
Journal of Mathematical Imaging and Vision (2024) 66:447–463
https://doi.org/10.1007/s10851-024-01175-0

Regularised Diffusion–Shock Inpainting

Kristina Schaefer1 · Joachim Weickert1

Received: 15 September 2023 / Accepted: 27 January 2024 / Published online: 1 April 2024
© The Author(s) 2024

Abstract
We introduce regularised diffusion–shock (RDS) inpainting as a modification of diffusion–shock inpainting from our SSVM
2023 conference paper. RDS inpainting combines two carefully chosen components: homogeneous diffusion and coherence-
enhancing shock filtering. It benefits from the complementary synergy of its building blocks: The shock term propagates edge
data with perfect sharpness and directional accuracy over large distances due to its high degree of anisotropy. Homogeneous
diffusion fills large areas efficiently. The second order equation underlying RDS inpainting inherits a maximum–minimum
principle from its components, which is also fulfilled in the discrete case, in contrast to competing anisotropic methods. The
regularisation addresses the largest drawback of the original model: It allows a drastic reduction in model parameters without
any loss in quality. Furthermore, we extend RDS inpainting to vector-valued data. Our experiments show a performance that
is comparable to or better than many inpainting methods based on partial differential equations and related integrodifferential
models, including anisotropic processes of second or fourth order.

Keywords Shock filters · Inpainting · Diffusion · Mathematical morphology · Image processing

1 Introduction

Image inpainting [17, 32] is the task of filling in missing
regions in an image. There are many approaches for solving
this task, but in this work we focus on inpainting based on
partial differential equations (PDEs). This class ofmethods is
particularly successful in applications with very sparse data
such as image compression [20, 28, 42].

PDE-based inpaintingmethods are often inspired by phys-
ical processes. For instance homogeneous diffusion [26, 27,
54] is inspired by heat propagation, and Euler’s elastica
inpainting [32, 33] is connected to the elasticity of solids.

Creating a high quality inpainting result with PDE-based
methods has some particular challenges. Many operators
struggle to bridge large gaps, introduce dissipativity into high
contrast images (such as binary ones), or do not reproduce
the direction of structures accurately. It is often assumed
that high order PDEs such as Euler’s elastica [32, 33] or
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Cahn–Hilliard inpainting [4] are necessary to address these
challenges. However, edge-enhancing diffusion (EED) [49]
as a second order integrodifferential process has been shown
to provide the desired properties in practice as well [42].

One useful property in the context of inpainting is the
fulfilment of a maximum–minimum principle which guar-
antees that no over- and undershoot are introduced. Most
higher order methods violate this principle. EED satisfies a
maximum–minimum principle in the continuous case, but to
date there is no discretisation with reasonably small stencils
available that inherits this property.

Contributions In order to address these challenges, we
have proposed diffusion–shock inpainting in our conference
publication [41]. It is a PDE-based inpainting operator that
fulfils the desired properties in practice, while also provid-
ing amaximum–minimumprinciple in the discrete case. This
is achieved by combining two time-proven methods: homo-
geneous diffusion [26, 27, 54] and coherence-enhancing
shock filtering [52]. Originally designed with the goal of
deblurring, shock filters create sharp edges at the bound-
ary between influence zones of maxima and minima by
using the sign of a second derivative operator [30, 35]. How-
ever, the coherence-enhancing shock filter can also propagate
image structures over large distances without directional
or dissipative artefacts, which can be seen in Fig. 1c. In
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Fig. 1 Visual comparison of the steady states of shock filters with different guidance terms with F(u) = sgn(u)

diffusion–shock inpainting, the shock filter propagates edges
of image structures without introducing dissipative artefacts.
From the newly created structures the homogeneous diffu-
sion term fills in larger homogeneous areas. The synergy of
these two methods allows high quality results. Even for high
contrast images it reconstructs edges with perfect sharpness
and high directional accuracy. Our numerical algorithm sat-
isfies a maximum–minimum principle, and it is optimised
for rotation invariance. The experiments in [41] show that
diffusion–shock inpainting produces results that rival the
quality of state-of-the-art PDE-based inpainting methods
such as EED and Euler’s elastica.

In addition to our original conference publication [41], we
make the following novel contributions in this work:

1. We introduce regularised diffusion–shock (RDS) inpaint-
ing as a regularised version of diffusion–shock inpaint-
ing. To this end we replace the sgn function that acted
as guidance for our original diffusion–shock inpainting
model by a sigmoid-like function. This stabilises the
process w.r.t. the parameter choice, which allows us to
establish a parameter coupling without loss of quality.
Thereby we reduce the number of parameters to two,
which makes the model more accessible in practice.

