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Abstract
Many computer vision applications require robust and efficient estimation of camera geometry from a minimal number of
input data measurements. Minimal problems are usually formulated as complex systems of sparse polynomial equations.
The systems usually are overdetermined and consist of polynomials with algebraically constrained coefficients. Most state-
of-the-art efficient polynomial solvers are based on the action matrix method that has been automated and highly optimized
in recent years. On the other hand, the alternative theory of sparse resultants based on the Newton polytopes has not been
used so often for generating efficient solvers, primarily because the polytopes do not respect the constraints amongst the
coefficients. In an attempt to tackle this challenge, here we propose a simple iterative scheme to test various subsets of the
Newton polytopes and search for the most efficient solver. Moreover, we propose to use an extra polynomial with a special
form to further improve the solver efficiency via Schur complement computation. We show that for some camera geometry
problems our resultant-based method leads to smaller and more stable solvers than the state-of-the-art Gröbner basis-based
solvers, while being significantly smaller than the state-of-the-art resultant-based methods. The proposed method can be
fully automated and incorporated into existing tools for the automatic generation of efficient polynomial solvers. It provides
a competitive alternative to popular Gröbner basis-based methods for minimal problems in computer vision. Additionally,
we study the conditions under which the minimal solvers generated by the state-of-the-art action matrix-based methods and
the proposed extra polynomial resultant-based method, are equivalent. Specifically, we consider a step-by-step comparison
between the approaches based on the action matrix and the sparse resultant, followed by a set of substitutions, which would
lead to equivalent minimal solvers.

Keywords Sparse resultants · Gröbner basis · Minimal solvers · Action matrix · Geometric computer vision

1 Introduction

The robust estimation of camera geometry, one of the most
important tasks in computer vision, is usually based on
solving so-called minimal problems [26, 27, 43], i.e., prob-
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lems that are solved from minimal samples of input data,
inside a RANSAC framework [13, 18, 45]. Since the camera
geometry estimation has to be performed many times inside
RANSAC [18], fast solvers to minimal problems are of high
importance. Minimal problems often result in polynomial
systems with the following characteristics:

1. They are usually non-square, with more polynomials than
the number of variables.

2. The coefficients of the constituent polynomials usually are
non-generic, i.e. algebraically constrained [15, p. 109].

3. The constituent polynomials have the same structure, i.e.
the same monomials, but the coefficient values vary with
the input measurements. This property has enabled an
offline + online strategy, which moves as many com-
putations as possible from the “online” stage of solving
equations to an earlier pre-processing “offline” stage.
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Most of the state-of-the-art specific minimal solvers are
based on Gröbner bases and the action matrix method [15,
47]. The Gröbner basis method was popularized in com-
puter vision by Stewenius [50]. The first efficient Gröbner
basis-based solvers were mostly hand-crafted [48, 49] and
sometimes very unstable [51]. However, in the last 15 years
much effort has been put into making the process of con-
structing the solvers more automatic [27, 32, 33] stable [9,
10] andmore efficient [5, 31–33, 35, 38]. Now powerful tools
are available for the automatic generation of efficient solvers
based on Gröbner basis [27, 32].

Note that while all these methods are in the computer
vision community known as Gröbner basis methods, most of
them do not generate solvers that directly compute Gröbner
bases. Theyusually compute polynomials fromaborder basis
[40] or go “beyond”Gröbner andborder bases [35].However,
all these methods are based on computing an action matrix.1

Therefore, for the sake of simplicity, in this paper, we will
interchangeably write “action matrix method” and “Gröbner
basis method” to refer to the same class of methods [5, 27,
31–33, 35, 38, 47].

The first step in such action matrix methods is to compute
a linear basis B of the quotient ring A = C[X ]/I where I
denotes the ideal generated by input polynomial system. An
action matrix method based on the Gröbner bases computes
the basis of A by defining the division w.r.t. some Gröb-
ner basis of the ideal I . In general, computing the Gröbner
basis requires to fix somemonomial ordering.Alternatively, a
heuristic basis samplingmethod [35] that goes beyond Gröb-
ner bases and monomial orderings in order to compute B can
be used. The basis sampling method is related to the bor-
der basis methods [39, 40], which generalize the concept of
monomial ordering and even propose a non-monomial basis
of A. The second step in these action matrix methods is to
compute a linear map T f , representing the multiplication in
A, w.r.t. some polynomial f . The representative matrix M f

of the map T f is what we call the action matrix. Recently,
[54, 55] generalized the method used for generating the basis
B. The proposed methods are known as normal form meth-
ods, developed for general systems of polynomial equations.
They are not tailored to problems that appear in computer
vision.

While the action matrix method for generating efficient
minimal solvers has been thoroughly studied in computer
vision and all recently generated action-matrix-based solvers
are highly optimized in terms of efficiency and stability, little
attention has been paid to an alternative algebraic method for
solving systems of polynomial equations, i.e. the resultant
method [15, Chapter 3]. The resultant method was manually
applied to several computer vision problems [20, 23, 26, 28].

1 In the field of mathematics, an action matrix is also known as a mul-
tiplication matrix.

However, in contrast to the action matrix method, there is no
method for automatically generating sparse resultant-based
minimal solvers. Themost relevantworks in this direction are
the methods using the subdivision of the Minkowski sum of
all theNewton polytopes [11, 12, 16] and the iterativemethod
based on theMinkowski sumof a subset ofNewton polytopes
[21]. However, the subdivision methods are not applicable to
polynomial systems with non-generic coefficients, whereas
the method in [21] leads (due to linearizations) to larger and
less efficient solvers than the action matrix solvers.

Our first objective in this paper is to study the theory of
sparse resultants and propose an approach for generating effi-
cient solvers for solving camera geometry problems, by using
an extra polynomial with a special form.Our approach, based
on the Newton polytopes and their Minkowski sums, is used
to generate sparse resultant matrices, followed by a Schur
complement computation, and a conversion of the resultant
constraint into an eigenvalue problem.

Our approach differs from the subdivision methods [11,
16] in how the Newton polytopes are used for generat-
ing minimal solvers. The subdivision methods compute the
Minkowski sumof theNewton polytopes of all the polynomi-
als and divide its lattice interior into cells, which are used to
construct the sparse resultantmatrices.Whereas in this paper,
we make this process iterative, computing the Minkowski
sumof each subset of Newton polytopes (of the input polyno-
mials) and avoid computing a subdivision.Wedirectly use the
lattice interior to generate a candidate sparse resultantmatrix.
For systems with non-generic coefficients, such an itera-
tive approach has been crucial in generating sparse resultant
matrices for the minimal problems in computer vision. The
sparse resultant matrix and the eigenvalue problem together
represent our minimal solver. The solvers based on our pro-
posed approach have achieved significant improvements over
the state-of-the-art sparse resultant-based solvers [11, 16, 21]
and achieved comparable or better efficiency and/or accuracy
to state-of-the-art Gröbner basis-based solvers [32, 35, 38].
Moreover, our proposed approach has been fully automated
[2] and can be incorporated in the existing tools for automatic
generation of efficient minimal solvers [27, 32, 35].

There is a similarity between the solvers obtained using
our sparse resultant-based approach and the solvers based on
the action matrix methods [8, 27, 32, 35, 37, 38, 47]. There-
fore, the second objective in this paper is to investigate this
similarity. In a step-by-stepmanner,we demonstrate that for a
minimal solver generated based on the actionmatrix method,
we can change the steps performed by the sparse resultant
method such that it leads to an equivalent solver. Similarly,
we also demonstrate that for a given minimal solver gener-
ated based on the sparse resultant method, we can change
the steps performed by the action matrix method such that it
leads to an equivalent solver. Specifically, our contributions
are:
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1. A novel approach (Sect. 3), of adding an extra polyno-
mial with a special form for generating a sparse resultant
matrix whose sparse resultant constraint can be decom-
posed (Sect. 3.3) into an eigenvalue problem.

• A scheme (Sect. 3.2) to iteratively test the Minkowski
sumof theNewtonpolytopes of each subset of polyno-
mials, searching for the most efficient minimal solver,
in the presence of algebraically constrained coeffi-
cients.

• Two procedures (Sect. 3.4) to reduce the sparse resul-
tantmatrix size, leading to comparable or better solver
speeds than those generated by many state-of-the-art
Gröbner basis-based methods.

• Ageneralmethod for automatic generation of efficient
minimal solvers. The automatic generator is publicly
available at [2].

2. A study of the constraints (Sect. 4) to be satisfied so that
the solvers based on our sparse resultantmethod aswell as
the action matrix method are equivalent, i.e. they involve
eigenvalue decomposition of exactly the samematrix, and
the steps performed for constructing that matrix can be
interchanged.

This paper is an extension of our work [3], where we
proposed an extra polynomial sparse resultant method for
generating efficient minimal solvers.

2 Theoretical Background and RelatedWork

In this section, we summarize the basic concepts and notation
used in the paper. This notation is based on the book by [15],
to which we refer the reader for more details.

Our goal is to compute the solutions to a system of m
polynomial equations,

f1(x1, . . . , xn) = 0, . . . , fm(x1, . . . , xn) = 0, (1)

in n variables, X = {x1, . . . , xn}. Let us denote the set of
polynomials from (1) as F = { f1, . . . , fm}. The variables
in X can be ordered and formed into a vector. W.l.o.g. let

us assume that this vector has the form, x = [
x1 . . . xn

]�
.

Then for a vector α = [
α1 . . . αn

]� ∈ N
n , a monomial

xα is a product xα = ∏n
i=1 x

αi
i . Each polynomial fi ∈ F is

expressed as a linear combination of a finite set ofmonomials

fi (x) = �
α∈Nn

ci,αxα. (2)

We collect all monomials present in F and denote the
set as mon(F). Let C[X ] denote the set of all polynomi-
als in unknowns X with coefficients in C. The ideal I =

〈 f1, . . . , fm〉 ⊂ C[X ] is the set of all polynomial combina-
tions of generators f1, . . . , fm . The set V of all solutions of
the system (1) is called the affine variety. Each polynomial
f ∈ I vanishes on the solutions of (1). Here we assume that
the ideal I generates a zero-dimensional variety, i.e., the sys-
tem (1) has a finite number of solutions (say r ). Using the
ideal I , we can define the quotient ring A = C[X ]/I as the
set of equivalence classes in C[X ], where the equivalence is
defined by the relation, a ∼ b ⇐⇒ (a − b) ∈ I . If I
has a zero-dimensional variety, then the quotient ring A is
a finite-dimensional vector space over C [15]. For an ideal
I , there exist special sets of generators called Gröbner bases
which have the nice property that the remainder after division
is unique. Using a Gröbner basis we can define a linear basis
for the quotient ring A.

Non-generic polynomial system In geometric computer
vision, each coefficient, say ci,α in (2), can be expressed as a
parametric form, ci,α = φ(D) of the data measurements D.
One of the important properties of the set of the coefficients
of such a polynomial system is that of non-genericity:

Definition 1 The coefficients {ci,α} of F in (2), are defined
to be non-generic, if and only if we can obtain a polynomial
constraint on them by eliminating the parameters D.

A rigorous definition of the genericity of a property of a
system is given in [15, p. 109].

Vector representation of a set Given a set B, one of the
steps in this paper is to express it as a column vector by
arranging its elements w.r.t. to a given ordering. Let us denote
this operation as

vec(B). (3)

Matrix form In this paper, we will need to express a given
set of polynomials F via matrix multiplication. To achieve
this, we fix an order for the polynomials in F , and also do
the same for the monomials in B = mon(F). The matrix
representation of F has the form

C([ci,α]) b, (4)

where b is a column vector of the monomials in B ordered
w.r.t. the givenmonomial ordering and C([ci,α]) is the matrix
of coefficients ci,α of F . The entries of C([ci,α]) are row-
indexed by the ordered set of polynomials in F and column-
indexed by the monomials in b.

Monomial multiples of a polynomial set We begin with
a polynomial system F and the set of monomials in F , i.e.,
B = mon(F). Let B ′ ⊃ B be another set of monomials.

