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Abstract. Multiple Classifier Systems (MCSs) allow evaluation of the uncertainty of classification

outcomes that is of crucial importance for safety critical applications. The uncertainty of

classification is determined by a trade-off between the amount of data available for training, the

classifier diversity and the required performance. The interpretability of MCSs can also give useful

information for experts responsible for making reliable classifications. For this reason Decision

Trees (DTs) seem to be attractive classification models for experts. The required diversity of MCSs

exploiting such classification models can be achieved by using two techniques, the Bayesian model

averaging and the randomised DT ensemble. Both techniques have revealed promising results

when applied to real-world problems. In this paper we experimentally compare the classification

uncertainty of the Bayesian model averaging with a restarting strategy and the randomised DT

ensemble on a synthetic dataset and some domain problems commonly used in the machine

learning community. To make the Bayesian DT averaging feasible, we use a Markov Chain Monte

Carlo technique. The classification uncertainty is evaluated within an Uncertainty Envelope

technique dealing with the class posterior distribution and a given confidence probability.

Exploring a full posterior distribution, this technique produces realistic estimates which can be

easily interpreted in statistical terms. In our experiments we found out that the Bayesian DTs are

superior to the randomised DT ensembles within the Uncertainty Envelope technique.

Mathematical Subject Classifications (2000): 68U35, 68T37, 65C05, 65C60.

Key words: uncertainty, ensemble technique, decision tree, Bayesian classification, Markov Chain

Monte Carlo.

1. Introduction

The uncertainty of Multiple Classifier Systems (MCSs) used for safety-critical

applications, such as medical diagnostics, air traffic control, etc., is of crucial

importance. In general, uncertainty is a triple trade-off between the amount of data
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available for training, the classifier diversity and the classification accuracy [1–5].

The interpretability of classifiers can also give useful information to experts

responsible for making reliable classifications. For this reason Decision Trees

(DTs) seem to be attractive classification models for experts [1, 4].

The required diversity of a MCS can be achieved by using two approaches, an

averaging technique based on Bayesian Markov Chain Monte Carlo (MCMC)

search methodology [1–3] and an ensemble technique [4, 5]. Both techniques

have revealed promising results when applied to some real-world problems [1–5].

The main idea of using DT classification models is to recursively partition data

points in an axis-parallel manner. Such models provide natural feature selection

and uncover the most important features for the classification. The resultant DT

classification models are easily interpretable by users.

By definition, DTs consist of splitting and terminal nodes, which are also

known as tree leaves. DTs are said to be binary if the splitting nodes ask a specific

question and then divide the data points into two disjoint subsets, say the left or the

right branch. The terminal node assigns all data points falling in that node to a class

of majority of the training data points reached this terminal node. Within a

Bayesian framework, the class posterior distribution is calculated for each terminal

node [1–3].

Breiman et al. [1] have given the Bayesian generalisation of tree models

required to evaluate the posterior distribution. Recently Denison et al. [3] have

suggested a MCMC technique for evaluating the posterior distribution of DTs.

This technique performs stochastic sampling from the posterior distribution.

In this paper we compare the classification uncertainty of the Bayesian DT

technique with a restarting strategy, and the randomised DT ensemble technique,

on a synthetic dataset and some domain problems commonly used in the machine

learning community. The classification uncertainty is evaluated within an Uncer-

tainty Envelope dealing with the class posterior distribution and a given confidence

probability as described in [6]. By estimating the consistency of MCS outputs on

the given data, the Uncertainty Envelope produces estimates of the classification

uncertainty which can be easily interpreted in statistical terms. Using this

evaluation technique in our experiments, we found that the Bayesian DT tech-

nique is superior to the randomised DT ensemble technique.

In Sections 2 and 3 we describe the randomised and Bayesian DT techniques

which are used in our experiments. Then in Section 4 we briefly describe the

Uncertainty Envelope technique used for comparison of the uncertainty of the

two classification techniques. The experimental results are presented in Section 5,

and Section 6 concludes the paper.

2. The Bayesian Decision Tree Technique

In this section we present the Bayesian DT technique based on MCMC search

methodology. We then discuss the difficulties of searching the posterior distribu-

tion, which can be resolved within the restarting strategy of the MCMC technique.
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2.1. BAYESIAN DECISION TREES

In general, the predictive distribution we are interested in is written as an integral

over parameters Q of the classification model:

p yjx;Dð Þ ¼
ZZZZ

�

p yjx; Q;Dð Þp QjDð ÞdQ ð1Þ

where y is the predicted class (1, . . . , C ), x = (x1, . . . , xm) is the m-dimensional

input vector, and D denotes the given training data.

