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Abstract Assigning and scheduling vehicle routes in a dynamic environment is a
crucial management problem. Despite numerous publications dealing with efficient
scheduling methods for vehicle routing, very few addressed the inherent stochastic
and dynamic nature of travel times. In this paper, a vehicle routing problem with
time-dependent travel times due to potential traffic congestion is considered. The
approach developed introduces the traffic congestion component based on queueing
theory. This is an innovative modelling scheme to capture the stochastic behavior
of travel times as it generates an analytical expression for the expected travel times
as well as for the variance of the travel times. Routing solutions that perform well
in the face of the extra complications due to congestion are developed. These more
realistic solutions have the potential to reduce real operating costs for a broad range
of industries which daily face routing problems. A number of datasets are used
to illustrate the appropriateness of the novel approach. Moreover it is shown that
static (or time-independent) solutions are often infeasible within a congested traffic
environment which is generally the case on European road networks. Finally, the
effect of travel time variability (obtained via the queueing approach) is quantified
for the different datasets.
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1 Introduction

Transportation is a main component of supply chain competitiveness since it plays a
major role in the inbound, inter-facility, and outbound logistics. Transportation costs
represent approximately 40%–50% of total logistics and 4%–10% of the product
selling price for many companies [15]. Transportation decisions directly affect the
total logistic costs. The passage of the transportation deregulation acts in the 1980s
in the USA and in the 1990s in the EU drastically changed the business climate
within which the transportation managers operate. Within the EU, the competition
is becoming intense between transporters since they often operate at transnational
levels and they must provide higher levels of service with lower costs to meet
the various needs of customers. In this context, assigning and scheduling vehicle
routes is a crucial management problem. Providing non-dominated vehicle routing
planning schedules is a very hard combinatorial problem. Yet, a manager must
rely on management techniques, using a proactive approach to identify and solve
transportation problems and to provide the company with a competitive advantage
in the marketplace. Despite numerous publications dealing with efficient scheduling
methods for vehicle routing, very few address the inherent stochastic nature of this
problem. Most research in this area has focused on routing and scheduling that incor-
porates variable customer demands. However, there has been very little research on
routing and scheduling explicitly incorporating the congestion component directly.
A selected literature overview will be presented in the next section.

The main contributions are twofold:
First, dynamic travel times are introduced in the vehicle routing problem. The

approach developed here introduces the traffic congestion component modelled
through a queueing approach. As such, the inherent stochastic nature of travel times
is captured using a queueing approach to traffic flow theory. Speed is the result of
the stochastic process of different vehicles interacting with each other under certain
circumstances (e.g., bad weather). Combining speed with distance to be travelled
leads to the expected travel time. Results show that total expected travel times
can be improved significantly when explicitly taking into account congestion during
the optimization. This is important not just because speed profiles can affect the
objective(s) of the optimization, but also because the best solutions known for a static
problem are in general infeasible when applied in a dynamic world.

Secondly, the analytical approach to congestion based on queueing models not
only allows for the calculation of the expected travel times but also the variance of the
travel times can be obtained. The latter allows for an evaluation of the routes based
on the uncertainty involved. Combining the expected travel time with the variance
of the travel time in the objective function generates new interesting insights on the
impact of uncertainty on total travel times. Explicitly taking into account the variance
of the travel times thus allows for evaluating routes on the risk involved. When doing
so, depending on the risk profile of the manager/customer (risk averse, neutral or
seeking), the planned route could be substantially different.
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This paper is organized as follows: in Section 2 the routing models are formally
defined, Section 3 gives a classification on routing problems with time-dependent
travel times. In Section 4, the framework for modelling time-dependent travel times
is discussed in detail, and in Section 5 computational results are presented. Section 6
deals with future research opportunities. The paper ends with general conclusions.

2 Defining Routing Models

The vehicle routing problem (V RP) can be described as a more general version of
the well-known travelling salesman problem (TSP). The V RP aims to construct a
set of shortest routes for a fleet of vehicles of fixed capacity. Each customer is visited
exactly once by one vehicle which delivers the demanded amount of goods to the
customer. Each route has to start and end at a depot, and the sum of the demands
of the visited customers on a route must not exceed the capacity of the vehicle.
Another constraint occurring in the real world is that the customer may specify time
intervals in which he will be able to receive the deliveries. This additional restriction
leads to the vehicle routing problem with time window constraints (V RPTW). The
time windows can be either soft or hard indicating whether the time windows can be
violated or not [37].

In this paper, it is assumed that there is only one depot from where the routes
start and end for each vehicle. A homogeneous fleet consisting of several vehicles
with fixed capacity, while each customer’s demand is pre-determined i.e., static and
deterministic demand (and not restricted by time windows). Formally, the vehicle
routing problem can be represented by a complete weighted graph G = (V, A, c)
where V = {v0, v1, ..., vn} is a set of vertices and A = {(vi, v j) : i <> j} is a set of arcs.
The vertex 0 denotes the depot; the other vertices of V represent cities or customers.
The non-negative weights c(vi,v j) which are associated with each arc (vi, v j) represent
the cost (distance, travel time or travel cost) between vi and v j. For each customer,
a non-negative demand qdvi and a non-negative service time dvi is given (dv0 = 0
and qdv0 = 0). The aim is then to find the minimum cost vehicle routes where the
following conditions hold: every customer is visited exactly once by exactly one
vehicle; all vehicle routes start and end at the single depot; every vehicle route has
a total demand not exceeding the vehicle capacity Q; every vehicle route has a total
route length not exceeding the maximum length L.

