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Abstract We study a vehicle routing problem in which vehicles are dispatched
multiple times a day for product delivery. In this problem, some customer orders are
known in advance while others are uncertain but are progressively realized during the
day. The key decisions include determining which known orders should be delivered
in the first dispatch and which should be delivered in a later dispatch, and finding
the routes and schedules for customer orders. This problem is formulated as a two-
stage stochastic programming problem with the objective of minimizing the expected
total cost. A worst-case analysis is performed to evaluate the potential benefit of
the stochastic approach against a deterministic approach. Furthermore, a sample-
based heuristic is proposed. Computational experiments are conducted to assess the
effectiveness of the model and the heuristic.
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1 Introduction

Vehicle routing problems (VRP) have long been an active research area because
of their practical value. In this paper, we consider a version of VRP where vehicles
are dispatched multiple times a day for product delivery. Some customer orders are
known in advance, while others are uncertain but are progressively realized through
the day. At a dispatch decision epoch, we are allowed to delay the delivery of some
known orders to a later dispatch. We determine the routing and scheduling of the
orders that are to be delivered immediately. The delayed orders are grouped together
with those that are realized before the next vehicle dispatch. We then determine
the routing and scheduling for the combined set of orders. This process is applied
on a rolling horizon basis to solve the multiple-dispatch VRP. For simplicity and
for practical reasons, we assume that there are two dispatches (which is true in
the motivating applications described below), for instance, the morning dispatch
and the afternoon dispatch. More specifically, in order to accommodate late realized
orders, we define an earliest start time for the second dispatch. This routing problem
is formulated as a two-stage stochastic programming problem with the objective of
minimizing the expected total cost. We propose a heuristic solution strategy to solve
this stochastic programming problem. Computational experiments are conducted to
evaluate the benefit of this approach over existing practices.

One motivating application is the delivery problem of a chemical product supplier
that produces and delivers products to a fixed set of customers, which we refer to
as the supplier case. The supplier dispatches vehicles two times a day. Normally,
for orders that are placed before a set cut-off time, currently 4 p.m., the supplier
will make the products and deliver them the next day. Since there is a production
lead time, only the orders that are received before a given time, say 2 p.m., are
scheduled to be delivered in the first dispatch. The orders received between this time
and the cut-off time are considered as late orders. There are also a number of urgent
orders that only come in the next morning after the first dispatch decisions are made,
but require same day delivery (in the afternoon). The current practice of the supplier
is to dispatch as many early orders as possible in the first dispatch while reserving
the second dispatch for the late and urgent orders. We call this practice the First-
Come-First-Served policy. Note that there can be cost-savings if some early orders
are scheduled in the second dispatch. It has been observed that the return times of
the vehicles to the depot vary significantly and that the workloads of the vehicles
during different dispatches are highly uneven. Without a decision support system for
their planning, the supplier’s transport department spends more than two hours per
day on determining a schedule manually with low truck utilization. Moreover, there
are orders that cannot be delivered using the company’s own trucks and a third-party
trucking company is used for delivering these unserved orders (at a higher cost and
with a lower service level).

Another motivating application comes from a distributor who needs to deliver
consumer products to retail stores in a city. On each day, the distributor dispatches
vehicles two times. The orders received the day before are delivered in the first
dispatch and the orders received in the morning or urgent orders are delivered in
the second dispatch. We refer to this application as the distributor case. Unlike the
supplier case, the delivery area in this case is divided into zones and a particular
vehicle is reserved for each particular zone. Due to road traffic, side road parking
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restrictions (no parking is allowed during certain periods of a day), and the need to
visit retailers during their non-peak hours, the start times of the two dispatches need
to be more regular than in the supplier case. When there are more known orders than
can be delivered in the first dispatch (due to vehicle capacity constraints), orders that
arrive earlier will be delivered first.

Delaying some known orders to the second dispatches may result in some benefit.
Consider the example shown in Figure 1 that has four known orders (orders 1–4) and
one uncertain order (order 5). Assume that the capacity of the truck is large enough
to hold all five orders. Figure 1a shows the vehicle serving all four known orders in
one dispatch. If order 5 appears later, a second dispatch is needed to deliver it (see
Figure 1b). Let p be the probability that order 5 appears. Then, the expected total
travel time for this approach is 8.5 + 3p. If we delay order 4 to the second dispatch,
the travel time for the first dispatch is 6 while the travel time for the second dispatch
is 4 without order 5 (see Figure 1c) and 4.5 with order 5 (see Figure 1d). Then, the
expected total travel time for this approach is 10 + 0.5p. Therefore, when p > 0.6,
delaying order 4 to the second dispatch will result in a shorter expected total travel
time.
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Figure 1 An illustration of delaying a known order to the second dispatch.
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The problem considered here is related to the class of VRP with stochastic demand
(VRPSD) in the literature [1, 5, 16]. Gendreau et al. [8, 9] consider the version of
VRPSD for shipment collection from customers, whose presences are uncertain. In
their model, vehicles follow a set of planned routes and skip the absent customers.
Whenever a vehicle capacity is attained or exceeded, the vehicle returns to the depot
and resumes its collections along the planned route. Another version of the VRPSD
assumes that all customers are present but the sizes of their demands are random (see
[22]). Laporte et al. [13] formulate this problem as a stochastic programming problem
with chance constraints. This problem in turn is transformed into a deterministic
VRP problem. An implementation of the integer L-shaped method for the exact
solution of the problem is studied by Laporte et al. [14] as well. Gendreau et
al. [9] study this problem and construct vehicle routes with minimum expected
cost. Laporte and Louveaux [12], Waters [25], and Dror et al. [6] develop various
properties and formulations for this type of VRPSD with recourse. Yang et al. [26]
present an idea of preventive breaks or restocking. The idea is to consider returning
vehicles to the depot for replenishment after serving each customer in anticipation
of possible stock-outs. Secomandi [19, 20] studies a rollout policy for the vehicle
routing problem with stochastic demands and analyzes this approach to sequencing
problems with stochastic routing applications. Finally, Psaraftis [17] describes the
status and prospects of the related dynamic vehicle routing problems. Larsen et
al. [15] introduce the related partially dynamic travelling repairman problem and
describe several dynamic policies to minimize routing costs. Haughton [10] and
Savelsbergh and Goetschalckx [18] evaluate the benefit of route reoptimization.