The integral (1) can be analytically calculated only in simple cases. In

practice, part of the integrand in (1), which is the posterior density of Q

conditioned on the data D, p(Q |D), cannot usually be evaluated. However if

values Q(1), . . . , Q(N) are drawn from the posterior distribution p(Q |D), we can

write

p yjx;Dð Þ �
XXXXXN

i¼1

p yjx; QðiÞ;D
� �

p QðiÞ
���D

� �
¼ 1

N

XXXXN

i¼1

p yjx; QðiÞ;D
� �

: ð2Þ

This is the basis of the MCMC technique for approximating integrals [3]. To

perform the approximation, we need to generate random samples from p(QªD)

by running a Markov Chain until it has converged to a stationary distribution.

After this we can draw samples from this Markov Chain and calculate the

predictive posterior density (2).

Let us now define a classification problem presented by data (xi, yi), i = 1, . . . ,

n, where n is the number of data points and yi Z {1, . . . , C} is a categorical

response. Using DTs for classification, we need to determine the probability 8ij

with which a datum x is assigned by terminal node i = 1, . . . , k to the jth class,

where k is the number of terminal nodes in the DT. Initially we can assign a (C j

1)-dimensional Dirichlet prior for each terminal node so that p(88i |Q) =

DiCj1(88i |�), where 88i = (8i1, . . . , 8iC), Q is the vector of DT parameters, and

� = (�1, . . . , �C) is a prior vector of constants given for all the classes.

The DT parameters are defined as Q = (si
pos, si

var, si
rule), i = 1, . . . , k j 1, where

si
pos, si

var and si
rule define the position, predictor and rule of each splitting node,

respectively. For these parameters the priors can be specified as follows. First we

can define a maximal number of splitting nodes, say, smax = n j 1, so si
pos

Z

{1, . . . smax}. Second we draw any of the m predictors from a uniform discrete

distribution U(1, . . . , m) and assign si
var

Z {1, . . . , m}. Finally the candidate

value for the splitting variable xj = si
var is drawn from a uniform discrete

distribution U(xj
(1), . . . , xj

(N)), where N is the total number of possible splitting

rules for predictor xj, either categorical or continuous.

Such priors allow the exploring of DTs which partition data in as many ways

as possible, and therefore we can assume that each DT with the same number of
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terminal nodes is equally likely [3]. For this case the prior for a complete DT is

described as follows:

p Qð Þ ¼
Yk�1

i¼1

p srule
i jsvar

i

� �
p svar

i

� �( )
p s

pos
if gk�1

1

� �
: ð3Þ

For a case when there is knowledge of the favoured structure of the DT,

Chipman et al. [2] suggested a generalisation of the above prior – they assume the

prior probability of further split of the terminal nodes to be dependent on how

many splits have already been made above them. For example, for the ith

terminal node the probability of its splitting is written as

psplit ið Þ ¼ + 1þ dið Þ�%; ð4Þ

where di is the number of splits made above i and +, % Q 0 are given constants.

The larger %, the more the prior favours Bbushy’’ trees. For % = 0 each DT with

the same number of terminal nodes appears with the same prior probability.

Having set the priors on the parameters 88 and Q, we can determine the

marginal likelihood for the data given the classification tree. In the general case

this likelihood can be written as a multinomial Dirichlet distribution [3]:

p DjQð Þ ¼ * !Cf g
*fð!ÞgC

" #kYC
i¼1

QC
j * mij þ !j

� �
ni þ

PC
j¼1 !j

� �; ð5Þ

where ni is the number of data points falling in the ith terminal node of which mij

points are of class j and * is a Gamma function.

To grow large DTs from real-world data, Chipman et al. [2] and Denison et al.

[3] suggest exploring the posterior probability by using the following types of

moves.

� Birth. Randomly split the data points falling in one of the terminal nodes

by a new splitting node with the variable and rule drawn from the cor-

responding priors.
� Death. Randomly pick a splitting node with two terminal nodes and assign it

to be one terminal with the united data points.
� Change-split. Randomly pick a splitting node and assign it a new splitting

variable and rule drawn from the corresponding priors.
� Change-rule. Randomly pick a splitting node and assign it a new rule drawn

from a given prior.

The first two moves, birth and death, are reversible and change the dimen-

sionality of Q as described in [7]. The remaining moves provide jumps within the

current dimensionality of Q. Note that the change-split move is included to make
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Blarge’’ jumps which potentially increase the chance of sampling from a

maximal posterior whilst the change-rule move does Blocal’’ jumps.

