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Abstract. Enhancements to two exact algorithms from the literature to solve the vertex P -center
problem are proposed. In the first approach modifications of some steps are introduced to reduce
the number of ILP iterations needed to find the optimal solution. In the second approach a simple
enhancement which uses tighter initial lower and upper bounds, and a more appropriate binary search
method are proposed to reduce the number of subproblems to be solved. These ideas are tested
on two well known sets of problems from the literature (i.e., OR-Lib and TSP-Lib problems) with
encouraging results.
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1. Introduction

The P -center problem (also known as the minimax problem) is to locate P facil-
ities and assign clients to them so as to minimise the maximum distance between
a client and the facility to which it is assigned. This well known location problem,
which was first introduced by Hakimi [7, 8], has several applications including the
location of emergency facilities such as ambulance stations and firehouses. There
are several possible variations of the basic model. If facility locations are restricted
to the nodes of the network, the problem is referred to as a vertex center problem.
Center problems which allow facilities to be located anywhere on the network
are known as absolute center problems. Both versions can be either weighted or
unweighted. In the weighted problem, the distances between demand nodes and
facilities are multiplied by a weight usually associated with the demand node. As
an example, the weight might represent the population or the importance of a node.
In the unweighted problem, all demand nodes are treated equally.

To formulate the vertex P -center problem, we define:

I = set of demand nodes, I = {1, . . . , N},
J = set of candidate facility sites, J = {1, . . . M},
dij = distance between demand node i ∈ I and candidate site j ∈ J ,

P = number of facilities to be located,
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wj =
{

1 if a facility is located at candidate site j ∈ J ,

0 otherwise,

Yij =




1 if demand node i ∈ I is assigned to an open facility at candidate
site j ∈ J ,

0 otherwise,

D = maximum distance (or time) between a demand node and the nearest

facility (D is also referred to as the covering distance or time).

The binary linear programming formulation of the vertex P -center problem is
as follows:

Minimise D (1)

subject to:∑
j∈J

Yij = 1 ∀i ∈ I, (2)

Yij � wj ∀i ∈ I, j ∈ J, (3)∑
j∈J

wj = P, (4)

D �
∑
j∈J

dijYij ∀i ∈ I, (5)

wj, Yij ∈ {0, 1} ∀i ∈ I, j ∈ J. (6)

The objective function (1) minimises the maximum distance between each de-
mand node and its closest open facility. Constraint (2) ensures that each demand
node is assigned to exactly one facility, while constraints (3) restrict demand nodes
to be assigned to open facilities. Constraint (4) stipulates that P facilities are to
be located. Constraints (5) define the maximum distance between any demand
node i and the nearest facility at node j . Finally, constraints (6) refer to integrality
constraints.

For fixed values of P , the vertex P -center problem can be solved in polynomial
time. This can be done by evaluating each of the O(Np) possible combinations
of P facility sites. Evaluating each of these can be done in polynomial time [3]
though it may take a considerable amount of CPU time. For variable values of P ,
the P -center problem is NP-hard [10].

Different authors have used an auxiliary problem (e.g., the Set Covering Prob-
lem; SCP) to solve the P -center problem optimally. The objective of the SCP is
to find the minimum number of facilities and their locations so that each demand
point has to be served by a facility within a specified maximum response time (or
distance) which can be referred to as radius. The solution to this problem can be
easily found by solving its linear programming relaxation with occasional branch
and bound applications. However, for large problems the size of the relaxed version
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of the SCP can be reduced using successive row and column reductions (see [3] for
more discussion of such reduction rules). This idea is to find the smallest radius
such that the optimal solution of the considered auxiliary problem yields a feasible
solution to the P -center problem. Initially, Minieka [11] suggested a rudimentary
algorithm that relies on solving a finite sequence of Set Covering Problems. The
idea is to choose a threshold distance (covering distance) as radius and to check
whether all demand points (customers) are covered within this radius using no
more than P facilities. Based on Minieka’s idea, Daskin [3] developed an algorithm
to solve this problem optimally using the bisection method that systematically
reduces the gap between the upper and lower bounds of the optimal solution and
hence finds the optimal covering distance. Also, Daskin [4] and Elloumi, Labbe
and Pochet [5] proposed two efficient and exact algorithms for the vertex P -center
problem. Both algorithms solve successive subproblems and rely on carrying out an
iterative search over coverage distances rather than sets of facility locations. Daskin
has formulated a maximum set covering subproblem and solved it by Lagrangian
relaxation, whereas Elloumi et al. used Minieka’s subproblems and solved it by
a greedy heuristic and the IP formulation of the subproblem. Ilhan and Pinar [9]
proposed an interesting exact solution method for the vertex P -center problem.
Their method is composed of two phases. The first phase, called the LP-Phase,
computes a lower bound to the optimal solution of the problem by solving a series
of feasibility problems based on a LP formulation. The second phase, referred to as
the IP-Phase, uses also feasibility problems to check whether or not it is possible
to serve all customers with no more than P facilities within a given radius.

