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Abstract We consider a single-period multi-location inventory system where inven-
tory choices at each location are centrally coordinated. Transshipments are allowed
as recourse actions in order to reduce the cost of shortage or surplus inventory after
demands are realized. This problem has not been solved to optimality before for
more than two locations with general cost parameters. In this paper we present a
simple and intuitive model that enables us to characterize optimal inventory and
transshipment policies for three and four locations as well. The insight gained from
these analytical results leads us to examine the optimality conditions of a greedy
transshipment policy. We show that this policy will be optimal for two and three
locations. For the n location model we characterize the necessary and sufficient
conditions on the cost structure for which the greedy transshipment policy will be
optimal.

Key words multi-location inventory system · transshipment · cost parameter.

Mathematics Subject Classifications (2000) 90B06 · 90B15

1 Introduction

In the last couple of decades, the number of products offered to the market has
generally exploded. At the same time, the product life-time has decreased drastically.
The combination of these two trends leads to increased inaccuracy of the demand
forecasts, leading to firms facing an increased demand uncertainty. Further, as a
response to higher pressure on cost reductions, firms tend to source more from low
cost countries in regions such as the Far East, resulting in longer lead times. An effect
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of this is that firms are less responsive to the demand uncertainty. Correspondingly,
one of the major challenges in many industries is making supply meet demand
(see [6]). Several strategies and initiatives to achieve this have gained increasing
popularity with firms. This paper studies one such strategy, namely transshipments.

Consider two retailers that are both owned and operated by the same firm. A
central planner decides the inventory of both retailers before the start of the season.
Due to long lead time the planner does not have the opportunity to replenish
additional inventory during the season. Consider the case when the supply of one
retailer exceeds its demand, and, conversely, the demand of the other retailer exceeds
its supply. Then, if the benefit exceeds the incurred costs of doing so, it would
be beneficial, from a system point of view, to have the former retailer transfer
(some of) its inventory to the latter retailer. This practice is called transshipment,
and is routinely performed in a variety of industries. We have recently witnessed
an increasing use of transshipment, mainly as a result of better integration of the
information systems of the retailers participating in a distribution network. Also, the
availability of faster, flexible and more reliable freight-providers such as DHL and
UPS has facilitated this development.

The decision of transshipment, in terms of how much to transship between what
locations at what time, is made after the firm has acquired improved demand
information. What makes the decision problem inherently difficult is that the practice
of transshipment strongly affects the optimal inventory quantities decided upon prior
to the season. As an illustration, consider the following example. A firm offering
a high service level determines inventory levels at each retailer without taking the
possibility of transshipment into account. The resulting inventory levels for each
location will be relatively high to ensure that the supply at each location with high
probability will meet the demand at the corresponding locations. While this, in
expectation, will lead to a large number of units available for transshipment (i.e., a
majority of the retailers will have excessive supply), it will be unlikely that there is a
large need for transshipment (i.e., few retailers will have insufficient supply). Hence,
to reap the full benefit of transshipment the firm will need to take the transshipment
option into account when making its quantity decisions.

1.1 Literature Review

The most commonly used model when analyzing transshipment in connection with
ordering quantities in inventory models is the classical newsvendor model. All the
papers mentioned below are based on the newsvendor concept. The optimal solution
in a newsvendor model balances the expected cost of understocking against the
expected cost of overstocking. For a detailed treatment of the newsvendor model see
Porteus [16]. Among the earliest published works on transshipment as a cost reducing
policy yielding better customer service is Krishnan and Rao [14]. They look at the
case of identical cost parameters and identical independent demands. Robinson [17]
generalizes this to general cost parameters and demand distributions. Krishnan and
Rao [14] and Robinson [17] assume that transshipments take place after the true
demand has been realized,but before customer orders has to be fulfilled. Some papers
([12, 13]) assume that transshipments take place before demand is fully realized,
leading to models in which demand is realized only partially. There are also papers
which assume that transshipments occur routinely instead of when a stockout is
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imminent ([4, 11]). We will employ the scenario given by Krishnan and Rao [14]
and Robinson [17]. While some papers also consider a multi-period transshipment
model, these models are often basically reduced to a set of single period problems,
i.e., a myopic order-up-to policy is optimal ([9, 17]).

The literature on transshipments has generally either been concerned with analyt-
ical results for the two location model ([18, 19]) or heuristics for the n location model
([13, 17]). Tagaras [19] defines a set of assumptions that when satisfied means that
complete pooling is an optimal strategy (see Section 2.1) in the two location model.
Similar assumptions are often used in the literature ([7, 17]) and will be used in our
model. While both Rudi et al. [18] and Robinson [17] provide analytical solutions
for the two location model, Robinson [17] also suggests a heuristic for the n location
model. By discretizing the demand distribution Robinson [17] sets up a large linear
programming problem to approximate the optimal solution. However, the size of this
linear program is an obstacle with respect to both memory problems and solution
time. For a similar problem Tayur [20] used a gradient based approach that is based
on discretizing the demand distribution for an n location model. Tayur uses a nested
reoptimization technique for approximation of the optimal solution which works
well for medium sized problems. Most of the literature mentioned above considers
models where all decisions are centralized in a “parent-firm.” Dong and Rudi [5] and
Rudi et al. [18] study models with a more decentralized decision structure.

The contribution of this paper is twofold. Firstly, we formulate a model that is
simpler and more intuitive than the model of Robinson [17] although it incorporates
all of the complexities of that model. Secondly, due to the simplicity of the model
we are able to gain analytical insight into problems of higher dimensions than has
been achieved earlier, i.e., problems with more than two locations and general cost
parameters. We show how to characterize the optimal order quantities for problems
with three and four locations. For two and three locations we prove that a greedy
transshipment policy is optimal always. For the four location model we characterize,
in an exhaustive way, the conditions for when a greedy transshipment policy is
optimal, depending on the cost structure as well as the order quantity and demand.
The corresponding conditions for the cost structure alone has also been characterized
for the n location model.

1.2 Organization of Paper

This paper is organized as follows: in Section 2 we formulate the transshipment prob-
lem as a two stage stochastic program where the second stage is modeled as a classical
Hitchcock–Koopmans transportation problem, hence a specially structured linear
programming problem. Utilizing the structure of the dual of this linear programming
problem, we are able to determine the gradient for the first stage objective function.
In Section 3 we study the simplest version of the problem where transshipments can
be of use, that is the two location model. Section 4 contains the analysis for the
case with three locations. The optimal transshipment policy is formulated, and the
optimal order quantities are characterized. In Section 5 we analyze the case with
four locations. It is shown why the complexity of the problem increases significantly
as the number of locations increases. The main reason is that the optimal allocation
of transshipments can no longer be determined using a greedy algorithm. We also
formulate the optimal ex-post transshipment policy, which enables us to characterize
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the optimal order quantities. In Section 6 we consider the n location model. We
show that a greedy allocation of transshipments will be an optimal transshipment
policy for a specific cost structure. Finally, in Sections 7 and 8, we give some ideas for
future directions for research on transshipment problems and summarize the results
obtained in this paper.