2. We give a more detailed description of the numerics.
3. We compare the performance of RDS inpainting with

many related approaches. This systematic evaluation
reveals that the coherence-enhancing shock term is cru-
cial to the success of RDS inpainting.

4. Finally, we extend ourmodel to vector-valued data which
allows the application to colour images.

Related Work With the goal of image deblurring, Kramer
and Bruckner [30] have proposed a first discrete model of a
shock filter already in 1975. Later Osher and Rudin [35] have
formulated a first PDE-based approach and coined the term
shock filter. Shock filters typically utilise a second derivative
operator to identify the influence zones of maxima and min-
ima. Osher and Rudin [35] have considered the Laplacian as
well as the second derivative in gradient direction. Alvarez
andMazorra [2] have introduced presmoothing to the second
derivative operator in order to robustify the process against
noise. As another strategy, Diop and Angulo [13] propose
to locally adapt the shock filter to the image to reduce the
sensitivity to noise. The coherence-enhancing shock filter of
Weickert [52] relies on the second directional derivative in
the dominant eigendirection of the structure tensor [18]. In
the next section, we will cover the shock filters that are rel-

Δbtupnia u c ∂ηηu

Fig. 2 Alteration of an edge-like structure by different shock filters with presmoothing. The steady states of the different shock filters with
F(u) = sgn(u), σ = 2 and ρ = 5 are shown
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evant for this paper in more detail. While theoretical results
for continuous shock filters are rare, Welk et al. [57] have
established well-posedness of 1-D space-discrete and fully
discrete shock filters.

Inspired by the implicit presence of shock terms within
nonlinear evolutions such as Perona–Malik diffusion [37],
self–snakes [40] or the PDE-based version of the Kuwahara–
Nagao operator [48], many explicit combinations have been
proposed. Typically the shock term of Alvarez and Mazorra
[2] is combined with homogeneous diffusion [26, 27, 54],
e.g [19, 29], or mean curvature motion [6], e.g [2, 29, 58].
Gilboa et al. [22] rely on complex diffusion. Usually these
combinations are used in the context of image enhancement,
but not in image inpainting.

RDS inpainting is one of the rare examples of hyper-
bolic PDEs in inpainting. Another exception is the method of
Bornemann and März [5], which was extended by März in
[31]. It relies on transport processes that are guided by struc-
ture tensor information. Therefore, it is close in spirit to RDS
inpainting. However, their paper follows a more algorithmic
approach without specifying a compact evolution equation.
In our experiments we will compare against this method.
Another approach that relies on a hyperbolic concept is the
recent inpainting model of Novak and Reinić [34]. It com-
bines a shock filter with the fourth order Cahn–Hilliard PDE.
RDS inpaiting is conceptually simpler, as it already achieves
the desired filling-in effect with a second order homogeneous
diffusion PDE.

To evaluate the performance of RDS inpainting, we com-
pare it to various other PDE-based inpainting operators in
our experiments. This includes linear and isotropic processes
such as homogeneous diffusion [8, 26, 27, 54] and bihar-
monic interpolation [14] as its fourth order counterpart. We
also consider nonlinear isotropic processes such as total vari-
ation (TV) inpainting [44], which can be interpreted as a
limiting case of Perona–Malik [37] inpainting with a scalar-
valued Charbonnier diffusivity [11]. Moreover, we compare
our model to anisotropic approaches such as Tschumperlé’s
model [47], which relies on a tensor-driven equation that uses
the curvature of integral curves, and to edge-enhancing dif-
fusion [49], which is the core of the state-of-the-art-image
compression codec R-EED [42]. Furthermore, we consider
the popular higher order inpainting method based on Euler’s
elastica [32, 33].

Deep learning techniques have gained popularity for solv-
ing inpainting tasks in the past decade [36, 59]. Especially
the recent approaches based on probabilistic diffusion [25,
38, 45] have sparked a public discussion due to their highly
realistic image generation capabilities. While such models
can work well in practice, they typically involve a huge
number of parameters that make it very difficult to gain
a deeper understanding of their inner workings. Further-
more, they usually do not provide any formal guarantees. On

the other hand, our RDS inpainting is a PDE-based model
that relies on time-proven components that are carefully
selected for the task of image inpainting. The correspond-
ing numerics relies on schemes that are well understood,
and it satisfies a maximum–minimum principle. Comparing
these two opposite ideologies would not do justice to either
of them. Therefore, we do not compare our method to purely
learning-based approaches. However, neural networks may
also incorporate model-based ideas [23]. This can be used
for the implementation of numerically challenging models;
e.g. [43] uses a neural network for solving Euler’s elastica
for image inpainting. In our experiments, we compare our
RDS inpainting to this hybrid approach.