3 A Classification of Routing Problems

There has been limited research on routing and scheduling with congestion depen-
dent travel times. Few researchers (see e.g., [19, 30, 31, 38, 39]) have dealt with
dynamic travel times. Bertsimas and Simchi-Levi [7] provide an interesting survey
of static (i.e., time-independent) vs. dynamic (i.e., time-dependent) routing problems
(e.g., the travel time being a function of the time of the day due to traffic congestion
or that the time in which demand occurs is a renewal process) as well as deterministic
vs. stochastic routing problems (i.e., depending whether some of the characteristics
follow a certain probability distribution or not; typical examples are probabilistic
demand quantities or probabilistic travel times). If it seems reasonable to assume that
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the service time at each vertex (customer) is known in advance, it is definitely not the
case for the travel time between two vertices. In fact, the travel times are the result of
a stochastic process related to traffic congestion. Clearly, travel times depend greatly
on the different number of vehicles occupying the road and on their speeds. It is
assumed that service times at each node are known in advance. The travel times
however are the result of a stochastic process due to the different number of vehicles
occupying the road and their respective speeds. This section gives a comprehensive
classification of vehicle routing problems based on the use of travel times following
the logic outlined above. It should be noted that this classification only concerns the
time dependency of travel times. For a more detailed review, we refer the reader to
Kerbache and Van Woensel [34].

3.1 Routing Problems with Time-independent Travel Times

The time-independent routing problem can be referred to as the standard case. For
this problem, most of the models and their solution approaches, assume that all
characteristics are independent of the time of the day. Therefore, these models are
far from real-life applications where, for instance congestion occurs on the used road
network. Laporte [37] surveys the main research results on the time-independent
vehicle routing problem. To solve these models, both exact and heuristic methods
are available. Laporte [37] classifies exact algorithms into three categories: direct
tree search methods, dynamic programming and integer programming. For larger
and complex problems, heuristic algorithms are more appropriate. In the literature,
the time-independent routing problem is modelled differently depending on the
deterministic or stochastic characteristics of the parameters.

3.1.1 Routing Problems with Deterministic Time-independent Travel Times

Many heuristic methods for these types of problems are derivations of methods
developed for the TSP: e.g., the nearest neighbor algorithm, insertion algorithms,
and tour improvement procedures. Nevertheless, there are some algorithms that are
specifically developed for the vehicle routing problem. These heuristics are basically
classified as follows [41]: constructive heuristics (e.g., the savings algorithm [13], and
[25]), two-step heuristics (e.g., cluster-first-route-second methods, route-first-cluster-
second methods, Christofides–Mingozzi–Toth two-phase algorithm [12]), incomplete
optimization, local search heuristics (sweep algorithm [25]), metaheuristics (tabu
search algorithm by [37]) and space filling curves.

3.1.2 Routing Problems with Stochastic Time-independent Travel Times

Stochastic Time-independent Routing Problems arise whenever some elements of
the deterministic routing problems are assumed to be random. Common examples
are stochastic demands and stochastic travel times. Sometimes, the set of customers
to be visited is not known with certainty [24]. Since they combine the characteristics
of stochastic and integer programs, these type of problems are often regarded as
computationally intractable. Stochastic V RPs can be classified within the framework
of stochastic programming. Stochastic programs are modelled in two stages. In a first
stage, a planned or a priori solution is determined. The realizations of the random
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variables are then disclosed and, in a second stage, a recourse or corrective action is
then applied to the first stage solution [24, 33].

3.2 Routing Problems with Time-dependent Travel Times

In this paper, the V RP problem considered deals with dynamic travel times. The
motivation for using dynamic models is that the vehicles in the V RP operate in
a traffic network which will be congested depending upon the time of the day. In
the dynamic V RP, the non-negative weights cp which are associated with each arc
(i, j) represent the dynamic travel time between i and j starting in time bucket p.
Whereas in the static V RP, these costs are not associated with a time dimension
(i.e., the related costs do not change over time). The literature related to vehicle
routing with dynamic travel times is rather scarce [5, 6, 19, 30, 31, 38, 39]. The reason
is that the time-dependent V RP is much harder to model and to solve. The major
shortcoming of the available models is the modelling of the travel time function.
It is often discretized into a limited fixed number of time intervals (e.g., morning,
midday and afternoon) with a distinct associated fixed mean speed. However, these
speeds are modelled in an arbitrary way. For instance, Brown et al. [9] and Shen and
Potvin [43] used a rough approximation of travel time by manually re-sequencing
the route taking into account congestion. Ichoua et al. [31] used a model based on
discrete travel speeds by adding correction factors to model the congestion. Models
based on continuous travel times are very complex to solve (see [29]) and thus
many simplifying assumptions had to be introduced to keep the model tractable. In
general, the dynamic travel times can be modelled in two ways: deterministically
or stochastically.

3.2.1 Routing Problems with Deterministic Time-dependent Travel Times

In the deterministic case, the travel times are known in advance and plugged in the
solution heuristic depending upon the period of the day. The travel times are then a
function of distance and mean speed. For instance, Ichoua et al. [31] consider three
distinct time periods (where the first and third periods stand for the morning and
evening rush hours, respectively, and the second period corresponds to the middle
part of the day) and three different types of road links. This approach has been
implemented within a parallel tabu search developed by Taillard et al. [44] for the
fixed travel time version.

3.2.2 Routing Problems with Stochastic Time-dependent Travel Times

In the stochastic time-dependent models, the solution procedure takes into account
the stochastic nature of the travel times. Travel times are in this case the result of
taking into account not only mean travel time but ideally the travel time distribution
itself. As the travel time distribution is derived from the speed distribution and
the known distances, the approach requires realistic speed distributions. However,
in practice neither travel time nor speed distributions are available in closed form
[21]. For a general review on the stochastic vehicle routing, the reader is referred to
Gendreau et al. [23].
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4 Framework for Time-dependent Travel Times

In the time-dependent routing problem, the key issue is the computation of the travel
times on arcs dependent upon the time period. The travel time T p

ij during time period
p is determined as the distance from i to j divided by the speed on the arc or:

T p
ij = dij

v
p
ij

(1)

Hence, to determine the travel time on arc (i, j), one needs information on the
distance between (i, j) and on the travel speed for that arc at time p : v p

ij . The distance
is readily available in the time-independent routing models, but the speed is a new
variable that needs to be specified. In this paper, the time-dependent speeds are
obtained using queueing models for traffic flows [28, 46]. This section is organized as
follows: first, the queueing approach to traffic flow is presented, then the procedure
to obtain the expected travel time is explained in detail, next the determination of
the variance of the travel time is elaborated and finally, the added value of using
queueing theory is discussed in detail.