For the birth moves, the proposal ratio R is written

R ¼ q QjQ 0ð Þp Q 0ð Þ
q QjQ 0ð Þp Qð Þ ; ð6Þ

where the q(QªQ0) and q(Q0ªQ) are the proposed distributions, Q0 and Q are (k + 1)

and k-dimensional vectors of DT parameters, respectively, and p(Q) and p(Q0) are

the probabilities of the DT with parameters Q and Q0:

p Qð Þ ¼
Yk�1

i¼1

1

N svar
ið Þ

1

m

( )
k

Sk

1

K
; ð7Þ

where N(si
var) is the number of possible values of si

var which can be assigned as a

new splitting rule, Sk is the number of ways of constructing a DT with k terminal

nodes, and K is the maximal number of terminal nodes, K = n j 1.

For binary DTs, as given from graph theory, the number Sk is the Catalan

number [8] written as follows:

Sk ¼
1

k þ 1

2k

k

� �
; ð8Þ

and we can see that for k Q 25 this number becomes astronomically large,

Sk Q (4.8)12.

The proposal distributions are as follows

q QjQ0ð Þ ¼ dkþ1

DQ
0
; ð9Þ

q Q0jQð Þ ¼ bk

k

1

N svar
k

� � 1

m
; ð10Þ

where DQ1 = DQ + 1 is the number of splitting nodes whose branches are both

terminal nodes.

Then the proposal ratio for a birth is given by

R ¼ dkþ1

bk

k

DQ1

Sk

Skþ1

: ð11Þ

The number DQ1 in (11) is dependent on the DT structure and it is clear that

DQ1 < k O k = 1, . . . , K. Analysing (11), we can also assume dk + 1 = bk. Then

letting the DTs grow, i.e., k Y K, and considering Sk + 1 > Sk, we can see that the

value of R Y c, where c is a constant lying between 0 and 1.
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Alternatively, for the death moves the proposal ratio is written as

R ¼ bk

dk�1

DQ

k � 1ð Þ
Sk

Sk�1

: ð12Þ

We can see that under the assumptions considered for the birth moves, R Q 1.

The DTs grow very quickly during the first burn-in samples because an

increase in log likelihood value for the birth moves is much larger than that for

the others. For this reason almost every new partition of data is accepted. Once a

DT has grown the change moves are accepted with a very small probability and,

as a result, the MCMC algorithm tends to get stuck at a particular DT structure

instead of exploring all possible structures.

Because DTs are hierarchical structures, the changes at the nodes located at

the upper levels can significantly change the location of data points at the lower

levels. For this reason there is a very small probability of changing and then

accepting a DT located near a root node. Therefore the MCMC algorithm

collects the DTs in which the splitting nodes located far from a root node were

changed. These nodes typically contain small numbers of data points.

Subsequently, the value of log likelihood is not changed so much, and such

moves are usually accepted. As a result, the MCMC algorithm cannot explore a

full posterior distribution.

One way to extend the search space is to restrict DT sizes during a given

number of the first burn-in samples as described in [3]. Indeed, under such a

restriction, this strategy gives more chances of finding DTs of a smaller size

which could be competitive in term of the log likelihood values with the larger

DTs. The restricting strategy, however, requires setting up in an ad hoc manner

the additional parameters such as the size DTs and the number of the first burn-in

samples. Sadly, in practice, it often happens that after the limitation period the

DTs grow quickly again and this strategy does not improve the performance.

Alternatively to the above approach based on the explicit limitation of DT

size, the search space can be extended by using a restarting strategy as Chipman

et al. have suggested in [2].

2.2. THE RESTARTING STRATEGY

The idea behind the restarting strategy is based on multiple runs of the MCMC

search algorithm with short intervals of burn-in and post burn-in. For each run,

the MCMC creates an initial DT with the random parameters and then starts

exploring the tree model space. Running short intervals prevents the DTs from

getting stuck at a particular DT structure. More important, however, is that the

multiple runs allow exploring of the DT model space starting with very different

DTs. So, averaging the DTs over all such runs, we can improve the performance

of the MCMC search algorithm.
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The restarting strategy, as we see, does not limit the DT sizes explicitly as

does the restricting strategy. For this reason the restarting strategy seems to be

the more principled, and thus we use this strategy in our further experiments on

comparing the performance with the randomised DT technique which is briefly

described next.