2 Model Formulation

Consider the following real life problem where we have n stores selling a seasonal
product. Before the season starts and long before the stores know much about the
future demand, store i has to order large quantities, Qi, of the product in order for
the store to be able to meet the future unknown demand, Di. We assume that the
joint distribution of demand is known and continuous.

Store i sells at unit revenue cost ri. The stores procure the product at unit ordering
cost ci (ri > ci). If store i has not managed to sell all their products, (Di < Qi), at the
end of the season, the surplus inventory will have a per unit salvage value of si > 0
for store i. There will be an opportunity to sell it back to the factory, or they can let
it go on sale for a sales price (si < ci) after the season has finished. This might lead to
increased storage-expenses, but this can be included in the per unit salvage value. If
store i can not satisfy their entire demand, they are penalized a unit cost pi (the cost
of a customers dissatisfaction).

When the season has started, and store j has sold all the products in their
warehouse, (Dj > Q j), it will be possible to transship products from another store
i with a surplus inventory of the product (Di < Qi), in order to satisfy the demand
at store j. The transshipment cost per unit is denoted by τij. We will assume that the
customers are willing to wait for the transshipment Tij i.e. the lead time is considered
negligible. This will be a natural assumption in the case where the locations are in
close proximity to each other or when an overnight delivery service is used for a
greater area. Otherwise the loss of goodwill due to the delay can be included in the
transshipment cost τij > 0. Furthermore we assume negligible fixed transshipment
costs in our model formulation. To see the effect of fixed and joint ordering costs
on a two location model formulation see Herer and Rashit [7]. Transshipments will
be considered as a recourse action occurring after demand realization, but before
demand must be satisfied in order to optimize profit.

2.1 Parameter Assumptions

The object of our model is to determine the optimal ordering and transshipment
policies that maximizes aggregate profit. In our model we will employ a transship-
ment policy known as complete pooling. This transshipment policy can be described
as follows ([8]): the amount transshipped from one location to another will be the
minimum between (a) the surplus inventory of the sending location and (b) the
shortage inventory at the receiving location. Accordingly, transshipments will take
place until all remaining locations for which demand has not been completely fulfilled
must either have a surplus inventory or they all have to have a shortage inventory.
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The optimality of the complete pooling policy is ensured under the so-called triangle
inequalities (which we will denote as the complete pooling assumptions).

r j + pj − τij ≥ si i, j = 1, . . . , n. (1)

ri + pi ≥ r j + pj − τij i, j = 1, . . . , n. (2)

si ≥ s j − τij i, j = 1, . . . , n. (3)

Equation 1 implies that it is always beneficial to transship from a location with
excess inventory to a location with shortage inventory. This is so since the revenue
value and the saved penalty cost at the receiving location minus the transshipment
cost, r j + pj − τij, out-weighs the salvage value, si, at the shipping location. Further,
it is neither preferable to transship between two shortage locations by Eq. 2, nor
between two surplus locations by Eq. 3. In addition, to ensure that it is not beneficial
to order indirectly from another location (instead of directly from the factory) we
consider only the cases where

ci + τij ≥ c j i, j = 1, . . . , n.

These assumptions are common in the literature on transshipments (e.g. [7, 17,
19]) and seem to be justified in practice.

2.2 Objective Function

In this section we formalize the problem. We consider the case where the choices of
order quantities in each location are centrally coordinated. Retail stores all owned
by the same company can be forced to cooperate since it is in the best interest for the
company as a whole to maximize total aggregate profit. We can write the maximum
aggregate profit for a company with retailers on n locations as

max
Q1,...,Qn

π = max
Q1,...,Qn

{
n∑

i=1

−ci Qi + EK̄(Q, D)

}
(4)

where K̄ is the maximum income given order quantities and realized demands. Nota-
tion in boldface indicates the corresponding vector/matrix. Note that for notational
convenience we will use the “transshipment” variable Tii as the amount sold at
location i from own inventory at location i. Thus it would be natural to set τii = 0.

Due to the complete pooling policy, all transshipments are sold at the receiving
location. This allows us to write the maximum income K̄ as

K̄(Q, D)

= max
Tij

n∑
i=1

⎡
⎣ n∑

j=1

r jTij −
n∑

j=1

τijTij + si

⎛
⎝Qi −

n∑
j=1

Tij

⎞
⎠ − pi

⎛
⎝Di −

n∑
j=1

T ji

⎞
⎠

⎤
⎦ (5)

subject to
n∑

j=1

Tij ≤ Qi , ∀i = 1, . . . , n. (6)

n∑
j=1

T ji ≤ Di ,∀i = 1, . . . , n. (7)

Tij ≥ 0 , ∀i, j = 1, . . . , n.
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The first term on the right hand side of Eq. 5 can be recognized as the income
from all that is sent from location i and sold at location j. The second term is the
corresponding transshipment costs. The third term is the salvage value from the
surplus inventory at location i, while the fourth term is the penalty cost for not
meeting the demand at location i. Constraints (6) and (7) say that you can not sell
more than you have at hand, nor can you sell more than the demand at the location.
By extracting

∑n
i si Qi and

∑n
i pi Di from K̄, program (4) can be reformulated as

max
Q1,...,Qn

π = max
Q1,...,Qn

{
−

n∑
i=1

((ci − si)Qi + pi E(Di)) + EK(Q, D)

}
(8)

where

K(Q, D) = max
Tij

n∑
i=1

n∑
j=1

(
r j + pj − τij − si

)
Tij

subject to
n∑

j=1

Tij ≤ Qi , ∀i = 1, . . . , n. (9)

n∑
j=1

T ji ≤ Di , ∀i = 1, . . . , n. (10)

Tij ≥ 0 , ∀i, j = 1, . . . , n.

Not surprisingly, we can see from Eq. 8 that the optimal order quantity can be
seen as a balance between the procurement cost minus the salvage value of the total
order quantity, and the expected profit from the total amount transshipped in the
second stage program K.

By using the result that the optimal value of a linear program is a concave
polyhedral function of its right hand side vector (see [3] pp. 697), it can easily be
shown that the π program is jointly concave in the decision variables Q. Thus the first
order conditions give an optimal solution which allows us to determine the optimal
order quantity.

2.3 Dual Formulation of the K Program

In order to determine the first order conditions of π we will first look at the dual
formulation of the K-problem. We will in this section rewrite the linear programming
problem K in terms of the extreme points of the feasible region of the dual problem.
Each of these extreme points will be optimal for some polyhedral cone of D, allowing
us to compute the expectation of K and its partial derivatives with respect to Q. To
solve the first order conditions of Eq. 11, we use the simple fact that for a linear
program, the dual value of a constraint is the derivative of the objective function
with respect to the right hand side of that constraint.

∂π

∂ Qk
= −(ck − sk) + ∂ EK(Q, D)

∂ Qk
, k = 1, . . . , n. (11)
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We will first define the dual problem K̃ of K. Let α and β be the dual variables
associated with Eqs. 9 and 10. Then we can write the dual problem K̃ as:

K̃(Q, D) = min Qα + Dβ

subject to αi + β j ≥ r j + pj − τij − si i, j = 1, . . . , n.