4.1 A Queueing Approach

It is often observed that the speed for a certain time period tends to be reproduced
whenever the same traffic flow is observed. Based on this observation, it seems
reasonable to postulate that, if traffic conditions on a given road are stationary,
there should be a relationship between flow, speed, and density. This relationship
results in the concept of speed-flow-density diagrams. These diagrams describe the
interdependence of traffic flow (q), density (k) and speed (v). The seminal work on
speed-flow diagrams was the paper by [27]. Using well-known formulas of queueing
models, speed-flow-density diagrams like the one shown in Figure 1 can be generated.

Figure 1 illustrates that, although every speed v corresponds with one traffic flow
q, the reverse is not true. There are two speeds for every traffic flow: an upper branch
(v2) where speed decreases as flow increases and a lower branch (v1) where speed
increases. Intuitively it is clear that, as the flow moves from zero (at maximum speed
v f ) to qmax, congestion increases but the flow rises because the decline in speed is
over-compensated by the higher traffic density. If traffic tends to grow past qmax,
flow falls again because the decline in speed more than offsets the additional vehicle
numbers, further increasing congestion [16]. The flow-density diagram and the speed-
density diagrams are an equivalent representation and can be interpreted in the same
way.

Traditionally, these speed-flow-density diagrams are modelled empirically: speed
and flow data are collected for a specific road and curves are fitted onto the data
[16]. This traditional approach is limited in terms of predictive power and sensitivity
analysis. Vandaele et al. [46] and Heidemann [28], showed that queueing models can
also be used to explain uninterrupted traffic flows and thus offers a more practical
approach, useful for sensitivity analysis, forecasts, etc. Jain and Smith [32] describe
in their paper a state-dependent M/G/C/C queueing model for traffic flows. Part of
their logic is used here to extend our queueing models to state-dependent ones. Also
a lot of research is done on a travel time-flow model originating from Davidson [17].
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Figure 1 The relations between the speed-flow, the speed-density, and the flow-density diagrams.

The model is based on some concepts of queueing theory but a direct derivation has
not been clearly demonstrated [2, 3].

In a queueing approach to traffic flow analysis, roads are subdivided into segments,
with length equal to the minimal space needed by one vehicle on that road (Figure 2).
Define k j as the maximum traffic density (i.e., average maximum number of cars on
a road segment). This length is then equal to 1/k j and matches the minimal space
needed by one vehicle on that road. Each road segment is then considered as a service
station, in which vehicles arrive at a certain rate λ and get served at another rate μ

[28, 46, 51].

Figure 2 Queueing representation of traffic flows.
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Table I The specific form of Wq for each queueing model

Queueing model Wq
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With φ a correction factor defined in
Whitt 1993([49]) and WqM/M/m the formula for the waiting
time in an M/M/m queue.

Vandaele et al. [46] developed different queueing models.1 The M/M/1 queueing
model (exponential arrival and service rates) is considered as a base case, but due to
its specific assumptions regarding the arrival and service processes, it is not useful to
describe real-life situations. Relaxing the specifications for the service process of the
M/M/1 queueing model, leads to the M/G/1 queueing model (generally distributed
service rates). Relaxing both assumptions for the arrival and service processes results
in the GI/G/m queueing model. Heidemann [28] and Vandaele et al. [46] showed
that the speed v can be calculated by dividing the length of the road segment ( 1

k j
) by

the total time in the system (W).

v = 1/k j

W
(2)

The total time in the system W is then different depending upon the queueing
model used. The total time in the system W is then the sum of the waiting time
Wq and the service time Wp, or W = Wq + Wp. Table I shows the specific form
of Wq for the general queueing models. For the GI/G/m queueing models, no
exact solutions are available and one must rely on approximations. Here, three
approximations are considered: the Kramer–Lagenbach-Belz approximation [36] is
widely used but is limited to single servers only. To cope with multiple lanes, the
heavy traffic or Kingman approximation [35] and the Whitt approximations [49] with
multiple servers are used.

Results show that the developed queueing models can be adequately used to
model traffic flows [52]. Moreover due to the analytical character of these models,
they are very suitable to be incorporated in other models, e.g., the V RP.

In general, formula (2) can be rewritten in the following basic form with � a
congestion pressure variable:

v = v f

1 + �
(3)

Formula (3) shows that the speed is only equal to the maximum speed v f if the
factor � is zero. For positive values of �, v f is divided by a number strictly larger

1In this paper, queueing models are referred to using the Kendall notation, consisting of several
symbols – e.g., M/G/1. The first symbol is shorthand for the distribution of inter-arrival times, the
second for the distribution of service times and the last one indicates the number of servers in the
system.
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Figure 3 Example of a
speed-flow diagram over time.

than one and speed is reduced. The factor � is thus the influence of congestion
on speed. High congestion (reflected in a high �) leads to lower speeds than the
maximum. The factor � is a function of a number of parameters depending upon the
queueing model chosen: the traffic intensity, the coefficient of variation of service
times and coefficient of variation of inter-arrival times. High coefficients of variation
or a high traffic intensity will lead to a value of � strictly larger than zero. Actions
to increase speed (or decrease travel time) should then be focussed on decreasing
the variability or on influencing the traffic intensity, for example by manipulating the
arrivals (arrival management and ramp metering). In the remainder of this paper,
the GI/G/m queueing models using the Whitt approximations will always be used.
These have been widely used for their robustness and accuracy (see also [49]).