Then an important step in our proposed method is to
extend F to the largest possible set, say F ′, such that
mon(F ′) ⊆ B ′. This extension is done by multiplying each
fi ∈ F with monomials. i.e., we are generating polynomials
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from I = 〈 f1, . . . , fm〉. For this, we compute the set Ti of
all possible monomials Ti = {xα} for each fi ∈ F , such
that mon(xα fi ) ⊂ B ′, xα ∈ Ti . We will use the following
shorthand notation to express such an operation

F B′→ (F ′, T ), (5)

where T = {T1, . . . , Tm}. Subsequently, in this operation we
assume to have removed all monomials in B ′ which are not
present in the extended set F ′ and denote the modified set as
B ′ by abuse of notation. In other words, we will assume that
B ′ = mon(F ′).

2.1 The ActionMatrix Method

One of the well-known SOTA methods for polynomial solv-
ing is the Gröbner basis-based action matrix method [15,
47, 52]. It has been recently used to efficiently solve many
minimal problems in computer vision [8, 9, 26, 27, 32, 35,
47]. It transforms the problem of finding the solutions to (1),
to a problem of eigendecomposition of a special matrix.
We list the steps performed by an action matrix method in
“Appendix A”, and note here that the algorithm can essen-
tially be distilled in a sequence of three important steps, viz.
construct the set Tj of monomial multiples for each of the
input polynomials f j ∈ F , extend F via monomial multi-
plication to F ′ and linearize the resulting system as a matrix
product,Cb. AG–J elimination ofC is then used to extract the
required action matrix, whose eigenvalues give us the roots
of F .

2.2 Resultants

Alternative to the action matrix method, we have the method
of resultants for polynomial solving. Originally, resultants
were used to determinewhether a system of n+1 polynomial
equations in n unknowns has a common root or not. Let us
have a system of polynomial equations as defined in (1), and
in (2) and assume that m = n + 1.

Definition 2 The resultant Res([{ci,α}]) of F is defined to
be an irreducible polynomial in the coefficients {ci,α} which
vanishes only if {ci,α} are such that F = 0 has non-trivial
roots.

A more formal treatment of the theory of resultants can
be obtained from [15, Chapter 3].

2.2.1 Polynomial Solving Using Resultants

A step in a sparse resultant method is to expand the given
system of polynomials F to a set of linearly independent
polynomials. This is usually done by adding some mono-
mial multiples of the original polynomials, i.e., using the

operation (5). The expanded set of polynomials, say F ′, can
be expressed in a matrix form as

C([ci,α]) b. (6)

Usually, C([ci,α]) in (6) is a tall matrix.
The resultant-based method here requires the coefficient

matrix C([ci,α]) to be a square invertible matrix for ran-
domly assigned values to the coefficients, ci,α ∈ C�=0 i.e.,
det C([ci,α]) �= 0. A matrix with such properties is called
the resultant matrix and in this paper we will denote it as
M([ci,α]).2 If C([ci,α]) is a square invertible matrix, we can
rewrite (6) as

M([ci,α]) b. (7)

Now, F = 0 implies F ′ = 0 and it leads to

M([ci,α]) b = 0. (8)

Thus, the requirement for F = 0 to have common solutions
is the following condition on the coefficients of F ,

det M([ci,α]) = 0. (9)

We call this the resultant constraint. It is a polynomial
with ci,α as variables. From the definition of a resultant
Res([ci,α]) [15, Theorem 2.3], we have that Res([ci,α]) is a
polynomial with ci,α as variables and that it vanishes iff the
system of equations F = 0 has common roots. This gives
us the necessary condition for the existence of roots of the
system F = 0, that det M([ci,α]) must vanish if the resultant
vanishes, i.e.,

Res([ci,α]) = 0 �⇒ det M([ci,α]) = 0. (10)

This implies that given a polynomial system F , the resul-
tant constraint (9) is a non-trivial multiple of its resultant
Res([ci,α]).

While resultants are defined for a system of one more
polynomial than the number of variables, we can employ
them for solving a system of n polynomials in n variables.
One way to do this, is to hide one of the variables to the
coefficient field (in other words, consider it to be a constant),
another way is to add an extra polynomial by introducing a
new variable, and then hide this variable to the coefficient
field. In both these approaches, we end up with a system
where we have one more polynomial than the number of
variables.

2 E.g. if C([ci,α]) in (6) is a tall matrix, i.e. matrix with more rows than
columns, with full column rank, then M([ci,α]) can be constructed as a
full rank square submatrix of C([ci,α])
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2.2.2 Hiding a Variable

By hiding one variable, say xn , to the coefficient field, we
are left with n polynomials F in n − 1 variables. This
gives us a way to use the concept of resultants and com-
pute Res([ci,α], xn) which now becomes a function of ci,α
and xn . In this case, (7) becomes

M([ci,α], xn)b, (11)

where the symbols have their usual meaning. For simplic-
ity, we will denote M([ci,α], xn) as M(xn) in the rest of this
paper. Its determinant det M(xn) is a multiple of the resultant
Res(xn). This is known as a hidden variable resultant and it
is a polynomial in xn whose roots are the xn-coordinates of
the solutions of the system of polynomial equations. For the-
oretical details and proofs we refer to [15, Chapter 7]. Such
a hidden variable approach has been used in the past to solve
various minimal problems [20, 23, 26, 28].

This approach leads to computing the roots of the polyno-
mial, det M(xn) = 0. However, computing the determinant of
a polynomial matrix det M(xn) and then its roots may be slow
and unstable. Therefore, the most common way to solve the
original system of polynomial equations is to first transform
the following matrix equation

M(xn)b = 0, (12)

to a polynomial eigenvalue problem (PEP) [14], which is
then expressed as,

(M0 + M1 xn + · · · + Ml x
l
n)b = 0, (13)

where l is the degree of the matrix M(xn) in the hidden vari-
able xn and M0, . . . ,Ml are matrices that depend only on the
coefficients ci,α of the original system of polynomials. The
PEP (13) can be easily converted to a generalized eigenvalue
problem (GEP), written as,

Ay = xnBy, (14)

and solved using standard efficient eigenvalue algorithms
[28]. Basically, the eigenvalues give us the solutions to xn
and the rest of the variables can be extracted from the cor-
responding eigenvectors, y. Such a transformation to a GEP
relaxes the original problem of finding the solutions to the
input polynomial system since the eigenvectors in general
do not satisfy the monomial dependencies induced by the
monomial vector b as well the monomial vector y. More-
over, this relaxation may also introduce extra parasitic (zero)
eigenvalues leading to slower polynomial solvers.

2.2.3 Adding an Extra Polynomial

Alternatively, we can add a new polynomial

fn+1 = u0 + u1x1 + · · · + unxn (15)

to F . We thus have an augmented polynomial system.

Fa = F ∪ { fm+1}. (16)

We then compute the so-called u-resultant (see [56] and [15,
Chapter 3]) by hiding u0, . . . , un . In general, random val-
ues are assigned to u1, . . . , un (and u0 is a new unknown).
Just like in the hidden variable method, this method hides the
variable u0 to the coefficient field and generates the resultant
matrix M(u0). In this case, the extended system of polynomi-
als (7) can be expressed as a matrix product as

M([ci,α], u0) b, (17)

where u0 is a new unknown variable and b is a vector
of all monomials in this extended system. We will denote
M([ci,α], u0) asM(u0) in order to simplify the notation.Again,
it holds that det M(u0) is a multiple of the resultant Res(u0).
Thus, in order to compute the common zeros of F = 0, we
need to solve detM(u0) = 0, similar to the case of the hidden
variable resultant. Instead of computing the determinant of a
polynomial matrix, here we also solve it as a GEP described
in Sect. 2.2.2. However, as mentioned in the hidden variable
method, such amethod introduces spurious solutions, arising
from the linearization of the original system in (17), i.e., not
considering monomial dependencies in b, as well as from
transforming PEP to GEP and not considering the monomial
dependencies in y in (14). Some of these spurious solutions
(eigenvalues) can be removed by using Schur complement,
described in the section below or by applying the method for
removing zero eigenvalues, similar to [4, 26].

2.2.4 Schur Complement

One way to remove the spurious solutions introduced by the
linearization of a hidden variable resultant matrix M(u0) is
to use the Schur complement of one its submatrices. Here,
we briefly review this method. Let us first consider some
partition of the set of monomials B as

B = B1 ∪ B2. (18)

Note that b = vec(B) = [
b1 b2

]�
, where b1 = vec(B1)

and b2 = vec(B2). The vectorization operation is defined in
Eq. (3). This imposes a column partition on M(u0) in (17).
Moreover, we can order the rows of M(u0) such that its upper

123



340 Journal of Mathematical Imaging and Vision (2024) 66:335–360

block is independent of u0. Together, we obtain the following
block partition of M(u0):

M(u0) =
[

M11 M12
M21(u0) M22(u0)

]
. (19)

Here, the upper block
[
M11 M12

]
is independent of u0. Thus

we can write (17) as

[
M11 M12

M21(u0) M22(u0)

] [
b1
b2

]
. (20)

The requirement for existence of solutions of F = 0 is that
the vector in (20) should vanish.We thus obtain the following
two vector equations

M11b1 + M12b2 = 0 (21)

M21(u0)b1 + M22(u0)b2 = 0. (22)

If we were able to partition M(u0) such that M12 is a square
invertible matrix, we can eliminate b2 from these two equa-
tions, to obtain

(M21(u0) − M22(u0)M
−1
12 M11︸ ︷︷ ︸

X(u0)

)b1 = 0. (23)

The matrix X(u0) is the Schur complement of the block M12
of M(u0), which has the following property:

det(M(u0)) = det(M12) det(X), (24)

where, det(M12) �= 0 by our assumption. Therefore, for a
generic value of u0, det(M(u0)) �= 0 ⇔ det(X(u0)) �= 0,
which means that X(u0) is a square invertible matrix and
its determinant is also a multiple of the resultant. However,
X(u0) corresponds to a smaller eigenvalue problem as com-
pared to the sparse resultant matrix M(u0).

Both the resultant-basedmethods, described inSects. 2.2.2
and 2.2.3, are proposed for square generic systems [16] via
mixed subdivision of polytopes. However, the polynomial
systems studied here are usually sparse, overdetermined and
consist of polynomials with non-generic coefficients (see
Definition 1). The sparsity of the systems can be exploited to
obtainmore compact resultants using specialized algorithms.
Such resultants are commonly referred to as the sparse resul-
tants.

2.2.5 Polyhedral Geometry

Sparse resultants are studied via the theory of polytopes [15,
Chapter 7]. Therefore, we define the important terms and

notations related to polytopes, which we will later use in the
text.

TheNewton polytopeNP( f ), of a polynomial f is defined
as a convex hull of the exponent vectors of all the monomials
occurring in the polynomial (also known as the support of
the polynomial). Therefore, we have NP( fi ) = Conv(Ai )

where Ai is the set of all integer vectors that are exponents of
monomials with nonzero coefficients in fi . AMinkowski sum
of any two convex polytopes P1, P2 is defined as P1 + P2 =
{p1+ p2 | ∀p1 ∈ P1,∀p2 ∈ P2}.We demonstrate the concept
of a Newton polytope using a simple example.

Example 1 Let us consider a system of two polynomialsF =
{ f1(x), f2(x)}, in two variables X = {x1, x2}

f1 = c1,1x1
3x2

3 + c1,2x1
2x2

3 + c1,3x1
3x2

2

+c1,4x1
2x2

2 + c1,5x2
3 + c1,6x1

2x2

+c1,7x2
2 + c1,8x1x2 + c1,9x1

2 + c1,10x2 (25)

f2 = c2,1x1
2 + c2,2x2 + c2,3x1 + c2,4. (26)

Here, {c1,1, . . . , c1,10, c2,1, . . . , c2,4} ⊂ C is the set of coef-
ficients of F . The supports of F are

A1 = {[3, 3], [2, 3], [3, 2], [2, 2], [0, 3],
[2, 1], [0, 2], [1, 1], [2, 0], [0, 1]} ⊂ Z

2 (27)

A2 = {[2, 0], [0, 1], [1, 0], [0, 0]} ⊂ Z
2. (28)

The Newton polytopes P1 = NP( f1), P2 = NP( f2) as well
as the Minkowski sum Q = P1 + P2 are depicted in Fig. 1.

