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Abstract This paper deals with two-machine flowshop problems with deteriorating
tasks, i.e. tasks whose processing times are a nondecreasing function that depend
on the length of the waiting periods. We consider the so-called Restricted Problem.
This problem can be defined as follows: for a given permutation of tasks, find an
optimal placement on two machines so that the total completion time is minimized.
We will show that the Restricted Problem is nontrivial. We give some properties for
the optimal placement and we propose an optimal placement algorithm.
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1 Introduction

In this paper, we consider the two-machine flowshop problem with deteriorating
tasks. Such a problem consists of two machines that are continuously available and
a set of tasks to be processed. Each task has two operations to be sequentially
processed on the two machines. The tasks have deteriorating processing times, i.e.
the processing time on the second machine is a continuous nondecreasing function
of the waiting time between machines. Such a deterioration appears, for instance,
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in the steel production where the material will cool during the waiting periods and
has to be reheated for the subsequent process. A similar situation will also occur in
scheduling maintenance tasks, where the maintenance time depends on the length of
time elapsed since the last maintenance operation.

Two kinds of deteriorating tasks exist in the literature. The first focuses on
resource dependent processing. There the processing times are functions of resources
assigned to its processing, Janiak [6, 7]. In the second case, the processing times are
nondecreasing functions of the time they are released into the system, Sriskandarajah
and Goyal [11], Wagneur and Sriskandarajah [13, 14] and Mosheiov [10].

Several articles study scheduling problems with deterioration of the processing
times. Most of these studies treat single machine problems, see e.g. Alidaee [1],
Gupta and Gupta [5] and Mosheiov [8]. There the processing times are linear or
nonlinear nondecreasing functions in which the processing times increase with time
elapsed since the release into the system. For parallel machines problems, Chen [2],
Mosheiov [9] consider deteriorating tasks, they assume a linear deterioration and
study the minimum completion time and makespan criteria.

For classical flowshop scheduling problems, Sriskandarajah and Goyal[11],
Wagneur and Sriskandarajah [13, 14], and Finke and Jiang [3] studied various forms
of deteriorating tasks in which the processing times of tasks are state-dependent on
the time that the tasks spend in the system. Sriskandarajah and Wagneur [12] report
complexity results of the two-machine flowshop problem for the makespan criterion,
and they propose in [13] a control vector for the start times of the tasks for the
makespan, lateness and tardiness criteria if the order of the tasks is given. Finke
and Jiang [3] and Finke et al. [4] consider the equivalent reverse model, in which
the deteriorating processing time of tasks is given on the first machine. For a given
order of tasks, they propose a greedy placement algorithm for the makespan, lateness
and tardiness criteria and they generalize their algorithm to the m-machine flowshop
problem.

In this paper, we consider the restricted problem in which for a given sequence of
tasks, one wants to find an optimal placement that minimizes the total completion
time. This problem is trivial for classical two-machine flowshop problem. It is
sufficient to schedule tasks as soon as possible. However finding an optimal sequence
of tasks in order to minimize the total completion time is strongly NP-hard. The aim
here is to suggest an optimal algorithm to solve the restricted problem. Section 2
is dedicated to some definitions and notations used in this article. In Section 3 we
define a shift operation within a certain block structure, and in Section 4, we give
some properties and the optimal placement algorithm of tasks. Finally in Section 5,
we consider the linear deterioration case, which is then compared to the linear
programming approach.

2 Definitions and Notations

A set of tasks N = {1, 2, . . . , n} is given and every task T j consists of two operations
O1, j and O2, j, j ∈ N. These operations are to be processed in a two-machine
flowshop, i.e. operation O1, j must be completed on the upstream machine M1 before
operation O2, j can start on the downstream machine M2. The processing time of task
T j is state-dependent. The operation O1, j has processing time p1, j on machine M1.
The processing time of O2, j depends on its starting time on M2, i.e. if σ j is the time
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Fig. 1 Processing time of task T j

difference between the end of O1, j and start of O2, j, then the processing time of O2, j

is F j(σ j) = p2, j + f j(σ j), where f j is a nondecreasing function of σ j, σ j ≥ 0 (Fig. 1).
We assume that fj(0) = 0.