In this study we introduce some modifications to the algorithms of Ilhan and
Pinar [9] and Daskin [3]. As these two algorithms are used as a basis in this work,
their respective formulations will be given in the next sections.

The remainder of this paper is organized as follows. In Section 2 we present
the algorithm of Ilhan and Pinar [9] and propose our modifications. In Section 3
the algorithm of Daskin [3] is given followed by our enhancement scheme. Our
computational results for each modification are provided in Section 4 and Section 5
summarises our findings and points out some research issues.

2. Ilhan and Pinar [9] Algorithm

Ilhan and Pinar developed an interesting 2-phase approach to solve the vertex P -
center problem optimally using the following feasibility formulation for a specific
covering radius, R. They refer to the problem as IP:∑

j∈J

bijwj � 1 ∀i ∈ I, (7)

∑
j∈J

wj � P, (8)

wj ∈ {0, 1} ∀j ∈ J, (9)
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where I , J and wj, j ∈ J , are defined as in Section 1, and bij is calculated as
follows:

bij =
{

1 if dij � R, ∀i ∈ I , j ∈ J ,

0 otherwise.

In the first phase, the LP relaxation for the above problem is solved for a given
R. Note that LP feasibility problem which is used in the first phase is similar to
the IP feasibility problem, except that the integrality constraints (9) are relaxed and
replaced by:

0 � wj � 1 ∀j ∈ J. (10)

Observation. Ilhan and Pinar noted a crucial and useful observation that has
led to the success of their algorithm. For instance, if the solution is not feasible
for the relaxed IP, then obviously there is no need to solve the IP problem. The
smallest value of R for which the relaxed IP is feasible is then used as the starting
covering radius (say R0), in the second phase. Starting from this lower bound (R0),
a series of IP feasibility problems with different R values for the radius are solved
(R � R0). As R is integer the optimal solution will be reached in a limited number
of iterations.

In other words, if the solution is infeasible for a specific radius R, the value of
R needs to be increased until the corresponding (IP) becomes feasible. According
to the algorithm (see Step 7 in Figure 1) the value of R is increased to the next
minimum distance that is greater than R. This process continues until feasibility
is reached and hence the current value of R represents the optimal solution of the
vertex P -center problem. The full algorithm is given in Figure 1 where Phase 1
consists of the first 5 steps and Phase 2 represents Steps 6 and 7.

2.1. TWO MODIFICATIONS OF THE ALGORITHM

We propose two changes in the algorithm, the first one is based on Step 5 and the
other uses Steps 6 and 7 (in Phase 2 of the algorithm).

Modification of Step 5

In Step 5, the resetting of the radius (R) to the lower bound if the LP formulation is
feasible does not, in our views, takes advantage of the usefulness of the observation
cited earlier, because we know already that the LP formulation at this value of
lower bound is infeasible (from Step 3). In other words, we can guarantee that the
IP formulation (Step 7) will be systematically infeasible if its corresponding LP
one is found infeasible in Step 3, and hence such an implementation will always
require one wasted ILP iteration. To overcome this drawback we reset R to the
upper bound if the LP formulation is infeasible (as given in the algorithm) and
keep R unchanged otherwise. Our new Step 5 can be written as follows:
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–Phase1 (Solving the LP relaxation)–

Step 1. Set L = min{dij : ∀i ∈ I, j ∈ J } and

U = max{dij : ∀i ∈ I, j ∈ J }.
Step 2. Calculate R =

⌊
(U + L)

2

⌋
If dij � R then set bij = 1, else set bij = 0.

