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Abstract Two special cases of the Minimum Committee Problem are studied, the
Minimum Committee Problem of Finite Sets (MCFS) and the Minimum Committee
Problem of a System of Linear Inequalities(MCLE). It is known that the first of
these problems is N P-hard (see (Mazurov et al., Proc. Steklov Inst. Math., 1:67–
101, 2002)). In this paper we show the N P-hardness of two integer optimization
problems connected with it. In addition, we analyze the hardness of approximation
to the MCFS problem. In particular, we show that, unless N P ⊂ T IME(nO(log log n)),

for every ε > 0 there are no approximation algorithms for this problem with approx-
imation ratio (1 − ε) ln(m − 1), where m is the number of inclusions in the MCFS
problem. To prove this bound we use the SET COVER problem, for which a similar
result is known (Feige, J. ACM, 45:634–652, 1998). We also show that the Minimum
Committee of Linear Inequalities System (MCLE) problem is N P-hard as well and
consider an approximation algorithm for this problem.

Key words computational complexity · NP-completeness · set cover problem · graph
3-colorability problem · minimum committee problem · approximation algorithms.

Mathematics Subject Classifications (2000) 90C27 · 68Q17 · 68Q32.

1 Introduction

We consider a combinatorial optimization problem known as the Minimum Commit-
tee (MC) problem. This problem is closely connected with three areas of the oper-
ations research: voting theory, optimization, and pattern recognition. In the voting
theory [3–5], several voting procedures based on different logics (democracies) are
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studied. A committee is just a mathematical model for the voting procedure based
on the simple majority rule.

In pattern recognition, different collections of empirical algorithms are considered
[6, 7]. So called perceptron algorithms should be distinguished among them. As one
can prove , the 2-layer perceptron with non-negativity constraint for all weights of its
second layer is just another formulation for the committee discrimination rule.

Finally, in optimization a problem to be solved is often inconsistent [8]. There are
several reasons for this fact. In terms of linear programming, e.g., the problem is
inconsistent when its primal or dual (or both) constraints systems are infeasible. To
correct this situation, one can utilize several technics, e.g. Chebyshev approximation.
The committee solutions technique is one of them [1, 8, 9].

In all above cases it is desirable to find the most simple committee construction
that leads us to the Minimum Committee Problem.

2 Minimum Committee Problem

Let some set X and m nonempty subsets D1, D2, . . . , Dm of X be given. Consider an
abstract system of inclusions in X

x ∈ Dj ( j ∈ Nm = {1, 2, . . . , m}) (1)

If there is an element x ∈ ⋂

j∈Nm

Dj then system (1) is called feasible and x is called a

solution of (1). Otherwise system (1) is called infeasible in the ordinary sense.
We call [1] a finite sequence Q = (x1, x2, . . . , xq) a committee solution with q

elements (or just a committee) of system (1) if

∣
∣{i : xi ∈ Dj}

∣
∣ >

q
2
, for all j ∈ Nm.

A committee solution of system (1) with a minimum number of elements q is called
a minimum committee solution. It is evident that if system (1) is feasible then every
minimum committee solution Q = (x) where x ∈ ⋂

j∈Nm

Dj. Therefore the notion of

the minimum committee solution is a generalization of the notion of the ordinary
solution.

The Minimum Committee (MC) Problem:

Let a ground set X and a finite collection of subsets D1, D2, . . . , Dm be given.
Find a committee solution for system (1) with a minimum number of elements q.

The MC problem is called feasible if and only if system (1) has any committee
solution. Consider the following example (see Fig. 1). Here X = R3, m = 4, D1 is the
plane ABC and D2, D3, D4 are the segments AO, BO and CO, correspondingly.
It can be easily verified that in this case system (1) is infeasible but has committee
solutions and the sequence Q = (A, B, C, O, O) is a minimum committee solution.

It is useful to reformulate the MC problem in terms of the integer linear program-
ming. As usual, we call a maximal, by inclusion, feasible subsystem of an infeasible
system a maximal feasible subsystem (or mfs). Let J1, . . . , JT be the index sets of
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Fig. 1 Example of a
committee solution

all maximal feasible subsystems of system (1). Let us consider two m × T incidence
matrices A and B, where

aji = 1, bji = 1 if j ∈ Ji,

aji = 0, bji = −1 otherwise

and two programs

min
{
1′t | Bt ≥ 1, t ∈ Z

T
+
}
, (2)

min
{

s : At ≥ s1, t ∈ ZT+
1′t ≤ 2s − 1, s ∈ N

}

. (3)

The following theorem is known.