α, β ≥ 0

Let s be the number of feasible extreme points in K̃, and let (αl, βl) describe these
extreme points. We then get,

K̃(Q, D) = min
l=1,...,s

{Qαl + Dβl}

Denote the region of D where (αl, βl) is optimal, for a given Q, as ωl ∈ IRn
+. The

optimality regions ωl , for a given Q, can be characterized as

ωl(Q) = {D|Qαl + Dβl ≤ Qαi + Dβi , i = 1, . . . , s} , l = 1, . . . , s.

The expectation of K̃ can now be written as the sum of the s products of optimal
(αl, βl) and the probability of a random D-vector lying in the respective region ωl .

EK̃(Q, D) =
s∑

l=1

Pr (D ∈ ωl) (Qαl + Dβl)

From which it follows that

∂ EK̃
∂Q

=
s∑

l=1

Pr (D ∈ ωl) αl

Using linear programming duality yields

∂ EK
∂Q

= ∂ EK̃
∂Q

=
s∑

l=1

Pr (D ∈ ωl) αl

Pr(D ∈ ωl) can be found by integrating the demand density function over ωl . Thus
we can write the partial derivative of the stochastic program π as

∂π

∂ Qk
= −(ck − sk) +

s∑
l=1

αl

∫
· · ·

∫
ωl

f (D) dD , k = 1, . . . , n. (12)

With a characterization of αl and ωl for l = 1, . . . , s, we can characterize the
gradient of π exactly if we are able to calculate the integral of Eq. 12 exactly.
However, calculating these probability integrals analytically is usually either too
difficult or computationally too expensive. Also, the number of extreme points
increases exponentially as the number of locations increases. This makes the required
calculations for determining the optimal order quantity enormous as n increases. Re-
gardless of the complexity, we will in the next few sections show how to characterize
the optimal order quantities in the two, three and four location model, respectively,
in an analytical way.

Note that whether we find the optimality regions and corresponding dual in terms
of the primal (K) or dual (K̃) problem, is a matter of taste. While the dual problem
gives a direct insight into the partial derivatives, the primal problem is clearer and
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easier to understand. Since we are interested in characterizing analytical solutions
for an already complex stochastic linear programming problem, we will for clarity
reasons use the primal problem K to find the optimality conditions in this paper.

3 Transshipments with Two Locations

We will now look at the basic two location model as an introduction to more complex
versions of the transshipment problem.

In general, we want to map any demand realization onto a corresponding
transshipment matrix T, given cost parameters and order quantities, in order to
determine the expectation of the K program. To achieve this, we would like to have
a general way of solving the linear program (by considering different cases of the cost
parameters) instead of solving large sets of similar linear programming problems.

Due to the optimality of the complete pooling policy, the transshipments will
be completely determined by the order quantity and realized demand for a two
location model. From Tagaras [19] we have that the formal expressions of the optimal
transshipments Tij (i �= j), can be characterized as follows

if ∀i Di ≤ Qi then Tij = 0 (13)

if ∀i Di ≥ Qi then Tij = 0 (14)

if Di < Qi and Dj > Q j

then Tij = min(Qi − Di, Dj − Q j) and T ji = 0 (15)

While Tij (i �= j) depends on the cost parameters for more than two locations, Tii

does not. The amount sold of own inventory, Tii, will of course always equal the
minimum of the demand and the order quantity at the location.

Tii = min(Di, Qi) i = 1, . . . , n

For given order quantities, Eqs. 13, 14, and 15 divides the possible demand
realizations into six different regions, each of which corresponds to an optimal
characterization of transshipments for that region. The graphical representation of
the six optimal regions (Ei ,i = 1, . . . , 6) resulting from Eqs. 13, 14, and 15, are
depicted in Figure 1. Note that for simplicity, the events defined in any section of
this paper are specified only for the model of that section. The expectation of the K
program can now be found by weighting the expectation of the transshipments by
the probability that the demand realization will fall into the corresponding region.

By deriving the partial derivative of expected transshipments and determining the
first order conditions, the optimal order quantity can be characterized by

Pr(Di < Qi) − (r j + pj − τij − si)

ri + pi − si
Pr(Di < Qi < Di + Dj − Q j)

+ (ri + pi − τ ji − s j)

ri + pi − si
Pr(Di + Dj − Qi < Q j < Dj) = ri + pi − ci

ri + pi − si

for i, j = 1, 2; i �= j
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Figure 1 Optimality regions
of a two location model given
order quantity Q.
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(see [18]). In words, Eq. 16 shows how the optimal order quantity Qi trades off the
expected marginal benefit with the marginal cost (r.h.s.) at location i, while adjusting
for the possibility of transshipping inventory to location j (second term l.h.s.) or
receiving inventory from location j (third term l.h.s.).

Robinson [17] shows how to find the optimal order quantity for the case of two
locations and non-identical cost parameters. However, he also claims that this can
not be done for more than two locations. The motivation for this paper is mainly to
show how to find the optimal order quantities for three and four locations as well.

4 Transshipments with Three Locations

The problem of how much to transship in a general multiple location model with
non-identical cost parameters will be determined by the cost parameters as well
as the inventory level and realized demand. We define the optimal transshipment
policy for three locations in Section 4.1. In Section 4.2 we find the formal expressions
for the transshipment policy, while we in Section 4.3 use these expressions to find a
characterization of the optimal inventory choices.

4.1 Optimal Transshipment Policy

Let us name the event of Di < Qi as + (surplus inventory) and the event of Di >

Qi as − (shortage inventory). The following table illustrates the possible different
transshipment structures, given order quantities and demand realizations, for three
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locations. The table also shows the corresponding positive transshipments that may
occur.

Structure Qi Q j Qk Tii Tij Tik T ji T jj T jk Tki Tkj Tkk

1 − − − Tii 0 0 0 T jj 0 0 0 Tkk

2 + − − Tii Tij Tik 0 T jj 0 0 0 Tkk

3 + + − Tii 0 Tik 0 T jj T jk 0 0 Tkk

4 + + + Tii 0 0 0 T jj 0 0 0 Tkk

For each of the different transshipment structures we want to characterize the
optimal transshipments given any order quantity and demand realization. Note that
all of the locations in structure 1 have a shortage inventory, while they all have a
surplus inventory in structure 4. This means that there will be no transshipments
between the locations for these transshipment structures (this follows from the
complete pooling assumptions). For transshipment structures 2 and 3 there is a
maximum of two positive transshipments Tij (i �= j) in an optimal allocation. These
transshipments will depend on the cost parameters. For notational convenience, let
aij be defined as the net income from transshipping from location i to j: aij = r j +
pj − τij − si, 1 ≤ i, j ≤ n. The following lemma will help us determine the optimal
transshipment policy for the three location model. Note that the term greedy in this
paper will be addressed to the cost parameters aij. For each greedy choice of aij it is
assumed that transshipment Tij either will yield the surplus inventory at location i to
become zero, or be equal to the shortage inventory at location j.

Lemma 1 Consider a given order quantity Q ∈ IRn
+ and demand realization D ∈

IRn
+ that results in a transshipment structure containing maximally one shortage or

maximally one surplus inventory location. The optimal transshipment policy of the
corresponding K(Q, D) program will then be in the form of a greedy allocation.