2.2.6 Sparse Resultants

Consider the SOTA methods in [11, 16, 17], for comput-
ing the sparse resultant for a well-determined generic system
F . The main idea in all such methods is to compute the
Minkowski sum of the Newton polytopes of all the poly-
nomials, fi ∈ F , and divide its interior into cells. Each cell
determines amultiple of oneof the input polynomials, fi ∈ F
with a monomial. All such monomial multiples collectively
lead to an extended polynomial system, F ′. The extended
polynomial system, via linearization into a matrix product,
then leads to a sparse resultant matrix M(xn), if using the
hidden-variable technique in Sect. 2.2.2, or M(u0), if using
the u-resultant of the general form in Sect. 2.2.3. As such the
resulting solvers are usually quite large and not very efficient.

However, if F has non-generic coefficients (see Defini-
tion 1), thesemethodsmay fail, as the algebraic constraints on
the coefficients lead to algebraic constraints on the elements
of the sparse resultant matrices M(xn) or M(u0), and hence,
they may not satisfy the necessary rank conditions. For such
systems, [21] recently proposed an iterative approach based
on the hidden variable resultant, to test and extract M(xn)
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Fig. 1 An example of the Newton polytopes of two polynomials as well as theirMinkowski sum: a P1 = NP( f1) b P2 = NP( f2) and c Q = P1+P2

in (7). Thereafter, it transforms (7) to a GEP (14) and solves
for eigenvalues and eigenvectors to compute the roots. Our
proposed approach here, extends this iterative scheme for
generating a sparse resultant matrix M(u0), specifically for
the extra polynomial approach in Sect. 2.2.3.

3 Proposed Extra Polynomial Resultant
Method

In this paper, we propose an iterative approach based on [21]
and apply it to a modified version of the u-resultant method
described in Sect. 2.2.3. Specifically, we propose the follow-
ing modifications to the u-resultant method.

1. Instead of the general form (15) of the extra polynomial
in the u-resultant-basedmethod, in this paper, we propose
to use the following special form of the extra polynomial

fm+1 = xk − u0, (29)

where u0 is a new variable and xk ∈ X is one of the input
variables. In general, we can select any xk ∈ X . However,
since in practice, selecting different xk’s leads to solvers
of different sizes and with different numerical stability,
we test all xk ∈ X when generating the final solver.

2. For non-generic and overdetermined polynomial systems
F , we avoid computing the Minkowski sum of all the
Newton polytopes N P( f ),∀ f ∈ Fa , as proposed in
the methods in [11, 16, 17]. Here, Fa denotes the aug-
mented polynomial system (see Eq. (16)). Instead, we
iterate through each subset, Fsub ⊂ Fa , and compute the
Minkowski sum of N P( f ),∀ f ∈ Fsub. Instead of divid-
ing theMinkowski sum into cells, we simply use its lattice
interior to determine the monomials B in the extended
polynomial system F ′, i.e. B = mon(F ′).

3. We exploit the form of the extra polynomial (29) and pro-
pose a block partition of M(u0) (17), which facilitates its
decomposition using Schur complement directly into a
regular eigenvalue problem. This regular eigenvalue prob-
lem, compared to GEP that arises for general u-resultant
polynomial (15), leads to fewer spurious eigenvalues and
hence a faster solver.

Note that our method of iteratively testing various polyno-
mial subsets has been quite effective in generating efficient
solvers, as demonstrated on many minimal problems (see
Sect. 6). The generated solvers are comparable in efficiency
and speed with those generated by the SOTA action matrix-
based methods [32, 35, 38].

3.1 Method Outline

In the following, we first go through the important steps per-
formed by our method.

1. Let us consider a system ofm polynomial equations,F =
0 (1), in n variables, X = {x1, . . . , xn}. For all variables
xk ∈ X , we perform the steps 2 − 5 in the offline phase.

2. [Offline] We fix the form of the extra polynomial to
fm+1 = xk − u0 (29) and augment F with fm+1, to
obtain the augmented system (see Eq. (16)). We hide the
new variable u0 to the coefficient field which means that,
Fa ⊂ C[X ∪ {u0}].

3. [Offline] We execute steps 3(a)-3(c), for each subset of
polynomials Fsub ⊂ Fa and for every variable xk ∈ X .

(a) From the setFsub,we attempt to construct a favourable
monomial set B, using a polytope-based method,
described in Sect. 3.2.
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(b) We extend the polynomial system,Fa , using the com-
puted monomial set B, represented as

Fa
B→ (F ′

a, T ), (30)

where T = {T1, . . . , Tm+1} (5).
(c) The set of equations F ′

a = 0, can be expressed in a
form of a matrix equation as C(u0)b = 0, where b =
vec(B), where the vectorization operation is defined
in Eq. (3).

The output of this step is described in detail in Sect. 3.2,
is all favourable monomial sets B and the corresponding
coefficient matrices C(u0).

4. [Offline] For each favourable monomial set B and the
corresponding coefficient matrix C(u0) we perform the
following:

(a) We partition B = B1 ∪ B2 in two different ways,

B1 = B ∩ Tm+1 or (31)

B1 = {xα ∈ B | x
α

xk
∈ Tm+1}. (32)

Note that B2 = B \ B1.
(b) Based on the two set-partitions of B, we attempt to

partition the matrix C(u0) in the following two ways.

C(u0)b=
[

A11 A12
A21 − u0I A22

][
b1
b2

]
=0, (33)

or

C(u0)b=
[

A11 A12
I + u0B21 u0B22

][
b1
b2

]
=0, (34)

and the matrix A12 has the full column rank.

The output of this step is the coefficient matrix C(u0), for
which a partitioning as (33) or (34), with the full column
rank matrix A12 is possible, and which corresponds to
smallest set B1. If we have more than one such choice of
C(u0), we select the smallest matrix C(u0). This step is
described in more detail in Sect. 3.3.

5. [Offline] In this step, we aim to reduce the size of the
matrix C(u0), selected in the previous step.

(a) We first try to remove a combination of rows and
columns from C(u0) and the corresponding monomi-
als from the favourable monomial set B, such that the
resulting monomial set is still a favourable monomial
set (Sect. 3.2) and that the coefficient matrix C(u0)
can still be partitioned as in (33) or in (34).

(b) We next remove the extra rows from C(u0) to obtain a
sparse resultant matrix M(u0) (7), while still respect-
ing its block partition, as in (33) or (34).

This step is described in Sect. 3.4.

6. [Online] In the final online solver, we fill the precom-
puted sparse resultant matrix M(u0) with the coefficients
coming from the input data/measurements. Thenwe com-
pute the Schur complement of a block of M(u0), as
described in 2.2.4, which is then formulated as an eigen-
value problem of the matrix X (50) (or (52)). Finally, the
eigendecomposition of the matrix X gives us the solutions
to the input system of polynomial equations F , i.e. to the
given instance of the minimal problem.

3.2 Computing a Favourable Monomial Set

Let the extra polynomial fm+1 have the form fm+1 = xk −
u0 (29) for xk ∈ X , and let us assume a subset Fsub ⊂ Fa of
the augmented system Fa = F ∪ { fm+1} (16).

In the step 3(a) of our algorithm (Sect. 3.1), we attempt
to generate so-called favourable monomial sets. Our method
for constructing these sets is based on the polytope-based
algorithm proposed in [21], where such sets were generated
for the original system F and its subsets. Here we describe
our method that constructs such favourable sets for subsets
Fsub of the augmented system Fa (16). In this subsection,
we refer to the basic terminology and notations described in
Sect. 2.2.5.

In our method, we begin by computing the support A j =
supp( f j ) and the Newton polytope NP( f j ) = conv(A j )

for each polynomial f j ∈ Fa . We also compute the unit
simplex NP0 ⊂ Z

n and the Minkowski sum, Q = NP0 +
� f ∈FsubNP( f ). Let us construct a small displacement vector
δ ∈ R

n , such that each of its elements is assigned one of the
three values, {−10−1, 0, 10−1}. In other words,

δ ∈ {[δ1 . . . δn
] | δi ∈ {−10−1, 0, 10−1}; i = 1, . . . , n}.

(35)

Then using this value of δ, we compute the set of integer
points inside Q + δ, from which we compute a set of mono-
mials, B = {xα | α ∈ Z

n∩(Q+δ)}, i.e. a potential candidate
for a favourable monomial set. We demonstrate this step on
a system of two polynomials in Example 2.

Example 2 Let us continue with Example 1, where we com-
puted the Newton polytopes P1 = NP( f1) and P2 = NP( f2)
as well as their Minkowski sum Q = P1+ P2. Let us assume
the displacement vector to be δ = [−0.1,−0.1]. In Fig. 2,
we depict the integer points in the interior of Q + δ, i.e. the
points in the set Z2 ∩ (Q + δ). This set of points give us a
favourable set of monomials B

B = {x2, x22 , x32 , x21 , x31 , x1x2, x1 x22 ,
x1 x

3
2 , x

2
1 x2, x

2
1 x

2
2 , x

2
1 x

3
2 , x

3
1 x2,

x31 x
2
2 , x

3
1 x

3
2 , x

4
1 x2, x

4
1 x

2
2 , x

4
1 x

3
2}. (36)
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Fig. 2 The integer points (shown in blue) in the interior of the
Minkowski sum of the two Newton polytopes, Q = P1 + P2 after
shifting it δ = [−0.1,−0.1] (Color figure online)

Selecting the displacement vector δ

In Eq. (35), our choice of the displacement 10−1 in each
direction is not completely random, although to the best of
our knowledge there is no theory which gives us a δ leading
to the smallest solver. All we know is that the displacement
in each direction should be in the range (−1.0, 1.0), and
in this paper we have chosen a reasonably small value, i.e.
10−1. A different choice will lead to a different favourable
monomial set. To this end, we have observed, that as the
number of vertices of the Minkowski sum Q increases the
number of different solvers we can generate by choosing
different displacements will also increase.

In the next step (see step 3(b) in Sect. 3.1), we extend the
input polynomial system, Fa , using the set of monomials B
as

Fa
B→ (F ′

a, T ), (37)

where T = {T1, . . . , Tm+1} (see (5)). Each Ti denotes the set
of monomials to be multiplied with the polynomial fi ∈ F .
The extended set of polynomialsF ′

a can bewritten in amatrix
form as

C([ci,α], u0) b, (38)

where b is a vector form of B w.r.t. some ordering of mono-
mials. In the rest of the paper, we will denote the coefficient
matrix C([ci,α], u0) as C(u0) for the sake of simplicity.

Our approach then evaluates the following three condi-
tions:

�m+1
j=1 |Tj | ≥ |B|, (39)

min
j

|Tj | > 0, (40)

column rank of C(u0) = |B|, (41)

for a randomvalue of u0 ∈ C. The first condition (39) ensures
that we have at least as many rows as the columns in the
matrix C(u0). The second condition (40) ensures that there is
at least one row corresponding to every polynomial fi ∈ Fa .
The third condition (41) ensures that C(u0) has full column
rank and that we can extract a sparse resultant matrix from
it. If these conditions are satisfied, we consider the set of
monomials B to be a favourable set of monomials.

Note that we repeat this procedure for all variables xk ∈
X , for each subset Fsub ⊂ Fa , and for each value of the
displacement vector δ (35). The output of this step are all
generated favourablemonomial sets B and the corresponding
coefficient matrices C(u0).

3.3 Block Partition of C(u0)

In the step 4 of our method (Sec 3.1), we iterate through
all favourable monomial sets B and the coefficient matrices
C(u0), which was the output of the previous step.

For each favourable monomial set B, we know the corre-
sponding sets of monomial multiples Ti for each polynomial
fi ∈ Fa and the set T = {T1, . . . , Tm, Tm+1}. We have
also computed the corresponding coefficient matrix C(u0).
Assume the extra polynomial (29) to be fixed as fm+1 =
xk − u0, for xk ∈ X , while computing this favourable mono-
mial set.