Step 3. Solve the LP relaxation of (IP)

If the LP relaxation is not feasible then set L = R, else set U = R.

Step 4. Calculate (U − L).

If (U − L) � 1 then go to Step 5, else go to Step 2.

Step 5. If the LP relaxation is not feasible then set R = U , else set R = L.

–Phase2 (Solving the LP problem)–

Step 6. If dij � R then set bij = 1, else set bij = 0.

Step 7. Solve the IP problem.

If the IP problem is feasible then stop (R is the optimal solution), else
set R = min{dij : dij > R, ∀i ∈ I, j ∈ J } and go to Step 6.

Figure 1. The original algorithm of Ilhan and Pinar [9].

Step 5 (new). If the LP relaxation is not feasible then set R = U , else keep the

old value of R from Step 2.

Such a scenario happened several times in our computational results as 55 out
of the 83 instances were affected. Thus, the number of ILP iterations for these 55
instances is reduced by one iteration. The computational results of this modification
are given in Section 4 along with other results.

Modification of Phase 2

(a) Existence of the Value of R

The second enhancement is based on the existence of the value of the radius (R)
produced by phase1 in the distance matrix (i.e., there is no client or customer at
that distance). It can easily be shown that if R does not exist in the matrix the IP
formulation will be infeasible at this coverage radius, R, and hence one additional
IP iteration will be performed for no reason. This weakness can be dealt with by
checking R before performing Step 6. If R exists in the distance matrix then we
continue as before, otherwise we reset R to the next minimum distance greater than
the current value of R and continue. Step 6 can be replaced with the following two
ministeps.
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Step 6.1. Check if R exists in the distance matrix or not;
If R exists then go to Step 6.2, else set R = min{dij : dij < R, ∀i ∈ I, j ∈ J }
and go to Step 6.2.

Step 6.2. If dij � R then set bij = 1, else set bij = 0.

(b) A Jump-Based Scheme

In the second phase of the original algorithm (Step 7), if the IP feasibility problem
for the covering radius (R) is not feasible, the new covering radius (R) is set to the
minimum of all distances which is greater than the current value of the covering
radius:

new R = R′ = min{dij : dij > R, ∀i ∈ I, j ∈ J }. (11)

Our view is that we can extend such an update in the following way. Instead
of choosing the next minimum, we select the second next minimum. Note that the
calculations of these minima exclude ties. This can be written mathematically as
follows:

R = R′′, where :
R′′ = min{dij : dij > R′, ∀i ∈ I, j ∈ J } and

R′ = min{dij : dij > R, ∀i ∈ I, j ∈ J }.
If the solution of the IP is not feasible we repeat this procedure by setting

R to the second next minimum distance greater than the current value until we
reach feasibility. As there is no guarantee that the solution for the IP using R′ is
infeasible, an additional computation to check whether there is a feasible solution
for R′ obviously needs to be carried out.

If the problem is infeasible for R′ then we can conclude that the covering radius
R = R′′ is the optimal solution, otherwise we can also guarantee that R = R′ is the
optimal solution. To apply this jump-based scheme, we modified the second phase
of Ilhan and Pinar’s [9] algorithm as shown in Figure 2.

Illustration of the Jump-Based Update

Three cases of using this modification are illustrated in the following example as
shown in Figure 3. In these three examples, known as A, B and C, we assume
that the original algorithm does not stop at the covering radius (R) found by the
first phase of the algorithm (i.e., it does not stop at Step 7 in Figure 2) but seeks
for feasibility of the IP problem. Note that the top arrows refer to the modified
algorithm and the bottom arrows refer to the original algorithm. For convenience, R
in Figure 3 refers to the best lower bound found by the first phase of the algorithm.

In Figure 3 (part A), the original algorithm and its modified version first check
the feasibility of IP problem for the best lower bound (R) found by the first phase
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Step 6.1. Check if R exists in the distance matrix or not;

If R exists then go to Step 6.2, else set R = min{dij : dij < R, ∀i ∈ I ,

j ∈ J } and go to Step 6.2.