Proof Due to the complete pooling assumptions it follows that it is neither profitable
to transship between two shortage inventory locations nor between two surplus
inventory locations. However, it will always be profitable to transship from a surplus
to a shortage inventory location. The proof follows then trivially due to the structure
of the problem. ��

Proposition 1 The optimal transshipment policy in a two and three location model
is in the form of a greedy allocation.

Proof Follows from Lemma 1 and the fact that any given order quantity and demand
realization in the two and three location model results in a transshipment structure
with maximum one shortage or maximum one surplus inventory location. ��

4.2 Formal Expressions of the Transshipment Policy

Given cost parameters and an order quantity vector Q, we can now define a
mapping G from the set of arbitrary demand vectors {D} to the set of transshipment
matrices {T}, G : IR3

+ → IR3x3
+ . Define also the mapping g from demand {D} to a
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Table I The relevant cost
structures for T13 in Events 2
and 3

Event 2 Event3

a13 > a12 a13 > a23

a13 < a12 a13 < a23

general transshipment {T13}, g : IR3
+ → IR+. For ease of analysis and without loss of

generality, only the mapping g will be explicitly characterized in our further analysis.
In order for T13 not to be zero we must have D1 < Q1 and D3 > Q3. This leaves

us with the events of D2 > Q2 and D2 < Q2 which corresponds to transshipment
structures 2 and 3, and are defined as Events 2 and 3, respectively.

T

2     2

3     31     11     1 3     3

2     2

T

T

 T

  D   > Q

D   > Q

 D  < QD   > Q

    13

12

      13

    23

D   < Q

D   < Q

 2

3

Event 2 Event 3

1 1

2

3

In both of the events there will be two cost structures of relevance for T13 which
is shown in Table I. The mapping g can then be characterized as follows

Event 2: D1 < Q1, D2 > Q2, D3 > Q3

a13 > a12 : T13 = min(Q1 − D1, D3 − Q3) (16)

a13 < a12 : T13 = min((Q1 + Q2 − D1 − D2)
+, D3 − Q3) (17)

Event 3: D1 < Q1, D2 < Q2, D3 > Q3

a13 > a23 : T13 = min(Q1 − D1, D3 − Q3) (18)

a13 < a23 : T13 = min((D2 + D3 − Q2 − Q3)
+, Q1 − D1) (19)

For other order quantities and demand realizations there will be no transship-
ments between location 1 and 3, T13 = 0, regardless of cost structures.

Figure 2 divides the demand realizations into regions of shortage and surplus in-
ventory for each of the three locations. Correspondingly, Figure 3 divides the region
of demand realizations into total shortage and total surplus inventory for any two
locations, and for all three locations. The graphical representation from combining
the three planes of Figure 2 and the four planes of Figure 3 will characterize the
different optimality regions of demand realizations D that maps into a corresponding
transshipment matrix T. in such a way that they cover IR3

+ without overlap. Note that
the only interesting region for the mapping g is the region above and below the bold
dashed rectangle in Figure 2. These are namely the regions of Events 2 and 3.

4.3 Optimal Inventory Choices

In order to characterize the first order conditions of the π program we find the
expectations of the transshipments, and then derive the partial derivatives of the ex-
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Figure 2 Three of seven
planes of significance in the
mapping G : IR3+ → IR3x3+ .
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Figure 3 Four of seven planes of significance in the mapping G : IR3+ → IR3x3+ .
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pectations of the transshipments. These expressions will then be used to characterize
the conditions for the optimal order quantity.

4.3.1 Expectations and Derivatives of Transshipments

The expression for an optimal transshipment T13 is (as shown in the previous section)
dependent on the cost structure, the order quantity and the realization of demand.
Define T̂ij as the expected value of Tij given optimal allocations of transshipments
in the second stage program K, T̂ij = E(Tij). The different cost structures that are
relevant to T̂13, are found by combining the cost structures for T13 from Events 2 and
3. In order to characterize T̂13, we divide our analysis into the following four possible
cases of cost structures.

Cost structure Event 2 Event 3

γ1 a13 > a12 a13 > a23

γ2 a13 > a12 a13 < a23

γ3 a13 < a12 a13 > a23

γ4 a13 < a12 a13 < a23

We find T̂13 by summing the expectations of the different possible optimal
transshipments of T13, weighted with the corresponding probability for a demand
realization to fall into the respective regions, ωl , which makes the different possible
transshipment of T13 optimal, in other words

T̂13 =
s∑

l=1

Pr(D ∈ ωl)E(T13|D ∈ ωl)

While the optimal transshipments are characterized in Eqs. 16, 17, 18, and 19,
Table II characterizes the corresponding regions of optimality. The events of Table II
are all subevents of Events 2 and 3 from Section 4.2 and is derived from Eqs. 16, 17, 18
and 19. To simplify notation in further analysis let Q̄i = Qi − Di and D̄i = Di − Qi.

T̂13 and its partial derivatives for cost structures γi (1 ≤ i ≤ 4) are put into
Table III. The optimality regions for T13 for each of the cost structures are also shown
in Table III. In order to describe how the expressions in Table III were found, we will
look closer at the analysis for cost structure γ2. Due to the complexity of the figures

Table II Events used to determine the expectations of T13 for three locations

Event Description

E2.1 D1 + D3 < Q1 + Q3, D1 < Q1, D2 > Q2, D3 > Q3

E2.2 D1 + D3 > Q1 + Q3, D1 < Q1, D2 > Q2, D3 > Q3

E2.3 D1 + D2 + D3 < Q1 + Q2 + Q3, D1 < Q1, D2 > Q2, D3 > Q3

E2.4 D1 + D2 + D3 > Q1 + Q2 + Q3, D1 + D2 < Q1 + Q2, D1 < Q1, D2 > Q2, D3 > Q3

E3.1 D1 + D3 < Q1 + Q3, D1 < Q1, D2 < Q2, D3 > Q3

E3.2 D1 + D3 > Q1 + Q3, D1 < Q1, D2 < Q2, D3 > Q3

E3.3 D1 + D2 + D3 < Q1 + Q2 + Q3, D2 + D3 > Q2 + Q3, D1 < Q1, D2 < Q2, D3 > Q3

E3.4 D1 + D2 + D3 > Q1 + Q2 + Q3, D1 < Q1, D2 < Q2, D3 > Q3
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Figure 4 Regions of optimality for transshipment T13 given cost structure γ2 : a13 > a12, a13 < a23
illustrated in the two dimensional plane (D2, D3) with D1 = 0.

in Table III we illustrate the case γ2 graphically in two dimensions (D2, D3) with
D1 = 0 in Figure 4 (see Table III for a three dimensional figure). There are only four
events where T13 > 0 for cost structure γ2, and these are depicted in Figure 4. The
optimal transshipments from the events of Figure 4 can be found from Eqs. 16 and
19. We can then write T̂13 for cost structure γ2 as

T̂13 = Pr(E2.1)E(D̄3|D ∈ E2.1) + Pr(E2.2)E(Q̄1|D ∈ E2.2)

+ Pr(E3.3)E(D̄2 + D̄3|D ∈ E3.3) + Pr(E3.4)E(Q̄1|D ∈ E3.4) (20)

The partial derivative of T̂13 with respect to Q1 can then be expressed as

∂ T̂13

∂ Q1
= Pr(E2.2) + Pr(E3.4)

An increase in Q1 affects T̂13 under cost structure γ2 by increasing T13 by the same
amount under events E2.2 and E3.4 and leaving T13 unchanged under all other events,
including E2.1 and E3.3.