We are interested here in the placement of the tasks that minimizes the total
completion time

∑
Cj, where Cj indicates the completion time of task Tj. This

problem is called Restricted Problem which can be defined as follows:

Restricted Problem For a given permutation π of tasks, find an optimal placement
of these tasks on both machines so that the total completion time is minimized
(Fig. 2). We give an example below to illustrate this Restricted Problem.

Example 1 Consider a set of three tasks with their processing times as shown below
(Table 1). Assume that the deterioration of each task is given by a function F j(σ j) =
p2, j + f j(σ j), where f1(σ j) = f3(σ j) = σ j and f2(σ j) = 1

4σ 2
j .

It appears that the Restricted Problem is nontrivial (Fig. 4). For the placement of
each task, one has to determine the best compromise between the earliest release
time on the first machine (Fig. 3) and the latest which is the no-wait problem (Fig. 2).
Finke and Jiang [3] made the same remarks for the makespan criterion.

Definition 1 Denote by πnw the no-wait placement of tasks T1, . . . , Tn. We define a
block B of tasks as succession of tasks Ti, Ti+1, . . . , T j, such that there is no idle-time
between these tasks on the second machine and B is maximal with this property.

From this definition, we have the following property.

Property 1 A no-wait placement πnw of tasks T1, T2, . . . , Tn is a succession of blocks
(Fig. 5).

Table 1 Tasks processing
times T1 T2 T3

p1, j 1 1 4
p2, j 5 1 1
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Fig. 2 No-wait placement,∑
Ci = 24
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3 Shift Operation in Blocks

Let B1, . . . , Bl be the block partition of tasks T1, . . . , Tn in the no-wait placement
πnw. Denote by n1, . . . , nl the number of tasks in blocks B1, . . . , Bl respectively, with
∑l

i=1 ni = n. For each block Bk denote by �nk−1(k),�nk−2(k), . . . , �1(k) the idle time
intervals between tasks of block Bk on first machine and denote by γk (k = 1, . . . ,

l − 1) the idle time interval between Bk and Bk+1 on the second machine (Fig. 6).
Starting from placement πnw, a reduction of the total completion time can be

obtained by a reduction of the idle-time γk k = 1, . . . , l − 1 on the second machine.
However, the reduction of γk requires a shifting of the block Bk+1 to the left in the
current placement πnw. This operation should be possible if the tasks sequenced after
the last idle time interval of the block Bk can also be shifted to the left. Thus we define
a left-shift operation in a block as follows.

Definition 2 A left-shift operation in block Bk applied to the idle time interval �1(k)

consists of a shift to the left of all tasks sequenced after the interval �1(k) with a value
ε, such that ε ≤ �1(k).

The left-shift operation on �1(k) modifies a placement πnw as follows:

1. The placement of blocks B1, . . . , Bk−1 is unchanged.
2. The placement of the tasks sequenced before the idle time interval �1(k) in block

Bk is unchanged.
3. All tasks sequenced after �1(k) should be shifted to the left by ε.
4. Update the block structure (after step 3, one may shift the blocks Bk+1, . . . , Bl

to the left, leading possibly to the fusion of blocks).

The shifted tasks in block Bk induce a deterioration of the processing times of these
tasks on the second machine. Thus, the completion time of block Bk is increased.
Denote this increase αk.

We are interested here to the shift value ε for which αk never exceeds the value of
γk (idle time between Bk and Bk+1) on the second machine.

5

1 1

5 6

4

Fig. 3 Earliest placement,
∑

Ci = 34
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Fig. 4 Optimal placement,∑
Ci = 23
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Definition 3 A block Bk is called “improvable” if the left-shift operation on the last
idle time interval �1(k) of block Bk reduces the total completion time of the current
placement.

Definition 4 A block Bk is called “stable” if one of the following conditions holds:

1. The left-shift operation applied to the last idle time interval �1(k) of the block
Bk increases the total completion time of the current placement.

2. There is no idle time on the first machine between the tasks of block Bk.

From these definitions, we deduce that any nonimprovable block is stable and any
block made up of one task is also stable.

Definition 5 An improvable block Bk is an absorbant block, if the left-shift operation
on the last idle time interval �1(k) of block Bk, leads to the disappearance of the idle
time interval γk.

Whenever a block becomes absorbant, all blocks sequenced after this one should
be reindexed.