Theorem 1 ([9]) Problems MC, (2) and (3) are simultaneously feasible or infeasible.
The sets of optimal solutions of problems (2) and (3) are isomorphically embedded
into the solution set of the MC problem.

In this paper, we consider two special cases of the MC problem:

1. The case of the problem, where the set X and all its subsets Dj are finite (we shall
call this problem the MCFS). We shall show that the MCFS problem is N P-hard
and the equivalent problems (2) and (3) have the same property. Also, we shall
estimate an approximation threshold of this problem.

2. The case, where the ground set X is an n-dimensional rational vector space
Qn and subsets j are open halfspaces. This problem will be called the MCLE.
As shown below, it is also N P-hard. We shall consider a new approximation
algorithm, its approximation ratio and computational complexity.

3 Minimum Committee of Finite Sets Problem

In this section, we consider a special case of MC problem when all sets in system (1)
are finite.
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The Minimum Committee of Finite Sets (MCFS) Problem:

A finite set X = {x1, x2, . . . , xp} and a collection of its subsets D1, D2, . . . , Dm are
given. It is required to find a committee solution for system (1) with a minimum
number of elements q.

3.1 Computational Complexity

Let us agree to encode an instance of the MCFS by m × p matrix C, where

cji =
{

1, if xi ∈ Dj,

−1, otherwise.

Further, without loss of a generality, we can assume that for any committee
Q = (y1, y2, . . . , yq) there are natural numbers k ≤ p, and q1, q2, . . . , qk, where

q1 + q2 + . . . + qk = q,

and

1 ≤ i1 < i2 < . . . < ik ≤ p

such that

y1 = y2 = . . . = yq1 = xi1 ,

yq1+1 = . . . = yq1+q2 = xi2 ,

. . .

yq1+...+qk−1+1 = . . . = yq = xik .

Therefore, we can represent the sequence Q as a multiset in the form
{
(xi1 , q1), (xi2 , q2), . . . , (xik , qk)

}
.

The MCFS problem is a combinatorial one and there is no efficient algorithm for
this problem unless P = N P.

Theorem 2 ([1]) The MCFS problem is NP-hard.

Let us notice that the MCFS problem remains N P-hard even when every set Dj

except, maybe, one, satisfies the condition |Dj| ≤ 3.

Theorem 3 Problems MCFS, (2), and (3) are polynomially equivalent.

Proof Let us prove that the MCFS and the integer program (2) can be polynomially
reduced to each other. Let an instance of the MCFS problem be given by the m × p
matrix C. Let matrix B consist of all undominatable columns of C. Matrix B can be
constructed in a polynomial time of m and p. Without loss of a generality, we assume
that B consists of the first T columns of C. The instance of problem (2) determined by
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the matrix B is a required one. Indeed, let t̄ = [t̄1, t̄2, . . . , ¯tT ] be the optimal solution
of problem (2). Then, by virtue of the construction of the matrix B, the sequence

Q̄ = {
(xi, t̄i) | i ∈ NT , t̄i > 0

}

is the required solution of the initial problem MCFS (minimum committee).
On the other hand, let the matrix B define an individual problem (2). Let us

consider the instance of the MCFS problem with C = B. Let

Q̄ = {
(xi1 , q1), (xi2 , q2), . . . , (xik , qk)

}

be the minimum committee in the MCFS problem, then the vector t̄ ∈ Z T+, where

tl =
{

qj, if l = ij,
0, otherwise,

is the optimal solution of problem (2). ��

Corollary 1 Problems (2) and (3) are NP-hard.

It is interesting that a statement like Theorem 2 does not hold for the general MC
problem.

3.2 Approximation Threshold

A general issue in studying the N P-hard optimization problem is designing so-
called approximation algorithms. As usual, we call an algorithm for a combinatorial
optimization problem an approximation algorithm (with approximation ratio r) if for
each instance

f ∗ = min{ f (x) | x ∈ M}
of length L of the problem under consideration this algorithm finds a feasible
solution xapp with

f (xapp)

f ∗ ≤ r

in a polynomial time in L.