Unlike in those discussed in the literature, in our problem, when a vehicle starts
a dispatch, all orders have to be delivered before the vehicle returns to the depot.
Furthermore, instead of the order size or travel time, the main source of uncertainty
comes from the exact day on which an order is placed, which, as shown later, can
also be used to model random order size. Since historical data help to estimate the
probability of the occurrence of such an order, we would like to make use of such
information to devise an effective schedule.

The contributions of this paper are as follows. First, we study a different version
of the routing problem with uncertainty in which we look at whether or not a known
order should be delayed to a later dispatch. Despite the problem not having been
formally studied in the literature, it has a great practical value. We formulate this
problem in the framework of a two-stage stochastic program. Second, we perform a
worst-case analysis for the ratio of the total cost using the deterministic approach
that is often used in practice to the total cost using our stochastic programming
approach, showing that this ratio can be as high as two for a special case and infinity
for general cases. Third, we derive a sampling-based heuristic to solve the problem.
The performance of the method is then evaluated using randomly generated data
sets and real data sets.

The remainder of the paper is organized as follows. Section 2 provides the
two-stage stochastic programming formulation of the problem while the worst-case
analysis is discussed in Section 3. Section 4 describes our solution approach and
various implementation issues. Section 5 presents the computational results based
on modified Solomon’s benchmark problems and real application problems. Finally,
concluding remarks are offered in Section 6.
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2 A Two-stage Formulation

Based on the dispatching practices in the two motivating applications, we make a
number of assumptions. First, the demand size of each order is no larger than the
capacity of the largest vehicle and each order cannot be split. Second, not all orders
must be served by the company’s vehicles. The unserved orders will be subcontracted
out to a third-party transportation provider for delivery with a higher cost. To reflect
this in the model, we assume that there is a super vehicle that has infinite capacity
and zero travel time between orders. Third, the probability of whether a customer
will place an order on a particular day is given, which typically can be estimated
through historical data. Finally, there is a relatively long delivery time window for
each order. In our motivating applications, most orders are required to be delivered
within a day rather than at a specific time.

In our formulation, we model the first dispatch of vehicles as the stage-one
problem and the second dispatch as the stage-two problem. Let (�,A,P) be the
probability space and ω ∈ � be an outcome reflecting the scenario that a particular
set of stochastic customers actually place their orders.

The random customer presence can also partially model random order size. For
example, we can use several virtual customers to represent an actual customer. The
order size for each virtual customer is fixed, while whether or not the virtual customer
will place an order is random. The joint demand of these virtual customers can be
used to model the order size of the actual customer demand. For ease of presentation,
we simply assume that the order size of each customer is fixed. Furthermore, for
simplicity, we refer to the order placed by the stochastic customer as a stochastic
order.

2.1 Customers

N = Set of all possible customer orders.
Nd = Set of known customer orders, Nd ⊂ N .
Ns = Set of stochastic orders which may or may not appear.
Ns(ω) = Set of stochastic orders that actually appear when the outcome is ω.
di = Size of known order, i ∈ Nd.
˜di = Size of stochastic order, i ∈ Ns.
pi = Probability of order i being present, i ∈ Ns.

Note that ˜di is known for a given Ns(ω) ⊂ N and Ns(ω) ∩ Nd = ∅.

2.2 Vehicles

K = Number of vehicles.
Uk = Capacity of vehicle k.

We assume that vehicle 0 is the super vehicle which reflects the subcontracting option
and let K be the set of vehicles, 0, 1, 2, . . ., K.
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2.3 Time and Cost Parameters

cij,k = Travel cost from the location of order i to the location of order j
by vehicle k.

tij = Travel time from the location of order i to the location of order j.
si = Service time for order i.
T = Duty time for the drivers.
Q = Latest time that stochastic orders can be scheduled for delivery.

= Earliest vehicle departing time of the second dispatch.

If a stochastic order arrives after Q, this order will not be delivered on this day.
The cost, cij,k, depends on the travel distance between the locations of orders i and
j, the service time of order j, and a fixed set-up cost at the customer’s location.
In this paper, we assume that the costs satisfy the “triangle inequality.” That is,
cij,k + c j�,k ≥ ci�,k, which is reasonable since the travel distance satisfies the “triangle
inequality” and the service time and the fixed set-up cost are positive. In dense city
areas, different orders may be delivered to locations that are within a short walking
distance from each other. For example, different retailers from the same shopping
mall may place orders or the same retailer may place multiple orders in a day. Thus,
there is a fixed set-up cost (e.g., the cost for parking) in the order-serving process.
Note that this cost is shared by the orders occurring at the same customer location.

2.4 Decision Variables

δi =
{

1, if known order i is served in dispatch 1,
0, otherwise.

yt
ik =

{

1, if known order i is delivered by vehicle k in dispatch t, t = 1, 2,
0, otherwise.

xt
ij,k =

{

1, if vehicle k visits customer i and then customer j in dispatch t, t = 1, 2,
0, otherwise.