Since B was constructed such that it satisfies (41), C(u0)
has full column rank. Let us assume, ε =| B | and p =
�m+1

j=1 |Tj |. As C(u0) satisfies the condition (39), we have
p ≥ ε. Therefore, we can remove the extra p − ε rows from
C(u0), leading to a square invertible matrix. The algorithm
of row removal approach is described in B.3. The square
matrix so obtained, is a sparse resultant matrix M(u0) and
it satisfies the resultant matrix constraint (8), if the set of
equations Fa = 0 has solutions.

Instead of directly solving the resultant constraint (9) or
converting (8) to GEP, we exploit the structure of the extra
polynomial fm+1 (29) and propose a special ordering of the
rows and columns of M(u0). This facilitates a block partition
of M(u0), such that the Schur complement of one of its block
submatrices then helps us to reduce its matrix constraint (8)
to a regular eigenvalue problem.3

Rather than block partitioning the sparse resultant matrix
M(u0), we first fix a block partition of the coefficient matrix
C(u0) and then remove its rows, while respecting this parti-
tion, to obtain the sparse resultant matrix M(u0). Note that we
obtain two different block partitions on b and C(u0), in (38),

3 Note that it may happen that neither of the two set-partitions for a
given favourable monomial set B, lead to a block partition of C(u0)
such that A12 has full column rank. In this case, the Schur complement
does not exist and our algorithmwill continue to test the next favourable
monomial set B.
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based on our selected set-partition of the favourable mono-
mial set B = B1 ∪ B2:

B1 = B ∩ Tm+1or (42)

B1 =
{
xα ∈ B | x

α

xk
∈ Tm+1

}
(43)

Note that B2 = B \ B1. We consider both these partitions
in Proposition 1. Thereafter, we will describe our method of
removing the rows from C(u0) such that we can compute a
Schur complement of a block of M(u0).

Proposition 1 Consider a block partition of C(u0) and b
in (38) as

C(u0) b =
[
C11 C12
C21 C22

] [
b1
b2

]
. (44)

Wecan achieve this in two differentways, based on our choice
the set-partition of B in (42) or (43). In either case, if C12 has
full column rank, then the resultant matrix constraint (8) can
be converted to an eigenvalue problem, of the form X b1 =
u0b1 if we set-partition B as in (42), and of the form X b1 =
− 1

u0
b1 if we set-partition B as in (43). ThematrixX is square

and its entries are the functions of the coefficients of F .

Proof Let us first consider the set-partition of B as in (42).
Then, the special form of the extra polynomial (29) implies
that

B1={xα ∈ B| xkxα ∈ B}. (45)

We next order the monomials in B such that b can be parti-

tioned as b= [
vec(B1) vec(B2)

]T =[
b1 b2

]T
. This induces

a column partition of C(u0). Moreover, we can row partition
C(u0) by indexing the rows in its lower block by monomial
multiples of fm+1. All such multiples are linear in u0, i.e.,
these multiples have the form xαj(xk − u0),∀xαj ∈ Tm+1.
The upper block is row-indexed by monomial multiples of
f1, . . . , fm . Such a row and column partition of C(u0) gives
us a block partition as in (44). As

[
C11 C12

]
contains polyno-

mials independent of u0 and
[
C21 C22

]
contains polynomials

of the form xαj(xk − u0), we obtain

C11 = A11, C12 = A12

C21 = A21 + u0B21, C22 = A22 + u0B22, (46)

whereA11,A12,A21,A22,B21 andB22 arematrices dependent
only on the coefficients of input polynomials in Fa (16).
Based on our assumption in the statement of this proposition,
C12 and hence A12, have full column rank. Substituting (46)
in (44) gives

C(u0) =
[
A11 A12
A21 A22

]

︸ ︷︷ ︸
C0

+u0

[
0 0
B21 B22

]

︸ ︷︷ ︸
C1

(47)

We can order monomials so that Tm+1 = b1. Now, the block
partition of C(u0) implies that C21 is column-indexed by b1
and row-indexed by Tm+1. As

[
C21 C22

]
has rows of form

xαj(xk−u0), xαj ∈Tm+1 �⇒ xαj ∈ B1. This gives us B21 =
−I, where I is an identity matrix of size | B1 | × | B1 | and
B22 is a zero matrix of size | B1 | × | B2 |. This also means
that A21 is a square matrix of the same size as B21. Thus, we
have

C(u0) =
[
A11 A12
A21 A22

]
+ u0

[
0 0

−I 0

]
, (48)

where C(u0) is a p × ε matrix. If C(u0) is a tall matrix, so is
A12. Therefore, we can eliminate extra rows from the upper
block

[
A11 A12

]
so that we obtain a square invertible matrix

Â12 while preserving the above-mentioned structure. Such
a row-removal will also give us the sparse resultant matrix
M(u0) which satisfies the resultant matrix constraint (8). We
will describe our method for removing the extra rows in
Sect. 3.4. Let us now here, use the Schur complement tech-
nique 2.2.4, to reduce the size of the eigenvalue problem.
From (48), we have

[
Â11 Â12
A21 A22

]

︸ ︷︷ ︸
Ĉ0

[
b1
b2

]
+ u0

[
0 0

−I 0

] [
b1
b2

]
= 0

�⇒ Â11b1 + Â12b2 = 0,

A21b1 + A22b2 − u0b1 = 0. (49)

Eliminating b2 from the above pair of equations, we obtain

(A21 − A22Â
−1
12 Â11)︸ ︷︷ ︸

X

b1 = u0b1. (50)

The matrix X is the Schur complement of Â12 w.r.t. Ĉ0.
If we select the alternative set-partition of B, as in (43), we

obtain a different block partition of b andC(u0). Specifically,
in (47), we have A21 = I and A22 = 0. By assumption, we
have A12 has full column rank. Therefore, we can remove the
extra rows from C(u0) in (48) and obtain

M(u0) =
[
Â11 Â12
I 0

]
+ u0

[
0 0
B21 B22

]
. (51)

Substituting the value of M(u0), in (8), we get Â11b1 +
Â12b2 = 0 and u0(B21b1 + B22b2) + b1 = 0. Eliminating

123



Journal of Mathematical Imaging and Vision (2024) 66:335–360 345

b2 from these equations, we obtain an alternate eigenvalue
formulation

(B21 − B22Â
−1
12 Â11)︸ ︷︷ ︸

X

b1 = −(1/u0)b1. (52)

��
ThematrixX here, represents an alternative representation

to the one in (50), of the Schur complement.
Note that this proposition allows us to test the existence of

the Schur complementX (50) (or (52)), for a given favourable
monomial set B and the corresponding coefficient matrix
C(u0). This condition is tested for each B and corresponding
C(u0), for both choices of set-partitions (33) or (32). Out of
those that succeed, we select the coefficient matrix C(u0),
which led to the smallest possible Schur complement X. If
we have more than one such choice, we choose the smallest
coefficient matrix C(u0). Note that our iterative approach
is crucial in increasing the chances of obtaining a minimal
solver, even when the polynomials in F have non-generic
coefficients.

3.4 Row-Column Removal

The next step in our method is to attempt to reduce the
size of the matrix C(u0) selected in the previous step. For
this, we employ a method, inspired by [26]. Here we select
columns of C(u0), one by one in a random order to test for
their removal. For each such column, we select rows (say
r1, . . . , rs) that contain nonzero entries in the column and
also consider all columns (say c1, . . . , cl ) that have nonzero
entries in r1, . . . , rs . Then, we can remove these s rows and
l columns from C(u0) only if the following conditions hold
true for the resulting reduced matrix Cred(u0).

1. After eliminating the monomials from T , we require that
there is at least one monomial left in each Ti .

2. IfC(u0) is of size p×ε, the reducedmatrixCred(u0)would
be of size (p−s)×(ε−l). Then, we require p−s ≥ ε−l
and rank(Cred(u0)) = ε − l.

3. Cred(u0) must be block partitioned and decomposed as in
Proposition 1.

We repeat the above process until there are no more
columns that can be removed. Note that the last condition is
important as it ensures that at each stage, the reduced matrix
can still be partitioned and decomposed into an eigenvalue
formulation (50) (or alternately (52)). Now by abuse of nota-
tion, let us denote C(u0) to be the reduced matrix and denote
B and T to be the reduced set of monomials and the set of
monomial multiples, respectively.

If C(u0) still has more rows than columns, we transform it
into a square matrix by removing extra rows (say q1, . . . , q j )

and the monomials from T indexing these rows, chosen in
a way such that the three conditions mentioned above are
still satisfied. Note that it is always possible to choose rows,
such that these three conditions are satisfied. Moreover, our
proposed approach first tries to remove as many rows as
possible from the lower block, indexed by Tm+1. This is
to reduce |Tm+1|(= |B1|) as much as possible and ensure
that the matrix A21 and hence X (50) (or (52)) for eigenvalue
problem has as small size as possible. Then, if there are more
rows still to be removed, the rest are randomly chosen from
the upper block indexed by {T1, . . . , Tm}. Algorithms for this
step of matrix reduction are provided in “Appendix B”.

The sparse resultant matrix M(u0) is constructed offline
through these three steps. In the online stage, we fill in the
coefficients of M(u0) from the input measurements and com-
pute a Schur complement X (50) (or (52)). Then, we extract
the solutions to x1, . . . , xn by computing the eigenvectors of
X. The speed of execution of the solver depends on the size
of b1(=|B1|) as well the size of Â12, while the accuracy of
the solver largely depends on the condition number as well
as the size of the matrix to be inverted i.e., Â12.

4 ActionMatrix vs sparse resultant

In this section, we study the connection between a solver gen-
erated using an actionmatrixmethod [8, 9, 26, 27, 32, 35, 47],
and a solver based on the sparse resultant method proposed
in Sect. 3. Observe that, our sparse resultant method exploits
only the structure of the input polynomials, via the geometry
of their Newton polytopes, whereas the SOTA action matrix
method algebraically investigates the input polynomial sys-
tem via theGröbner basis. Seemingly different, the generated
solvers exhibit the same properties, and hence, in this sec-
tion our objective is to throw some light on the similarities.
Some of the symbols used in both the methods are the same.
Therefore, to distinguish them, in this section we will use the
prefixes a and r to, respectively, denote the symbols used in
the action matrix method in Sect. 2.1 and the sparse resultant
method in Sect. 3.1. Let us assume that both these methods
are used to generate a solver for a system F = 0 (1) of
m polynomial equations in n variables with r solutions. An
action matrix method results in a solver that is performing
G–J elimination (or alternatively LU/QR decomposition) of
an elimination template aC (A8) and the eigendecomposition
of an action matrix M f (A3) of size r × r .4 The proposed
sparse resultant method, on the other hand, leads to a solver,
which computes a Schur complement X (50) (or (52)) of size

4 The size of the action matrix in all state-of-the art action matrix meth-
ods [9, 26, 27, 32, 35, 47] is equal to the number of solutions to the input
system. The only exceptions are the methods proposed in [8] and [37],
which can result in larger action matrices.
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N × N , from the sparse resultant matrix M(u0), followed by
its eigendecomposition. In general, N ≥ r .

While the final solvers generated by these twomethods are
in general different, i.e., they perform different operations,
at the same time, they demonstrate some similar properties,
e.g., both these solvers extract solutions from eigenvectors of
some matrices, and both involve computing a matrix inverse
(G–J elimination can be replaced by matrix inverse). This
motivates us to study the similarities of these solvers. Let us
first define the equivalence of a solver generated using an
action matrix method (AM) and a solver generated using the
sparse resultant method from Sect. 3 (SRes).

Definition 3 For a given system of polynomial equations
F = 0 (1), an action matrix-based solver and a sparse
resultant-based solver are defined to be equivalent, iff the
following two conditions are satisfied:

1. The action matrix M f (A3) is the same as the Schur com-
plement X (50) (or (52)), i.e. M f = X.

2. The size of thematrix aĈ is the same as the size of the upper
block

[
Â11 Â12

]
of the sparse resultant matrix M(u0) (49)

(or (51)) and the step of G–J elimination of the template
matrix aĈ in the online stage (step 7) of the action matrix
method (Sect. 2.1) can be replaced with the matrix prod-
uct Â−1

12 Â11, used to compute the Schur complement in
the online stage (step 6) of our sparse resultant method
(Sect. 3.1), or vice-versa.