3. The Randomised Decision Tree Ensemble Technique

Performance of a single DT can be improved by averaging the outputs of an

ensemble of DTs [2]. Improvement is achieved if most of the DTs can correctly

classify the data points misclassified by a single DT. The required diversity of the

classifier outcomes is thought to be achieved if the DTs involved in an ensemble

are independently induced from data. To achieve the required independence,

Dietterich has suggested randomising the DT splits [5]. In this technique the best,

in terms of information gain, 20 partitions for any node are calculated and one of

these is randomly selected with uniform probability. The class posterior

probabilities are calculated for all the DTs involved in an ensemble and then

averaged.

A pruning factor, specified as a minimal number of data points allowed to fall in

the terminal nodes, can affect the ensemble performance. However, within the

randomised DT technique, this effect is insignificant when pruning does not

exceed 10% of the number of the training examples [5]. More significantly the

pruning factor affects the average size of the DTs, and consequently it has to be

set reasonably.

The number of the randomised DTs in the ensemble is dependent on the

classification problem and assigned by a user in an ad hoc manner. This tech-

nique permits the user to evaluate the diversity of the ensemble by comparing the

performances of the ensemble and that of the best DT on a predefined validation

data subset. The required diversity is achieved if the DT ensemble outperforms

the best single DTs involved in the ensemble. Therefore, this ensemble technique

requires splitting the whole dataset into training, validation and test subsets [4,

5]. In our experiments described in Section 5 we used the above randomised DT

ensemble technique. For all the domain problems the ensembles consist of 200

DTs. To keep the size of the DT acceptable, the pruning factor is set to be

dependent on the number of the training examples. In particular, its value is set

to 30 for problems with many training examples; otherwise it is 5 (in all cases

this is less than the 10% level). The performance of the randomised DT

ensembles is evaluated on 5 folds for each problem.

4. The Uncertainty Envelope Technique

In general, the MCSs described in the above Sections 2 and 3 consist of

classifiers trained independently. In such a case, we can naturally assume that the
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inconsistency of the classifiers on a given datum x is proportional to the uncer-

tainty of the MCS. Let the value of class posterior probability P(cj|x) calculated

for class cj be an average over the class posterior probability P(cj|Ki, x) given on

classifier Ki:

P cj

��x� �
¼ 1

N

XN

i¼1

P cj

��Ki; x
� �

; ð13Þ

where N is the number of classifiers in the ensemble.

As classifiers K1, . . . , KN are independent each other and their values P(cj|Ki,

x) range between 0 and 1, the probability P(cj|x) can be approximated as

follows

P cj

��x� �
� 1

N

XN

i¼1

I yi; tijxð Þ; ð14Þ

where I(yi, ti) is the indicator function assigned to be 1 if the output yi of the ith

classifier corresponds to target ti, and 0 if it does not.

The larger number of classifiers, N, the smaller is error of the approximation

(14). For example, when N = 500, the approximation error is equal to 1%, and

when N = 5000, it becomes equal to 0.4%.

It is important to note that the right side of equation (14) can be considered

as a consistency of the outcomes of MCS. Clearly, values of the consistency,

+ ¼ 1
N

PN
i¼1

I yi;tijxð Þ; lie between 1/C and 1.

Analysing equation (14), we can see that if all the classifiers are degenerate,

i.e., P(cj|Ki, x) Z {0, 1}, then the values of P(cj|x) and + become equal. The

outputs of classifiers can be equal to 0 or 1, for example, when the data points of

two classes do not overlap. In other cases, the class posterior probabilities of

classifiers range between 0 and 1, and the P(cj|x) � +. So we can conclude that

the classification confidence of an outcome is characterised by the consistency of

the MCS calculated on a given datum. Clearly, the values of ã are dependent on

how representative the training data are, what classification scheme is used, how

well the classifiers were trained within a classification scheme, how close the

datum x is to the class boundaries, how the data are corrupted by noise, and

so on.

Let us now consider a simple example of an MCS consisting of N = 1000

classifiers in which 2 classifiers give a conflicting classification on a given datum

x to the other 998. Then consistency + = 1 j 2/1000 = 0.998, and we can

conclude that the MCS was trained well and/or the data point x lies far from the

class boundaries. It is clear that for new datum appearing in some neighbourhood

of the x, the classification uncertainty as the probability of misclassification is

expected to be 1 j + = 1 j 0.998 = 0.002. This inference is truthful for the

neighbourhood within which the prior probabilities of classes remain the same.
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When the value of + is close to +min = 1/C, the classification uncertainty is highest

and a datum x can be misclassified with a probability 1 j + = 1 j 1/C.