In our presentation, a symbol with an index omitted is used to describe the set of
the symbols over all possible values of this index. For example, y1

k represents the set
of y1

ik over all i and y1 represents the set of y1
k over all k. We also define two node

sets:

N 1
k = Set of orders served by vehicle k in dispatch 1.

N 2
k (ω) = Set of orders served by vehicle k in dispatch 2 when the outcome is ω.

Our objective is to minimize the cost of the first dispatch and the expected cost of
the second dispatch. The stochastic programming formulation can be written as

Z = min
δ

g1(δ) + Eωg2(δ, ω), (1)

where g1(δ) and Eωg2(δ, ω) represent the stage-one cost and the expected stage-two
cost for a given δ, respectively. For simplicity, we do not explicitly write the integrality
requirement of the decision variables as constraints.
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2.5 The Stage-one Problem

For a given δ, the value of g1(δ) is the minimum total cost of routing all vehicles in
their first dispatches. That is, g1(δ) is defined by

g1(δ) := min
∑

k∈K
f 1
k (y1

k) (2)

subject to:
∑

k∈K
y1

ik = δi ∀i ∈ Nd, (3)

∑

i∈Nd

di y1
ik ≤ Uk ∀k ∈ K. (4)

Constraint set (3) says that if known order i is served in dispatch 1, then it must be
served by exactly one vehicle. Constraint set (4) ensures that the capacity constraints
are satisfied. The route cost f 1

k (y1
k) for each vehicle k in the objective function is

computed by solving a time-constrained travelling salesman problem. Notice that
j ∈ N 1

k means y1
jk = 1. Thus, the problem is defined as

f 1
k (y1

k) := min
∑

ij

cij,kx1
ij,k (5)

subject to:
∑

i∈N 1
k

x1
ij,k = 1 ∀ j ∈ N 1

k , (6)

∑

j∈N 1
k

x1
ij,k = 1 ∀i ∈ N 1

k , (7)

∑

i∈S

∑

j∈S

x1
ij,k ≤ |S| − 1 ∀S ⊆ N 1

k , 2 ≤ |S| ≤ |N 1
k |, (8)

∑

ij

(tij + s j)x1
ij,k ≤ T. (9)

Constraint sets (6) and (7) enforce flow conservation; constraint set (8) avoids the
formation of sub-tours; and constraint set (9) makes sure that the tour can be finished
within the driver’s duty period.

2.6 The Stage-two Problem

Let T1
k be the time when vehicle k finishes dispatch 1. That is, T1

k = ∑

ij(tij + s j)x1
ij,k.

Note here T1
k depends on the first stage decision variables xij,k. For a given outcome,

ω, the cost function of the stage-two problem, g2(δ, ω), is given as

g2(δ, ω) := min
∑

k∈K
f 2
k (y2

k, T1
k) (10)
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subject to:
∑

k∈K
y2

ik = 1 − δi ∀i ∈ Nd, (11)

∑

k∈K
y2

ik = 1 ∀i ∈ Ns(ω), (12)

∑

i∈Ns(ω)

˜di y2
ik +

∑

i∈Nd

di y2
ik ≤ Uk ∀k ∈ K. (13)

Constraint set (11) says that, among all known orders, only those that are not
dispatched in dispatch 1 will be considered in dispatch 2. Furthermore, constraint
sets (12) and (13) ensure that each order in dispatch 2 can be delivered and that the
vehicle capacity constraint must be satisfied. Similar to the stage-one problem, for the
set N 2

k (ω), the route cost can be obtained by solving a problem analogous to Eqs. (5)–
(9) with T in Eq. (9) replaced by T − max{T1

k, Q}, which implies that if vehicle k
returns to the depot from the first dispatch before time Q, it must wait until Q to
start the second dispatch; otherwise, it can start the second dispatch immediately.

3 Worst Case Analysis

In this section, we compare the costs of two approaches. The first is a deterministic
approach in which we put all known orders in the first dispatch and then schedule
the second dispatch only after the uncertain orders are realized. The second is the
stochastic approach in which we delay some known orders according to the solution
of the two-stage stochastic programming formulation. The following propositions
show the relationship of the optimal total costs when solving the problem using these
two approaches.

Proposition 1 If T → +∞, the worst-case ratio of the cost of using the optimal
deterministic approach to the cost of using the optimal stochastic approach is 2.
Furthermore, the ratio is asymptotically tight.

Proof First, we consider the deterministic approach. In this approach, we set δi = 1
for all i ∈ Nd. That is, all known orders are put in the first dispatch and all realized
uncertain orders are put in the second dispatch. Let gD,1 and gD,2(ω) be the optimal
stage-one cost and the optimal stage-two cost for an outcome, ω, respectively. Then,
the value of the deterministic approach is given by

Z D = gD,1 + EωgD,2(ω). (14)

Second, we consider a wait-and-see [2], or posterior, approach where both routing
decisions are made with knowledge of the realized demand. For a given δ and an
outcome ω, let gP, 1(δ) and gP, 2(δ, ω) be the stage-one cost and the stage-two cost for
this approach, respectively. Then, the optimal value corresponding to an outcome ω

by the wait-and-see approach is

g P(ω) = min
δ

g P,1(δ) + g P,2(δ, ω). (15)



J Math Model Algor (2007) 6:87–107 95

By taking expectation, the optimal expected value is

Z P = Eω

{

g P(ω)
} = Eω

{

min
δ

g P,1(δ) + g P,2(δ, ω)

}

. (16)