Step 6.2. If dij � R then set bij = 1, else set bij = 0.

Step 7. Solve the IP problem.

If the IP problem is feasible then stop (R is the optimal solution),

else increase the value of R as follows:

R′ = min{dij : dij > R, ∀i ∈ I, j ∈ J } and

R′′ = min{dij : dij > R′, ∀i ∈ I, j ∈ J }.
Set R = R′′ and go to Step 8.

Step 8. If dij � R then set bij = 1 else set bij = 0.

Step 9. Solve the IP problem.

Step 9.1. If the IP problem is infeasible then increase the value of R

as follows:

R′ = min{dij : dij > R, ∀i ∈ I, j ∈ J } and

R′′ = min{dij : dij > R′, ∀i ∈ I, j ∈ J }.
Set R = R′′ and go to Step 8.

Step 9.2. Else (the IP problem is feasible).

Set R = R′, and solve the IP problem when R = R′:
If the IP problem is feasible then stop (R = R′ is the optimal

solution), else set R = R′′ as the optimal solution and stop.

Figure 2. Modified second phase of Ilhan and Pinar algorithm.

which happens to be not feasible (iteration 1). However, the original algorithm
jumps to the next minimum distance greater than R which is here R1 (bottom
arrows) and tests the feasibility of IP problem for R = R1, and finds no feasible
solution again (iteration 2). This check is performed until R = R6 where a feasible
solution for the IP problem is found (iteration 7). The modified algorithm jumps to
the second minimum distance greater than R which is here R2 (top arrows), then
to R4, and R6 where IP problem is feasible (iterations 3 and 4). Before concluding
that R6 is the optimal solution, an additional check at R5 (iteration 5) is performed
which confirmed infeasibility at this level. In conclusion, the original algorithm
performs 7 iterations to reach the optimal solution whereas the modified algorithm
performs 5 iterations only.

In part B of Figure 3, the IP problem is not feasible for R (iteration 1). The
original algorithm jumps to R1, R2, then R3 (iterations 2, 3 and 4) searching for a
feasible covering radius for the IP problem, where a feasible solution is found at
R3, then the algorithm stops. The modified algorithm jumps to the second minimum
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Figure 3. Some illustrative examples of IP iterations of the modified algorithm of Ilhan and
Pinar [9].

distance greater than R (because IP problem not feasible at R) which is R2, then
jumps to R4 which gives a feasible solution to the IP problem. To check whether
the IP problem is optimal at R4 or not, we need to check the feasibility of the IP
problem at R3 (iteration 4). As this problem happens to be feasible, then the optimal
solution for the problem is R3 not R4. In this example, the original algorithm and
its modified version both performed the same number of IP iterations, namely 4
iterations each, to find the optimal solution.

In part C of Figure 3, the original algorithm moves to R1 where the IP problem
is feasible and stops (iteration 2). Our modified algorithm jumps from R to R2

where IP problem is found to be feasible (iteration 2), then an additional iteration
at R1 is performed to confirm infeasibility and hence guarantees that R1 is optimal.
It is only in this case, when the lower bound yielded by the first phase, for the
problem at hand, is extremely tight and requires only one IP iteration, where the
modified algorithm carries out one extra iteration.
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2.2. ANALYTICAL RESULTS

The saving of the total number of IP iterations (i.e., solving IP problem) performed
by the modified algorithm to reach the optimal solution can be summarised as
follows:

η =




⌈
k − 3

2

⌉
if k � 5,

0 if k = 3, 4,

0 if k = 1,

−1 if k = 2.

(12)

Where η is the number of IP iterations which can be saved when using the
modified algorithm, k is the number of IP iterations needed to reach the optimal
solution by the original algorithm including k = 1 for the initial R value, and �x�
denotes the smallest integer greater than or equal to x.

In summary, it can be shown analytically that our modification will require less
IP iterations if the original implementation requires 5 or more iterations, and it will
need the same number if the original algorithm requires 1, 3 or 4 iterations. It is
only for the special case when the original algorithm requires 2 iterations where
our modification uses one more iteration.