Now, our goal is to define conditions under which the final
online solvers generatedby these twomethods are equivalent.

We next demonstrate that if we have an action matrix-
based solver (AM) for a given system F = 0 (1), we can
modify the steps performed by the sparse resultant method
proposed in the Sect. 3.1, such that both the solvers are equiv-
alent according to Definition 3.

4.1 X (SRes) from Mf (AM)

Let us assume that we have generated a solver for a system
of polynomial equations, F = 0 (1) using the action matrix
method described in Sect. 2.1 and detailed in “Appendix A”.
The action polynomial is assumed to be f = x1, where x1 ∈
X .

We first propose the following changes to the steps per-
formed by the sparse resultant method in the offline stage, in
Sect. 3.1. In what follows, we will assume that step i actually
means the step i in Sect. 3.1.

C1R The step 1 is skipped, as there is no need to test each
variable xk ∈ X .

C2R In the step 2, the extra polynomial is assumed to be
fm+1 = x1 − u0.

C3R In the step 3(a), the favourable set ofmonomials rB is
directly constructed from aB, as rB = aB. Moreover,
the set of monomial multiples is constructed as r Ti =
aTi , i = 1, . . . ,m and r Tm+1 = Ba (see Eq. (A5)).
The step 3(b) is to be skipped, as the coefficient
matrix rC(u0) will be directly obtained from the
action matrix-based solver, in subsequent steps. The
output of this step then is the favourable monomial
set rB.

C4R Replace the step 4(a) by directly determining the set
partition of rB = B1 ∪ B2 (31)–(32), as B1 = Ba

and B2 = B̂e ∪ Br , where Ba, Br and B̂e are defined
in “Appendix A”. Moreover, the monomial ordering
in ab determines the vectors, b1 = ba and b2 =[
b̂e
br

]
. The action matrix-based solver corresponds to

the first version of set partition of rB, considered in
our sparse resultant method, i.e. the set partition as
in (31).

C5R In the step 4(b), the upper block
[
A11 A12

]
of

rC(u0) (33) is directly obtained from aĈ, as

A11 =
[
C13
C23

]
,

A12 =
[
Ĉ11 C12
Ĉ21 C22

]
. (53)

Multiplying fm+1 with the monomials in r Tm+1,
the expanded set of polynomials is obtained as
{xα (x1 − u0) | xα ∈ r Tm+1}. It is possible to order
the polynomials in this set, such that its matrix form
is

[
A21 − u0I A22

] [
b1
b2

]
. (54)

This determines the lower block of rC(u0). Here, A21
and A22 are binary matrices, with entries either 0 or
1. The upper and the lower blocks together give us

rC(u0)
rb =

[
A11 A12

A21 − u0I A22

] [
b1
b2

]
. (55)

The output of the modified step 4, is the coefficient
matrix rC(u0).

C6R By construction, rC(u0) is already a square invert-
ible matrix and has no extra rows to be removed. As
we do not need to attempt row-column removal from
rC(u0), the step 5 is to be skipped, to directly con-
struct the sparse resultant matrix as M(u0) = rC(u0).
In this case, the submatrices Â11 and Â12 of M(u0)
are equal to the submatrices A11 and A12 of rC(u0),
respectively.
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Applying these changes to the steps 1–5 in Sect. 3.1, i.e. the
offline stage, we obtain the sparse resultant matrix M(u0).
After that, the online solver computes the Schur comple-
ment X of the block submatrix Â12 of M(u0), followed by an
eigenvalue decomposition (50) of X as described in the step
6 in Sect. 3.1. In the proposition C.1, we prove that the sparse
resultant-based solver so obtained is equivalent to the action
matrix-based solver.

4.2 Mf (AM) from X (SRes)

Let us assume that for a systemof polynomial equations,F =
0 (1), we have a sparse resultant-based solver, generated by
following the steps in Sect. 3.1. In this solver the coefficient
matrix rC(u0) is assumed to be partitioned as in (33), and
the alternative partition (34) will be considered in the next
Sect. 4.3. Moreover, the Schur complement X is assumed
to have as many eigenvalues as the number of solutions to
F = 0, i.e., N = r .5 The extra polynomial is supposed to be
of the form fm+1 = x1 − u0, for x1 ∈ X .

We first propose the following changes to the steps per-
formed by the action matrix method in the offline stage, in
“Appendix A”. In the following list, we assume that step i
actually means the step i in “Appendix A”.

C1A There is no change to the step 1.
C2A In the step 2, set the basis of the quotient ring A, to

be BA = {[xα] | xα ∈ B1} ⊂ A. By assumption,
A is an r -dimensional vector space over C spanned
by the elements of BA,6. Construct the monomial set
Ba = B1.

C3A In the step 3, assume the action polynomial f = x1.
C4A The monomial multiples, required in the step 4, are

obtained as aTi = r Ti , i = 1, . . . ,m. This also gives
us the extended polynomial set F ′. Note that aB =
rB = mon(F ′).

C5A In the step 5, the required sets of reducible and excess
monomials are determined as

Br = {x1xα | xα ∈ B1} \ B1

Be = B2 \ Br . (56)

5 If the Schur complement X has more eigenvalues N than the number
of solutions r , we can still change the steps performed by the action
matrix method such that it leads to a solver equivalent to the sparse
resultant-based solver. However, such a case would be too complicated,
and is not discussed here. Recently, [37] have proposed an actionmatrix-
based automatic generator which attempts to generate solvers with an
eigenvalue problem larger than the number of roots of the system.
6 It was proved in [15, Theorem 6.17] that if F is a generic polynomial
system, then A would be spanned by the elements of the set BA. How-
ever, even if the polynomial system is not generic, we can still follow
the steps performed in the same proof.

Note that by (45), xα ∈ B1 �⇒ x1xα ∈ rB.
C6A In the step 6, the vector ofmonomials is determined as

a b̂ = rb. This will also determine the vectors ba,br
and b̂e. Thus, the monomials in the action matrix
method are ordered in the sameway as themonomials
in the sparse resultant method.
Moreover, in the step 6, the elimination template aĈ,
and its block partition, are determined as

[
Ĉ11 C12
Ĉ21 C22

]
= Â12,

[
C13
C23

]
= Â11. (57)

The column partition of aĈ is determined by the par-
tition of the vector ab. By the construction of M(u0),
Â12 is a square invertible matrix. Therefore, we can
always find a row partition such that C22 is a square
invertible matrix. As, Ĉ22 and Â12 are square matri-
ces, Ĉ11 is also a square matrix. Therefore, there are
no extra columns to be removed and the elimination
template aĈwill be such that its G–J elimination will
lead to the required form, as in (A11).

Applying these changes to the steps 1–6 in Sect. 2.1, i.e. the
offline stage, we obtain the elimination template aĈ. Sub-
sequently, the online action matrix-based solver (step 7 in
Sect. 2.1) computes the G–J elimination of aĈ, from which
the entries of the action matrix M f are read-off. This implies
that the action matrix-based solver is equivalent to the sparse
resultant-based solver, which is proved in Proposition C.2.

4.3 Mf (AM) from X (SRes) with Alternative Form

Let us assume that for a systemof polynomial equations,F =
0 (1), we have used the alternative partition of rB (32) and
rC(u0) (34), and generated a sparse resultant-based solver by
following the steps in Sect. 3.1. This means that we need to
assume that no solution of F = 0, has x1 = 0. The other
assumptions remain the same as in Sect. 4.2.

The alternative partition of the favourable monomial set
rB (32) implies that the Schur complement X (52) gives us

a representation of each coset

[
xαj

x1

]
, xαj ∈ B1 as a linear

combination of the cosets [xαj ],∀xαj ∈ B1. However, the
approach in Sect. 4.2 does not work, because in this case we
need to set the action polynomial f to be 1/x1.

Therefore, we can use the so-called Rabinowitsch trick
[15], and propose the following changes to the offline stage
of the action matrix method in Sect. 2.1. In the following
list, we will assume that step i actually means the step i in
Sect. 2.1.
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C1A′ In the step 1, the polynomial systemF , is augmented
with an extra polynomial a fm+1 = x1λ − 1, where λ

is a new variable. The augmented polynomial system
is denoted as aFa , and the augmented set of variables
as aXa = X ∪{λ}. Consider the ideal Ia = 〈aFa〉 and
the quotient ring Aa = C[aXa]/Ia .

C2A′ Note that the number of solutions to F = 0 is the
same as that of aFa = 0, because we have assumed
x1 �= 0. Therefore, Aa is an r -dimensional vector
space overC. Its basis is constructed asBA = {[xαj ] |
xαj ∈ B1}. Construct the monomial set Ba = B1.

C3A′ In the step 3, the action polynomial is assumed to be
f = λ.

C4A′ The sets of monomial multiples required in the step
4, are constructed as aTi = r Ti , i = 1, . . . ,m + 1.
From (32), xαj ∈ Tm+1 implies x1xαj ∈ B1, which
implies that λx1xαj ∈ Br . The extended polynomial
set aF ′

a is obtained by multiplying each fi ∈ aFa

with the monomials in aTi . In the step 4, the set of
monomials is obtained aB = mon(F ′

a).
C5A′ In the step 5, the required monomial sets are

Br = {λxα | xα ∈ B1}
Be = B2. (58)

Note that the set of monomials aB = Be ∪ Br ∪ Ba ,
and Ba ∩ Br = ∅.

C6A′ In the step 6, the monomial vectors are set as ba =
b1,br = vec(Br ) and be = b2. This will also fix

the vector of monomials ab =
⎡

⎣
be
br
ba

⎤

⎦. The mono-

mials in the vector ab in the action matrix method
are ordered in the same way as the monomials in the
sparse resultant method in Sect. 3.1. Moreover, as the
monomials in Br are in a one-to-one correspondence
w.r.t. the monomials in B1, the monomial ordering in
b1 fixes the order of the monomials in br as well.

Applying these changes to the steps 1–6 in Sect. 2.1, i.e. the
offline stage, we obtain the elimination template aĈ. Then,
the action matrix-based solver (step 7 in Sect. 2.1) computes
theG–J elimination of aĈ, fromwhich the entries of the action
matrix M f are read-off. This implies that the action matrix-
based solver is equivalent to the sparse resultant-based solver,
which is proved in Proposition C.3.

5 Comparison w.r.t. SOTA Sparse Resultant
Methods

Our extra polynomial algorithm is based on the hidden vari-
ablemethod [21]. It also extends themethod in [11] for square

systems, by doing away with the computation of the mixed
subdivision of the Minkowski sum of all the Newton poly-
topes.We consider these twomethods to be the current SOTA
for generating sparse resultant-based minimal solvers.

We select a subset of interesting minimal problems and
demonstrate the importance of our algorithm in improving
solver speeds compared to those generated by the SOTA
resultant methods. Moreover, our algorithm has two impor-
tant properties, viz. the special form of the extra polynomial
and the row-column removal procedure. In this section, we
demonstrate via an ablation study, how these two proper-
ties are critical in achieving substantially improved solver
sizes. Refer to Table 1, where we list the sizes of the solvers
generated using the SOTA sparse resultant methods [11, 21]
(cols 3 & 4), the sizes of the solvers generated with an extra
polynomial of a general form (see Sect. 2.2.3) (col 5), and
the sizes of the solvers generated without the row-column
removal step (see Sect. B.2) (col 6). Finally, we list the sizes
of the solvers generated by our approach (col 7).

Note that the size of a solver based on the hidden vari-
able method [21] is reported as the size of the underlying
generalized eigenvalue problem (GEP) (14). If the matrix A
(and B) in GEP is of dimensions r × r , the solver size can
be considered to be equivalent to the size of an inverse of a
matrix of dimensions r×r and an eigenvalue computation of
a matrix of size r×r . On the other hand, the size of the solver
based on any one of the other methods is reported as a matrix
of size s × t , which is equivalent to the size of an inverse
of a matrix of dimensions s × s and an eigenvalue compu-
tation of a matrix of size (t − s) × (t − s). The difference
in the time taken for inverting matrices of comparable sizes
is minute, as the sparsity of the matrices enable highly opti-
mized software implementation formatrix inverse. Therefore
the speed of the solver is primarily governed by the size of
the eigenvalue computation.With this discussion inmind, we
observe from Table 1 that the solvers based on the GEP (col
1) will have worse or comparable speed to that of the solvers
based on our approach (col 7). Observe that out of the five
problems the approach by [11] failed to generate any solver
as the systems are non-square, and hence, the subdivision
methods cannot be applied. For all the problems, the method
of u-resultant using an extra polynomial of a general form
leads to larger elimination templates, whereas using an extra
polynomial with a special form improves the template size.
Additionally, the row-column removal step ultimately leads
to the best possible solver sizes among all sparse resultant-
based methods.