Note that, in this approach, we make a decision with perfect information (that is, after
uncertain orders are realized) while, in the stochastic approach, we make a decision
with partial information. We also observe that the optimal solution, δ∗, for Eqs. (1)
to (13) is also a feasible solution for the wait-and-see case. Thus,

Z P ≤ Z . (17)

We now compare Z D and Z P. Note that since T → +∞, there is no time constraint
for the vehicle routing problems corresponding to gD,1, gD,2(ω) and gP(ω). The two
vehicle routing problems corresponding to gD,1 and gD,2(ω) can be solved indepen-
dently. Then, gD,1 and gD,2(ω) are optimal values corresponding to two mutually
exclusive subsets of orders for outcome ω without time constraints, while gP(ω) is the
optimal value of the whole set of orders for the same outcome. Due to the “triangle
inequality” cost assumption, for a given ω, the optimal value of each of the subsets is
less than the optimal value of the whole set. Thus, we have

max
{

gD,1, gD,2(ω)
} ≤ gP(ω).

Since gD,1 ≤ max
{

gD,1, gD,2(ω)
}

and gD,2(ω) ≤ max
{

gD,1, gD,2(ω)
}

, we have

gD,1 + gD,2(ω) ≤ 2 · max
{

gD,1, gD,2(ω)
} ≤ 2gP(ω).

After taking expectations on both sides, we have

Z D ≤ 2Z P. (18)

Combining Eqs. (17) and (18), we have

Z D ≤ 2Z P ≤ 2Z .

To show that this worst-case bound is asymptotically tight, we construct the
following example. Suppose that there is only one truck serving two orders, say order
1 and order 2, located at the same location with the travel cost to the depot as L/2
and the capacity of the truck large enough to hold both orders. Assume that order
1 is known and order 2 occurs with probability 1 − η. In the deterministic approach,
we need to make two dispatches and the expected travel distance is

Z D(η) = gD, 1 + EωgD, 2(ω) = L + (1 − η)L = 2L − ηL.

In the stochastic approach, the optimal solution is to delay order 1 to the second
dispatch and there is only one dispatch in the optimal solution with the value of

Z (η) = ηL + (1 − η)L = L.

Therefore,

Z D(η)

Z (η)
= 2L − ηL

L
= 2 − η → 2 as η → 0.

This example shows that we can construct an example such that the ratio is arbitrarily
close to 2. �
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Our analysis shows that if T → +∞ (that is, no time constraints), the total cost
for the deterministic approach can be twice the total cost for the stochastic approach
in the worst case. This corresponds to the case that allows over-time operation in
practice. If T is a finite number, the worst-case ratio can be unbounded.

Proposition 2 If T < ∞, the worst-case ratio of the cost of using the optimal
deterministic approach to the cost of using the optimal stochastic approach can be
unbounded.

Proof We prove it by constructing an instance. Considering the case that there is
one regular vehicle and two orders, order 1 is deterministic and order 2 is stochastic
with probability 1 − ε to appear before Q = T/3. These two orders have the same
weights of less than half of regular vehicle capacity and are at the same location
which is L/2 away from the depot. The round trip travel time between the depot and
the order is 2T/3. For the optimal deterministic approach, the regular vehicle can
only finish one trip within T and order 2 has to be delivered by a super vehicle. For
the optimal stochastic approach, we can deliver the regular vehicle at time Q = T/3
to serve orders 1 and 2 together and return to the depot at time T. When the super
vehicle costs M times as much as the regular vehicle, the myopic solution has the
expected cost of L + (1 − ε)ML and the stochastic solution has a cost L. Therefore,
the ratio depends on the value of M and can be arbitrarily large when M → +∞. �

In the next section, we develop a heuristic with which we can significantly improve
the solution quality produced by the deterministic approach.

4 The Solution Approach

The problem Eqs. (1)–(13) is a two-stage stochastic integer programming problem.
Even the deterministic version of this is well known to be NP-hard, making the use
of general solution methods for stochastic programming difficult (see, for example,
[2] for a review of these methods). Here, we develop a sampling-based heuristic. The
use of a sampling scheme to solve stochastic programming problems has appeared
in the literature. For example, the class of stochastic quasi-gradient methods uses
sample sub-gradients iteratively to guide the optimization process (see, for example,
[3, 7]). One issue is that their rate of convergence is well known to be small. Recently,
Kleywegt et al. [11] proposed a sample average approximation (SAA) method that
can control the number of samples used to obtain solutions that are within a given
confidence interval of the optimal value. Applications of this method in solving the
shortest path problems with random travel time and with random arc failures can
be found in Verweij et al. [24]. Applying SAA method to our problem, however, is
very computationally demanding. Our preliminary experiments indicated that a few
iterations could take hours of CPU time. These details are reported in the appendix.
Finally, Cheung and Hang [4] study the use of sampling to estimate dual prices when
solving multistage networks with random arc durations in the context of dynamic
assignments, which is a special case of VRP that can be formulated as minimum cost
flow problems. Here, we also use sampling to estimate dual prices, but the underlying
problem structure is much more complex.
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4.1 Temporal Order Exchange Procedure

In the procedure, we use samples of the stochastic orders to approximate the benefit
of moving a known order from the first dispatch to the second dispatch and vice
versa in the optimization process. The decision to move orders between the two
dispatches is made based on the approximated values. Since exchanging the orders
in different dispatches is involved, we call the heuristic Temporal ORder Exchange
procedure (TORE). To describe the procedure, let

π
1,−
i = Estimated change of Z if known order i in dispatch 1 is delayed to

dispatch 2,
π

2,−
j = Estimated change of Z if known order j in dispatch 2 is moved to

dispatch 1,
rt

i = Estimated change of stage t cost if known order i is removed from
dispatch t,

at
i = Estimated change of stage t cost if known order i is added to dispatch t.