In Figure 3, an example is given for a speed and flow profile over time. The
flow profile is based on observed data; the speeds are obtained using the queueing
approach to traffic flows (only the upper speed v2 of the speed-flow-density diagram
is shown in Figure 1). As one can see, speed decreases as flow increases and vice
versa.

For a more detailed discussion of the queueing models and their results, the
interested reader is referred to Vandaele et al. [46], Van Woensel et al. [51], Van
Woensel and Vandaele [52] and Van Woensel [50].

4.2 Mean Travel Time

To compute the travel time, one should note that in the time-dependent
case, the travel speeds are no longer constant over the entire length of the
arc. More specifically, one has to take into account the change of the travel
speed when the vehicle crosses the boundary between two consecutive time
periods. For example, the speed changes when going from time period p
to time period (p + 1) from v

p
ij to v

(p+1)

ij .
In this paper, the time horizon is discretized into P time periods of equal length

�p with a different travel speed associated with each time period p (1 ≤ p ≤ P).
The travel speeds are obtained using the above discussed queueing models for traffic



160 J Math Model Algor (2007) 6:151–173

flows. Formally, the travel time Tij going from customer i to customer j, starting at
some time p0, is defined by the following expression:

p0+T
p0
ij∫

p0

[
v

p
ij

]
dp = dij

With v
p
ij denoting the speed in time period p on the arc (i, j) and dij the distance

travelled. Solving this integral for Tij and making use of the discrete time horizon,
results in:

dij = �p
(
ϕv

p0

ij + v
p0+1
ij + ...v

p0+(k−2)

ij + φvlast
ij

)

Rewriting as a function of the time slices, gives:

T p0

ij = ϕ�p first + (k − 2)�p + φ�plast

With �p first the first time zone which contains p0 and �plast the last time zone
used to cover the distance dij and k the total number of time slices needed (which is
a function of the different speeds). The expected travel time is thus the sum of the
following components:

1. The fraction of travel time still available in the first time zone, given by(
ϕ�p first

)
, with �p first the first time zone which contains p0 and ϕ the fraction

parameter (0 ≤ ϕ ≤ 1).
2. The travel times of the (k − 2) intermediate time zones passed: (k − 2)�p.
3. The fraction of the travel time in the last time zone, given by (φ�plast), with φ

the fraction parameter (0 ≤ φ ≤ 1).

Using this procedure, the travel time T p0

ij from customer i to customer j, starting
at time p0 can easily be determined based on the distance dij and the speed v

p
ij for

the different time periods p obtained from the queueing models given a certain flow
q in that time period.

4.3 Variance of the Travel Time

In this section, an expression for the variance of the travel time is derived. Again,
using the queueing approach to traffic flow, the variance can be obtained in a closed
form. For each time period p, the variance of the travel time can be determined as
follows (using formulae 1 and 2):

Var
(

T p
ij

)
= Var

(
dij

v
p
ij

)

= d2
ij ∗ Var

(
k j ∗ W p)

= d2
ij ∗ k2

j ∗ Var
(
W p)

The distance from i to j, dij and the jam density of the road k j are assumed
to be known. The variance of the total time in the system in period p, W p is the
sum of the waiting time and the service time. As there is no exact form for the
variance of the waiting time, one needs to rely on approximations to obtain the
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variance of the waiting time. The waiting time can be obtained using the two moment
approximations from Whitt [48]. These approximations have already proven their
value and usability in production management ([47, 48], and others). Whitt [48]
describes an approximation for the variance of the waiting time for the case when the
expected waiting time is known (either exact or approximated). Only the necessary
results for the analysis of the variance of the waiting time are presented here. For a
detailed discussion, the reader is referred to Whitt [48]. The approximation has the
following general form:

Var
(
W p) = VarWaitingTime + VarServiceTime (4)

= [
Wq

]2
c2

Wq
+ [

Wp
]2

c2
s (5)

with: c2
Wq

the squared coefficient of variation of the waiting times defined in
Whitt [48].

4.4 Added Value of the Queueing Approach

The assumption that everything in transportation goes according to a schedule is
unrealistic resulting in a planning gap, i.e., the performance difference between the
planned route and the actual route. The main consequence of considering congestion
effects is that this route-planning gap will decrease as the planned route is now much
more realistic compared to the classic V RP which is optimized in terms of distances.
In order to realize this goal, one needs a good representation of the traffic process
itself. The key issue is thus the characterization of the speed distribution and the
resulting travel times on each link over different time slices.

Ichoua et al. [31] used a model based on a discrete speed distribution by adding
correction factors to model the congestion but for a limited number of time slices.
The proposed framework in the current paper has some similarities to this model
proposed by Ichoua et al. [31]. In their paper, the travel time estimation is done
using an arbitrarily step function. A recourse procedure is used as the travel time
calculation takes into account travel speed changes when crossing the boundaries
between two consecutive time periods. The major difference with the current paper
lies in the estimation of the time dependent travel speed on a give link at a given
time period when the departure is taken place: in the current paper a queueing
model is used to estimate this travel speed. Ichoua et al. [31] recognize that travel
speeds change continuously over time and therefore correctly claim that using step
functions to compute travel speeds is a more reasonable assumption. Unfortunately,
the authors do simulations with only three time slices, which is a too wide granularity
to be a good approximation for a real-life observed speed-flow pattern (e.g., with
two peaks during a normal weekday). Moreover, in the Ichoua et al. [31] paper, the
speeds are modelled in an arbitrary way within each time slice: first, the arcs are
partitioned in different subsets based on their physical characteristics (e.g., width,
one/two ways, etc...), and their geographical location, then for each arc in the subset
different weights are provided. Any information on how to link the weights of the
arcs in the model with the crucial real-life physical characteristics is missing.