Organisation of the Paper In Sect. 2, we review the con-
cept of shock filters. Section3 introduces the RDS inpainting
model in the continuous setting. A numerical scheme with
high rotation invariance and stability guarantees in the maxi-
mum norm is discussed in Sect. 4. We evaluate our model
experimentally in Sect. 5, before concluding the paper in
Sect. 6.

2 Review of Shock Filters

Shock filters have been introduced with the goal of image
sharpening and deblurring. By propagating the values of
extrema to their influence zones, shocks are formed at the
boundary of these zones. The various ways of characterising
these influence zones create different shock filter models that
we briefly review in this section.

2.1 PDE-basedMorphology

For brightening and darkening of image regions, shock filters
rely on the buildingblocks ofmathematicalmorphology [46]:
dilation and erosion. The dilation ⊕ of a grey value image
f : � ⊂ R

2 → R replaces the image value in a location x by
its supremumwithin a neighbourhood B, the so-called struc-
turing element.1 The erosion � uses the infimum instead.
The operations are defined as

( f ⊕ B)(x) = sup{ f (x − y) | y ∈ B}, (1)

( f � B)(x) = inf { f (x + y) | y ∈ B}. (2)

For shock filters, their PDE-based formulations are more
popular. Dilation/erosion u with a disk-shaped neighbour-
hood of radius t correspond to the solution u(x, t) of

∂t u = ± |∇u| (3)

1 Throughout our paper vectors are denoted by lower case boldface
letters and matrices by upper case boldface letters.
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with the initial image u(x, 0) = f (x) and reflecting bound-
aries [1, 3, 7]. The + sign corresponds to dilation, and
− yields erosion. We denote the spatial nabla operator by
∇ = (∂x , ∂y)

�, and | · | is the Euclidean norm.

2.2 Shock Filters

In order to achieve the desired sharpening, shock filters apply
dilation and erosion adaptively: In influence zones ofmaxima
they use dilation, and in influences zones of minima they
apply erosion. This switch is modelled by considering the
sign of a second derivative operator. In general, shock filters
have the form

∂t u = −F(Lu)|∇u| . (4)

The guidance term F(Lu) determines the behaviour of the
shock filter. It consists of the second order derivative operator
Lu and the guidance function F : R → [−1, 1], which has
to retain the sign of its input.

We distinguish the shock filter types by their second order
derivative operator Lu. Osher and Rudin [35] considered the
Laplacian Lu = �u and the second derivative Lu = ∂ηηu
in the normalised gradient direction η ‖ ∇u. They argue that
∂ηηu gives better results. This is in accordance with findings
of Haralick [24], who favours the zero crossings of ∂ηηu over
the ones of �u as edge detectors. We confirm this in Fig. 2.
Both filters result in a non-flat, segmentation-like steady state
and sharpen the image without drastically changing its struc-
ture. However, the second derivative in gradient direction
yields cleaner edges.

To robustify the process against noise, Alvarez and
Mazorra [2] introduced apresmoothing to the derivative oper-
ator and used Lu = ∂ηηuσ , where uσ = Kσ ∗ u denotes the
convolution of the image with a Gaussian of standard devia-
tion σ . Applying this presmoothing may drastically change
the structure of the evolving image.

For his coherence-enhancing shock filter, Weickert [52]
uses the second derivative in direction of the dominant eigen-
vector w (i.e. the eigenvector with the larger corresponding
eigenvalue) of the structure tensor Jρ(∇u) = Kρ∗(∇u∇u�)

[18]. Hence, the coherence-enhancing shock filter relies on
Lu = ∂wwuσ . We use Jρ(∇uσ ) instead of Jρ(∇u) since
it yields better results for our application. Hence, the dom-
inant eigenvector w depends on the noise scale σ and the
integration scale ρ. As is common in the structure tensor lit-
erature, we do not make this explicit by adding extra indices.
As the dominant eigenvector of the structure tensor corre-
sponds to the direction of the largest local contrast, this filter
has a coherence-enhancing effect. Similar observations exist
in the context of coherence-enhancing diffusion [51].