Notice that π
1,−
i and π

2,−
j represent the estimates of the dual price with respect to

constraint (3), that is, the change of Z with respect to δi when its value changes from
1 to 0 and when its value changes from 0 to 1. The values of π

1,−
i and π

2,−
j can be

obtained as

π
1,−
i = r1

i + a2
i , (19)

π
2,−
j = r2

j + a1
j . (20)

Since some stochastic orders are not known in stage 1, N samples of the set of
stochastic orders are used to estimate r2

j and a2
i . For sample n, let

r2,n
j = Estimated change of stage 2 cost if order i is removed from dispatch 2,

a2,n
i = Estimated change of stage 2 cost if order i is added to dispatch 2,

and we naturally define

r2
j = 1

N

N
∑

n=1

r2,n
j , (21)

a2
i = 1

N

N
∑

n=1

a2,n
i . (22)

A known order, i, is called movable if π
1,−
i < 0 when δi = 1 or π

2,−
i < 0 when

δi = 0. That is, rescheduling a movable order from dispatch 1 to 2 or from dispatch 2
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Step 0: Initialization
Initialize the values of δi, i ∈ Nd.
Create N samples of stochastic orders.
Set � = 1.

Step 1: Solving the stage 1 problem
Solve the deterministic VRP for the orders with δi = 1.

Step 2: Estimation of dual prices
For each order i with δi = 1, estimate r1

i .
For each order i with δi = 0, estimate a1

i .
For scenario ωn, estimate a2,n

i for order i with δi = 1 and estimate r2,n
j for order

j with δ j = 0

Update π
1,−
i and π

2,−
j using Eqs. (19), (20), (21) and (22).

Step 3: Selection of movable orders
Set m = min{mmax, m1,− + m2,−}.
Obtain Q(m).

Step 4: Order exchange
For each i ∈ Q(m), set δi = 1 − δi.

Step 5: Termination
Set � = � + 1.
Solve the deterministic VRP for the orders with δi = 1.
If m1,− > 0, m2,− > 0 and � < �max, go to Step 1.

Figure 2 Sketch of the temporal order exchange procedure (TORE).

to 1 can produce savings. Suppose that all movable orders are ranked by increasing
value of the cost changes, π

1,−
i and π

2,−
i (that is, the largest cost reduction first). Let

m1,− = Number of movable orders with π
1,−
i < 0,

m2,− = Number of movable orders with π
2,−
i < 0,

Q(m) = Set of the first m ranked movable orders.

Furthermore, we define several control parameters:

� = Iteration counter,
�max = Maximum number of iterations allowed,
mmax = Maximum number of orders being exchanged per iteration.

The key steps of the TORE procedure are summarized in Figure 2 and we describe
the details as follows.

Step 0: Initialization. In this step, we decide which deterministic orders to place
on the first dispatch through initializing the values of δi for each i ∈ Nd.
One way is to use the First-Come-First-Served strategy. That is, according
to the increasing sequence of order arrival times, we set δi = 1 until the
vehicle capacity constraint or trip time constraint are violated. Another way
is to utilize a deterministic VRP solution approach (see below) to select
the orders from the known order set, with the objective of minimizing the
operational cost of stage 1. That is, we consider all known orders together
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for this approach and determine the orders scheduled in stage 1. We set
δi = 1 if order i is scheduled in stage 1 and set δi = 0 otherwise. Further
details can be found in the subsequent section.

Step 1: Solving the stage-one problem. In this step, we solve a deterministic VRP.
Note that the main focus in this paper is to assess the value of considering
stochastic information rather than how to solve deterministic VRP. Thus,
we use a rather standard and efficient solution approach (see, for exam-
ple, [23]). First, we construct the initial routes by the least-cost insertion
method. Next, we use the 2-opt local search route improvement technique
to improve the sequence of the orders being served. Finally, we employ
an inter-route exchange of orders to reduce the cost further. In our cases,
the vehicles have different capacities. For example, in the supplier case,
there are three types of vehicles. We follow the industry practice that larger
vehicles are used first with the consideration of taking advantage of the
vehicle capacity to reduce the unit cost.

Step 2: Estimation of dual prices. In this step, we estimate r1
i , a1

j , a2,n
i , and r2,n

j . The
estimations can be done by solving a sequence of VRPs for the N samples.
However, the computational effort is very high. In our approach, we use
an approximation strategy. Note that each of the estimators is affected by
the change in travel distance, the change in the set-up cost at the customer
locations and the change in the penalty cost due to the use of a super
vehicle. First, we estimate the change in travel distance by adding order
i to or removing order i from a dispatch based on the least cost insertion
rule. For example, when adding order i to dispatch 2 for each sample n, we
consider all adjacent order pairs in dispatch 2 to insert order i in between,
which leads to a minimal travel distance increment. Second, to estimate
the change in the set-up cost at the location, we check the location for
each order i. If we add order i to a dispatch at some location where no
other orders are placed, a fixed set-up cost will be incurred in this dispatch.
Otherwise, if there are some other orders at this location, then no additional
set-up cost will be incurred. Third, taking the cost of using a super vehicle
into account, we notice that there are two contributing factors: one is the
trip time and the other is the vehicle capacity. We measure the change of
the trip time and the vehicle capacity when adding order i to or removing
order i from a vehicle dispatch and then in turn estimate the total demand
size that cannot be served by the regular vehicles, which therefore implies
the cost of using the super vehicle.