The major strength of using the queueing models is that, given the physical char-
acteristics of the road network, it can immediately be mapped onto the parameters
of the queueing model. The flow q is a parameter that is determined empirically
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over time, allowing the determination of realistic velocity profiles as a function of
time. In the queueing formulas, one has four parameters that allows one to model
any possible situation: the coefficient of variation of the inter-arrival times ca, the
coefficient of variation of the service times cs, the jam density k j and the free flow
speed v f . In practice, the jam density and the free flow speed are fixed for a given arc
(i, j), leaving the coefficients of variation to represent the specific traffic conditions
(e.g., bad weather, etc.). Analytical queueing models based on traffic counts thus
model the behavior of traffic flow as a function of the most relevant determinants
(e.g., free flow speeds, jam density, variability due to weather, etc.). An empirical
validation of the queueing approach is provided in Van Woensel and Vandaele
[52]; validation based on simulation results is provided in Van Woensel et al. [53].
Consequently, the travel times can be modelled much more realistically using these
speeds (i.e., expressed in kilometer per hour) and are directly related to the physical
characteristics and the geographical location on the arc.

There is also support in the literature in favor of the proposed combined routing-
queueing approach: Bertsimas and Simchi-Levi [7] note that although queueing
theory and vehicle routing are two well-studied disciplines individually, the effort
to combine both has been very limited (see also [20] for a similar reasoning). The
current paper is as such the first incursion into this combined routing–queueing
research area. Bertsimas and Simchi-Levi [7] argue that analytical analysis of the
vehicle routing problem offers new insights into the algorithmic structure and it
makes performance analysis of classical algorithms possible. Moreover, it leads to
a better understanding of models when integrating vehicle routing with other issues
like inventory control. Furthermore, they point out that dealing with stochasticity in
the V RP provides insights that can be useful when constructing practical algorithms
for the V RP within a dynamic and stochastic environment.

5 Solution Approach

In this section, a solution strategy based on local search is proposed. According
to Aarts and Lenstra [1], local search is a solution process that tries to improve
a given initial solution by making relatively small changes in several steps in the
solution space. The quality of the solutions is determined with the cost function of
the problem. Local search techniques will result in a good but not necessarily optimal
solution within reasonable computing time. In this section the local search heuristic
used for obtaining solutions for the deterministic dynamic V RP is presented. More
specifically, Ant Colony Optimization (ACO) is considered and implemented to
compare and verify the results as an illustration. This heuristic is often used in the
current literature to ‘solve’ combinatorial optimization problems. The success of the
method is due to several factors: general applicability of the approach, flexibility for
taking into account specific constraints in real cases and ease of implementation [42].

ACO is a stochastic optimization algorithm specifically intended to solve discrete
optimization problems. The inspiration of the ACO algorithm comes from the obser-
vation of the trail laying and the trail following behavior of a real ant species (Linep-
ithaeme humile). As the ants move in search for food, they deposit an aromatic
essence called pheromone on the ground. The amount deposited generally depends
upon the quality of food sources found. Other ants, observing the pheromone are
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more likely to follow the pheromone trail, with a bias towards stronger trails. As
such, the pheromone trails reflect the memory of the ant population and over time,
trails leading to good food sources will be reinforced while paths leading to remote
sources will be abandoned [14]. The current implementation for ACO is based on
the ones described in [10, 11, 18]. The major change made to this basic algorithm is
to replace distance by dynamic travel time. To do so, the pheromone information
is extended with an extra dimension representing the time zones. Consequently, the
evaporation rate had to be adjusted to retain intermediate high-quality solutions long
enough to direct ACO towards the most promising areas in the higher dimensional
solution space.

The remainder of this section is restricted to the definition of the neighborhood
around the current solution found and the definition of the objective function
evaluated. Each solution is checked for 2-optimality and is improved if possible. A
route is 2-optimal if it is not possible anymore to improve the route by exchanging
two arcs. As opposed to the static deterministic V RP where the gain is calculated
based on distances, in the static dynamic V RP, the gain is calculated in terms of
travel time. As the evaluation is done in terms of travel times, the triangle inequality
does not hold anymore. Therefore, the gain of the complete solution has to be re-
evaluated. In addition to the 2-opt improvement, extra improvement heuristics are
performed taking into account explicitly the time-dependent nature of the problem.
First, all the different tours that make up a complete V RP solution, are checked to
see if it would be advantageous in terms of travel time to break up the tour in two
parts by adding the depot. This procedure is repeated until no more improvements
can be realized or if the maximum number of trucks is exceeded. Secondly, all starting
times of the different tours that make up a complete V RP solution, are shifted
in time to evaluate the effect of the start time on the total travel time. In case
of improvement, the starting time of the associated tour is updated. The rationale
behind this optimization is that in a dynamic reality, a truck can decide to leave
earlier or later to avoid periods of (anticipated) high congestion.

Define a solution as a set S with m routes R1, R2, ..., Rm where Rr = (v0, vr1 ,

vr2 , ..., v0) and each vertex vi (i ≥ 1) belongs to exactly one route. The routes in S
might be feasible with respect to their tour length restrictions or vehicle capacity
constraints but do not have to be. For the ease of notation, write vi ∈ Rr if the vertex
is part of the route Rr and write (vi, v j) ∈ Rr if vi and v j are two consecutive vertices
of Rr. Also define T p

(vi,v j)
as the travel time needed to cover the distance between

(vi, v j) leaving vertex vi at time p. The basic objective function which needs to be
minimized is similar to Gendreau et al. [22] but now expressed in terms of travel
times:

F1(S) =
∑

r

∑

(vi,v j)∈Rr

T p
(vi,v j)

+β
∑

r

⎡

⎣
∑

vi∈Rr

qdvi − Q

⎤

⎦

+

+ γ
∑

r

⎡

⎣

⎛

⎝
∑

(vi,v j)∈Rr

T p
(vi,v j)

+
∑

vi∈Rr

δvi

⎞

⎠ − L

⎤

⎦

+

where [x]+ = max(0, x) and γ , δ positive parameters. If the solution is feasible the
second and third part of the equation are cancelled; on the other hand, if the solution
is infeasible with respect to capacity (tour length) a penalty proportional to γ (δ,
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Figure 4 Example of the
travel time functions.

respectively,) is added. An illustration of the travel time results is shown in Figure 4.
Figure 4 shows the different travel times over the link from city i to city j.