6 Experiments

In this section, we evaluate the performance of the mini-
mal solvers, generated using our sparse resultant method,
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Table 1 A comparison of the sizes of the solvers for some minimal
problems, generated by the iterative algorithm [21] (col 3), the polytope
subdivision approach for square systems in [11] (col 4), the u-resultant

method using an extra polynomial with a generic form (col 5), our
proposed algorithm (see Sect. 3) without (col 6) and with row-column
removal (col 7)

# Problem [21] [11] Our
GEP u-resultant No row-col removal Full algorithm

1 Rel. pose F+λ 8pt 12 × 12 15 × 24 15 × 24 7 × 16 7 × 16

2 Rel. pose E+λ 6pt 30 × 30 – 42 × 60 14 × 40 14 × 40

3 Stitching f λ+R+ f λ 3pt 24 × 24 6 × 30 31 × 49 18 × 36 8 × 31

4 Rel. pose λ1+F+λ2 9pt 68 × 68 210 × 240 – 120 × 147 77 × 104

5 Abs. pose quivers 43 × 43 104 × 161 – 69 × 94 36 × 70

6 Abs. pose refractive P5P 36 × 36 49 × 73 61 × 77 61 × 77 39 × 65

Note that the solvers in col 3 consist of GEP (14). E.g., a solver of size 68× 68 can be considered to be competing with a solver having two matrix
operations, viz. matrix inverse of size 68× 68 and matrix eigenvalue of size 69× 68. –: The algorithm failed to generate any solver. The best solver
sizes are highlighted in bold

proposed in Sect. 3. We compare the stability as well as the
computational complexities of these solverswith the state-of-
art Gröbner basis-based solvers formany interestingminimal
problems. The minimal problems selected for comparison
represent a huge variety of relative and absolute pose prob-
lems and correspond to those studied in [35]. Note that for the
two minimal problems, Rel. pose f +E+ f 6pt and Abs. pose
refractive P5P, we generated solvers from a simplified poly-
nomial system as described in [38], instead of the original
formulation.

6.1 Computational Complexity

The biggest contributor towards computational complexity
of a minimal solver is the size of the matrices that undergo
crucial numerical operations. The solvers based on our sparse
resultant method in Sect. 3, the state-of-the-art Gröbner basis
solvers as well as in the original solvers proposed by the
respective authors (see column 4) involve two crucial oper-
ations, a matrix inverse7 and an eigenvalue decomposition.
This is indicated by the size of the solver in the table, e.g. a
sparse resultant-based solver of size 11× 20 means comput-
ing a matrix inverse Â−1

12 of size 11 × 11, ultimately leading
to a Schur complement X of size 20− 11 = 9, and an eigen-
value decomposition of this matrix X. Similarly an action
matrix-based solver of size 11× 20 means performing a G–
J elimination of a 11 × 20 matrix C and then an eigenvalue
decomposition of an actionmatrixM f of size 20−11 = 9. So
in Table 2, we compare the size of the upper block

[
Â11 Â12

]

of the sparse resultant matrix M(u0) in our extra polynomial
sparse resultant-based solvers, with the size of the elimina-
tion template C used in state-of-the-art Gröbner basis solvers
as well as in the original solvers proposed by the respective
authors (column 5).

7 G–J elimination is usually performed by a computing amatrix inverse.

The Gröbner basis-based solvers used for comparison
include the solvers generated using the approach in [32]
(column 6), the Gröbner fan-based and the heuristic-based
approaches in [35] (columns 7 and 9, respectively), and the
template optimization approach using a greedy parameter
search in [38] (column 10). Out of the two methods for gen-
erating minimal solvers, proposed in [38], we consider the
smallest solver for each minimal problem.

As we can see from Table. 2, for most minimal problems,
our sparse resultant method leads to smaller solvers com-
pared to the Gröbner basis solvers based on [32, 35] and
of exactly the same size as the solvers based on [38]. The
smallest solvers where size of the eigenvalue decomposition
problem is the same as the number of solutions are written
in bold in Table 2.

Moreover, for some minimal problems, our sparse resul-
tant method leads to a larger eigenvalue problem than the
number of solutions,written in italic inTable 2. For three such
minimal problems, i.e. Rel. pose E+ f λ 7pt, Unsynch. Rel.
pose, and Optimal pose 2pt v2, our sparse resultant method
leads to solvers with the smaller size as compared to the
solvers based on the Gröbner basis-based methods [32, 35],
whereas for the problem, Abs. pose quivers, our sparse resul-
tant method leads to a smaller solver than the solvers based
on [32, 35] and of comparable size w.r.t. the solver based on
[38].

Note that for the twominimal problems, Optimal pose 2pt
v2 and Rel. pose E angle+4pt, the elimination template C in
the solvers based on the approach in [38], underwent an extra
Schur complement-based step in the offline stage. Therefore,
the template sizes reported for these two solvers are smaller
than those in the solvers based on the other Gröbner basis
methods in [32, 35]. For the problem, Rel. pose E angle+4pt,
our sparse resultant method failed to generate a solver. This
implies that none of the subsetsFsub for this problem lead to a
favourable monomial set (see Sect. 3.2). The primary reason
for this failure is the non-genericity of the coefficients (see
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Definition 1). This points to a future research direction for
such minimal problems. We need to look beyond Newton
Polytopes of the subsets Fsub and test other convex objects.

6.2 Stability Comparison

We evaluate and compare the stability of our solvers from
Table 2 with the Gröbner basis-based solvers. As it is not
feasible to generate scene setups for all considered prob-
lems, we instead evaluated the stability of minimal solvers
using 5K instances of random data points. Stability measures
include mean and median of Log10 of the normalized equa-
tion residuals for computed solutions, as well as the solver
failures. The solver failures are an important measure of sta-
bility for real-world applications and are computed as the %
of 5K instances for which at least one solution has a normal-
ized equation residual> 10−3. These measures on randomly
generated inputs have been shown to be sufficiently good
indicators of solver stability [32]. Also, Table 3 shows the
stability of the solvers for all the minimal problems from
Table 2. We observe that for most of the minimal problems,
our proposed sparse resultant-based solvers have no failures.
Among those with some failures, for all except two mini-
mal problems our sparse resultant-based solvers have fewer
failures, as compared to the Gröbner basis-based solvers.

In general, our new method generates solvers that are sta-
ble with only very few failures. For a selected subset of nine
minimal problems from Table 2, we computed the Log10
of the normalized equation residuals and depicted their his-
tograms in Fig. 4. The histograms agree with our observation
fromTable 3, that our proposed sparse resultantmethod leads
to solvers with only few failures.

Note that as our new solvers are solving the same formula-
tions of problems as the existing state-of-the-art solvers, the
performance on noisy measurements and real data would be
the same as the performance of the state-of-the-art solvers.
The only difference in the performance comes from numeri-
cal instabilities that already appear in the noise-less case and
are detailed in Table 3 (fail%). For performance of the solvers
in real applications, we refer the reader to papers where the
original formulations of the studied problemswere presented
(see Table 2, column 2). Here we select two interesting prob-
lems, i.e., one relative and one absolute pose problem, and
perform experiments on synthetically generated scenes and
on real images, respectively.

E+ f λ solver on synthetic scenesWe study the numerical
stability of our sparse resultant-based solver for the problem
of estimating the relative pose of one calibrated camera, and
one camera with unknown focal length and radial distortion
from 7-point correspondences, i.e. the Rel. pose E+ f λ 7pt
problem from Table 2. We consider the formulation “elim.
λ” proposed in [35] that leads to the smallest solvers. We

study the performance on noise-free data and compare it to
the results of Gröbner basis solvers from Table 2.

We generated 10K sceneswith 3Dpoints drawn uniformly
from a [−10, 10]3 cube. Each 3D point was projected by two
cameras with random feasible orientation and position. The
focal length of the first camera was randomly drawn from the
interval fgt ∈ [0.5, 2.5] and the focal length of the second
camera was set to 1, i.e. the second camera was calibrated.
The image points in the first camera were corrupted by radial
distortion following the one-parameter division model. The
radial distortion parameter λgt was drawn at random from the
interval [−0.7, 0] representing distortions of cameras with a
small distortion up to slightly more than GoPro-style cam-
eras.

Figure 3 shows Log10 of the relative error of the distortion
parameter λ (left) and the focal length f (right), obtained
by selecting the real root closest to the ground truth. All
tested solvers provide stable results with only a small number
of runs with larger errors. The solver based on our sparse
resultant method (green) is not only smaller, but also slightly
more stable than the heuristic-based solver [35] (red) and the
solver based on [32] (black). For most minimal problems,
the solver based on our proposed sparse resultant method
has fewer failures, as compared to the solver based on the
greedy parameter approach in [38] (blue) (Fig. 4).

P4Pfr solver on real images We evaluated our sparse
resultant-based solver for a practical problem of estimat-
ing the absolute pose of camera with unknown focal length
and radial distortion from four 2D-to-3D point correspon-
dences, i.e. the P4Pfr solver, on real data. We consider the
Rotunda dataset, which was proposed in [29], and in [34] it
was used for evaluating P4Pfr solvers. This dataset consists
of 62 images captured by a GoPro Hero4 camera. Example
of an input image from this dataset (left) as well as undis-
torted (middle) and registered image (right) using our new
solver, is shown in Fig. 5 (top). The Reality Capture software
[44] was used to build a 3D reconstructions of this scene.
We used the 3D model to estimate the pose of each image
using the new P4Pfr resultant-based solver (28 × 40) in a
RANSAC framework. Similar to [34], we used the camera
and distortion parameters obtained from [44] as ground truth
for the experiment. Figure5 (bottom) shows the errors for the
focal length, radial distortion, and the camera pose. Overall,
the errors are quite small, e.g. most of the focal lengths are
within 0.1% of the ground truth and almost all rotation errors
are less than 0.1 degrees, which shows that our new solver
works well for real data. We have summarized these results
in Table 4 where we present the errors for the focal length,
radial distortion, and the camera pose obtained using our pro-
posed solver and for the sake of comparison we also list the
errors, whichwere reported in [34], where the P4Pfr (40×50)
solver was tested on the same dataset. Overall the errors are
quite small, e.g. most of the focal lengths are within 0.1% of
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Fig. 3 Histograms of Log10 relative error in radial distortion (left) and
focal length (right) for Rel. pose E+ f λ 7pt (elim λ) problem for 10K
randomly generated synthetic scenes. These scenes represent cameras
with different radial distortions, poses and focal lengths. For compar-
ison, we generated solvers using our sparse resultant method (green),
Gröbner basis method [32] (black), heuristic method [35] (red) and
greedy parameter search method [38] (blue) (Color figure online)

the ground truth and almost all rotation errors are less than
0.1 degrees, which shows that our new solver as well as the
original solver work well for real data. The results of both
solvers are very similar. However, note that the slightly dif-
ferent results reported in [34] are due to RANSAC’s random
nature and a slightly different P4Pfr formulation (40 × 50)
used in [34].

7 Conclusion

In this paper, we have proposed a sparse resultant method for
generating efficient solvers for minimal problems in com-
puter vision. It uses a polynomial with a special form to
augment the initial polynomial system F in (1) and con-
struct a sparse resultant matrix M(u0) (7), using the theory of
polytopes [15]. The special form enables us to decompose
the resultant matrix constraint (8), into a regular eigenvalue
problem (50) (or (52)) using the Schur complement. As
demonstrated in Sect. 6, our sparse resultant method leads
to minimal solvers with comparable speed and stability w.r.t.
to the SOTA solvers based on the action matrix method [26,
32, 35, 38]. Note that the way our sparse resultant method is
designed, for someminimal problems, it leads to solvers with
larger eigenvalue problems but performing a smaller matrix
inverse and with comparable or better stability compared to
that of the Gröbner basis-based solvers.