Another problem that should be considered in studying the N P-hard problem
is to find a threshold for which it can be proved that there are no approximation
algorithms with ratios less then this bound (under some reasonable assumptions, e.g.
N P 
= P ). To prove the existence such a threshold for the MCFS problem, we shall
take advantage of known results for the famous SET COVER problem.

The SET COVER Problem:

Let a finite set S = {s1, s2, . . . , sm} and a nonempty collection of its subsets C =
{c1, c2, . . . , cl} ⊆ 2S be given. It is required to find a minimum cardinality subset
C′ ⊆ C that covers S (i.e.,

⋃

ci∈C′
ci = S).

For the SET COVER problem the following results are known.
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Theorem 4 ([10]) Unless P = N P there is no polynomial time algorithm that approx-
imates the set cover within ratio 1

4 log2 m.

Theorem 5 ([2]) If there is some ε > 0 such that a polynomial time algorithm can
approximate the set cover within (1 − ε) ln m, then

N P ⊂ T IME(nO(log log n)).

A similar bound may be proved for the MCFS problem as well.

Lemma The existence of an approximation algorithm with ratio r for the MCFS
problem implies the existence of a polynomial time algorithm that approximates the
set cover within the same ratio.

Proof

1. Let us reduce the SET COVER problem to the MCFS. Let the sets S =
{s1, s2, . . . , sm} and C = {c1, c2 . . . , cl} be fixed. We are going to formulate an
appropriate instance of the MCFS problem in a polynomial time in l and m and
demonstrate that for natural k there is a cover C′ ⊆ C, |C′| = k, if and only if
constructed instance of the MCFS problem has a feasible committee solution of
2k − 1 elements.
Let us introduce the m × l incidence matrix A corresponding to S and C. As
above,

aji =
{

1, if sj ∈ ci,

0, otherwise.

Now we shall consider a new (m + 1) × (l + 1) matrix A′ obtained from A by
bordering with a row and a column consisting of ones (see Table 1). We will put
its element in the right-bottom corner equal to zero.
Let us consider the MCFS problem corresponding to the matrix A′. Namely, let
us take a ground set X = {x1, x2, . . . , xl+1} and its subsets according to

Dj = {
xl+1} ∪ {

xi : s j ∈ ci, i ∈ Nl
}

( j ∈ Nm)

Dm+1 = {
x1, x2, . . . , xl} .

Table 1 The construction of
the instance of the MCFS
problem

x1 x2 . . . xl xl+1

c1 c2 . . . cl S

D1 s1 1
D2 s2 1
.
.
.

.

.

. A
.
.
.

Dm sm 1
Dm+1 C 1 1 · · · 1 0
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Let C′ = {ci1 , ci2 , . . . , cik} be a cover, that is, for each j ∈ Nm there is

μ( j ) ∈ Nk : s j ∈ ciμ( j )

or xiμ( j ) ∈ Dj due to the construction. Hence, the sequence

Q =
⎛

⎝xi1 , xi2 , . . . , xik , xl+1, . . . , xl+1
︸ ︷︷ ︸

k−1

⎞

⎠

is a committee solution for system (1) because each Dj contains at least k
elements of Q.

On the other hand, let us consider the committee solution Q of system (1) with
2k − 1 elements, where

Q =
⎛

⎝xi1 , xi2 , . . . , xi2k−1−λ , xl+1, . . . , xl+1
︸ ︷︷ ︸

λ

⎞

⎠ .

By the choice of the set Dm+1, we have λ < k. Thus, we take a k-subsequence of
Q: (xi1 , . . . , xik). For each j ∈ Nm there is

μ( j ) ∈ Nk : xiμ( j ) ∈ Dj,

since Q is a committee and, hence, sj ∈ ciμ( j ) by the construction of sets Dj.

Therefore, the set C′ = {ciμ : μ ∈ Nk} is the required cover.
2. Let us suppose that there is an approximation algorithm A with ratio r for the

MCFS problem. It is known [1] that each committee with an even number of
elements 2k can be reduced to a committee of 2k − 1 elements removing any
element. Let us consider an arbitrary instance of the Set Cover problem; let t be
the cardinality of its minimum cover. According to procedure described above
in a polynomial time one can construct an appropriate instance of the MCFS
problem such that

(1) The number of elements of the minimum committee in this instance equals
2t − 1;

(2) For every committee solution with 2k − 1 elements there is a cover with
cardinality not greater than k that can be found using the known committee
in a polynomial time.
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Suppose the algorithm A has found a committee solution of system (1) with 2k − 1
elements. By the assumption about the ratio of the algorithm, we have

1 ≤ 2k − 1
2t − 1

≤ r.

