authors are partially supported by the Ministry of Science and Technology
and FEDER under contract TIN2005-08818-C04-01 (the OPLINK project).

References

1. Aardal, K.: Capacitated facility location: separation algorithm and computational experience.
Math. Program. 81, 149–175 (1998)

2. Alba, E., Tomassini, M.: Parallelism and evolutionary algorithms. IEEE Trans. Evol. Comput.
6(5), 443–462 (2002)

3. Alba, E., Luque, G., Luna, F.: Workforce planning with parallel algorithms. IPDPS-NIDISC’06,
246 (2006)

4. García-López, F., Melián-Batista, B., Moreno-Pérez, J., Moreno-Vega, J.: Parallelization of the
scatter search. Parallel Comput. 29, 575–589 (2003)

5. Glover, F., Kochenberger, G., Laguna, M., Wubbena, T.: Selection and assignment of a skilled
workforce to meet job requirements in a fixed planning period. In: MAEB’04, pp. 636–641 (2004)

6. Glover, F., Laguna, M., Martí, R.: Fundamentals of scatter search and path relinking. Control
Cybern. 39(3), 653–684 (2000)

7. Holland, J.: Adaptation in Natural and Artificial Systems. (second edition) MIT, Cambridge,
Massachusetts (1992)

8. Karp, A., Flatt, H.: Measuring parallel processor performance. Commun. ACM 33, 539–543
(1990)

9. Klose, A.: An LP-based heuristic for two-stage capacitated facility location problems. J. Oper.
Res. Soc. 50, 157–166 (1999)

10. Laguna, M., Wubbena, T.: Modeling and solving a selection and assignment problem. In: Golden,
B., Raghavan, S., Wasil, E. (eds.) The Next Wave in Computing, Optimization, and Decision
Technologies, pp. 149–162 (2005)

	Parallel Metaheuristics for Workforce Planning
	Abstract
	Introduction
	The Workforce Planning Problem
	Genetic Algorithm
	Representation
	Solution Evaluation
	Repairing/Improving Operator
	Crossover Operator
	Mutation Operator
	Parallel GA

	Scatter Search
	Initial Population
	Improvement Method
	Parallel SS

	Computational Experiments
	Problem Instances
	Results: Workforce Planning Performance
	GA Results
	SS Results
	GA vs. SS

	Results: Computational Times
	A New Hybrid GA

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