From the above consideration, we can assume that there is some value of

consistency +0 for which the classification outcome is confident, that is the

probability with which a given datum x could be misclassified is small enough to

be acceptable. Given such a value, we can now specify the uncertainty of

classification outcomes in statistical terms. The classification outcome is said to

be confident and correct, when the probability of misclassification is acceptably

small and + Q +0.

Additionally to the confident and correct output, we can specify a confident

but incorrect output referring to a case when almost all the classifiers assign a

datum x to a wrong class whilst + Q +0. Such outcomes tell us that the majority of

the classifiers fail to classify a datum x correctly. The confident but incorrect

outcomes can happen for different reasons, for example, the datum x could be

mislabelled or corrupted, or the classifiers within a selected scheme cannot

distinguish the data x properly.

The remaining cases for which + < +0 are regarded as uncertain classifications.

In such cases the classification outcomes cannot be accepted with a given

confidence probability +0 and the MCS labels them as uncertain.

Figure 1 gives a graphical illustration for a simple two-class problem formed

by two Gaussian N(0, 1) and N(2, 0.75) for variable x. As the class probability

distributions are given, an optimal decision boundary can be easily calculated in

this case. For a given confident consistency +0, the integration over the class

posterior distribution gives boundaries B1 and B2 within which the outcomes of

the MCS are assigned within the Uncertainty Envelope technique to be confident

and correct (CC), confident but incorrect (CI) or uncertain (U). If a decision

Figure 1. Uncertainty Envelope characteristics for an example of two-class problem.
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boundary within a selected classification scheme is not optimal, the classification

error becomes higher than a minimal Bayes error. So, for the Bayesian classifier

and a given consistency +0, the probabilities of CI and U outcomes on the given

data are minimal as depicted in Figure 1.

The above three characteristics, the confident and correct, confident but

incorrect, and uncertain outcomes, seem to provide a practical way of evaluating

different types of MCSs on the same data sets. Comparing the ratios of the data

points assigned to be one of these three types of classification outcomes, we can

quantitatively evaluate the classification uncertainty of the MCSs. Depending on

the costs of types of misclassifications in real-world applications, the value of the

confidence consistency +0 should be given, say, equal to 0.99.

Next, we compare the performance of the Bayesian and randomised DT

ensembles within the described Uncertainty Envelope technique on some syn-

thetic and real-world datasets.

5. Experiments and Results

In this section we describe the results on the experimental comparison of two

techniques, the Bayesian DT technique with the restarting strategy and the

randomised DT ensemble technique. The experiments were conducted on a

synthetic dataset, and then on some domain problems from the UCI Machine

Learning Repository [9]. The performance of these MCSs is evaluated within the

Uncertainty Envelope technique described in the above section.

5.1. EXPERIMENTS WITH THE SYNTHETIC DATA

In these experiments we use a two-dimensional synthetic problem, in order to

visualise the decision boundaries and data points. The problem was generated by

a mixture of five Gaussians. The data points drawn from the first three Gaussians

belong to class 1 and the data points from the remaining two Gaussians to class

2. The mixing weights >ij and kernel centres mij of these Gaussians for class 1

and class 2 are

All these kernels have isotropic covariance: Si = 0.03I. Such a mixture of the

kernels is an extended version of the Ripley data [10].

In our case the training data contain 250 and the test data 1000 data points

drawn from the above mixture. Because the classes overlap, the Bayes error on

Class 1: Class 2:

>11 = 0.16, m11 = (1.0, 1.0), >21 = 0.25, 221 = (j0.3, 0.7),

>12 = 0.17, m12 = (j0.7, 0.3), >22 = 0.25, 222 = (0.4, 0.7)

>13 = 0.17, m13 = (0.3, 0.3).
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the test data is 9.3%. The data points of the two classes denoted by the crosses

and dots are depicted in Figure 2. The Bayesian decision boundary is shown here

by the dashed line. Both the Bayesian and randomised DT ensemble techniques

were run on these synthetic data with the pruning factor pmin set equal to 5.

5.1.1. Performance of the Bayesian Decision Trees

The Bayesian DT technique with the restarting strategy was run 50 times; each

time 2000 samples were taken for burn-in and 2000 for post burn-in. The

probabilities of birth, death, change variable, and change rule were 0.1, 0.1, 0.1,

and 0.7, respectively. The sample rate was set to 1. Priors on the number of nodes

in DTs were set uniform. The uniform prior allows the DTs to grow by making

birth moves while the proposed DT parameters made within the pmin are

available.