Consequently, we obtain the following estimates:

k
t

≤ r
(

1 − 1
2t

)

+ 1
2t

≤ r
(

1 − 1
2t

)

+ r
2t

≤ r.

Lemma is proved. ��

Theorem 6 Unless P = N P there is no approximation algorithm for the MCFS
problem with ratio 1

4 log2(m − 1).

Proof Suppose the contrary. Let an algorithm A find a feasible solution of the
MCFS problem with accuracy 1

4 log2(m − 1). According to Lemma, there is an
approximation algorithm for the SET COVER problem that can find for |S| = m − 1
a cover not exceeding the optimal one more than 1

4 log(m − 1) times, which according
to Theorem 4 implies P = N P. ��

The following theorem is proved in a similar fashion.

Theorem 7 If N P 
⊂ T IME(nO(log log n)), then for each ε > 0 there is no polynomial
time algorithm for MCFS problem with approximation ratio (1 − ε) ln(m − 1).

4 Minimum Committee of Linear Inequalities Problem

Let a ground set be X = Qn and let its subsets Dj be open halfspaces

Dj = {
x ∈ X | (a j, x) > 0

}
0 
= a j ∈ X.

In this case, system (1) becomes

(a j, x) > 0 ( j ∈ Nm). (4)

Minimum Committee of Linear Inequalities System (MCLE) Problem:

Let naturals m and n and vectors a1, a2, . . . , am ∈ Qn be given. It is required to
find a committee solution of system (4) with a minimum number of elements.

The MCLE problem is interesting for at least two reasons. On the one hand, it
has the obvious applications in the statistical learning theory. On the other hand, it
cannot be efficiently solved using the reduction to equivalent integer linear programs
(2) and (3). Indeed, to make such a reduction, it is required to list all mfs of system
(4) to be analyzed. However, this enumeration problem is N P-hard according to the
following Theorem 8.
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The Densest Hemisphere (DH) Problem:

Let naturals m and n and vectors a1, a2, . . . , am ∈ Qn be given. It is required to
find the greatest mfs of system (4).

Theorem 8 ([11]) The DH problem is N P-hard.

Thus, the traditional computational complexity analysis scheme in the case of the
MCLE problem is ineffective. Let us notice that the technique based on the reduction
to programs (2) and (3) can be successfully utilized for solving the following closely
related problem.

The Optimal Committee Improvement (COMIMP) Problem:

Let naturals m and n and vectors

a1, a2, . . . , am, x1, x2, . . . , xq ∈ Q
n

be given. It is required to find a subcommittee Q′ = (y1, y2, . . . , yq′
) with the least

possible q′ ≤ q, where

yi ∈ {
x1, x2, . . . , xq} (i ∈ Nq′).

4.1 Computational Complexity

It is known [1] that the number of elements of the minimum committee solution of
system (4) can be used as a measure of its infeasibility. Therefore, the whole set of all
systems of linear inequalities can be covered by a countable set of concentric classes.
The most narrow class consists of feasible systems, each of them has a one element
minimum committee solution. This class is a subclass of the class of systems with
3-elements minimum committee solutions, and so on.

It is important to design a fast algorithm that can find the most narrow class for
each system (4) containing this system. It is known that the problem of checking
up the feasibility of system (4) has a polynomial time algorithm. But, as is shown
below, the problem of checking up the existence of a 3-element committee solution
of system (4) is N P-complete.

The 3-element Committee of the Linear Inequalities System (3-COMLE) Problem:

Let naturals m and n and vectors a1, a2, . . . , am ∈ Qn be given. Does there exist a
committee solution of system (4) that consists of three elements?

Consider another combinatorial problem. Let G = (V, E) be a finite graph. As
usual, we say that a function f : V → Nk is a coloring of G with k colors if there is
no ‘monochromatic’ edge. That is |{ f (v) | v ∈ e}| = 2 for every e ∈ E.

The Colorability of a Graph with Three Colors (GRAPH 3-COLORABILITY)
Problem:

Let the finite graph G = (V, E) with V = {1, . . . , n}, be given. Does there exist a
coloring of the graph G with 3 colors?
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It is known [12] that the GRAPH 3-COLORABILITY problem is N P-complete.
We shall prove that this problem can be reduced (by Karp) to the 3-COMLE
problem.