While the action matrix method and the sparse resultant
method are based ondifferentmathematical theories,wehave
observed that the resulting solvers involve similar numerical
operations, such as eigenvalue computation. This raises the
question, “Under what conditions for a given minimal prob-
lem (a given system of polynomial equations), are the two
solvers the same?” In Sect. 4, we have attempted to answer
this question. Specifically, if we begin with an action matrix-
based solver for a given minimal problem, then we propose a
list of changes to be made to the steps in our sparse resultant
method so that it leads to an equivalent sparse resultant-based

solver. In the opposite direction, we also study the case when
we begin with a sparse resultant-based solver and establish
a list of changes to the steps performed by an action matrix
method such that it leads to an equivalent solver. In other
words, if we begin with an action matrix-based solver, it
determines the extra polynomial fm+1 and the favourable
monomial set, to be used in the sparse resultant method. Or,
if we begin with a sparse resultant-based solver, it determines
the monomial ordering, the extended polynomial setF ′, and
the basis of the quotient ring to be used for computing an
action matrix-based solver.

We hope that this discussion paves a path towards unify-
ing the two approaches for generating minimal solvers, i.e.,
the action matrix methods and the sparse resultant method
based on an extra polynomial. It is known that both these
approaches are examples of the normal form methods for a
given polynomial system F , recently studied in [40, 54, 55].
To the best of our knowledge, normal forms have yet not been
incorporated in the automatic generators for minimal solvers
in computer vision. This may be an interesting future topic
to investigate.

Acknowledgements Zuzana Kukelova was supported by the OP VVV
funded project CZ.02.1.01/0.0/0.0/16_019/0000765 ‘Research Center
for Informatics’ and the Czech Science Foundation (GAČR) JUNIOR
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Appendix A ActionMatrix

Here, we describe the important steps typically performed by
an action matrix method based on the theory of the Gröbner
basis. Note that for a given minimal problem, the offline
steps are performed only once, while the online steps are
repeated for each instance of the input data/measurements
for the given minimal problem.

1. [Offline]We begin with a system of m polynomial equa-
tions F = 0 (1) in n variables. Let us denote the ideal
generated by F , as I . Let us also assume that F = 0
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Fig. 4 Histograms of Log10 of normalized equation residual error for nine selected minimal problems. The methods tested for comparison are
based on Gröbner basis [32], heuristics [32], greedy parameter search [38] and our sparse resultant method

Fig. 5 Top row: Example of an input image (left). Undistorted image
using the proposed resultant-based P4Pfr solver (middle). Input 3D
point cloud and an example of registered camera (right). Bottom row:
Histograms of errors for 62 images. The measured errors are (left)
the Log10 relative focal length | f − fGT |/ fGT , radial distortion
|k − kGT |/|kGT |, and the relative translation error ‖�t − �tGT ‖/‖�tGT ‖,
and (right) the rotation error in degrees

has r solutions. It is well known that the quotient ring
A = C[X ]/I has the structure of a finite-dimensional

vector space over the field C (see [15] for details). Let A
be a l-dimensional vector space. Then, if I is a radical
ideal, i.e., I = √

I , we have l = r .
2. [Offline] This method computes a linear basis of A,

denoted as BA = {[xα1 ] , . . . , [xαr ]}. Here, some mono-
mial ordering is assumed, to define the division of a
polynomial f ∈ C[X ] w.r.t. the ideal I . This polyno-
mial division is denoted with the operator [ f ]. The set
of monomials, corresponding to the elements in BA, are
Ba = {xα1 , . . . , xαr }.

3. [Offline] Some f ∈ C[X ] is assumed as an action poly-
nomial, which sends each [xα] ∈ A to [ f xα] ∈ A. We
thus have the following linear map

T f : A → A, T f ([xα]) = [
f xα

]
. (A1)

Fixing a linear basis BA of A, allows us to represent the
linear map T f , with an r × r matrix, M f = (mi j ). Thus,
for each xαj ∈ Ba , we have

T f ([xαj ]) = [ f xαj ] =
r∑

i=1

mi j [xαi ]. (A2)
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In other words, the matrix M f represents, what we call
a multiplication or an action matrix. Assuming B f a =
{ f xαj | xαj ∈ Ba}, we have

M f ba = b f a, (A3)

where ba = vec(Ba) and b f a = vec(B f a). We can find
polynomials q j ∈ I , such that (A2) becomes

f xαj =
r∑

i=1

mi jxαi + q j . (A4)

Note that q j ∈ I �⇒ q j = ∑m
i=1 hi j fi . Various

action matrix methods in the literature adopt different
approaches for computing these polynomials q j ∈ C [X ].
Here, we assume the action polynomial f = xk , for some
variable xk ∈ X .

4. [Offline] In all action matrix methods, we basically need
to compute a set Tj of monomial multiples for each of
the input polynomials f j ∈ F . This gives us an expanded
set of polynomials, which we denote as F ′ = {xα fi |
fi ∈ F , xα ∈ Ti }. This extended set of polynomials F ′,
is constructed such that each q j can be computed as a
linear combination of the polynomials F ′.8

5. [Offline] Let B = mon(F ′), which is partitioned [8] as

B = Be ∪ Br ∪ Ba, (A5)

Br = {xkxα | xα ∈ Ba} \ Ba, (A6)

Be = B \ (Br ∪ Ba), (A7)

where Br and Be are, respectively, what we call the
reducible monomials and the excess monomials.

6. [Offline] The set of equations F ′ = 0 is expressed in a
matrix form, as

C b =
[
C11 C12 C13
C21 C22 C23

] ⎡

⎣
be
br
ba

⎤

⎦ = 0, (A8)

where be = vec(Be) and br = vec(Br ). The rows of C
are assumed to be partitioned such that C22 is a square
invertible matrix. The matrix C is known as an elimina-
tion template. As C represents a coefficient matrix of F ′
constructed as described in step 4, if we perform a G–J
elimination of C, we obtain the following

[
C′
11 0 C′

13
0 I C′

23

]
. (A9)

8 The coefficients of each polynomial q j are found through a G–J elim-
ination of the matrix C representing the extended set of polynomialsF ′.

Table 4 Errors for the real Rotunda dataset

Solver Our P4Pfr 28 × 40 P4Pfr 40 × 50 SOTA
Avg Med Max Avg Med Max

Focal (%) 0.080 0.063 0.266 0.08 0.07 0.29

Distortion (%) 0.522 0.453 1.651 0.51 0.45 1.85

Rotation (◦) 0.031 0.029 0.062 0.03 0.03 0.10

Translation (%) 0.066 0.051 0.210 0.07 0.07 0.26

The errors are relative to the ground truth for all except rotation which is
shown in degrees. The results for the SOTAP4Pfr solver of size 40×50,
are taken from [34]

Note that, C22 is a square invertible matrix. The submatrix
C′
11 may not be square. This implies that some columns

in

[
C11
C21

]
are linearly dependent, which can be removed

[26], along with the corresponding monomials from the
set of excess monomials Be. Let the resulting monomial
set be denoted as B̂e and the reduced column block as[
Ĉ11
Ĉ21

]
. Then, (A8) becomes

Ĉ b̂ =
[
Ĉ11 C12 C13
Ĉ21 C22 C23

] ⎡

⎣
b̂e
br
ba

⎤

⎦ = 0, (A10)

where Ĉ and b̂, respectively, denote the reduced elimina-
tion template and the monomial vector.

7. [Online] A Gauss–Jordan (G–J) elimination9 of Ĉ leads
to

[
I 0 Ĉ′

13
0 I C′

23

]⎡

⎣
b̂e
br
ba

⎤

⎦ = 0. (A11)

The lower block row is rewritten as

[
I C′

23

]
[
br
ba

]
= 0. (A12)

The entries of the action matrix M f can be then read off
from the entries of the matrix C′

23 [8, 26]. For x
αj ∈ Ba ,

if xkxαj ∈ Ba for some xαi1 ∈ Ba , then j-th row of M f

contains 1 in i1-th column and 0 in the remaining columns.
But if xkxαj /∈ Ba , then xkxαj ∈ Br for some xαi2 ∈ Br .
In this case, j-th row of M f is the i2-th row of −C′

23.
We recover solutions to F = 0, from the eigenvalues
(and eigenvectors) of the action matrix M f . Specifically,
u0 ∈ C is an eigenvalue of the matrix M f , iff u0 is a value
of the function f on the variety V . We refer to the book

9 Usually, G–J elimination is performed through a step of LU or QR
factorization [8].
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[15] for further details. In other words, if f = xk , then the
eigenvalues of M f are the xk-coordinates of the solutions
of (1). The solutions to the remaining variables can be
obtained from the eigenvectors of M f . This means that
after finding the multiplication matrix M f , we can recover
the solutions by its eigendecompostion, forwhich efficient
algorithms exist.

The output of the offline stage is the elimination template Ĉ
in step 6. In the online stage, step 7, for a given instance of the
minimal problem,we fill in the coefficients of the elimination
template Ĉ using the input data, and perform its G–J elimina-
tion to compute the action matrix M f . Eigendecomposition
of M f , then gives us the solutions to the given instance of the
minimal problem.

The first automatic approach for generating elimination
templates and Gröbner basis solvers was presented in [27].
Recently, an improvement to the automatic generator [27]
was proposed in [32]. It exploits the inherent relations
between the input polynomial equations and it results inmore
efficient solvers than [27]. The automatic method from [32]
was later extended by a method for dealing with saturated
ideals [33] and a method for detecting symmetries in poly-
nomial systems [31].

Appendix B Algorithms

Here, we provide the algorithms for our sparse resultant
method in Sect. 3.

B.1 Extracting a Favourable Set of Monomials

Algorithm 1 computes a favourable set ofmonomials B and a
block partition of the corresponding coefficientmatrixC(u0),
for an instance of a minimal problem, i.e., a system of m
polynomial equations F = 0, in n unknown variables X (1).
The output of the algorithm also contains a set of mono-
mial multiples T . Our approach for computing a favourable
monomial set is described in Sect. 3.2, and our approach for
partitioning the coefficient matrix is described in Sect. 3.3.
In Sect. 3.3, we have considered two ways of partitioning
the favourable monomial set B, i.e., as in (42) and in (43),
in order to block partition C(u0). However, in Algorithm 1,
we consider the first one. For the alternate partition, all steps
remain the same, except the step 15, where we use the alter-
native partition in (43).

B ′
1 ← {xα ∈ B ′ | x

α

xi
∈ Tm+1}, B ′

2 ← B ′ \ B ′
1.