4 Optimal Placement

In this part, we show that in an optimal placement, all idle time intervals on both
machines are essential, i.e. any modification of these idle times involves an increase
of the total completion time.

Let Ti( j ) be the ith task of block B j and denote by σi( j ) the waiting-time between
the completion time of the task Ti( j ) on the first machine and its starting time on
the second machine. Assume that �i( j ) is the idle time on the first machine between
Ti( j ) and Ti+1( j ).

B1 B2 B3

Fig. 5 Decomposition into blocks
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Fig. 6 Decomposition into blocks

Property 2 For each block B j in an optimal placement, we have

∀ Ti( j ) ∈ Bj, 1 ≤ j ≤ l : min{σi( j ),�i( j )} = 0

Proof Assume that there is an optimal placement π such that for a given task Ti(k)

in block Bk, min{σi(k);�i(k)} �= 0 (Fig. 7). Let π ′ be a placement obtained from π by
shifting to the right the task Ti(k) by ε on the first machine, where

ε =
⎧
⎨

⎩

σi(k) if �i(k) ≥ σi(k)

�i(k) if �i(k) < σi(k)

The processing time of Ti(k) on the second machine is decreased in π ′ by fi(σi(k)),
thus

∑n
i=1 C2,i(π

′) <
∑n

i=1 C2,i(π), which contradicts the fact that π is an optimal
placement. �	

This property shows that in an optimal placement, each task followed by an idle
time on the first machine is sequenced in a no-wait fashion.

Property 3 Let Bk be a block in a given placement π and Ts(k), Ts+1(k), . . ., Tnk(k)

the tasks sequenced after the last idle-time interval �s−1(k) on the first machine. If
Bk is stable by applying the left-shift operation on the last idle time interval �s−1(k),
then Bk is also stable by applying any left-shift operation on the intervals �nk−1(k),

�nk−2(k), . . . , �s−2(k).

Proof Consequence of Property 2 and the definition of stable block. �	

Lemma 1 An optimal placement of tasks is a succession of stable blocks.

Fig. 7 Processing time of task T j
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Proof Let π be an optimal placement of tasks. Let B1, . . . , Bn be a block partition
of π . Assume that Bk is not stable. Applying the left-shift operation on the last idle
time interval of the block Bk improves the value of the total completion time, which
contradicts the fact that π is an optimal placement. �	

Given a block partition of a no-wait placement, the value of the total completion
time can be improved by a reduction of the idle time intervals on the second machine.
Indeed, at step i of the algorithm, we test if the block Bi is improvable by applying
the left-shift operation on the last idle time interval of Bi. If Bi is improvable, we
calculate the greatest value ε for which the total completion time is improved. Thus
we update the new placement and we repeat the same operation on the last idle time
interval of the block Bi. Otherwise, if Bi is not improvable, the algorithm goes to the
next block. The algorithm can be described as follows:

Placement Algorithm

1. Let πnw be the no-wait placement of the tasks and B1, . . . , Bl the block partition
of π , k = 1.

2. If Bk is an improvable block go to 3, else go to 4.
3. Apply the left-shift operation of value ε to the last idle time interval on the first

machine of the block Bk. We obtain two cases:

3a. The last idle time interval of Bk vanishes. Then repeat 3.
3b. The idle time interval between Bk and Bk+1 on the second machine

disappears. Then Bk is an absorbant block. Bk and Bk+1 yield the same
block and the blocks which follow are reindexed, repeat 3.

4. If k = l stop, else k = k + 1, go to 3.

Theorem 1 The placement obtained by the previous algorithm is optimal for the total
completion time criterion.

Proof Let B1, . . . , Br denote the block partition of a placement π obtained by the
algorithm. We show that there is an optimal solution π ′ with blocks B′

1, . . . , B′
s for

which r = s and B1 = B′
1. Since the reduced sequence π − {tasks of B1} yields the

blocks B2, . . . , Br, we can repeat the argument (induction on the number of blocks)
and show that r = s and Bi = B′

i for all i.
In order to obtain an optimal solution π ′ with B1 = B′

1, let us consider the optimal
solution π ′ for which |n1 − n′

1| is minimal, where n1 and n′
1 is the number of tasks in

the block B1 and B′
1, respectively. According to the Lemma 3, the block B′

1 is stable.
We distinguish two cases:

Case 1 If n′
1 < n1. From blocks B1 and B′

1, we built the block B′′
1 and B′′

2 as follows:

– B′′
1 = B′

1,
– Schedule the rest of the tasks exactly as they are placed in B1. Denote B′′

2 the
block built by this operation.