Step 3: Selection of movable orders. We delay order i in dispatch 1 if π
1,−
i < 0 or

move order i from dispatch 2 to dispatch 1 if π
2,−
i < 0. We select the orders

with the largest savings to move. Moreover, because the estimations of
r1

i , a1
j , a2,n

i , and r2,n
j are based on adding or removing individual orders,

the estimations can be poor if too many orders are added or removed
simultaneously in an iteration. Thus, the maximum number of movable
orders is limited by mmax.

Step 4: Order exchange. In this step, after the order exchange, we update δi for each
i ∈ Nd. For each order, i, moved from dispatch 2 to dispatch 1, we update δi

from 0 to 1. Similarly, for each order moved from dispatch 1 to dispatch 2,
we update δi from 1 to 0.
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Step 5: Termination. In this step, we provide two termination conditions. One
criterion limits the total number of iterations. That is, if � > �max, then we
terminate the procedure. The other criterion terminates the procedure if
the number of movable orders becomes 0. That is, if m1,− = 0 or m2,− = 0,
then we terminate the procedure.

5 Numerical Experiments

In this section, we report the results of computational experiments and in turn illus-
trate the benefits of considering stochastic order information. Section 5.1 describes
the testing problems in the experiment. Section 5.2 introduces the methods being
compared. Finally, experimental results and their interpretations are presented in
Section 5.3.

5.1 Testing Problems

In our experiment, we have ten sets of problems: six sets are based on the modified
Solomon’s [21] benchmark problems and four sets are adapted from real application
problems.

In Solomon’s data sets, there are three groups of problems, differing in their
geographical characteristics. They are the clustered group “c,” the random group
“r,” and mixed group “rc.” In each group, there are two subgroups differing in order
size and service time features. They are denoted by three-digit numbers beginning
with “1” and “2,” respectively. The first problem from each subgroup in Solomon’s
data set is used, resulting in six testing problems. Each of them has 100 customers.
We randomly select 70 of these 100 locations and denote them as known orders with
the same order size as in the data file. No two known orders are at the same location.
On the other hand, from the initial 100 customer locations, we randomly select 50
of them as the locations for the stochastic orders. The probability for a customer to
place an order is uniformly distributed in [0.4, 0.8]. Note here that the locations of
stochastic orders might be the same as the ones of known orders. In each problem,
four vehicles are being used and each of them has capacity of 180. By assuming that
the vehicle speed is one, the magnitudes of distance and travel time are identical.
Time is measured in minutes and the order size is measured in kg. According to the
characteristics of different problems, the vehicle duty time is set as 3, 000 in problems
“c101” and “c201” and as 750 for the rest. Moreover, the earliest start time of the
second dispatch Q is set as 40% of the total vehicle duty time. Let τ j represent the
set-up cost at location j. The costs are therefore calculated as

cij,k = αttij + αss j + τ j (23)

for a regular vehicle, k > 0, and

cij,0 = αdd j (24)

for the super vehicle, 0. The cost, cij,0, represents the penalty for unserved orders and
depends on order size. In aligning the set-up cost to real industrial practice, we set αt

= $1/min, αs=$0.1/min, τ j=$25 and αd=$0.15/kg in all problem sets. Note that τ j here
denotes the shared fixed set-up cost at the corresponding customer location. Suppose
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that there are three orders, j1, j2, j3, located in the same customer location, J, and the
fixed set-up cost in this customer location is τJ . Then, τ j1 = τ j2 = τ j3 = τJ/3.

For the supplier case and the distributor case, we create testing problems as
follows. In the supplier case, the first dispatch of a vehicle is called the regular
dispatch while the second one is called the urgent dispatch. Currently, the regular
dispatches are used for known orders while the urgent dispatches are used for
stochastic orders. The geographical characteristic in this problem is similar to one of
the problems in Solomon’s “rc” group. We generate the probabilities of the stochastic
orders to appear on a day based on one month historical data. There are three large-
size vehicles that normally deliver ten orders each, two middle-size vehicles that
normally deliver seven orders each, and three small vehicles that normally deliver
five orders each. On average, there are about 110 orders (including the realized
stochastic orders) per day. In the distributor case, the whole region is divided into
20 non-overlapping zones. The operations in different zones are quite independent
and there is usually one vehicle used for one zone. Similarly, we create the sets of
stochastic orders based on one month’s historical data. According to the historical
data, approximately 35% of orders delivered in a day are unknown when the first
dispatch takes off. We set the order size for a customer as the average order size
of this customer over a month. Normally, a vehicle could deliver 30–40 orders per
dispatch.

For both the supplier and the distributor cases, we are interested in evaluating
the effectiveness of the methods under a high-demand situation, in which the size of
each order is increased by a percentage that is uniformly distributed in the interval
[10%, 20%]. In total, there are four problem data sets: a normal demand pattern and a
high demand pattern for both the supplier case and the distributor case, respectively.

For all these four problem data sets, the duty time for each drive is set at ten hours
per day and the earliest departing time of second dispatch is four hours after the first
dispatch starts. The travel time and service time are measured in minutes and the
order size in kgs. We set the values of αt, αs, αd and τ j to be the same as those used
for the modified Solomon’s data sets, except αd = 0.015 in the supplier case, where
the delivery product is gasoline and the weight of the demand is on a different scale.