Theorem 9 The 3-COMLE problem is N P-complete.

Proof The 3-COMLE problem belongs to the class N P, since it is possible to check
up whether the sequence Q = (x1, x2, x3) is a committee solution of system (4) in a
polynomial time in its length.

Let us consider the finite graph G = (V, E) with V = {1, . . . , n} setting the in-
stance of the GRAPH 3-COLORABILITY problem. Let us introduce the following
system of linear inequalities in Qn :

{
xi + x j > 0 ({i, j} ∈ E)

xi < 0 (i ∈ V).
(5)

System (5), obviously, can be constructed in a polynomial, in n, time. We shall prove
that the graph G can be colored with 3 colors if and only if system (5) has a committee
solution of 3 elements. In the trivial cases (n < 3 or E = ∅), it is evident, that both
problems have the same answer ‘Yes.’

Further, let the GRAPH 3-COLORABILITY have the answer ‘Yes’, and let the

partition V1
·∪ V2

·∪ V3 = V set a coloring of G with 3 colors. It can be easily verified
that the sequence Q = (x1,2, x1,3, x2,3), where

xi, j
k =

{−1, if k ∈ Vi ∪ Vj,

2, otherwise
({i, j} ⊂ N3, k ∈ Nn),

is a committee solution of system (5). Therefore, the 3-COMLE problem have the
answer ‘Yes’, as well.

On the other hand, let the 3-COMLE problem have the answer ‘Yes’, and let the
sequence Q = (x1, x2, x3) be a committee solution of system (5). Let us define the
sets V1, V2 and V3 as follows:

V1 = {i ∈ V : x1
i < 0, x2

i < 0},
V2 = {i ∈ V : x2

i < 0, x3
i < 0},

V3 = {i ∈ V : x3
i < 0, x1

i < 0}.
(6)

By the construction of Q, we have V1 ∪ V2 ∪ V3 = V. Without loss of generality, we
can assume that Vi 
= ∅ for i ∈ N3 and Vi ∩ V j = ∅ for every i 
= j. We shall prove,
that the sets V1, V2, V3 determine a coloring of G with 3 colors (and the initial
instance of the GRAPH 3-COLORABILITY problem has the answer ‘Yes’, as well).
Indeed, let us assume on the contrary that there is an edge e ∈ E, e = {i, j} such
that e ∈ V1 (the cases of V2 and V3 can be considered similarly). According to the
definition of V1, we have

x1
i < 0, x2

i < 0, x1
j < 0, x2

j < 0,

therefore,

x1
i + x1

j < 0 and x2
i + x2

j < 0.
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On the other hand, according to the definition of a committee solution, at least one
of the inequalities

x1
i + x1

j > 0 or x2
i + x2

j > 0

should be valid. The contradiction obtained proves the correctness of the coloring.
The theorem is proved. ��

Theorem 10 The MCLE problem is N P-hard.

The proof of the theorem is obtained as a corollary of Theorem 9 and the following
Statement.

Statement The 3-COMLE problem can be reduced by Turing1 to the MCLE
problem.

Proof Let us consider an arbitrary instance of the 3-COMLE problem and assign to
it an appropriate instance of the MCLE problem. Let us solve the later problem with
an arbitrary algorithm and analyze the solution to be obtained. If system (4) has no
committee solutions, than the answer in the initial 3-COMLE problem is also ‘No’.
Otherwise, let the sequence Q = (x1, . . . , xq) be the minimum committee of system
(4). If q > 3 then the answer is ‘No’ as well. If q = 3, then Q is the required solution,
and the answer is ‘Yes’. Finally, let q = 1 and Q = (x1). Let us take a vector z such
that

(a j, z) 
= 0 ( j ∈ Nm).

This vector can be found, obviously, in a polynomial time. The sequence Q =
(x1, z,−z) is the required committee solution, and the answer is ‘Yes’, as well. ��

Remark 1 As is seen from the proof, the MCLE (3-COMLE) problem remains N P-
hard (N P-complete) if all coefficients of system (4) belong to the set {−1, 0, 1} and
every inequality has at most 3 nonzero coefficients.

Remark 2 The result of Theorems 9 and 10 can be extended to the case of a more
general system

(a j, x) R j bj, R j ∈ {>,<,≥, ≤} ( j ∈ Nm).