We know that B1 is obtained by applying a successive left-shift operation on the
idle time intervals of the improvable blocks, in nondecreasing order of their indices.
Moreover, the idle time between B′′

1 and B′′
2 on the second machine does not exist in

B1, therefore B′′
1 is an improvable block. However, B′′

1 = B′
1, we have a contradiction
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to the fact that B′
1 is a stable block, which implies that n′

1 cannot be strictly less
than n1.

Case 2 If n′
1 > n1. From blocks B1 and B′

1, we built the block B′′
1 and B′′

2 as follows:

– B′′
1 = B1,

– Schedule the rest of the tasks exactly as they are placed in B′
1, Denote B′′

2 the
block built by this placement.

B′
1 is divided into two blocks B′′

1 and B′′
2 in the new placement, with γ ′′

1 the idle time
between B′′

1 and B′′
2 on the second machine. However γ ′′

1 does not exist in B′
1 so that

this idle time interval is removed by applying a left-shift operation on B′′
1 .

According to the placement π , B1 is a stable block and B1 = B′′
1 , which implies

that any application of the left-shift operation on B′′
1 increases the value of the total

completion time. This contradicts the fact that π ′ is an optimal placement. According
to Cases 1 and 2, n′

1 = n1. B1 and B′
1 are composed of the same set of tasks and are

stable. The placement of the tasks in B′
1 is exactly the same in B1, i.e. the placement

obtained by the previous algorithm is optimal for the total completion time criterion.
�	

5 Linear Deterioration Case

We consider here the case in which the deterioration of tasks are given by a linear
function F j(σ j) = p2, j + f j × σ j. We describe the optimal placement and how to
obtain it in order to minimize the total completion time. We shall adapt the algorithm
to this case and show that in Theorem 2 that its complexity is O(n2). For the linear
case, one has also as an alternate solution method a linear programming approach.
Let us first formulate our placement problem in form of a linear program and then
compare the complexities.

Let C1, j, C2, j be the completion time of task j on machine 1 and 2, respectively.
We get the following linear program:

min
n∑

j=1

C2, j

C1, j − p1, j ≥ C1, j−1 j = 2, . . . , n (1)

C2, j − p2, j ≥ C2, j−1 + f j(C2, j−1 − C1, j) j = 2, . . . , n (2)

C2, j − p2, j ≥ C1, j j = 1, . . . , n (3)

C1,1 = p1,1, C2,2 = p1,1 + p2,1,

C1, j ≥ 0, C2, j ≥ 0, j = 2, . . . , n

Constraints (1) describe the succession of operations on M1. From the flowshop
precedence constraints C1, j + σ j + f jσ j + p2, j = C2, j and σ j ≥ 0, one obtains σ j =
C2, j−C1, j−p2, j

1+ f j
and constraints (3). Replacing σ j in the constraints expressing the suc-

cession of operations on M2, i.e. C2, j − p2, j − f jσ j ≥ C1, j−1, yields the the constraints
(2) of the given linear program.

The experience with simplex based solutions gives a practical complexity of
O(N × C2), where N is the number of variables and C the number of constraints.
In the given program, N = 2n − 2 and C = 3n. Hence, we get the complexity O(n3),
which is worse than the O(n2) complexity for our method.
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Now we give properties of the optimal placement that will be used for the adapted
algorithm.

Lemma 2 Let Bk be a block in given placement π and Ts(k), Ts+1(k), . . ., Tnk(k) the
tasks sequenced after the last idle-time interval �s−1(k) on the first machine. Bk is being
improved by the left-shift operation on �s−1(k) if

nk∑

i=s

(nk + 1 − i) × fi(k) × βi(k) −
l∑

i=k+1

n j ≤ 0,

where βs(k) = 1 and βi(k) = ∏i−1
t=s (1 + ft(k)), s + 1 ≤ i ≤ nk.