As one can see, the unbroken line gives the speed–space profile for the static
deterministic case. The broken line gives the expected travel time assuming time
buckets of 10 min. Leaving at time LTi (leaving time city i), the vehicle can either
arrive at time AT jStatic (arrival time at city j static speeds) or AT jDynamic (arrival
time at city j dynamic speeds). The difference in both arrival times is the result of not
taking into account congestion.

Most decision makers are risk-averse when taking decisions, as such only taking
into account the mean ignores the risk attribute of the planners. It is argued that risk
can be associated with the variance factor [40]. Note that the proposed approach is
similar to mean-variance analysis used in financial planning of portfolios [8, 26]. The
objective function F1(S) is thus extended by adding the variance of the travel times,
leading to F2(S):

F2(S) = F1(S) + α
∑

r

∑

(vi,v j)∈Rr

Var
(

T p
(vi,v j)

)

where α, β, γ are positive parameters. Higher risk averseness will be reflected in
an increase of the parameter α resulting in more weight for the variance in the
objective function. An illustration of this objective function is presented in Figure 5.
In this highly simplified example, the shortest link in terms of travel time is going
directly from 1 to 3 (travel time is 10 compared to 6 + 7 when going via node 2).
If one takes into account the extended objective function F2(S) the actual routing
decision will change depending upon the choice of α. If the weight α increases the
longer route via node 2 will be preferred over the direct route as the longer route
has less variability then the direct route (as reflected in the variance information).
With objective function F2(S) together with the queueing approach (which allows for

finding an analytical expression for Var
(

T p
(vi,v j)

)
) the effect of incorporating travel

time variability (as a measure for uncertainty) can be evaluated.
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Figure 5 Illustration of objective function F2(S).

6 Computational Results

In this section, computational results will be presented. First, the problem instances
are used to obtain the best solution for the time-independent routing models, i.e.,
minimizing total distance. Then, using the speeds from the queueing models, the
obtained time-independent route can be recalculated in terms of time-dependent
travel times. In a last step, the routing model which immediately takes into account
time-dependent travel times is solved and compared with the latter. To validate
this approach, explicit enumeration is used on small problem instances. As such, all
possible solutions are obtained and evaluated both in terms of distance and in terms
of travel times. As the explicit enumeration is limited to small problem instances only
(the complexity is at least n!), a metaheuristic Ant Colony Optimization is introduced
in the second section and applied on the benchmark problems described in Augerat
et al. [4] for both objective functions considered.

6.1 Explicit Enumeration

As a first indication of the validity of the modelling approach, the analysis is done
for small datasets (10 cities). This dataset is solved by explicit enumeration, i.e., all
possible solutions are generated and evaluated both in distance and in travel times.
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Table II The results of the explicit enumeration analysis

Problem Distance Time(SolT I D) Time (SolT D) Difference

a 3, 121.81 1, 826.88 1, 795.41 −31.47(−1.72%)

b 2, 114.29 1, 184.37 1, 150.49 −33.88(−2.86%)

c 2, 399.08 1, 346.67 1, 332.91 −13.76(−1.02%)

d 2, 057.44 1, 170.95 1, 137.47 −33.48(−2.85%)

e 2, 122.06 1, 174.40 1, 166.87 −7.53(−0.06%)

The datasets are all random subsets of different problems from Augerat et al. [4]. All
coordinates are multiplied with a constant factor of five to ensure that multiple time
zones are covered over longer distances. Of course, this operation does not effect in
any way the results and comparison presented here between the time-independent
and the time-dependent routing models. In the time-dependent routing models, the
starting time is allowed to be different (comparable to the real-life decisions of
leaving earlier or later due to congestion). Trucks are in this case allowed to start
between 7 a.m. and 9 a.m. It should be clear that these decisions only make sense
for the time-dependent routing models as in the time-independent models no time
dimension is involved in the analysis. For the explicit enumeration, the truck capacity
is set to 45.

Table II shows the results for the different small datasets considered using objec-
tive function F1(S).2 Focussing on problem a, reveals that the best solution in terms
of distance (time-independent routing models), is 3,121.81 km. Using this solution
(0 − 1 − 7 − 0 − 2 − 3 − 6 − 0 − 9 − 8 − 4 − 0 − 5 − 10 − 0) and applying the speeds
obtained from the queueing approach, results in a total travel time of 1,826.88 hr.
Solving the same problem instances in terms time-dependent travel times reveals
that the minimum travel time is 1,795.41 h. Moreover, the specific solution is also
significantly different : (0 − 1 − 4 − 8 − 0 − 6 − 9 − 10 − 5 − 0 − 7 − 2 − 3 − 0). For
the problem set a, the total gain was 31.47 h or 1.72%.

Overall, for the five small datasets analyzed, the conclusion is similar. As ex-
pected, the results show that the incorporation of the congestion component in
the routing models yields inferior results in terms of travel times compared to the
time-independent model. Moreover, for the above five random subsets, the best
solution in the time-dependent case differs from the best one in the time-independent
case showing that, recalculating the time-independent solution by taking the speed
information into account always yields worse results than solving the time-dependent
case directly.