Remark 3 Theorems 9 and 10 are true provided that n can take arbitrarily great val-
ues. Under an additional upper bound on n, the 3-COMLE has a trivial polynomial
time algorithm and the MCLE problem can appear to be solvable in a polynomial
time as well. For instance, it is known [1] that the MCLE problem with the constraint
n = 2 has a polynomial time algorithm.

1In a polynomial time.
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4.2 Approximation Algorithm

In this section, we consider a polynomial time approximation algorithm for the
MCLE problem. Let us introduce some additional constraints on system (4):

(1) m > n > 2 and every subsystem of n inequalities is feasible;
(2) |a j| = 1 for every j ∈ Nm;
(3) m = 2k + n − 1 for some natural k.

The last constraint is introduced only for convenience of the further estimates (the
case of m = 2k + n can be considered similarly). Let us assign the following sets to
vector x ∈ Qn :

J>(x) = {
j ∈ Nm : (a j, x) > 0

}
,

J<(x) = {
j ∈ Nm : (a j, x) < 0

}
,

J=(x) = {
j ∈ Nm : (a j, x) = 0

}
.

Algorithm [13]

Step 1 Find any nontrivial solution z1 of the system

(a j, z) = 0 ( j ∈ Nn−1)

and the sets J>(z1), J<(z1) and J=(z1). Let x1 be any solution to a subsystem
J1 of system (4), where

J1 =
{

J>(z1) ∪ J=(z1), if |J>(z1)| ≥ |J<(z1)|,
J<(z1) ∪ J=(z1), otherwise.

Fig. 2 Starting phase of the
algorithm
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Set J = Nm \ J1 and i = 1.

Step 2 If J = ∅, then STOP; the sequence (x1, x2, . . . , xi) is the required committee
solution of system (4).

Step 3 Take any subset

L′ ⊆ J : |L′| = min{|J|, n − 1},
find a nontrivial solution zi+1 of system

(a j, z) = 0 ( j ∈ L′).

Set L = J=(zi+1) and find solutions xi+1, xi+2 of subsystems with indices
J>(zi+1) ∪ L and J<(zi+1) ∪ L of system (4), respectively.

Step 4 Set J = J \ L, i = i + 2 and return to Step 2.

Let us illustrate the algorithm in the case of n = 3. Since |a j| = 1, it is convenient
to depict the system as the set of points distributed on the unit sphere of the conjugate
space (see Fig. 2).

In this example, each element xi of the required committee defines a hemisphere
{a ∈ S2 : (a, xi) > 0}.

Figure 3 corresponds to Step 1 of the first iteration of the algorithm where the
sequence (x1) has been chosen as the approximation of the required committee
solution. The hemisphere containing the points from J1 is filled with dark grey.

Figure 4 corresponds to completion of Step 4 of the first iteration, where the
current approximation is (x1, x2, x3). The grayed part of the sphere contains points
related to the subsystem of system (4), which has current approximation as a
committee solution.

Let us agree to call one iteration of the algorithm the sequence of Steps 2–4 (the
first iteration includes also Step 1 executed by the algorithm once).

Fig. 3 Step 1 is complete
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Fig. 4 The first iteration is
complete

Theorem 11 ([13])

1. The algorithm is correct and has at most
⌈

k
n − 1

⌉

iterations.
2. Let the cardinality of the greatest feasible subsystem of system (4) have the upper

bound of k + (n − 1) + t for some natural t. Then the approximation ratio r of the
algorithm satisfies the condition

1 ≤ r ≤ 2� k
n−1� + 1

2� k−t
2t+n−1� + 1

≈ 1 + 2t
n − 1

.

Remark 4 [13] The algorithm finds the optimal solution of the MCLE problem in the
class of uniformly distributed inequalities systems [14].

5 Conclusion

In this paper, two special cases, the MCFS and the MCLE, of the Minimum
Committee combinatorial optimization problem are considered. It is proved that
both problems are N P-hard. For the MCFS problem, an inapproximability threshold
similar to the one of the SET COVER problem is established. In particular, the
existence of approximation algorithm for the MCFS problem with ratio 1

4 log2(m − 1)

implies P = N P, and if the ratio (1 − ε) ln(m − 1), is guaranteed for some ε > 0, this
implies N P ⊂ T IME(nO(log log n)). In addition, an approximation algorithm for the
MCLE problem is discussed.
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