5.2 Methods for Comparison

We compare two deterministic methods and the TORE procedure. The deterministic
methods do not use the stochastic order information. The first deterministic method
is the First-Come-First-Served (FCFS) method described earlier. Due to its logical
simplicity and customer oriented fairness, the FCFS method is widely used in
practice. In this method, we schedule the known orders in dispatch 1 in the sequence
of their arrival times until the vehicle capacity constraint and the trip time constraint
are violated. The remaining known orders (together with the stochastic orders) are
then scheduled in dispatch 2.

The second deterministic method utilizes all information about the known orders
and it is called the Selection (SELECT) method. This method aims at minimizing the
total cost of dispatch one by considering all known orders. In terms of the dispatch-
one cost, it is clear that the SELECT method will be better than the FCFS method.
For the TORE procedure, we use both the FCFS method and SELECT method to
obtain the initial allocation of the known orders in the two dispatches (in Step 0). In
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Table I Results on the modified Solomon’s data

FCFS TORE(F) (a)-(b) SELECT TORE(S) (c)-(d)
(a) (b) (a) (c) (d) (c)

(%) (%)

c101 3,398.55 2,618.15 22.96 3,518.25 2,929.40 16.74
c201 3,487.90 2,685.05 23.02 3,627.70 2,888.55 20.38
r101 3,377.55 2,677.60 20.72 3,500.55 2,956.25 15.55
r201 3,400.30 2,709.10 20.33 3,484.90 2,978.90 14.52
rc101 3,112.25 2,463.75 20.84 3,228.35 2,651.75 17.86
rc201 3,115.30 2,510.20 19.42 3,246.10 2,763.50 14.87

Average 3,315.31 2,610.64 21.22 3,434.31 2,861.39 16.65

our experiment, we set N = 30 (that is, 30 samples are used in Step 2), mmax = 2, and
�max = 5.

5.3 Experimental Results

For each problem set, we generate 20 instances. Each instance is referred to as a
set of known orders and a set of stochastic orders according to the characteristics of
the problem set. For an instance of a particular problem set, after we solve the two-
stage problem and implement the first-stage solution, we create replications of the
second stage orders and obtain the average second-stage cost. The sum of the first-
stage cost and the average second-stage cost is an estimation of Z for that instance.
For each problem set, we compute the average value of Z among 20 instances. For
the modified solomon’s data sets, 200 replications are used to evaluate the expected
cost of the second-stage VRP. Thus, for each of these problems, more than 10,000
second-stage VRP are solved for evaluating the expected cost. For real problem sets,
we use 20 replications.

The experimental results are presented in Tables I and II. Table I reports the
results on the modified Solomon’s data while Table II presents the results on the real
problem data set. In each table, the first four columns indicate the problem names,
the average total costs obtained by FCFS, the costs obtained by TORE initiated by
FCFS, and the advantage of TORE over FCFS, respectively. Besides this, the fifth

Table II Results on real problem data

FCFS TORE(F) (a)-(b) SELECT TORE(S) (c)-(d)
(a) (b) (a) (c) (d) (c)

(%) (%)

S-N 3,014.20 2,712.30 10.02 2,943.30 2,537.15 13.80
S-H 3,062.05 2,775.95 9.34 2,937.30 2,557.10 12.94
D-N 2,547.35 2,424.20 4.83 2,271.35 2,056.80 9.45
D-H 2,540.75 2,379.40 6.35 2,298.20 2,061.60 10.30

Average 2,791.09 2,572.96 7.64 2,612.54 2,303.16 11.62
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Table III Vehicle capacity utilization

FCFS TORE(F) SELECT TORE(S)

Random (stage 1) 0.88 0.76 0.99 0.84
Random (stage 2) 0.99 0.99 0.97 0.99
Real (stage 1) 0.90 0.90 0.99 0.71
Real (stage 2) 0.92 0.94 0.91 0.97

column gives the average total costs obtained by SELECT, the sixth column gives
the costs obtained by TORE initiated by SELECT, and the last column reports extra
savings of TORE over SELECT.

From Table I, we can see that for the modified Solomon’s data set, TORE has
significant benefits over the deterministic methods. More specifically, on average,
TORE produces a 21.22% savings over FCFS and a 16.65% over SELECT.

One interesting observation is that SELECT does not outperform FCFS. This
reflects the insight that a better deterministic method does not necessarily do better
in a stochastic environment. In fact, it does worse in most testing problems. Without
taking the future information into consideration, a better solution in the current stage
might result in a worse situation in the next stage.

Table II shows the results when using real data sets. A problem is characterized
by its application (“S” for the supplier case and “D” for the distributor case) and its
demand pattern (“N” for normal and “H” for high). Similar to the random problem
cases, TORE can produce a substantial savings although not as high as those for
the random test problems. On average, it produces a 7.64% savings over FCFS and
an 11.62% savings over SELECT. There are some interesting observations. First,
SELECT is better than FCFS for the real data sets as opposed to FCFS is better for
the random problem tests. There may be some problem characteristics (such as some
dependency among the parameters or orders) that are not captured in the randomly
generated data sets. Second, the solution quality of TORE is dependent on the initial
solution. In the case of D–N, for example, the solution of SELECT is even better than
the solution of TORE(F).

Table III reports the average capacity utilization of the vehicles. In stage 1, for
the two deterministic initial solutions, SELECT achieves a higher utilization as it

Table IV CPU seconds for each method to solve one problem

FCFS TORE(F) SELECT TORE(S)

c101 0.34 170.52 1.10 162.31
c201 0.32 178.79 1.09 163.49
r101 0.66 292.02 1.67 230.29
r201 0.80 291.38 1.89 235.55
rc101 0.41 192.10 1.19 176.50
rc201 0.49 168.89 1.24 144.35
S-N 9.05 180.79 13.66 134.97
S-H 7.20 135.85 11.63 97.94
D-N 7.68 604.62 24.56 385.73
D-H 3.88 609.28 21.19 309.67
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considers all known orders for dispatch 1. On the other hand, the heuristics usually
lead to a lower capacity utilization as some orders are purposely delayed to dispatch
2 to save cost.