While the choice of Lu determines the main behaviour of
the shock filter, one may also choose from various guidance

functions F . In our conference publication [41] we relied on
the sgn function as the most widely used choice. However,
different sigmoid-like functions have been used in the liter-
ature, including arctan functions [22] or hyperbolic tangent
functions [19]. For our RDS inpainting, we rely on sigmoid-
like functions as a regularised alternative to the sgn function.
We will evaluate the benefits of this choice in our experi-
ments.

In Fig. 1, we investigate the potential of shock filters to
propagate structures over large distances by the example of
a partial line. The Alvarez–Mazorra model shrinks the line
to a small disk-like shape. The coherence-enhancing shock
filter elongates the line perfectly over a distance of more than
200 pixels in a direction that is not grid aligned. Moreover, it
creates a perfectly sharp result without introducing any dissi-
pativity. This quality is exceptional for PDE-based methods.
Therefore, we choose the coherence-enhancing shock filter
as a key component of our RDS inpainting.

3 Regularised Diffusion–Shock Inpainting

For image inpainting, we decompose the rectangular image
domain� into two regions: The knowndata locations are rep-
resented by the inpainting mask K ⊂ �, and the unknown
values are located in the inpainting domain � \ K . In the
inpainting domain, a PDE-based inpainting method applies
a suitable differential operator until the process converges.
For RDS inpainting a weighted combination of a regularised
coherence-enhancing shock filter and homogeneous diffu-
sion takes that role.

As we show in Fig. 1, the coherence-enhancing shock fil-
ter can propagate edge-like structures over arbitrarily large
distances with perfect sharpness and directional accuracy.
However, the width of the created structures is limited by the
presmoothing scale σ . Here, homogeneous diffusion is the
ideal partner: It efficiently fills the missing large areas from
the sharp edges created by the shock filter.

In order to achieve this behaviour, we apply a weighted
combination of the two components such that the shock term
dominates near edges, and the diffusion term takes over in
more homogeneous regions. We model this by means of a
Charbonnier weight function [11]

g
(
|∇uν |2

)
= 1√

1 + |∇uν |2/λ2
(5)

with the Gaussian-smoothed image uν = Kν ∗ u. It is a
decreasing function with range (0, 1], for which we have
g(0) = 1 and g(|∇uν |2) → 0 for |∇uν |2 → ∞. By
presmoothing the image before computing the gradient, we
locally average structural information and stabilise the pro-
cess w.r.t. noise.
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Fig. 3 Effect of the regularisation parameter ε on Sε(x) = 2
π
arctan

( x
ε

)

With that, our regularised diffusion–shock (RDS) inpaint-
ing is based on the PDE

∂t u = g
(
|∇uν |2

)
�u

−
(
1 − g

(
|∇uν |2

))
Sε (∂ww(uσ )) |∇u| . (6)

We use Dirichlet data at the boundaries ∂K of the inpaint-
ing mask and reflecting boundary conditions on the image
domain boundary ∂�. By Sε we denote a sigmoidal function
with a regularisation parameter ε > 0. This adds additional
regularisation to themodel: It softens the transition fromdila-
tion to erosion in the shock term.This choice is reminiscent of
the regularisation of the Chan–Vese model for segmentation
[10], which relies on a rescaled family of arctan functions.
In our experiments, we will use

Sε(x) = 2

π
arctan

( x

ε

)
. (7)

As depicted in Fig. 3 the regularisation parameter ε deter-
mines the steepness of the arctan function. For ε → 0, we
arrive at the diffusion–shock inpainting model from our con-
ference publication [41], which uses a sgn function instead.

3.1 Parameter Coupling

The model parameters of RDS inpainting fall into two nat-
ural categories: The noise scale σ , the integration scale ρ,
and the edge scale ν serve as spatial scale parameters within
the image domain, whereas the contrast parameter λ and the
regularisation parameter ε are tonal scale parameters acting
in the codomain. This classification allows to introduce a
parameter coupling that reduces the five parameters to only
two. This greatly eases the practical applicability of RDS
inpainting.

The noise scale σ determines the width of the structures
created by the shock term. In the computation of the structure
tensor Jρ(∇uσ ) it removes noise and small-scale details. In

order to avoid cancellation effects of gradients with oppo-
site orientation and very wide borders of edge-like structures
σ should be chosen relatively small. The integration scale
ρ allows averaging of directional information without can-
cellation effects. It stabilises the directional accuracy of the
coherence-enhancing shock filter. A larger ρ usually gives
a better directional accuracy. Therefore one should usually
choose ρ > σ . The edge scale ν of the weighting func-
tion averages structure information locally. Especially in the
beginning of the evolution, there may not be sufficient unam-
biguous structural information available for the shock term
to identify meaningful structures. Presmoothing the gradi-
ent information with a sufficiently large edge scale allows
to assign a suitable weighting to the diffusion term and the
shock term.