Figure 3 depicts the samples drawn from the log likelihood calculated for DTs

accepted during the burn-in and post burn-in phases for all the 50 runs. The total

number of samples was 105. From this figure we can see that during the burn-in

phase the values of log likelihood quickly converge to a stable value at about

j40, and during the post burn-in they randomly fluctuate around this value. This

means that the MCMC stochastic sampling works well. The acceptance rates

during the burn-in and post burn-in phases were equal to 0.47.

The middle plots in Figure 3 depict the samples of DT size drawn during the

burn-in and post burn-in. The bottom plots depict the distributions of the DTs

over the number of DT nodes. The mean and variance values of DT nodes were

12.4 and 2.5, respectively.

Figure 2. Synthetic data points belonging to 2 classes. The dashed and solid lines depict

the class boundaries calculated for the Bayesian rule and Bayesian DTs, respectively.
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Diversity of the classifiers is one of the important characteristics determining

the quality of Bayesian averaging over classification models. The diversity of the

Bayesian DTs can be presented by the posterior distribution of the DTs accepted

during post burn-in. The top plot in Figure 4 shows such a distribution calculated

in our experiments on the synthetic data.

As we can see from the above distribution, the diversity of the DTs is very

large because their number is more than 8000. These DT models were sorted on

the number of splitting nodes. At the bottom plot of Figure 4 we can see that the

number of nodes is monotonically increasing from 6 up to 23. Analysing the

distribution we can observe that the posterior weights of the DTs decrease when

the number of splitting nodes increase. That is, the Bayesian MCMC technique

explored the smaller DTs more frequently.

Table I lists the parameters of the first 20 DT models accepted during post

burn-in with the highest posterior weights. These parameters are the path of

features used for partitions beginning with a DT root and the number of nodes in

DT. We can see that a DT which involves the features in an order 2-1-1-1-2-2-1-

1-1 has a maximal posterior weight.

The resultant classification accuracy of the Bayesian DTs was 87.6% with 2A
interval equal 0.6%. The rates of confident and correct, uncertain, and confident

Figure 3. Synthetic data: samples of log likelihood and DT size during burn-in and post

burn-in. The bottom plots are the distributions of DT sizes.
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but incorrect outcomes were 63.3%, 34.4% and 2.3%, respectively. The 2A
intervals for these estimates had widths 15.7%, 20.1%, and 2.9% respectively.

The decision boundary averaged over the Bayesian DTs is shown by the solid

line in Figure 2 above. We can see that there are some regions in which the

average decision boundary does not fit to the data as well as the Bayesian rule

depicted by the dashed line.

5.1.2. Performance of the Randomised Decision Tree Ensemble

On the synthetic data, the ensemble output quickly converges and stabilizes after

averaging approximately 100 DTs. As an example, Figure 5 depicts the con-

vergence of the ensemble outputs over the 5 folds.

During the averaging, the ensemble output converges to a stable value

quickly. Figure 6, for example, depicts the performances of the ensemble, single

and the best DT selected on the validation subset on the 5th fold. In this figure,

the bold line marked Pe is the performance of the DTs averaged within the

ensemble, the thin line marked Ps is the performance of a single DT, and the

dashed line marked Ps|v is the performance of the best DT on the validation

subset. As we can see, the ensemble performance, Pe, becomes stable after

Figure 4. Synthetic data: distribution of the accepted DTs sorted out on the number of

nodes.

BAYESIAN AND RANDOMISED DECISION TREE ENSEMBLES 409



averaging 130 DTs and its value stays higher than that of the best DT, Ps|v,

selected on the validation subset.

The distribution of DTs over the number of splitting nodes is shown in

Figure 7. This distribution was calculated on all 5 folds. The average size of DTs

and the standard deviation were 32.9 and 3.3, respectively.

Figure 5. Synthetic data: performance of the DT ensemble over 5 folds.