The computational results for this modification are given in Section 4 along
with other results.

3. Daskin [3] Algorithm

Based on Minieka’s [11] algorithm, Daskin proposed an improved algorithm to
find the optimal solution of the vertex P -center problem. This algorithm can be
described as follows:

– Select initial lower and upper bounds on the value of the P -center objective
function.

– Solve the Set Covering Problem (SCP) using the average (D) of lower and
upper bounds as the coverage distance (rounded down) and let k be the number
of facilities found to cover all nodes (or customers). If k � P , reset the value
of the upper bound to D, else (k > P ) reset the lower bound to D + 1.

– If the lower and upper bounds are equal then the lower bound (or the upper
bound) is the optimal solution to the P -center problem and stop; otherwise
solve the SCP with the new coverage distance (D) set to the average of the
lower and upper bounds (rounded down), and continue the process.

The main steps of this algorithm are given in Figure 4.
This approach is based on searching over the range of coverage distances for

the smallest coverage distance that allows all demand nodes to be covered. This
search procedure is usually referred to as the binary search.

One way to reduce the number of iterations needed to find the optimal solution
of the P -center problem using this algorithm could be done by either introducing
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Step 0. Set L = 0 (zero) and U = maxi,j (dij ).

Step 1. Calculate D =
⌊

L + U

2

⌋
Step 2. Solve SCP for the coverage distance D, and let k be the number of

facilities found.

(i) If SCP is feasible (i.e. k � P ) then set U = D.

(ii) Else (i.e. SCP is infeasible, k > P ) set L = D + 1.

Step 3. If L = U , then the optimal solution is L, and stop.

Else go to Step 1.

Figure 4. The original algorithm of Daskin [3].

tighter initial lower and upper bounds or by designing a more powerful binary
search. Our modifications are based on these two observations.

3.1. TIGHTENING OF THE INITIAL BOUNDS

Lower Bound

We use the initial lower bound (L) as the P th minimum value of the distances,
in the distance matrix. In other words, we order the distance values ascendingly,
including ties and excluding the diagonal values which equal to zero, until the P th
minimum value which is used as the initial lower bound (L).

Note that there is no need to order all the values in the distance matrix after the
P th minimum.

This setting guarantees that R∗ � L where R∗ is the optimal covering radius. In
addition, as the ties are included, it is impossible to have R < L using P facilities.

Upper Bound

The initial upper bound (U ) is generated by finding the maximum distance value
of each row in the distance matrix and then choosing the minimum value among
them as the initial upper bound. In other words, U = mini{d̂i : d̂i = maxj {dij }},
where dij is the distance between demand nodes i and j .

This setting guarantees that R∗ � U as the facility which is located at node
i∗ which yields U can serve all customers within a radius of U and hence the
remaining (P − 1) facilities will only attract some of these customers (as these
may be nearer to them) and hence make R � U .
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3.2. MODIFICATION BASED ON GOLDEN SECTION METHOD

The binary search (bisection method) which is used in the original algorithm to
speed up the process of minimising the gap between the upper and lower bounds is
slower to converge relative to other techniques such as the golden section method.

Golden Section is a commonly used numerical technique in finding a good
estimate of the minimiser of one-dimensional functions (i.e., minimise functions of
one variable), within an interval [a, b]. The golden search requires that two interior
points, x1 and x2, to be used, where x1 = a+( 1

γ
)2(b−a) and x2 = a+( 1

γ
)2(b−a)

and 1
γ

is the golden ratio which equal to 0.618.
The proposed modification uses x1 and x2 (adaptively) as the coverage distance

of the SCP with a and b replaced by the initial L and U , respectively. Note that
since all distance values are integers, x1 and x2 mentioned here are rounded down.