From Table III we can see, as would be expected, that ∂ T̂13
∂ Q1

and ∂ T̂13
∂ Q3

are strictly

positive and negative respectively regardless of cost parameters. ∂ T̂13
∂ Q2

is very much

depending on the cost parameters. Table III shows that ∂ T̂13
∂ Q2

varies from strictly
positive to strictly negative depending on the cost parameters.
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4.3.2 Characterization of Optimal Inventory Choices

The partial derivative of the π program can be written as

∂π

∂ Qk
= −ck + sk + (rk + pk − sk) Pr(Dk > Qk)

+
3∑

i=1

3∑
j=1,i �= j

(r j + pj − τij − si)
∂ T̂ij

∂ Qk
for k = 1, 2, 3 (21)

where ∂ T̂ij

∂ Qk
(i, j, k = 1, 2, 3) depends on the given cost parameters and can be found

by generalizing the partial derivatives expressions of Table III. By rearranging and
equating Eq. 21 to zero, we can now characterize the conditions for the optimal order
quantity of the π program as

Pr(Dk < Qk) −
3∑

i=1

3∑
j=1,i �= j

(r j + pj − τij − si)

rk + pk − sk

∂ T̂ij

∂ Qk
= rk + pk − ck

rk + pk − sk

for k = 1, 2, 3 (22)

Note that there is a parallel between Eq. 22 and the well known newsvendor model.
In the latter model there are no transshipments allowed and the optimal order
quantity for location i can be expressed as Eq. 23.

Pr(Dk < Qk) = rk + pk − ck

rk + pk − sk
(23)

In order to make some comparison remarks between Eqs. 22 and 23, we will first
rewrite Eq. 22 in full length.

Pr(Dk < Qk) − (ri + pi − τki − sk)

rk + pk − sk

∂ T̂ki

∂ Qk
− (r j + pj − τkj − sk)

rk + pk − sk

∂ T̂kj

∂ Qk

− (rk + pk − τik − si)

rk + pk − sk

∂ T̂ik

∂ Qk
− (rk + pk − τ jk − s j)

rk + pk − sk

∂ T̂ jk

∂ Qk

− (r j + pj − τij − si)

rk + pk − sk

∂ T̂ij

∂ Qk
− (ri + pi − τ ji − s j)

rk + pk − sk

∂ T̂ ji

∂ Qk

= rk + pk − ck

rk + pk − sk
for i, j, k = 1, 2, 3 i �= j �= k (24)

When we compare Eqs. 23 and 24, we can see that Eq. 24 is only an adjustment of
Eq. 23. By generalizing the partial derivatives of Table III, it is clear that the second
and third term of Eq. 24 will be strictly positive regardless of cost parameters. This
means that Qk will be adjusted up due to the possibility of sending transshipments
to location i and j. Likewise, the fourth and fifth term on the left hand side of Eq. 24
will be strictly negative, thus adjusting Qk down due to the possibility of receiving
transshipments from locations i and j. The sixth and seventh term will either have no
affect on Qk or adjust Qk up or down depending on the cost structure. These latter
terms will reflect the impact on Qk due to the possibility of making transshipments
between locations i and j. For a cost structure corresponding to γ4 the sign of the



J Math Model Algor (2007) 6:47–75 63

sixth and seventh term will be dependent on the relative size of the order quantities
as well.

The resulting inventory level from our transshipment model will normally be
closer to the expected demand realization compared to the newsvendor model. This
is due to the possibility of transshipments between the locations. Instead of each
location depending solely on their own warehouse, with the extra costs this incurs
(more often surplus and shortage inventory), they all have a common pool to draw
upon.

5 Transshipments with Four Locations

We will now take a further step and look at the case of four locations where the
inventory choices at each location are centrally coordinated. The motivation for this
analysis is to provide insight into the analytical solution of more general systems
where the optimal allocation of transshipments is not necessarily in a greedy form.

We define the optimal transshipment policy of the four location model in
Section 5.1 and look at the optimality of a greedy allocation of transshipments.
In Section 5.2 we define the formal expressions of the transshipment policy, while
we in Section 5.3 make some remarks on how to characterize the conditions of the
optimal order quantity.

5.1 Optimal Transshipment Policy

The table below illustrates the different transshipment structures that may arise in
the four location model for any given order quantity and demand realization.

Structure Qi Q j Qk Ql

1 − − − −
2 + − − −
3 + + − −
4 + + + −
5 + + + +

Note that there are no surplus inventory (+) locations for transshipment struc-
ture 1, likewise there are no shortage inventory (−) locations for transshipment
structure 5. Also note that there is only one location with a surplus inventory for
transshipment structure 2, while there is only one location with a shortage inventory
for transshipment structure 4. It then follows from Lemma 1 that a greedy allocation
of transshipments will be optimal for transshipment structures 1, 2, 4 and 5.

We will concentrate on transshipment structure 3 where a greedy allocation of
transshipments is not necessarily optimal. In this structure we have two surplus and
two shortage inventory locations. The K program have 16 unknown transshipments.
When considering transshipment structure 3, this can be reduced to four unknowns.
Without loss of generality, let Q be determined and D realized such that D1 <
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Q1, D2 < Q2, D3 > Q3 and D4 > Q4. The related K program can then be written
as

max
Tij

2∑
i=1

4∑
j=3

aijTij

subject to

T13 + T14 ≤ Q̄1 (25)

T23 + T24 ≤ Q̄2 (26)

T13 + T23 ≤ D̄3 (27)

T14 + T24 ≤ D̄4 (28)

Tij ≥ 0 , i = 1, 2 j = 3, 4

where Q̄i and D̄i is defined as in Section 4.3. The K program has a very useful
characteristic that will be presented without formal proof in the following lemma
due to its simplicity.

Lemma 2 The constraints (9) of the K program that are bounded above by the
order quantity Q, will be active in optimum in the event of total shortage inventory(∑4

i=1 Di >
∑4

i=1 Qi

)
. Likewise, the constraints (10) that are bounded above by

the demand realizations D, will be active in optimum in the event of total surplus

inventory
(∑4

i=1 Di <
∑4

i=1 Qi

)
.

Proof From the complete pooling assumptions it follows that it will be optimal
to make transshipments until either there are no shortage or no surplus inventory
locations left. ��

This observation will be very useful in order to determine the optimal transship-
ment policy for transshipment structure 3. The idea is to first characterize one of
the transshipments in an optimal allocation. Then we can characterize an adjacent
transshipment as well based on Eqs. 25, 26, 27 and 28 and Lemma 2. This will reduce
the problem to a three location problem.

Note that the only difference between the analysis of the total surplus and total
shortage inventory, is which constraints that are binding in optimum. Therefore we
will in our further analysis regarding transshipment structure 3 only focus on the
event of total surplus inventory. This is because the same approach can be used to
characterize similar results in the case of total shortage inventory.