Table I. The first 20 DT models accepted during post burn-in with the highest posterior weights

# Path of features Number of nodes in DT Posterior weights

1 211122111 9 0.002

2 21112211 8 0.002

3 212212111 9 0.002

4 21221211111 11 0.002

5 2112222 7 0.002

6 212211111 9 0.002

7 21121212222 11 0.002

8 22121121 8 0.002

9 211122112 9 0.001

10 22121112 8 0.001

11 2112221 7 0.001

12 211222 6 0.001

13 22211111 8 0.001

14 2212211 7 0.001

15 2121112 7 0.001

16 2121212112 10 0.001

17 2122121111 10 0.001

18 211112121 9 0.001

19 21122222 8 0.001

20 2222111 7 0.001
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The averaged classification performance was 87.1%. Within the Uncertainty

Envelope, the rates of confident and correct, uncertain, and confident but

incorrect outcomes were 78.9%, 9.8%, and 11.3%, respectively. The widths of

2A intervals for these estimates were 34.9%, 43.7%, and 8.9%, respectively. We

can see that the values of these intervals are very large. This happens because the

randomised DT ensemble technique gives the outcomes with a very high rate of

Figure 7. Synthetic data: distribution of DTs over the number of splitting nodes over the 5

folds.

Figure 6. Synthetic data: performances of the randomised DT ensemble, as well a single

DT and the best DT selected on the validation subset on the 5th fold.
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uncertain classifications on some of the folds. In other words this technique is not

stable enough.

5.1.3. Comparison of Performances

Comparing the experimental results on the synthetic data, we can see that both

techniques provide the same performance in terms of the classification accuracy

on the test data. However, the size of Bayesian DTs is, on average, in one-third

the size of the randomised ensemble. Meanwhile within an Uncertainty Envelope

technique, the Bayesian averaging over DTs provides more reliable estimates of

the classification uncertainty than the averaging over the randomised DTs: as we

can see, the variances of the confident and correct and confident but incorrect

outcomes calculated by the Bayesian model averaging technique are significantly

less than those calculated by the ensemble averaging technique: 15.7%, 20.1%,

and 2.9% versus 34.9%, 43.7%, and 8.9%, respectively. In other words, the

Table II. The data characteristics and performance of the best single DTs

Data Data characteristics Perform, %

C M train test

Ionosphere 2 33 200 151 88.8 T 8.0

Wisconsin 2 9 455 228 96.1 T 1.7

Image 7 19 210 2100 87.4 T 4.4

Votes 2 16 391 44 93.9 T 3.1

Sonar 2 60 138 70 70.7 T 7.8

Vehicle 4 18 564 282 69.0 T 4.5

Pima 2 8 512 256 77.3 T 1.2

Table III. Performances of the randomised DT ensembles within the Uncertainty Envelope at the

confidence probability level 0.99

Data DT size Perform, % Uncertainty Envelope, %

Correct Uncertain Incorrect

Ionosphere 21.2 T 1.3 94.4 T 0.7 76.5 T 35.8 7.0 T 44.4 16.5 T 18.4

Wisconsin 32.7 T 1.5 97.7 T 1.2 96.7 T 7.9 1.4 T 9.2 1.9 T 1.8

Image 27.9 T 1.3 94.2 T 0.9 86.1 T 33.0 6.5 T 37.9 7.4 T 7.9

Votes 27.1 T 3.6 95.2 T 1.4 94.3 T 5.8 1.1 T 7.2 4.5 T 2.1

Sonar 17.8 T 0.8 78.3 T 5.5 54.9 T 40.6 9.6 T 60.5 35.6 T 31.8

Vehicle 115.8 T 3.2 71.9 T 2.2 63.8 T 31.0 8.8 T 50.2 27.4 T 20.1

Pima 33.6 T 4.0 80.2 T 2.4 66.7 T 47.0 14.6 T 65.3 18.7 T 19.6
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Bayesian DT technique provides more stable classification outcomes than the

randomised DT ensemble technique.

5.2. EXPERIMENTS WITH THE UCI MACHINE LEARNING DEPOSITORY DATASETS

In these experiments we used the 7 domain problems taken from the UCI

Machine Learning Repository [9]. Table II lists the names and characteristics of

these problems, here C, m, train, and test are the numbers of classes, the number

of input variables, the number of training and test examples, respectively. This

table also provides the performances of the best single DTs on the validation

datasets.

The performances of the randomised DT ensemble technique within the

Uncertainty Envelope technique are shown in Table III. From this table we can

see first that the randomised DT ensembles always outperform the best single

DTs. Second the 2A intervals calculated for the confident correct and incorrect

outcomes are very large on the Ionosphere, Image, Sonar, Vehicle, and

Pima problems.

Likewise, Table IV lists the performances of the Bayesian DTs. From this

table we can see that first the performances in terms of classification accuracy on

the test data are nearly the same excluding the Wisconsin and Sonar problems on

which the Bayesian DT ensembles slightly out-perform the randomised DT

ensembles. The Bayesian DTs are smaller on average than those of the

randomised ensemble by a factor of 2.4.