Proof Let π ′ be the placement obtained by applying the left-shift operation on
�s−1(k) with value ε. The completion times of tasks in π ′ are:

1. ∀i, Ti( j ) ∈ B j, 1 ≤ i ≤ n j, 1 ≤ j ≤ k − 1 : C′
2,i( j ) = C2,i( j )

2. ∀i, Ti(k) ∈ Bk, 1 ≤ i ≤ s − 1 : C′
2,i(k) = C2,i(k)

3. ∀i, Ti(k) ∈ Bk, s ≤ i ≤ nk − 1 we have

C′
2,s(k) = C2,s(k) + fs(k) × ε

C′
2,s+1(k) = C2,s+1(k) + fs(k) × ε + fs+1(k)( fs(k) × ε) + fs+1(k) × ε

= C2,s+1(k) + fs(k) × ε + fs+1(k)(1 + fs(k)) × ε

. . . . . .

C′
2,i(k) = C2,i(k) + fs(k) × ε + fs+1(k) × (1 + fs(k)) × ε + . . .

+ fi(k)(1 + fi−1(k)) × . . . × (1 + fs(k)) × ε.

A block Bk is improvable if
n∑

i=1

C2,i(π
′) −

n∑

i=1

C2,i(π) ≤ 0

n∑

i=1

C′
2,i(π) −

n∑

i=1

C2,i(π
′) =

l∑

j=1

n j∑

i=1

C2,i( j ) + ε ×
nk∑

i=s

(nk + 1 − i) fi(k) × βi(k)

− ε

l∑

j=k+1

n j −
l∑

j=1

n j∑

i=1

C2,i( j )

with βs(k) = 1 and βi(k) =
i−1∏

t=s

(1 + ft(k)), s + 1 ≤ i ≤ nk Thus, Bk is improvable if

nk∑

i=s

(nk + 1 − i) fi(k) × βi(k) −
l∑

i=k+1

n j ≤ 0 �	

Lemma 3 If Bk is improvable by the left-shift operation on the last idle time interval
�s−1(k) of the block Bk, then the greatest value of ε is:

ε = min
{

p2,s−1(k) − p1,s(k) − σs(k) ; γk

1 + ∑nk
i=s fi(k) × βi(k)

}
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Proof Let Bk an improvable block. It is obvious that the value of ε for which the
left-shift operation is applied on the last idle time interval �s−1(k) of Bk does not
exceed the value of �s−1(k). In other words, ε ≤ �s−1(k), therefore the first upper
bound of ε is ε1 = �s−1(k). From the Property 2, it easy to check that �s−1(k) =
p2,s−1 − p1,s − σs(k).

Also, according to the definition of the left-shift operation, ε does not exceed the
value ε2 for which the idle time interval γk between Bk and Bk+1 is removed. In other
words, ε2 is a solution of the equation:

C′
1,1(k + 1) − C′

2,nk
(k) = 0

=⇒ (C1,1(k + 1) − ε2) −
(

C2,nk + ε

nk∑

i=s

fi(k) × βi(k)

)

= 0,

with βs(k) = 1 and βi(k) = ∏i−1
t=s (1 + fi(k)), s + 1 ≤ i ≤ nk

Thus,

C1,1(k + 1) − C2,nk(k) =
(

1 +
nk∑

i=s

fi(k) × βi(k)

)

ε

However,

C1,1(k + 1) − C2,nk(k) = γk ⇒ ε2 = γk

1 + ∑nk
i=s fi × βi(k)

We have ε ≤ {ε1, ε2}, thus the greatest value of ε is ε = min{ε1, ε2} �	

Remark 1 If ε = ε1, the last idle time interval �s−1(k) of Bk is removed in the new
placement. If ε = ε2, then there is no idle time between Bk and Bk+1. In the new
placement on the second machine, in this case, Bk and Bk+1 are combined and form
the same block.

Theorem 2 For the linear case, the Placement Algorithm has complexity O(n2).

Proof For a given last idle-time interval �s(k) on the first machine of block Bk,
testing if Bk is being improved by the left-shift operation on �s(k) is in O(n) (i.e.
calculating βi(k) and checking if

∑nk
i=s(nk + 1 − i) × fi(k) × βi(k) − ∑l

i=k+1 n j ≤ 0).
Since there are at most n − 1 idle-time intervals on the first machine, we get the
overall complexity O(n2). �	

Example Consider a set of seven tasks with their processing times and deterioration
rate as shown in Table 2.