The contrast parameter λ and the regularisation param-
eter ε control the tonal behaviour of RDS inpainting in its
codomain. As depicted in Fig. 4, the contrast parameter λ

determines how fast the Charbonnier weight decreases. A
smaller λ leads to a larger zone of gradient values in which
the shock term dominates. The regularisation parameter ε

softens the transition from dilation to erosion and avoids too
rapid edge formation in the beginning. For small values of
the second derivative operator in the guidance term, it shrinks
the strength of the shock filter. A small ε yields a very harsh
transition, and a large ε results in a more gradual evolution
towards the discontinuous steady state.

In order simplify the parameter optimisation in practice,
we calibrate the five parameters by a single one in each cat-
egory. For that purpose, we couple the spatial scales to each
other. We choose ρ = ν = 1.6 · σ since it works well for
all of the experiments that we performed. Moreover, we cou-
ple the tonal parameters λ and ε. In our experiments, we use
ε = 0.15 · λ.

With that we addressed the main drawback of our confer-
ence publication [41]: the large number of parameters. We
reduced the number of parameters that have to be optimised
to two. This makes RDS inpainting easier to use in practice.

Fig. 4 Effect of the contrast parameter λ on the Charbonnier diffusivity
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Let us also emphasise that the newly introduced regularisa-
tion allows the parameter couplingwithout a loss in quality in
comparison to our original diffusion–shock inpainting from
[41].Our experiments demonstrate that RDS inpainting gives
better results than the original diffusion–shock inpainting
from [41] if parameter coupling is applied to it.

3.2 Extension to Vector-Valued Data

Let us now consider a vector-valued image f : � → R
nc

with nc channels. Vector-valued data are common in image
processing as they are typically used for RGB colour images
or hyperspectral data. Since our RDS inpainting relies on
structural information for guidance, a simple channelwise
application is not appropriate: The shock term might cre-
ate shocks at different locations for each channel, and the
weighting of the shock term and the diffusion term could
vary across the channels.

By utilising a joint squared gradient magnitude [12] as
well as a joint structure tensor [21, 50], we can synchro-
nise the operations across all channels. The joint Charbonnier
weight is given by

g

(
1

nc

nc∑
c=1

| ∇(uc)ν |2
)

, (8)

and the joint structure tensor is

1

nc

nc∑
c=1

Jρ(∇(uc)σ ) . (9)

This strategy is also in line with the multi-channel version of
the coherence-enhancing shock filter from [52].

Overall, for the vector-valued image u : � × [0,∞) →
R

nc the following evolution describes RDS inpainting in the
inpainting domain:

∂t uc = g

(
1

nc

nc∑
c=1

| ∇(uc)ν |2
)

�uc

−
(
1 − g

(
1

nc

nc∑
c=1

| ∇(uc)ν |2
))

Sε (∂ww((uc)σ )) |∇uc| (10)

for each channel c. As in the scalar-valued case, we use
Dirichlet data at the boundaries ∂K of the inpainting mask,
and reflecting boundary conditions on the image domain
boundary ∂�.

4 Numerical Algorithm

In order to apply our model to a discrete image ( fi, j )

with pixels (i, j) and grid size h, we discretise (6) with
an explicit scheme. The discrete evolving image uk

i, j is an
approximation of u(x, t) in the cell-centred location x =(
i − 1

2 , j − 1
2

)�
at the time t = kτ , where k is the iteration

number and τ is the time step size. For the time derivative,
we apply a forward difference

(∂t u)k
i, j = uk+1

i, j − uk
i, j

τ
. (11)

The spatial derivatives are evaluated at the old time level k.

4.1 Approximation of Homogeneous Diffusion

For the approximation of the homogeneous diffusion term
�u we rely on the δ-stencil of Welk andWeickert [56]. They
propose a convex combination of axial and diagonal cen-
tral differences in order to achieve a high degree of rotation
invariance. The corresponding stencil is given by

(�u)k
i, j =

(
1 − δ

h2

0 1 0

1 −4 1

0 1 0

+ δ

2h2

1 0 1

0 −4 0

1 0 1

)
uk

i, j .