Description of the Modification

The first step is to find an initial range, [a, b], which contains the optimal solution
(i.e., initial lower and upper bounds), where the initial values of a and b are the
minimum and the maximum distance values in the distance matrix, respectively.
This can be done by setting the coverage distance to the value of x1 and checking
the feasibility of the SCP at this coverage distance. If the solution is found feasible
then the optimal solution occurs between a and x1; otherwise we check feasibility
at x2. If the solution is feasible then the optimal solution exists between x1 and
x2, otherwise the optimal solution occurs between x2 and b. If the optimal solution
occurs between a and x1 (or x2 and b) we solve the problem using x1 (or x2) until
we get an infeasible solution at x1 (or a feasible one at x2). Each time we check x1

or x2 we record the number of facilities (k) found to cover all nodes (say P1 = k

if the SCP is infeasible and P2 = k if the SCP is feasible). Note that the initial
values of P1 and P2 are set to N and 1, respectively. After defining the range of
the optimal solution and the corresponding number of facilities needed to cover all
nodes for a and b, we use the following updating rule to choose between x1 or x2

at the next iteration as the coverage distance for the SCP:

1. Set Q1 = P − P2 and Q2 = P1 − P

1.1. If Q1 > Q2 (i.e., we are near feasible solution), use x1 as the coverage

distance.

1.2. If Q1 < Q2 (i.e., we are near infeasible solution), use x2 as the coverage

distance.

1.3. If Q1 = Q2, use x1 as the coverage distance.

We would like to mention that in our first attempt we used x1 and x2 separately
as the coverage distance of the SCP, but we found that using them adaptively as
described above is more informative besides producing better results. The steps of
the proposed scheme are given in Figure 5.
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Step 0. (i) Set L = mini,j (dij ), U = maxi,j (dij ) and Count = 0.

(ii) Set P1 = N and P2 = 1.

Step 1. (a) Calculate x1 = �L + 0.382 ∗ (U − L)� and set D = x1.

(b) Solve SCP for the coverage distance D, and let k be the number

of facilities found,

(i) If SCP is feasible (i.e. k � P ) then set U = D, P2 = k and

Count = Count + 1. Go to Step 1(a).

(ii) Else (i.e. SCP is infeasible, k > P ) set L = D, and P1 = k.
(iii) If Count � 1 go to Step 3, else set L = mini,j (dij ), and go

to Step 2.

Step 2. (a) Calculate x2 = �L + 0.618 ∗ (U − L)� and set D = x2.

(b) Solve SCP for the coverage distance D, and let k be the number

of facilities found;

(i) If SCP is feasible then set U = D, P2 = k, and go to Step 3.

(ii) Else set L = D, P1 = k, and go to Step 2(a).
Step 3. Set Q1 = P − P2 and Q2 = P1 − P .

– If Q1 > Q2 then compute x1 and set D = x1.
– Else if Q1 < Q2 then compute x2 and set D = x2.
– Else Q1 = Q2, compute x1 and set D = x1.

Step 4. (a) – If U − L = 2 and there is no distance values (dij ) between U

and L then stop. The optimal solution is U .

– Else set D = L + 1 and solve SCP for the coverage distance D;

(i) If SCP is feasible then stop. The optimal solution is D.

(ii) Else the optimal solution is U and stop.

(b) If U − L � 1, then stop. The optimal solution is U .
Step 5. Solve SCP for the coverage distance D, and let k be the number of

facilities found;

(i) If SCP is feasible then set U = D, P2 = k, and go to Step 3.

(ii) Else set L = D, P1 = k, and go to Step 3.

Figure 5. The proposed algorithm using Golden Section.

Observation. As we mentioned before the optimal solution of the problem is
reached when U − L � 1. So, it is easy to notice that the optimal solution of the
P -centre problem is U if U − L � 2 and there is no distance values between them
(i.e. there is no clients at distance greater than L and less than U ). Moreover, if
there is just one distance value between U and L then we do not need to check at
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x1 or x2 and it is enough to use this distance value as the coverage distance of the
SCP and check it. If feasible (i.e. k < P ) then this value is the optimal solution of
the problem. If infeasible then the optimal solution is U .

4. Computational Results

The original and the modified algorithms of Ilhan and Pinar [9] and Daskin [3] are
coded in C, and tested on a Sun Enterprise Workstation 450 running Solaris 2.6. We
use Xpress-MP Optimisation software (Modeller Release 12.06, Optimiser Release
12.50) to solve the corresponding LP and IP problems. For comparison, we use the
same instances as used in Ilhan and Pinar [9]. These problems were taken from the
OR-Lib [1, 2] for the 40 P -median problems, and from the TSPLIB [12] for the
Travelling Salesman Problems which we refer to as TSP instances. The same sets
of data are used as a platform for testing the algorithm of Daskin [3].