From Table IV we can see that the variances of the confident and correct as

well as the confident but incorrect outcomes calculated by the Bayesian DTs are

significantly less than those calculated by the randomised DT ensembles. This

means that the Bayesian DT technique is capable of providing more stable

classification outcomes than the randomised DT ensemble technique.

The above discrepancies between the classification rates of the two DT

techniques might arise because the randomised technique needs some portion of

Table IV. Performances of the Bayesian DTs with a restarting strategy within the Uncertainty

Envelope at the confidence probability level 0.99

Data DT size Perform, % Uncertainty Envelope, %

Correct Uncertain Incorrect

Ionosphere 12.8 T 3.2 95.3 T 0.6 12.1 T 5.2 87.3 T 6.8 0.6 T 0.8

Wisconsin 12.4 T 1.4 99.1 T 0.8 81.3 T 2.7 18.3 T 4.4 0.3 T 0.7

Image 14.9 T 2.8 94.3 T 0.3 23.3 T 1.4 76.6 T 4.9 0.0 T 0.0

Votes 12.0 T 2.1 95.4 T 1.2 53.5 T 12.3 44.0 T 12.5 2.5 T 2.2

Sonar 10.2 T 1.9 81.4 T 3.1 2.2 T 1.0 97.8 T 2.7 0.0 T 0.0

Vehicle 45.3 T 3.9 69.9 T 3.5 2.9 T 1.7 96.9 T 1.3 0.2 T 0.5

Pima 12.2 T 2.0 79.7 T 1.7 33.5 T 6.3 62.1 T 6.5 4.4 T 1.9
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data to validate the performance of the DT ensemble as described in Section 3.

Such a need reduces the amount of data available for training DTs and for this

reason the resultant performance of the randomised DT ensemble may be

affected. In contrast, the Bayesian DT technique does not require validating and

uses the whole data for training. Obviously, running the randomised and Bayesian

DT ensemble techniques on the same portion of data could eliminate such a

negative effect and make the comparison of classification uncertainties more

accurate. So, in our further experiments the randomised DT technique, using the

previously found parameters, runs on the whole data without validation. These

experiments aim to compare the classification uncertainties of the two DT

techniques run under different values of the given confidence probability.

In our previous experiments conducted with a given confidence probability of

0.99, both techniques provide rather similar average classification accuracy

although the Bayesian DTs provide narrower intervals around the average values

than the randomised DTs. Clearly, adjusting the confidence probabilities can give

us additional information about comparison of the classification uncertainty of

the two techniques. In particular, by gradually increasing confidence probability

in our experiments on the Wisconsin Data, the classification uncertainty rates are

changed as depicted in Figure 8.

Figure 8. Wisconsin data: the classification uncertainty rates versus the values of

confidence probabilities gamma for the randomised (the top plots) and Bayesian (the

bottom plots) DT techniques.
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In Figure 8, the top plots present the error bars calculated for estimates of

confident and correct, uncertain, and confident but incorrect classifications made

by the randomised DTs versus values of the confidence probability, gamma,

increasing from 0.9 to 1.0 in steps of 0.001. Likewise, the lower plots present the

error bars calculated for the confident and correct, uncertain, and confident but

incorrect classifications made by the Bayesian DTs. These bars were calculated

for 2A intervals within the 5 fold cross-validation.

Comparing the above results, we can see that both techniques provide rather

similar averaged rates calculated for confident but incorrect classifications. In

addition, the 2A intervals calculated for all the three rates are also similar.

However, comparing the averaged rates of confident and correct as well as of

uncertain classifications, we can see that for gamma increasing from 0.9 to 0.995

the Bayesian DT technique provides better results than the randomised

technique. These experiments suggest that the Bayesian technique outperforms

the randomised technique in terms of classification uncertainty even when these

techniques use the same portion of data for training.

Both the randomised and the Bayesian DT ensemble techniques require

relatively high computational expenses and for this reason further investigations

are ongoing. We hope to report results on these investigations in the future.

6. Conclusion

We have experimentally compared the classification uncertainty of the Bayesian

DT technique sampling posterior using MCMC with a restarting strategy and the

randomised DT ensemble technique on an artificial data as well as on the

Machine Learning Repository problems. The ensemble techniques both outper-

form the best single DTs and have rather similar average classification accuracy

on the test datasets. However, the Bayesian ensembles make far fewer confident

but incorrect classifications. This is clearly a very desirable property for multiple

classifier systems applied to safety-critical problems for which confidently made,

but incorrect, classifications may be fatal.
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