Table 2 Tasks processing
times and deterioration rate T1 T2 T3 T4 T5 T6 T7

p1, j 1 1 1 3 1 8 2
p2, j 3 2 2 2 1 3 1
f j 1 0.5 0.25 0.25 0 0.5 0.5
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1
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1

2

1
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1 8

3

2

1 1

3

B1 B2 B3

Fig. 8 No-wait Placement,
∑

Ci = 86

Algorithm Given a no-wait placement with
∑

Ci = 86 and the block partition
B1, B2, B3 (Fig. 8)

• k = 1

– Test if B1 can be improved by applying a left-shift operation to the last idle
time

f3(1) − (n2 + n3) = 0.25 − (2 + 2) = −3.5 < 0

⇒ B1 is an improvable block.

– Calculate the value of ε.

ε1 = p2,2 − p1,3 − σ2(2) = 2 − 1 − 0 = 1
ε2 = γ1(1)

1+ f3(1)
= 3−2

1+0.25 = 0.8
hence, ε = min{1 , 0.8} = 0.8

– The resulting schedule is given by Fig. 9, where B1 and B2 are combined to
the same block B1 and B3 is reindexed.

• k = 1

– Test if B1 can be improved by applying a left-shift operation to the last idle
time

f5(1) − n2 = 0 − 2 = −2 < 0

⇒ B1 is an improvable block.

1

3

1

2 2

1 3

1

1 8

3

2

1

B2B1

2.2

Fig. 9 Placement with
∑

Ci = 83
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1

3

1

2 2

1 3

1

B1

2.2

1 8 2

1

B2

3

Fig. 10 Placement with
∑

Ci = 81

– Calculate the value of ε.

ε1 = p2,4 − p1,5 − σ2(4) = 2 − 1 − 0 = 1
ε2 = γ1(1)

1+ f5(1)
= 8−6

1+0 = 4
hence, ε = min{1 , 4} = 1

– The result schedule is given by Fig. 10 with
∑7

i=1 Ci = 81.

• k = 1

– Test if B1 can be improved by applying a left-shift operation to the last idle
time.

3 f3(1) + 2 f4(1)(1 + f3(1)) + f5(1)(1 + f3(1))(1 + f4(1)) − n2

= 0.75 + 0.625 − 2 = −0.2625 < 0

⇒ B1 is an improvable block.

– Calculate the value of ε.

ε1 = p2,2 − p1,3 − σ3(1) = 2 − 1 − 0.8 = 0.2

ε2 = γ1(1)

1 + f3(1) + f4(1)(1 + f3(1)) + f5(1)(1 + f3(1))(1 + f4(1))

= 6
1.5625

= 3.84

hence, ε = min{0.2 , 3.84} = 0.2

– The result schedule is given by Fig. 11 with
∑7

i=1 Ci = 80.875.

• k = 1

1

3

1

2

B1

81 3 1

2.25 2.0625 1 3

2

1

B2

Fig. 11 Placement with
∑

Ci = 80.875
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– Test if B1 can be improved by applying a left-shift operation to the last idle
time.

4 f2(1) + 3 f3(1)(1 + f2(1)) + 2 f4(1)(1 + f2(1))(1 + f3(1)) + f5(1)

× (1+ f2(1))(1+ f3(1))(1+ f4(1))−n2 = 2+1.125+0.9375−2
= 2.0625 > 0
⇒ B1 is a stable block.

• k = 2

– Test if B2 can be improved by applying a left-shift operation to the last idle
time.

f2(2) − n3 = 0.5 − 0 = 0.5 > 0
⇒ B2 is a stable block.

All blocks are stable, the optimal placement is given by Fig. 11, with a total
completion time equal to 80.875.

6 Conclusion

In this paper, we propose an optimal placement algorithm that minimizes the total
completion time criterion for a given order of tasks. In this paper we used general
nondecreasing functions for the deterioration of the task processing times on the
second machine. As shown, the method compares favorably with linear programming
in the special case of linear deterioration functions.

Our algorithm works for two-machine problems. The linear programming method
for the linear case may be extended to the m-machine case. However, finding the
optimal placement for non linear deterioration functions and m ≥ 3 machines seems
to be difficult and would require other techniques.
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