In the OR-Lib test problems, the set of facilities is equal to the set of demand
nodes or customers (M = N). We obtained the shortest path distances (dij ) using
the Floyd–Warshal algorithm [6]. The dij values are made integer since edges of the
given networks of the 40 problem instances are integral. The problem parameters
range from instances with N = 100 nodes and P = 5, 10, 20 and 33 up to instances
with N = 900 and P = 5, 10 and 90.

As in the OR-Lib instances, the set of facilities for the TSP-Lib test problems is
made equal to the set of demand nodes or customers (i.e., M = N ). The coordinates
of the nodes are given, and hence the shortest path distances are computed as the
Euclidean distances between every pair of nodes. The entries of the distance matrix
(dij ) are non-integral, but as the original algorithms and their modified versions
apply only to integral data, we rounded down every distance (dij ) as used in the
literature. The size of the instances range from 226 to 657 nodes. For each instance,
four P values are used namely P = 5, 10, 20, and 40.

4.1. ILHAN AND PINAR’S [9] ALGORITHM

Table I reports the results, for the TSP and P -median instances, of the original
algorithm and their two simple enhancements. Note that the new results could also
be derived from the original paper and using Equation (12). We have recomputed
all the results for consistency reasons only. Columns 1 and 7 give file number in
case of P -median instances, and file name in case of TSP instances. Columns 2
and 8 refer to the number of vertices in the network (or number of demand points),
whereas columns 3 and 9 refer to the optimal number of facilities needed to locate.
Columns 4–6 and columns 10–12 represent the number of ILP iterations done in
IP part (Phase 2) of Ilhan and Pinar [9] algorithm for TSP and P -median instances
respectively. ‘Original’ in columns 4 and 10 give the number of ILP iterations
performed by the original algorithm (before any enhancement or modifications).
‘Enh-1’ in columns 5 and 11 refer to number of ILP iterations carried out by the
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Table I. Comparison results of the original algorithm of Ilhan and Pinar and its enhancements
on TSP and OR-Lib instances
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enhanced algorithm using the simple two enhancements of Step 5 and part a of
modification of Phase 2 (i.e., Existence of the value of R). ‘Enh-2’ in columns 6 and
12 report the number of iterations after using all modification schemes mentioned
in Section 2.1 (i.e., modification of Step 5 and modifications of Phase 2). ‘# Best’
in the last row of the table refers to the number of times the proposed algorithm
(i.e., the enhancement scheme) outperformed the original algorithm excluding ties.
Note that in the TSP instances, ‘?’ in data file pr264 (P = 40) means the original
algorithm, and its modified algorithm could not find the optimal solution for the
problem after 12 hours of running time. The number with ‘?’ is recorded as the last
iteration performed by the algorithm before stopping.

According to Table I the two enhancements (columns 5 and 11) reduced the
number of ILP iterations for most instances by one iteration (bold numbers) com-
paring with the original algorithm (columns 4 and 10). Thus, the total number
of ILP iterations decreased from 76 and 108 to 49 and 80 for the P -median and
TSP instances respectively. It can be seen that the modified algorithm performed
better than the original one for most instances. For example, in instance pr226
(P = 5) the number of ILP iterations needed to solve the problem reduced to 10
iterations from 17 iterations, a significant saving of 7 ILP iterations. The instances
which solved by the original algorithm in one ILP iteration cannot obviously be
improved. Just one case the original algorithm performed better by using one less
iteration (shown by ∗). This result coincides, according to Equation (12), with the
case when k = 2 as mentioned in our analytical result. This is the only special case
where the original implementation uses one less iteration.