Proposition 2 Given order quantities and demand realizations Di < Qi, Dj <

Q j, Dk > Qk, Dl > Ql and
∑4

i=1 Di <
∑4

i=1 Qi with the corresponding cost structure
|aik − a jk| > |ail − a jl| and a jk > aik, we will then in the optimum of the related K
program have T jk = min(Q̄ j, D̄k) (i, j, k, l = 1, . . . , 4; i �= j �= k �= l).

Proof (by contradiction) Assume, without loss of generality, the following order
quantities and demand realizations: D1 < Q1, D2 < Q2, D3 > Q3, D4 > Q4 and
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∑4
i=1 Di <

∑4
i=1 Qi with the following cost structure: |a13 − a23| > |a14 − a24| and

a23 > a13. Assume then that z is an optimal solution to K with T23 < min(Q̄2, D̄3).

z =
2∑

i=1

4∑
j=3

aijTij , where T23 < min(Q̄2, D̄3)

Consider then the feasible solution z̄ constructed from z

z̄ =
2∑

i=1

4∑
j=3

aijT̄ij , where T̄23 = min(Q̄2, D̄3)

We want to construct z̄ such that z̄ > z thus contradicting our assumption. In order
to maintain the feasibility of z̄ when we increase T23 by δ1 we have to reduce T13 by
δ1. Also to ensure feasibility we have to reduce T24 by δ2 and increase T14 by δ2. Due
to the notation that the constraints bounded above by the demand realization D will
be active in optimum in the event of total surplus inventory, we can write

z̄ − z = −a13δ1 + a23δ1 + a14δ2 − a24δ2

= δ1(a23 − a13) + δ2(a14 − a24) ,−δ1 ≤ δ2 ≤ δ1 > 0 (29)

Note that we have δ1 = T̄23 − T23 > 0, while we in order to maintain feasibility
have −δ1 ≤ δ2 ≤ δ1. Since |a13 − a23| > |a14 − a24|, a23 > a13 and −δ1 ≤ δ2 ≤ δ1 it
follows that z̄ ≥ z, which implies that we will have T23 = min(Q̄2, D̄3) in an optimal
solution. ��

Assume Di < Qi, Dj < Q j, Dk > Qk, Dl > Ql ,
∑4

i=1 Di <
∑4

i=1 Qi and we were
to transship one unit from location i to location k. This transshipment would result in
an income of aik, but also in an opportunity loss of a jk since the demand at location
k will be reduced by one unit. Define this difference in potential income due to a
shortage inventory at location k as dk = |aik − a jk| and the corresponding difference
for location l as dl = |ail − a jl|. Note that dk and dl is defined as the differences
between the corresponding cost parameters of the respective binding constraints,
Tik + T jk = Dk and Til + T jl = Dl , of the related K program. In words, Proposition
2 then says that there exists a solution of the related K program where it is optimal to
transship as much as possible (min(Q̄ j, D̄k)) in the transshipment corresponding to
the greatest cost parameter (a jk > aik) in the greatest difference of potential income
(dk > dl).

Proposition 3 An optimal transshipment policy for transshipment structure 3 of the
four location model (given a total surplus inventory), is to use Proposition 2 to deter-
mine one of the transshipments, and then determine the remaining transshipments
in a greedy manner.

Proof Proposition 2 will characterize an optimal transshipment of the form
min(Q j, Dk). The related K program can then be reduced to a three location model
where a greedy solution is always optimal (follows from Proposition 1). ��



66 J Math Model Algor (2007) 6:47–75

5.1.1 Optimality of a Greedy Allocation of Transshipments

The complexity of the π program increases significantly when the number of lo-
cations increases. For more than four locations the optimal transshipment policy
is not known, thus one has to use some kind of heuristic. Herer et al. [9] reports
a solution time of their heuristic of between two and three hours for up to seven
locations. This heuristic is a gradient search based heuristic where they use Infini-
tesimal Perturbation Analysis (IPA) in order to estimate the gradient in each step.
Basically this means that they are solving a huge number of transshipment problems
(corresponding to our K program) in every gradient step. By characterizing the
conditions on the cost structure for when a greedy allocation of transshipments is
optimal, the solution time would be dramatically reduced for these cases. In fact,
every transshipment problem in every gradient step can then be solved in linear
time by sorting the cost parameters once. Note also that in the cases where the cost
structure does not satisfy the necessary conditions, a greedy allocation might still be
optimal depending on the order quantities and demand realizations. We are thus
interested in determining the optimality of a greedy allocation. The analytical insight
obtained could then be used to develop efficient heuristics for large size problems.
First we introduce some notation.

Definition 1 If a jk > aik and a jl > ail , location j are said to dominate location i in the
event of Di < Qi, Dj < Q j, Dk > Qk, Dl > Ql and

∑4
i=1 Di <

∑4
i=1 Qi.

Given Di < Qi, Dj < Q j, Dk > Qk, Dl > Ql and
∑4

i=1 Di <
∑4

i=1 Qi, consider
the following cost structures

Case φ: Neither of the surplus inventory locations dominates.
Case χ : One of the surplus inventory locations dominates.

The shortage inventory location k with the greatest difference of potential
income, dk > dl , also have the greatest cost parameter of the related K
program, aik ∨ a jk = max{aik, ail, a jl, a jk}.

The characteristics of the two different cost structures and the terminology
introduced can be illustrated as shown in Figure 5. In cost structure φ, lines between
cost parameters corresponding to the same surplus inventory location are crossing.
This implies no domination (a jk > aik, a jl < ail). Accordingly for cost structure χ ,
lines do not cross, which implies domination (a jk > aik, a jl > ail). Also note for case
χ , that both the greater difference of potential income, dk, and the greatest cost
parameter, a jk, correspond to the same shortage inventory location k.

Proposition 4 Given Di < Qi, Dj < Q j, Dk > Qk, Dl > Ql and
∑4

i=1 Di <
∑4

i=1 Qi, a
greedy allocation is then optimal if and only if we have cost structures φ or χ or there
exists a dominating surplus inventory location that can satisfy the shortage inventory
of both location k and l.

Proof Assume, without loss of generality, the following order quantities and demand
realizations: Di < Qi, Dj < Q j, Dk > Qk, Dl > Ql and

∑4
i=1 Di <

∑4
i=1 Qi with the

corresponding cost structure: |aik − a jk| > |ail − a jl| and a jk > aik. For cost structure
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Figure 5 Graphical illustration of terminology.

φ we will have ail > a jl , else j will be dominating. Two cases can here be considered,
either a jk > ail or a jk < ail . For a jk > ail we have that a jk = max{aik, ail, a jl, a jk}. Then
it follows directly from Propositions 2 and 3 that a greedy allocation is optimal. For
a jk < ail we want to show that there exists an optimal solution with Til = min(Q̄i, D̄l).
We can then see from Propositions 2 and 3 and the independence between Til and T jk

due to no dominating location that a greedy solution will be optimal. Note that due
to Proposition 2 we can reduce the related K program into a three location problem.
If Q̄ j > D̄k we will have Til = min(Q̄i, D̄l) since ail > a jl . If Q̄ j < D̄k we will have
Til = min(Q̄i, D̄l) = D̄l due to the binding constraint Til + T jl = D̄l .