Algorithm 1 Computing a favourable set of monomials B
and block partitioning the coefficient matrix C(u0)
Input : F = { f1(x), . . . , fm(x)}, x = [x1, . . . , xn]
Output : B, T ,C(u0)
1: B ← φ, T ← φ

2: for k ∈ {1, . . . , n} do
3: Fa ← { f1, . . . , fm+1}, fm+1 = xk − u0
4: Calculate the support of the input polynomials:

A j ← supp( f j ), j = 1, . . . ,m + 1
5: Construct Newton polytopes:

N Pj ← conv(A j ), j = 1, . . . ,m + 1 as well as a unit simplex
N P0 ⊂ Z

n .
6: Enumerate combinations of indices of all possible sizes:

K ← {{k0, . . . , ki } |∀0≤ i ≤ (m + 1); k0, . . . , ki ∈ {0, . . . ,m +
1}; k j < k j+1}

7: Let � ← {{δ1, . . . , δn+1} | δi ∈ {−0.1, 0, 0.1}; i = 1, . . . , (n +
1)}

8: for I ∈ K do
9: Compute the Minkowski sum: Q ← ∑

j∈I (N Pj )

10: for δ ∈ � do
11: B ′ ← {xα | α ∈ Z

n ∩ (Q + δ)}
12: Fa

B′→ (F ′
a, T

′)
13: T ′ contains {T ′

1 . . . T ′
m+1}

14: Compute C(u0)′ from B ′ and T ′
15: B ′

1 ← B ′ ∩ T ′
m+1, B

′
2 ← B ′ \ B ′

1

16: if �m+1
j=1 |T ′

j |≥|B ′| and min
j

|T ′
j |>0 and rank(C(u0)′)=|B ′|

then
17: A12 ← submatrix of C(u0)′ column-indexed by B ′

2 and
row-indexed by T ′

1 ∪ · · · ∪ T ′
m

18: if rank(A12) = |B ′
2| and |B| ≥ |B ′| then

19: B ← B ′, T ← T ′
20: end if
21: end if
22: end for
23: end for
24: end for
25: Compute C(u0) from B and T

Algorithm 2 Row-column removal
Input : B, T
Output : Bred, Tred,Cred(u0)

1: B ′ ← B, T ′ ← T
2: repeat
3: stopflag ← TRUE
4: Compute C(u0)′ from B ′ and T ′
5: for column c in C(u0)′ do
6: Copy C(u0)′ to C(u0)′′
7: Remove rows r1, . . . , rs containing c from C(u0)′′
8: Remove columns c1, . . . , cl of C(u0)′′ present in r1, . . . , rs
9: if C(u0)′′ satisfies Prop. 1 then
10: Remove monomials from B ′ indexing columns c1, . . . , cl
11: Remove monomials from T ′ indexing rows r1, . . . , rs
12: stopflag ← FALSE
13: break
14: end if
15: end for
16: until stopflag is TRUE
17: Bred ← B ′, Tred ← T ′
18: Compute Cred(u0) from Bred and Tred
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B.2 Row-Column Removal

The next step in the proposed method is to reduce the
favourable monomial set B, by removing columns from
C(u0) along with a corresponding set of rows, described in
Sect. 3.4.Algorithm2 achieves this. Its input is the favourable
monomial set B, the corresponding set of monomial multi-
ples T , computed by Algorithm 1 and the output is a reduced
monomial set Bred and a reduced set of monomial multiples,
Tred that index the columns and rows of the reduced matrix
Cred(u0), respectively.We note that this algorithm is the same
irrespective of the version of partition of the monomial set
B, i.e. (42) or (43).

B.3 Row Removal

It may happen that the reduced matrix Cred(u0) still has more
rows than columns. Therefore, we propose an approach to
remove the excess rows from Cred(u0), to transform it into
a square matrix, which will be our sparse resultant matrix
M(u0). Towards this, we provide Algorithm 3 to remove the
extra rows from Cred(u0) by removing some monomial mul-
tiples from Tred. It accepts the favourable monomial set Bred

and its corresponding monomial multiples Tred, as input and
returns a reduced set of monomial multiples, Tred such that,
along with the basis Bred, leads to a square matrix. If we
partitioned Bred using the alternative approach (43), we just
need to change step 17 in Algorithm 3 to

B ′
1 ← {xα ∈ B ′ | x

α

xi
∈ Tm+1}, B ′

2 ← B ′ \ B ′
1.

Appendix C Proofs

In this appendix, we provide proofs for the propositions dis-
cussed in Sect. 4, regarding the equivalence of an action
matrix-based solver with a sparse resultant-based solver, in
three situations.

Proposition C.1 For a given system of polynomial equations
F = 0 (1), let us assume to have generated an action
matrix-based solver using the method in Sect. 2.1. The action
matrix-based solver is assumed to be generated for the action
variable, f = x1. Also, let us consider a sparse resultant-
based solver, generated after applying the changes C1R-C6R
in Sect. 4.1, to the steps 1–5 in Sect. 3.1, i.e. the offline stage.
Then, the two solvers are equivalent, as defined in Defini-
tion 3.

Algorithm 3 Removal of the extra rows
Input Bred, Tred
Output Tred,M(u0)
1: Tred contains {T ′

1, . . . , T
′
m+1}

2: BN ← |Bred|, TN ← �m+1
j=1 |T ′

j |, tchk ← φ

3: while TN > BN do
4: B ′ ← Bred, T ′ ← Tred
5: T ′ contains {T ′

1, . . . , T
′
m+1}

6: Randomly select t ∈{tm ∈ T ′
m+1 |(tm ,m + 1) /∈ tchk}

7: if t then
8: T ′

m+1 ← T ′
m+1 \ {t}

9: T ′ ← {T ′
1, . . . , T

′
m+1}

10: tchk ← tchk ∪ {(t,m + 1)}
11: else
12: Randomly select i ∈ {1, . . . ,m}
13: Randomly select t ∈ {ti ∈ T ′

i | (ti , i) /∈ tchk}
14: T ′

i ← T ′
i \ {t}, T ′ ← {T ′

1, . . . , T
′
m+1}

15: tchk ← tchk ∪ {(t, i)}
16: end if
17: B ′

1 ← B ′ ∩ T ′
m+1, B

′
2 ← B ′ \ B ′

1
18: Compute C(u0)′ from B ′ and T ′
19: if C(u0)′ satisfies Prop. 1 then
20: Tred ← T ′, TN ← �m+1

j=1 |T ′
j |

21: end if
22: end while
23: Compute M(u0) from Bred and Tred

Proof Note from (53) that the elimination template can be
written as

aĈ =
[
Ĉ11 C12 C13
Ĉ21 C22 C23

]
= [

Â12 Â11
]
. (C13)

Therefore, G–J elimination of aĈ can be considered as
computing the matrix product, Â−1

12
aĈ = [

I Â−1
12 Â11

]
. Com-

paring it with the G–J eliminated form of the matrix aĈ
in (A11), we have

Â−1
12 Â11 =

[
Ĉ′
13

C′
23

]
. (C14)

Note that for each xαj in r Tm+1(= B1), the j-th row of[
A21 − u0I A22

]
rb (55) represents the multiple xαj fm+1 =

xαjx1 − xαju0. Then, we have the following two cases, for
each xαj ∈ B1:

Case 1: If x1xαj = xαi1 ∈ B1, the j-th row of A22 is 0.
The j-th row of A21, and hence that of X has 1 in
i1-th column and 0 in the remaining columns.More-
over, in this case, the j-th row of the action matrix
M f should also have 1 in i1-th column and 0 in the
remaining columns (see step 7 of the action matrix-
based method in Sect. 2.1).

Case 2: If x1xαj /∈ B1, then x1xαj = xαi2 , for some
xαi2 ∈ B2. Then the j-th row of A21 is 0, and j-
th row of A22 has 1 in i2-th column and 0 in the
remaining columns. Therefore, the j-th row of the
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matrix product −A22Â
−1
12 Â11, and hence that of the

matrix X, is actually the i2-th row of −Â−1
12 Â11.

From (C14), this is actually a row from the lower
block,10 −C′

23. However, from the discussion in the
step 7 in Sect. 2.1, this is the same as the j-th row
of the action matrix M f .

Thus in both cases, the rows of the matrices M f and X are the
same, and therefore, X = M f . Moreover, (C14) implies that
computing the matrix product Â−1

12 Â11 can be replaced by the
step of G–J elimination of the matrix aĈ. Therefore, as both
the conditions in Definition 3 are satisfied, the action matrix-
based solver is equivalent to the sparse resultant-based solver.

��
Proposition C.2 For a given system of polynomial equations
F = 0 (1), let us assume to have generated a sparse
resultant-based solver. Let us also consider an actionmatrix-
based solver, generated after applying the changes C1A-C6A
in Sect. 4.2 to the offline stage, i.e. steps 1–6 in Sect. 2.1. Then
the two solvers are equivalent as defined in Definition 3.

Proof From (57), note that the elimination template a Ĉ can be

expressed as aĈ =
[
Ĉ11 C12 C13
Ĉ21 C22 C23

]
= [

Â12 Â11
]
. Therefore

a G–J elimination of aĈ can be achieved by computing the
matrix product Â−1

12
aĈ = [

I Â−1
12 Â11

]
. Comparing it with

the G–J eliminated form of the matrix aĈ in (A11), we can
write
[
Ĉ′
13

C′
23

]
= Â−1

12 Â11. (C15)

This is exactly the same situation, as in Proposition (C.1).
Specifically, the Schur complement X, and the action matrix
M f , are exactly the same matrices, with each row, either
being a row from −C′

23 or a row containing 1’s or 0’s. More-
over (C15) implies thatG–J elimination of a Ĉ can be replaced
by the matrix product, Â−1

12 Â11. Therefore, as both the con-
ditions in Definition 3 are satisfied, the action matrix-based
solver is equivalent to the sparse resultant-based solver. ��
Proposition C.3 For a given system of polynomial equations
F = 0 (1), let us assume to have generated a sparse
resultant-based solver using the alternative partition of
rB (32) and rC(u0) (34). Let us also consider an action
matrix-based solver, generated after applying the changes
C1A′-C6A′ in Sect. 4.3 to the steps 1–6 in Sect. 2.1, i.e. the
offline stage. Then the two solvers are equivalent as defined
in Definition 3.

10 i2-th rowof

[
Ĉ′
13

C′
23

]
will always be a row from the lower block, indexed

by themonomials inbr . This is because x1xαj = xαi2 ∈ B2 �⇒ xαi2 ∈
Br , and from the change C4R, B2 = B̂e ∪ Br .

Proof In the step C4A′, the monomial multiples are set to be
the same as those in the sparse resultant method, i.e. aTi =
r Ti , i = 1, . . . ,m + 1. Therefore, the upper block of the
elimination template aC in (A8), is fixed by setting

C11 = Â12,C12 = 0,C13 = Â11, (C16)

where
[
Â11 Â12

]
(34) is the upper block of the sparse resultant

matrix M(u0).
Note that each monomial xαj in aTm+1 provides the j-

th row in the lower block of aC, as a vector form of the
polynomial xαj a fm+1 = xαj(x1λ − 1). Similarly, each
monomial xαj in r Tm+1 provides the j-th row in the lower
block of rC(u0) in (34), as a vector form of the polynomial
xαj r fm+1 = xαj(x1−u0). The lower block of aC in (A8) is of
the form

[
C21 I C23

]
, and the lower block of rC(u0) in (34)

is of the form
[
I + u0B21 u0B22

]
. Note that the columns of

C21 and C23 are, respectively, indexed by be and ba , whereas
the columns of B21 and B22 are, respectively, indexed by b1
and b2. From the change C6A′, note that ba = b1, be = b2
and aTm+1 = r Tm+1. Therefore, C21 = B22 and C23 = B21.

Substituting the upper and the lower blocks of aC,
in (A10), we obtain

aC ab =
[
Â12 0 Â11
B22 I B21

]⎡

⎣
be
br
ba

⎤

⎦ = 0. (C17)

Note that, in the sparse resultant approach, the matrix Â12

has to be square invertible. Therefore, the matrix

[
Â12 0
B22 I

]
is

also invertible and there are no extra columns to be removed
in the step 6 in Sect. 2.1. This means that we have aĈ = aC,
a b̂ = ab, a b̂e = abe, Ĉ11 = Â12 and Ĉ21 = B22, in (A10).
Note that

[
Â12 0
B22 I

]−1

=
[

Â−1
12 0

−B22Â
−1
12 I

]
. (C18)

Therefore, a G–J elimination of the matrix aĈ is of the form:

[
I 0 Â−1

12 Â11
0 I B21 − B22Â

−1
12 Â11

]
. (C19)

Comparing it with the G–J eliminated form of the matrix aĈ
in (A11), the submatrix C′

23 is

C′
23 = B21 − B22Â

−1
12 Â11. (C20)

From the lower block (A12), we have br = −C′
23ba . In

this case Br ∩ Ba = ∅, which means that −C′
23 is the

action matrix M f (A3), for f = λ. However, from (52),
X = B21 − B22Â

−1
12 Â11. Thus, the action matrix M f is equal
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to the Schur complement X. Moreover from (C19), it can be
seen that a step of G–J elimination of the matrix aĈ can
be replaced by the step of computing the matrix product
Â−1
12 Â11. Therefore, as both the conditions in Definition 3

are satisfied, the action matrix-based solver is equivalent to
the sparse resultant-based solver. ��
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