4.2. DASKIN’S [3] ALGORITHM

Table II reports the results using the original algorithm of Daskin and the en-
hancement schemes discussed in Section 3. Columns 1–3 and 6–8 are as described
earlier in Table I, whereas ‘Original’, columns 4 and 11, report the number of IP
iterations performed by the original algorithm (before enhancing it). ‘Mod-1’ in
columns 5 and 12 refer to the number of IP iterations carried out by the enhanced
algorithm using the modification based on tighter initial lower and upper bounds.
‘Mod-2’ in columns 6 and 13 report the number of IP iterations yielded when using
Golden Section. ‘Mod-3’ in columns 7 and 14 report the number of IP iterations
after combining ‘Mod-1’ and ‘Mod-2’ (i.e., using tighter initial lower and upper
bounds proposed in the simple enhancement instead of the proposed ones in Step
0 of Figure 5). ‘# Best’ in the last row of the table refers to the number of times
the proposed algorithm (i.e., the enhancement scheme) outperformed the original
algorithm excluding ties. Note that the number of iterations in columns 4–7, and
11–14 refers to the number of times that the Set Covering Problem (SCP) is solved.

As can be seen from Table II, the proposed enhancements of the original al-
gorithm reduced the number of IP iterations needed in most instances. Also, it
may be possible to say that merging these two proposed modifications (or Mod-3)
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Table II. Comparison results of the original algorithm of Daskin and its enhancements on TSP
and OR-Lib instances

performs better than using them separately. So, the average number of IP iterations
reduced to 5.80 and 10.30 from 7.10 and 12.12 for the OR-Lib and TSP instances,
respectively. Moreover, 34 out of 40 OR-Lib instances and 39 out of 43 TSP in-
stances are solved in fewer iterations than the original algorithm. For instance,
3 OR-Lib instances required 3 iterations less than the original algorithm (italic
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Table III. Computing time for the exact methods of Ilhan and Pinar, and Daskin against our best
implementation found for both data sets, TSP and OR-Lib instances

numbers), and 13 instances are solved using 2 iterations less. Also, for the TSP
instances a reduction of 4 iterations is obtained in one instance (italic number), and
reductions of 3 and 2 iterations in 9 and 19 instances, are recorded respectively. It
can be observed that our proposed scheme required one additional iteration than
the original algorithm in one instance from each data set only.

Table III reports the CPU time (in seconds) for both exact methods and the
two best implementations, namely Enh-2 in case of Ilhan and Pinar algorithm, and
Mod-3 in case of Daskin algorithm, respectively. Note that in the TSP instances, ‘?’
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in data file pr264 (P = 40) means the original algorithm, and our best implemen-
tation could not find the optimal solution for the problem after 12 hours of running
time.

5. Conclusion

In this paper we show how simple and easy to implement enhancements can im-
prove results of some existing algorithms. In this work, we introduced modifica-
tions of two exact algorithms for solving the vertex P -center problem. For Ilhan
and Pinar’s [9] algorithm, we proposed two enhancements to reduce the number
of ILP iterations carried out by the second part (IP phase) of the algorithm which
is the most time consuming part. The obtained results showed that this enhanced
algorithm performs better than the original algorithm if the number of IP iterations
needed to get the optimal solution is more than 4 iterations and will be no worse
(same iterations) if the required number of iterations is 1, 3 or 4. However, it will
need one extra IP iteration only in the case where 2 iterations are needed to find
the optimal solution. In addition, the enhancement always reduces the number of
ILP iterations by 1 if the resulting LP problem happens to be feasible for phase
2. For Daskin’s [3] algorithm, we introduced into the original algorithm a sim-
ple enhancement tighten both the initial lower and upper bounds. Moreover, the
Golden Section method, as our binary search, proved to be more efficient than
the previously used bisection method. The combination of these two modifications
yielded a reasonable reduction in the number of IP iterations.

As for future work the authors are investigating the use of a ‘good’ heuristic
to produce tighter upper bound, which can then be used as a measure to define a
corresponding tighter lower bound. Such upper and lower bounds will obviously
help in speeding up the process of finding the optimal solution even further. In
the Ilhan and Pinar’s algorithm, our jump-based scheme could also be extended to
consider not only a jump of two for all iterations but of m steps where the value of
m could be adaptively adjusted at each iteration. Such an adaptive learning, which
in itself is a challenging research issue, could reduce the number of IP iterations
significantly, and hence these ideas are worth being extended to more complex
covering-type problems.
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