Table IV reports the average CPU time used to solve each problem set over 20
instances by each method. All the computational experiments were carried out on a
PC with 2.54 GHz CPU and 1, 024 M memory. The figures are in units of seconds.
The third column presents the CPU time needed for TORE with the initial solution
generated by FCFS and the fifth column reports the CPU time for TORE with initial
solution obtained by SELECT.

From Table IV, we can see that solving the “D” case needs much more compu-
tational time than the other case. This is because, in “D” case, a vehicle normally
delivers 40–50 orders and, in other cases, a vehicle delivers 10–20 orders. When
solving the VRP, constructing and improving longer routes takes much more time
than working on shorter routes. Note that the VRP problems with 10–20 orders can
be solved optimally in reasonable time. However, we use the same heuristic even for
small problems to have a consistent comparison.

6 Conclusion

We considered VRP with multiple dispatches. In such a problem, before scheduling
the first dispatch, there are uncertain orders that may need to be delivered within
the same day. One class of decisions is to determine which known orders should
be delayed in order to minimize the total expected cost over the planning horizon.
We developed a two-stage stochastic programming formulation for the problem,
performed a worst-case analysis for the formulation, developed a heuristic and con-
ducted numerical experiments using both randomly generated problems (modified
from the standard test problems in the literature) and real data sets.

The experimental results are encouraging. In applying our method, we observe
that utilizing stochastic future information can bring significant cost savings. How-
ever, there are still several possible improvements. First, instead of computing the
cost savings on moving individual orders from dispatch 1 to 2 or vice versa, we
may compute the savings on moving the whole group of orders in a cluster and
exchanging them accordingly. Second, to avoid moving a particular order back and
forth in the optimization process, one possible change is to move an order only if
the corresponding savings is larger than a threshold. Third, in the current methods,
we compute r1

i and a2
i from scratch in each iteration. One possible variation is to

use the weighted average of the values of these estimators over several iterations.
Nevertheless, these improvements are primarily for increasing the speed of the
heuristic. We need to evaluate the tradeoffs between speed and quality. In terms

Table V Results on applying sample average approximation method

Iteration M n N |g| |v̄M| |tα/2,M+N−1 S| CPU time (min)

1 20 20 20 337.30 5,314.97 102.67 24.03
2 40 40 40 348.24 5,145.00 73.87 93.07
3 80 80 80 328.02 4,980.36 53.70 341.22
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of modelling, one possible extension is to consider a multiple dispatch model where
orders can have different types of urgency. Some orders must be delivered in the
coming dispatch, while some can be delayed for more than one dispatch. Tackling
such a problem becomes more challenging and deserves more research effort.

Appendix

This appendix reports some preliminary results using the sample average approxima-
tion (SAA) method to solve our problem (Table V). The key steps of the algorithm
are summarized in Figure 3 for easy reference. Besides the notation introduced in
Section 2, let g(y1, ωi) be the objective value corresponding to scenario ωi. In the

Step 1: For m = 1, . . . , M, repeat the following step:
(a) Generate i.i.d. random vectors ω1, . . . , ωn.
(b) Solve the SAA problem

min g(y1) =
K

∑

k=1

f 1(y1
k) + n−1

n
∑

j=1

(

K
∑

k=1

f 2
(

y2
k, ω j

)

)

,

and let ŷ m be the solution vector of y1
k, v̂ m be the optimal objective value.

(c) Generate i.i.d. random variables ω1, . . . , ωN . Obtain an estimate of the
objective function value of ŷ m

gN(ŷ m) := f 1(ŷ m) + 1

N

N
∑

i=1

f (y2
k, ωi),

and an estimate of the variance of the estimator

S2
N(ŷ m) := 1

N − 1

N
∑

i=1

[

g(ŷ m, ωi) − gN(ŷ m)
]2

.

Step 2: Evaluate v̄M = 1
M

∑M
m=1 v̂ m and S2

M = 1
M−1

∑M
m=1(̂v

m − v̄M)2.

Step 3: For each solution ŷ m, an estimate of the optimality gap is given by (gN(ŷ m) −
v̄M) with a variance estimate of

S2 = S2
N(ŷ m)

N
+ S2

M

M
.

Step 4: Select the solution with the smallest optimality gap g = (gN(ŷ m) − v̄M) and
calculate the corresponding 95% confidence interval [v̄M − tα/2,M+N−1S, v̄M +
tα/2,M+N−1S].

Step 5: If the optimality gap satisfies termination tolerances (|g| < ε1 and
tα/2,M+N−1S < ε2), terminate with the current solution. Otherwise, if |g| > ε1,
set M = 2M to reduce gap; else if tα/2,M+N−1S > ε2, set the numbers N = 2N
or n = 2n to reduce the variance, and go to Step 1.

Figure 3 Sketch of sample average approximation algorithm.
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SAA method, M is the number of replications, n is the sample size for the SAA
problem, and N is the sample size to estimate the objective value of a solution. Table
V shows the numbers of replications and samples used for the first three iterations
for a problem based on the “c101” class. The experiment was carried out in the same
computational environment as were the experiments described in Section 5. The two
critical values, |g| and |tα/2,M+N−1S|, did show the tendency of convergence. However,
it took around six hours for only three iterations. Therefore, some adjustment may
be required for speeding up the SAA method when it is applied to our problem.
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