(12)

with a weight δ ∈ [0, 1]. As is common in the numerical lit-
erature, the stencil notation specifies the discrete convolution
weights in the locations

(i-1, j+1) (i, j+1) (i + 1, j+1)

(i-1, j) (i, j) (i+1,j)

(i-1, j-1) (i, j-1) (i+1, j-1)

An explicit discretisation of the homogeneous diffusion
equation ∂t u = �u with this stencil results in the follow-
ing iterative scheme:

uk+1
i, j = uk

i, j

(
1 − 4 − 2δ

h2 τ

)

+ 1 − δ

h2 τ
(

uk
i+1, j + uk

i−1, j + uk
i, j+1 + uk

i, j−1

)

+ δ

2h2 τ
(

uk
i+1, j+1+uk

i+1, j−1+uk
i−1, j−1+uk

i−1, j+1

)

(13)
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with u0
i, j = fi, j . Thus, uk+1

i, j is a convex combination of the
image data at time level k, if

τ ≤ h2

4 − 2δ
=: τD . (14)

This implies stability in terms of the maximum–minimum
principle

min
n,m

fn,m ≤ uk
i, j ≤ max

n,m
fn,m for all i, j, and for k ≥ 0.

(15)

4.2 Approximation of Dilation and Erosion

To discretise the morphological terms ±|∇u|, we rely
on upwind schemes. This type of discretisation adaptively
selects a one-sided difference that reflect the local transport
direction. For dilation and erosion, the classical Rouy–Tourin
upwind schemes [39] are a popular choice. However, for the
discretisation of the morphological terms ±|∇u| in our RDS
inpainting, we follow Welk and Weickert [56] again. They
combine the classical axial Rouy–Tourin upwind scheme
with its diagonal variant with a weight δ. For the dilation
term |∇u|, the resulting scheme is given by

|∇u|ki, j = 1−δ
h

(
max {uk

i+1, j −uk
i, j , uk

i−1, j −uk
i, j , 0}2

+ max {uk
i, j+1−uk

i, j , uk
i, j−1−uk

i, j , 0}2) 1
2

+ δ√
2h

(
max {uk

i+1, j+1 − uk
i, j , uk

i−1, j−1−uk
i, j , 0}2

+ max {uk
i−1, j+1−uk

i, j , uk
i+1, j−1−uk

i, j , 0}2) 1
2

(16)

with the weight δ ∈ [0, 1] and u0
i, j = fi, j . The Rouy–Tourin

upwind schemes are designed to adapt the one-sided dif-
ferences to the local transport direction. Dilation transports
bright values into dark regions, and erosion propagates dark
values into bright regions. Hence, they have opposing trans-
port directions. Therefore, upwind schemes for erosion flip
the finite differences that are present in the dilation scheme.
Here, we rely on the work ofWelk andWeickert [56] as well.
They propose to discretise the erosion term −|∇u| as
−|∇u|ki, j = − 1−δ

h

(
max {uk

i, j −uk
i+1, j , uk

i, j −uk
i−1, j , 0}2

+ max {uk
i, j −uk

i, j+1, uk
i, j −uk

i, j−1, 0}2) 1
2

− δ√
2h

(
max {uk

i, j −uk
i+1, j+1, uk

i, j −uk
i−1, j−1, 0}2

+ max {uk
i, j −uk

i−1, j+1, uk
i, j −uk

i+1, j−1, 0}2) 1
2 . (17)

An explicit schemewith forward difference in time and space
discretisation (16) or (17) results in the following iterative
schemes for dilation (18) and erosion (19):

uk+1
i, j = uk

i, j + 1−δ
h τ

(
max {uk

i+1, j −uk
i, j , uk

i−1, j −uk
i, j , 0}2

+ max {uk
i, j+1−uk

i, j , uk
i, j−1−uk

i, j , 0}2) 1
2

+ δ√
2h

τ
(
max {uk

i+1, j+1−uk
i, j , uk

i−1, j−1−uk
i, j , 0}2

+ max {uk
i−1, j+1−uk

i, j , uk
i+1, j−1−uk

i, j , 0}2) 1
2 , (18)

uk+1
i, j = uk

i, j − 1−δ
h τ

(
max {uk

i, j −uk
i+1, j , uk

i, j −uk
i−1, j , 0}2

+ max {uk
i, j −uk

i, j+1, uk
i, j −uk

i, j−1, 0}2) 1
2

− δ√
2h

τ
(
max {uk

i, j −uk
i+1, j+1, uk

i, j −uk
i−1, j−1, 0}2

+ max {uk
i, j −uk

i−1, j+1, uk
i, j −uk

i+1, j−1, 0}2) 1
2 , (19)

with u0
i, j = fi, j . They satisfy the maximum–minimum prin-

ciple (15) if

τ ≤ h√
2 (1 − δ) + δ

=: τM . (20)