6.2 Heuristic Solutions

Unfortunately, the explicit enumeration approach only works for relatively small
problems due to the computation times. Therefore if one wants to process realistic
sizes of datasets, one needs to rely on approximation methods or heuristics. The V RP

2Objective function F2(S) could not be evaluated with explicit enumeration as the state space became
to large even for these small problem sets due to the addition of the variance component in the
objective function.
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with time-dependent travel times was tested on the benchmark problems described in
Augerat et al. [4]. These problems contain between 32 and 100 customers in addition
to the depot. All coordinates are multiplied with a constant factor of five to ensure
that multiple time zones are covered over longer distances. The length of the time
period for this experiment is set equal to half an hour. Note that the choice of the
time settings is purely arbitrarily, i.e., in the extreme case, time periods of 1 min can
be considered. All capacities of the trucks are set to 100.

6.2.1 Objective Function F1(S)

Table III shows the results for the time-independent case in terms of travel time,
compared with the best, average and worst solution obtained for the time-dependent
V RP over 10 runs. The starting time was shifted over a maximum of 10 time

Table III Comparing the deterministic time-independent V RP and the deterministic time-
dependent V RP

Time Time dependent (% difference with time independent)

n indep Best (%) Average (%) Worst (%)

A1 32 83.6741 77.2388 (−7.6) 77.3920 (−7.5) 77.5912 (−7.3)

A2a 33 69.5829 67.3420 (−3.2) 67.7153 (−2.7) 68.4364 (−1.6)

A2b 33 75.1773 73.2944 (−2.5) 73.7363 (−1.9) 74.4467 (−1.0)

A3 34 82.4392 79.2325 (−3.9) 80.5169 (−2.3) 81.4240 (−1.2)

A4 36 86.5221 79.9325 (−7.6) 81.0086 (−6.4) 81.8755 (−5.3)

A5a 37 69.3512 67.0384 (−3.3) 68.2538 (−1.6) 69.3507 (−0.0)

A5b 37 100.8685 91.0713 (−9.0) 94.9525 (−5.8) 97.2003 (−3.6)

A6 38 77.0037 73.4557 (−4.6) 74.7673 (−2.9) 76.7076 (−0.3)

A7a 39 85.9634 80.1364 (−6.8) 80.6482 (−6.4) 81.6714 (−5.0)

A7b 39 85.9416 80.5680 (−6.3) 82.0977 (−4.5) 84.2558 (−2.0)

A8 44 96.8239 88.7271 (−8.4) 90.7408 (−6.3) 92.8712 (−4.1)

A9a 45 105.1757 91.1591 (−13.3) 92.3050 (−12.3) 94.5917 (−10.1)

A9b 45 119.9593 111.1500 (−7.3) 113.9039 (−5.0) 116.2822 (−3.1)

A11 46 99.8330 87.3667 (−12.5) 88.5097 (−11.3) 90.3458 (−9.5)

A12 48 120.0614 103.6655 (−13.6) 106.7327 (−11.1) 109.7273 (−8.6)

A13 53 112.7714 96.6962 (−14.3) 101.4383 (−10.1) 106.3747 (−5.7)

A14 54 128.2866 115.2570 (−10.2) 116.4982 (−9.2) 118.7220 (−7.5)

A15 55 113.1931 103.0351 (−9.0) 105.6013 (−6.7) 108.1423 (−4.5)

A16 60 164.2826 136.6314 (−16.8) 139.2443 (−15.2) 141.6384 (−13.8)

A17 61 112.5518 96.9277 (−13.9) 101.2580 (−10.0) 105.6470 (−6.2)

A18 62 155.5044 126.1025 (−18.9) 132.0772 (−15.1) 135.9084 (−12.6)

A19a 63 176.9465 149.7263 (−15.4) 157.3567 (−11.1) 163.9178 (−7.4)

A19b 63 160.2347 128.5738 (−19.7) 132.6417 (−17.2) 136.9360 (−14.5)

A20 64 168.5061 138.8681 (−17.6) 142.7777 (−15.3) 149.7541 (−11.1)

A21 65 140.9648 117.8127 (−16.4) 120.6168 (−14.4) 123.3941 (−12.5)

A22 69 145.1921 121.7341 (−16.2) 126.6075 (−12.8) 130.9841 (−9.8)

A23 80 223.0433 179.3210 (−19.6) 186.0885 (−16.6) 195.0871 (−12.5)

A24 100 122.0448 92.5627 (−24.2) 96.6729 (−20.8) 99.7973 (−18.2)

n = number of customers
All numbers are expressed in hours of travel time
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periods, which is equivalent with a decision: start a new tour in the morning or in
the afternoon.

Table III gives the results of the analysis. In this table, all solutions are expressed
in travel time. In other words, the obtained static solution (by minimizing distance)
is recalculated in times. The average reduction in travel time comparing the recal-
culated static solution versus the dynamic solution over all sets is 22.2%. The results
show that the routes improve significantly when one explicitly takes into account
the dynamic character of the problem. Using the dynamic congestion information
results in routes that are (considerably) shorter in terms of travel time. The larger
the dataset, the larger the potential improvements become. Moreover, the spread
between the best and the worst solution for the time-dependent V RP is (in most
cases) shown to be small.

6.2.2 Objective Function F2(S)

The second objective function F2(S) is evaluated for the Augerat datasets: the links
are randomly selected as being highly variable versus low variable with equal weights,
i.e., 50% of the roads have high coefficients of variations as input in the queueing
formulas (ca and cs both equal to 0.9) and 50% of the roads have low coefficients
of variations as input in the queueing formulas (ca and cs both equal to 0.1). The
parameter α (the weight for the variance in the objective function) is varied between
0 and 0.1 with steps of 0.01. After extensive testing, it was found that α > 0.1 did not
result in any further gains. This is mainly due to the scale of the different factors in the
objective function. Moreover, after an extra evaluation of the objective function only
in the variance of the travel time (i.e., dropping the expected travel time) revealed
that the variance was very close to this solution (i.e., minimum variance). Figure 6
gives the coefficient of variation (standard deviation of travel times divided by the
mean travel times) of the solutions obtained for a selected number of datasets.