For cost structure χ we have a jl > ail and a jk > a jl . Since T jk will be the most
beneficial transshipment, it is trivial to see from Propositions 2 and 3 that a greedy
allocation is optimal for this cost structure.

For a dominating surplus inventory location j we have a jl > ail , and to rule out
cost structures χ we have a jk < a jl . A greedy allocation will be optimal as long as
the surplus inventory in location j covers the shortage inventory at locations k and l,
Q̄ j ≥ D̄k + D̄l , since T jk and T jl are the most beneficial transshipments for this cost
structure. For Q̄ j < D̄k + D̄l we will have T jl < D̄l , thus a greedy allocation will not
be optimal. ��

Note that by generalizing Proposition 4 and the corresponding result for the total
shortage inventory case, we have the necessary and sufficient conditions for a greedy
transshipment policy to be optimal in the four location model depending on the cost
structure as well as the order quantity and demand.

5.2 Formal Expressions of the Transshipment Policy

Given an order quantity Q ∈ IR4
+, we can characterize a mapping from an arbitrary

demand vector D ∈ IR4
+ to a transshipment matrix T4x4. Define x+ = max(x, 0). From

Propositions 2 and 3 and the corresponding results for the case of total shortage
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inventory, the optimal transshipment policy can be expressed as follows for the
various cost structures of relevance.

(a) If ∀i Di ≤ Qi then Tij = 0 i,j=1,2,3,4; i �= j
(b) If ∀i Di ≥ Qi then Tij = 0 i,j=1,2,3,4; i �= j
(c) If Di < Qi, Dj > Q j, Dk > Qk and Dl > Ql then for aij > aik > ail

Tij = min(Q̄i, D̄ j)

Tik = min(Q̄i − Tij, D̄k)

Til = min(Q̄i − Tij − Tik, D̄l)

(d) If Di < Qi, Dj < Q j, Dk > Qk, Dl > Ql and
∑4

t=1 Dt <
∑4

t=1 Qt then for aik >

a jk and ail < a jl

Tik = min(Q̄i, D̄k)

T jk = (D̄k − Qi)
+

T jl = min(Q̄ j, D̄l)

Til = (D̄l − Q j)
+

and for aik > a jk, ail > a jl and |aik − a jk| > |ail − a jl|

Tik = min(Q̄i, D̄k)

T jk = (D̄k − Qi)
+

Til = min(Q̄i − Tik, D̄l)

T jl = D̄l − Til

(e) If Di < Qi, Dj < Q j, Dk > Qk, Dl > Ql and
∑4

t=1 Dt >
∑4

t=1 Qt then for aik >

ail and a jk < a jl

Tik = min(Q̄i, D̄k)

Til = (Q̄i − Dk)
+

T jl = min(Q̄ j, D̄l)

T jk = (Q̄ j − Dl)
+

and for aik > ail , a jk > a jl and |aik − ail| > |a jk − a jl|

Tik = min(Q̄i, D̄k)

Til = (Q̄i − Dk)
+

T jk = min(Q̄ j, D̄k − Tik)

T jl = Q̄l − T jk
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(f) If Di < Qi, Dj < Q j, Dk < Qk and Dl > Ql then for ail > a jl > akl

Til = min(Q̄i, D̄l)

T jl = min(Q̄ j, D̄l − Til)

Tkl = min(Q̄k, D̄l − Til − T jl)

For (c)–(f) we have indexes i, j, k, l = 1, 2, 3, 4; i �= j �= k �= l.

The transshipments that are not explicitly defined in the various events are equal
to zero. There are no positive transshipment Tij (i �= j) in (a) and (b) because of
the complete pooling assumptions. Note that a greedy allocation will be optimal in
(c) and (f). For (d) and (e) the optimality of a greedy allocation will depend on the
given cost parameters, the order quantities and the demand realizations. Note also
that there are two different cost structures of relevance for determining the optimal
transshipments in both (d) and (e).

5.3 Optimal Inventory Choices

The optimal order quantity can be determined by solving the first order conditions
of the π program. In order to find the first order conditions of the π program we
can find the expectations of the transshipments and the corresponding gradients
with respect to Q as we did for the three location model. To get an insight of
the complexity for the four location model, Table IV shows the main events and
corresponding cost structures of relevance for T̂13. Note that each event must be
divided into sub-events in order to characterize the unique optimality regions of
interest. However, due to the large number of calculations required we will not go
any further here, only refer to the three location model regarding how to characterize
the optimal order quantity.

6 Transshipments with N Locations

By determining the optimal transshipment policy we have showed how to charac-
terize the optimal order quantity in an analytical manner for up to four locations
(given that we can calculate the probability integrals exactly). We have not been
able to determine the optimal transshipment policy for the most general setting
of n locations with unidentical cost parameters. In this general case an optimal
transshipment policy can be determined for some specific cost structures which will
be outlined in Section 6.1.

6.1 Restrictions on the Cost Parameters

In Proposition 5 below, we state the necessary and sufficient conditions on the cost
structure for a greedy algorithm to be optimal in the transshipment problem. This
result is particularly attractive because it will enable us to characterize the optimal
order quantity for some specific cost structure for the n location model, which has
not been possible before. Also, we will be able to identify for which cases the linear
programming problems in the gradient based heuristic can be solved in linear time.
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This means that there will exist order quantum and demand realizations such that a
greedy algorithm is not optimal given that the corresponding cost structure does not
satisfy the necessary and sufficient conditions.

The essential idea behind Proposition 5 stems from Monge [15] and was used by
Hoffman [10] to determine the corresponding conditions for the balanced (

∑
i Qi =∑

i Di) transshipment problem. We have extended these conditions to the unbal-
anced (

∑
i Qi �= ∑

i Di) transshipment problem.
There have been some approaches in determining a fast algorithm for the unbal-

anced case (see Aggarwal et al. [1] but these are in different ways depending on the
order quantity and demand at the locations. Blum et al. [2] have identified sufficient
conditions for which a greedy algorithm is optimal for a related unbalanced weighted
bipartite matching problem. In fact, it turns out that these conditions are equivalent
to those we find to be necessary and sufficient for an unbalanced transshipment
problem.

Proposition 5 The optimal transshipment policy for all order quantities and demand
realizations are in the form of a greedy allocation if and only if the indices of the cost
structure satisfy the following property

aij + ars ≥ ais + arj whenever max{aij, ars} ≥ max{ais, arj} (30)

Proof Assume we have a solution z = ∑
i

∑
j aijTij where aij is the maximum entry

in matrix A and where the corresponding transshipment variable Tij is less than the
maximal feasible value i.e. Tij < min(Qi, Dj). Consider then the feasible solution zn

where Tn
ij = min(Qi, Dj). We want to construct zn from z such that zn ≥ z.

Note first that in the cases of total surplus and total shortage inventory there will,
respectively, exist indices r �= i such that Trj = δ1 > 0 and s �= j such that Tis = ε1 > 0
(otherwise we will have Tij = min(Qi, Dj)).