In order to show this, one has to consider all possible schemes
resulting from the different cases of the max operations. For
the sake of brevity, let us now sketch how to show the stability
for the dilation process (18) in the following case:

max{uk
i+1, j , uk

i−1, j , uk
i, j+1 , uk

i, j−1 , uk
i, j } = uk

i+1, j , (21)

max{uk
i+1, j+1 , uk

i−1, j+1 , uk
i+1, j−1 , uk

i−1, j−1 , uk
i, j } = uk

i+1, j+1 . (22)

Clearly the statement (15) is fulfilled for k = 0 as u0
i, j =

fi, j . Thus, it is sufficient to show that min
n,m

uk
n,m ≤ uk+1

n,m ≤
max
n,m

uk
n,m . With (21) and (22), the dilation scheme (18) has

the upper bound

uk+1
i, j ≤ uk

i, j + 1 − δ

h
τ
√
2

(
uk

i+1, j − uk
i, j

)

+ δ

h
τ

(
uk

i+1, j+1 − uk
i, j

)

= uk
i, j

(
1 −

√
2(1 − δ) + δ

h
τ

)

+ δ

h
τuk

i+1, j+1 + 1 − δ

h
τ
√
2uk

i+1, j (23)

If (20) holds, this is a convex combination. Therefore, we
have

uk+1
i, j ≤ max

n,m
uk

n,m ≤ max
n,m

fn,m . (24)

Moreover, we have

uk+1
i, j ≥ min

n,m
uk

n,m ≥ min
n,m

fn,m . (25)

Thus, the discretisation of dilation (18) satisfies amaximum–
minimum principle for the case (21), (22). The other cases
work in the same way. The stability of the erosion evolution
can be shown analogously.
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4.3 Discretisation of RDS Inpainting

To discretise the full RDS inpainting equation, we need to
discretise the guidance term of the shock filter and the weight
g(| ∇ uν |2) as well. For that we approximate all first order
partial derivatives ∂x u and ∂yu in the gradient aswell as in the
structure tensor with Sobel operators [15], since they offer a
good rotation invariance:

(∂x u)k
i, j ≈ 1

8h

−1 0 1

−2 0 2

−1 0 1

uk
i, j ,

(∂yu)k
i, j ≈ 1

8h

1 2 1

0 0 0

−1 −2 −1

uk
i, j . (26)

The Gaussian convolutions are computed in the spatial
domain with a sampled and renormalised Gaussian, which
is truncated at five times its standard deviation. We compute
the normalised dominant eigenvector w = (c, s)� of the
structure tensor analytically, since it is a symmetric 2 × 2
matrix. For the computation of ∂wwv we use

(∂wwv)k
i, j =

(
c2 ∂xxv + 2cs ∂xyv + s2 ∂yyv

)k

i, j
(27)

where second order partial derivatives are approximatedwith
the following finite differences:

(∂xxv)k
i, j ≈ vk

i+1, j − 2vk
i, j + vk

i−1, j

h2 , (28)

(∂yyv)k
i, j ≈ vk

i, j+1 − 2vk
i, j + vk

i, j−1

h2 , (29)

(∂xyv)k
i, j ≈ vk

i+1, j+1 + vk
i−1, j−1 − vk

i−1, j+1 − vk
i+1, j−1

4h2 .

(30)

We implement reflecting boundary conditions by adding a
layer of mirrored dummy pixels around the image borders.
For the Gaussian convolution of the first order derivatives
within the structure tensor, we enforce this by imposing zero
values at the image boundaries.

Putting everything together yields the following explicit
scheme for the RDS inpainting evolution (6):

uk+1
i, j − uk

i, j

τ
= gk

i, j · (
�u

)k
i, j −

(
1 − gk

i, j

)
·

Sε

(
(∂wwuσ )k

i, j

)
|∇u|ki, j (31)

with initial condition u0
i, j = fi, j . It inherits its stability from

the schemes for diffusion and morphology:

Theorem 1 (Stability of the RDS Inpainting Scheme)
Let the time step size τ of the scheme (31) be restricted by

τ ≤ min {τD, τM } (32)

with τD and τM as in (14) and (20).
Then the scheme satisfies the discrete maximum–minimum

principle

min
n,m

fn,m ≤ uk
i, j ≤ max

n,m
fn,m for all i, j, and for k ≥ 0.