Based on the figure, it is clear that taking into account variance of the travel time
reduces the coefficient of variation of the solution, i.e., the variability of a solution
decreases. In general, the coefficient of variation decreased with on average with
54.30% with α ∈ [0, 0.1]. The price for this reduction in variability is an increase in
the average travel times: this increased on average with 27.87%. On the other hand,
the variance of the travel times reduced with 66.67%. Moreover, when examining the

Figure 6 Evaluation of
objective function F2(S) in
terms of the coefficient of
variation.
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routes themselves, one can observe that the higher α, the more likely it becomes that
links with less variability will be preferred at the expense of a higher average travel
time, which is in line with the previous observation.

6.2.3 Discussion of the Results

The following observations can be made based on the above experiments:

1. Results show that the total travel times are improved when explicitly taking into
account congestion. On average a reduction of 22.2% is achieved in travel times.
This is in line with the findings reported in Ichoua et al. [31], meaning that the
proposed advanced framework is at least as good as one of the best proposed
methodology available in the literature. Unfortunately, a direct comparison with
Ichoua et al. [31] proofed to be hard due to the different approach in the mod-
elling of the travel time distributions. For this reason, setting up the experimental
design such that the queueing approach could be adequately mapped with the
settings of Ichoua et al. [31] turned out to be a difficult exercise which is left for
future research.

2. The analysis revealed another added value of the queueing approach: it allowed
for finding an analytical expression for the variance of the travel times. The
results showed that the variability significantly decreased when taking into
account the variance in the optimization, depending upon the weight given to the
variance component in the objective function. The gain in terms of variance was
66.66% compared to a more limited increase of expected travel times of 27.87%.
The approach of Ichoua et al. [31] does not make it possible to generate estimates
of the variance of the travel times.

3. Not taking into account travel time variability (i.e., α = 0) gives highly variable
routes in all sets analyzed (see also Figure 6). However, giving a minimal weight
(i.e., α = 0.1) to the variance component in the objective function reduces the
variance already with an average of 26.92% compared to an increase of only
5.19% in expected travel times. This suggests that a relatively small weight yields
already significant gains in the planning process.

4. Computational results suggest that in systems where the constant speed ap-
proximation is no longer valid, it is crucially important to explicitly consider
the variability due to traffic congestion in the model. The impact of dynamic
components will be even more important when relating the approach to urban
contexts (see also [45] for more insights on the impact of city logistics on routing
decisions).

7 Future Research Opportunities

Based on the proposed framework for time-dependent routing problems, different
future research opportunities exist: one could extend the existing models to cope with
time windows, new and better heuristics could be developed, etc. In this paper, the
Ant Colony Optimization approach is followed to find solutions for the described
problem. Of course, any other solution methodology could be used (e.g., Tabu
Search).
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Using the queueing approach presented, one can also incorporate time windows
in the time-dependent routing models in a realistic way. The issue is that a decision
maker needs an indication to what degree the (hard or soft) time window will be
met. In the case of hard time windows, this probability is either equal to one (if the
hard time window at customer j is met) or equal to zero (if the hard time window
at customer j is not met). This results always in a probability zero for customer j
if the time window cannot be met. In the extreme case, this will result in as many
routes as there are customers, i.e., each customer is incorporated in a single route.
For soft time windows, such a probability can have all values between 0 and 1, with
a value close to zero a strong probability that the time window will not be met and
a value of one a strong probability that the time window will be met. Starting from
the predetermined time window [t j

l , t j
u] of customer j (t j

l < t j
u), and defining ATj as

the expected arrival time of the vehicle at customer j, then the probability ψij can be
defined as:

ψij = P
(

t j
l ≤ ATj ≤ t j

u

)

Of course, the expected arrival time of the vehicle at customer j is the sum of the
time the vehicle left customer i (LTi) and the travel time from i to j, given leaving
time (T LTi

ij ) or:

AT j = LTi + T LTi
ij

The travel time from i to j, given leaving time (T LTi
ij ) will then depend upon the

distribution assumed for the travel times.
In the current paper the fleet size is assumed to be unlimited. However, the

benefits of a more realistic estimate of the true travel times will become even more
important when the fleet size is limited (i.e., only a number of trucks are available).
Indeed, many more opportunities and improvement possibilities exist for the limited
fleet size problem when taking into account time. For example, a manager might take
advantage of a travel time reduction of 25% by letting the same truck do two tours
on a day (e.g., morning and afternoon).

8 Conclusions

This paper aimed at obtaining vehicle routing solutions that perform well in the
face of the extra complications due to congestion, which eventually leads to a
better solution in practice. These more realistic solutions have the potential to
reduce real operating costs for a broad range of industries which daily face routing
problems. Recently, the problem considered has received increasing attention
due to its relevance to real-life problems. A framework for routing problems with
time-dependent travel times due to potential traffic congestion was presented. The
approach developed introduces the traffic congestion component in the standard
V RP models. The traffic congestion component was modelled using a queueing
approach to traffic flows. By making use of this analytical approach to traffic flows,
the limited necessary data to model congestion is easily obtained which opens the
door for real-life applications. Both the time-independent as the time-dependent
V RP were solved using Ant Colony Optimization. Results showed that the total
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travel times can be improved significantly when explicitly taking into account
congestion during the optimization. Moreover, the framework allows for finding
an expression for the variance of the travel time which can be easily integrated in
the objective function. Results showed that depending upon the weight chosen for
the variance component in the objective function, the obtained results (in terms of
chosen routes, mean travel times and variance of the travel times) can be significantly
different. The capability of analytically taking into account dynamic travel times
is extremely valuable, not only because speeds profiles do affect the objective
function of the optimization, but also as demonstrated the best solutions for the
static problem applied in a dynamic context, are in general suboptimal. Compared
to the actual realization in real-life, the planning gap (difference between plan and
actual) can be reduced substantially when taking into account a manifestation of the
traffic on the roads. Consequently, due to the resulting reduced planning gap, less
time and effort needs to be invested in replanning (in real-time) during the day.
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