Assume now that there exist indices r �= i and s �= j such that min(Trj, Tis) > 0 and
let α1 = min(Qi, Dj) − Tij. We can then construct the following feasible solution

T1
ij = Tij + min(δ1, ε1, α1)

T1
rj = Trj − min(δ1, ε1, α1)

T1
rs = Trs + min(δ1, ε1, α1)

T1
is = Tis − min(δ1, ε1, α1)

where T1
mn = Tmn for all other pairs of indices (m, n). Equation 30 then ensures that

z1 ≥ z. If T1
ij < min(Qi, Dj) and there still exist both indices r �= i such that T1

rj = δ2 >

0 and s �= j such that T1
is = ε2 > 0, we can construct z2 in a similar way as z1 such that

z2 ≥ z1 ≥ z. By continuing this way one of the following three cases will occur

(*) There is a total surplus inventory and there exists no index s �= j such that
Tn

is > 0, but there may exist indices r �= i such that Tn
rj > 0.

(**) There is a total shortage inventory and there exists no index r �= i such that
Tn

rj >= 0, but there may exist indices s �= j such that Tn
is > 0.

(***) Tn
ij = min(Qi, Dj).

We can then construct zn ≥ z in (*) by iteratively reducing the variable Trj (r �= i),
starting with the variables corresponding to the lower arj, and increase Tn

ij until
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Tn
ij = min(Qi, Dj). Keeping the other Tn

.. variables unchanged ensures that zn ≥
zn−1 ≥ . . . ≥ z (due to the second part of Eq. 30). An analogous argument can be
made for (**) as well.

Thus we have shown that among the possible optimal solutions for the trans-
shipment problem, there is one with the maximal feasible value possible on the
transshipment variable corresponding to the maximal entry of the cost matrix A,
i.e., zn ≥ z where Tn

ij = min(Qi, Dj) when aij = maxm,n{amn}.
This will reduce our N location problem to an N − 1 location problem. Because

the conditions stated in Eq. 30 are hereditary (by deleting the entries of the
“reduced” location from the cost matrix), we can use induction on N to complete
the proof.

The “only if” part of Proposition 5 is trivial to see from the construction of our
proof. Note that the optimality of Tij = min(Qi, Dj) when aij = maxm,n{amn} is only
ensured if we have Eq. 30 in the unbalanced case. Otherwise a “cycle”-procedure
can easily be used to show that there will exist Q,D such that Tij < min(Qi, Dj) in
optimum. ��

Think of aij + ars and ais + arj as the larger and smaller diagonal of the correspond-
ing 2-2 submatrix of a cost matrix A. In words Proposition 5 then says that the larger
diagonal of any 2-2 submatrix has to contain the largest entry of that submatrix in
order for a greedy algorithm to be optimal.

It can be shown that if a (rearranged) cost matrix satisfies something called
the Monge property (which is the property needed for the balanced transshipment
problem), the cost structure in addition has to satisfy a linear ordering of the locations
in order for a greedy algorithm to be optimal. This ordering is such that all surplus
inventory locations will rank the shortage inventory locations in the same order,
and all shortage inventory locations will rank the surplus inventory locations in
the same order. If the cost matrix has the Monge property but does not have this
linear ordering among the locations, then a greedy algorithm will not necessarily
be optimal. The optimality will then depend on the order quantities and demand
realizations as well.

6.1.1 Special Cases

In the case of general revenue ri, salvage si and penalty costs pi but identical
transshipment cost τij = τ , we will have aij + ars = ais + arj as can be seen from
Eqs. 31 and 32

aij + ars = r j + pj − τ − si + rs + ps − τ − sr

= r j + rs + pj + ps − 2τ − si − sr (31)

ais + arj = rs + ps − τ − si + r j + pj − τ − sr

= r j + rs + pj + ps − 2τ − si − sr (32)

Due to Proposition 5 a greedy transshipment policy will therefore be optimal for
the case of identical transshipment costs since the resulting cost structure will satisfy
Eq. 30.

Cost structures with identical transshipment costs across the locations will be
relevant in many real life settings. A large company with a number of stores sited
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in a greater city will most likely have a contract with a local delivery service where
the transshipment costs can be considered as constant and therefore identical across
the locations. Note that for this setting, it would probably be plausible to also assume
identical revenue, penalty and salvage costs as well, due to the close proximity of
the locations. However for settings where transshipments are made by an overnight
delivery service to a greater area, the assumption of identical transshipment costs
will be much more plausible than the assumption of identical revenue, penalty
and salvage costs. Note also that the transshipment costs are generally very small
compared to for instance the revenue value. In practice, the transshipment costs can
therefore for some settings be considered identical across the locations.

For some settings where the transshipment costs in fact are unequal across the
locations, the differences often stem from the different handling costs of physically
sending or receiving the products at the store. In these settings you can model
the transshipment costs as τij = ui + v j + w where ui and v j respectively can be
interpreted as the physical costs of sending and receiving at the store while w can
be seen as the approximately identical cost of moving the product for an overnight
delivery service. It can easily be shown that these cost structures satisfy Eq. 30 since
we also for these cases will have aij + ars = ais + arj. It follows then from Proposition
5 that a greedy transshipment policy will be optimal.

7 Future Work

A natural extension of this work is to utilize the analytical insight for small dimen-
sions gained in this paper, to develop efficient heuristics for large size problems. Note
that for large size problems you would use a gradient search procedure with a huge
number of transshipment problems to be solved in every gradient step. Thus, the
solution time would be dramatically reduced if we for instance were to use a greedy
transshipment policy. This is because every transshipment problem in every gradient
step could be solved in linear time by sorting the entries of the cost matrix once.

It would also be of interest to compare the performance of a gradient search
heuristic based on a greedy allocation of transshipments in our K program versus
an optimal allocation. Even though the latter heuristic in expectation would perform
strictly better, it might not justify the significant increase in solution time. Also, the
greedy based heuristic would be capable of solving much larger problems.

8 Conclusions

In this paper, we consider a multi-location inventory system where transshipments
are allowed as recourse actions in order to reduce the costs of surplus or shortage
inventory after demand are realized. We have presented a new formulation for this
problem which is simpler and more intuitive while it still incorporates all of the
complexities of previous models for this problem (see [17] and [18]). Our bipartite
transportation network formulation has enabled us to gain analytical insight into
problems of higher dimensions than has been achieved earlier. We have charac-
terized the conditions for the optimal order quantities for three locations, which
previously only has been done for the two location model in the case of general cost
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parameters. We have also shown how to characterize the corresponding conditions
for the four location model by determining the optimal transshipment policy and
using the same approach as for the three location model. For the n location model
we have presented an optimal transshipment policy for some specific cost structures
that will enable us to characterize the optimal order quantity for these settings as
well.

The insight gained from the analytical results lead us to examine the optimality
conditions of a greedy transshipment policy. We have stated that this heuristic
will be optimal for the two and three location model. For the four location model
we have characterized the conditions for which the heuristic is optimal. The main
advantage of the greedy heuristic is its simplicity. There will be no memory problems,
as opposed to using very large linear programming problems, and of course it will
be much faster. The greedy heuristic can therefore be an alternative for models
where a large number of locations and demand samples (to approximate the demand
distribution) are considered.
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