(33)

Proof If τ ≤ min {τD, τM }, it follows from the stability of
the diffusion and morphological processes that

uk+1
i, j = uk

i, j + τgk
i, j · (

�u
)k

i, j −
(
1 − gk

i, j

)
·

τ Sε

(
(∂wwuσ )k

i, j

) |∇u|ki, j

≤ gk
i, j max

n,m
fn,m +

(
1 − gk

i, j

)
max
n,m

fn,m

= max
n,m

fn,m .

Analogously, one can show the condition min
n,m

fn,m ≤ uk
i, j .

For good rotation invariance, we follow the suggestion
of Welk and Weickert [56] and use δ = √

2 − 1. Thus, for
h = 1 our scheme satisfies a maximum–minimum principle
for τ ≤ τD ≈ 0.31. This shows a clear advantage of RDS
inpainting over EED inpainting [42, 55], for which there is
currently no numerical algorithm that fulfils a maximum–
minimum principle on a bounded stencil.

In order to use this numerical scheme for vector-valued
data, we discretise �uc, ±|∇uc| and ∂t uc for each channel
c ∈ {1...nc} and apply a channel coupling to the weight and
structure tensor as indicated by Eq. (10). The stability limit
does not change.

5 Experiments

5.1 Comparison to Related Approaches

Combinations of smoothing and shockfiltering, either explic-
itly or implicitly, are rare in image inpainting, but fairly
common for image enhancement. Many methods combine
mean curvature motion (MCM) [6] for smoothing with the
shock term of Alvarez and Mazorra [2], see e.g. [2, 40, 58].
Thesemethods are unable to perform inpainting, sinceMCM
is not suitable for inpainting in general [9], and the width
of structures propagated by shock filters is limited to the
presmoothing scale. Therefore, we compare RDS inpaint-
ing with other shock-smoothing combinations that rely on
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homogeneous diffusion instead. This includes the methods
of Kornprobst et al. [29], Fu et al. [19] and Perona–Malik
diffusion [37]. Table 1 shows the corresponding evolution
equations. To isolate the effect of the shock term, we also
include a variant of RDS inpainting that uses the shock
term of Alvarez and Mazorra [2] instead of the proposed
coherence-enhancing shock term.

The experiment in Fig. 5 shows the result of our compari-
son. It is inspired by a popular experiment for Cahn–Hilliard
inpainting from Fig. 2 in the paper [4] . The goal is the recon-
struction of a cross. Clearly, RDS inpainting gives the best
result: It reconstructs a binary, cross-like shape. All other
methods are unable to connect the white bars. Moreover,
RDS inpainting also gives a sharper result than the original
Cahn–Hilliard inpainting from Fig. 2 in [4]. The compar-
ison of Fig. 5e, f emphasises that the coherence-enhancing
shock term is crucial for the performance of RDS inpaint-
ing. Moreover, it should be noted that our RDS inpainting
with parameter coupling requires to specify only two param-
eters, in contrast to the competing explicit combinations: The
method by Kornprobst et al. [29] uses four parameters, and
the approach of Fu et al. [19] has five different parameters.
Thus, our approach is easier to use in practice.

5.2 Shape Completion

Shape completion is a special case of inpainting, in which
data is given by a few parts of a shape. The goal is the recon-
struction of the original shape. This is an especially difficult
problem for many inpainting operators: It requires very high
directional accuracy, the ability to bridge large gaps in the
data and to create perfectly sharp edges. Let us now evaluate
the performance of our RDS inpainting in the task of shape
completion.

Figure6 shows two challenging examples. Here the goal is
to reconstruct a half-plane from only one dipole (i.e. a white
pixel next to a black one), and a disk from four dipoles. In
both cases, RDS inpainting shows a flawless performance
and recovers the desired shapes with the desired sharpness.

To evaluate the performance of RDS inpaiting in compar-
ison to various other PDE-based inpainting techniques, we
extend an experiment performed by Schmaltz et al. [42] in
Fig. 7. Inspired by the Kanisza triangle, the goal is the recon-
struction of awhite triangle on a black background of the data
given in the disks. Table 1 shows the energies / evolution
equations associated with each method. Clearly, homoge-
neous diffusion [8] and biharmonic interpolation [14], create
a very blurry result which is typical for these linear meth-
ods. Total variation (TV) inpainting [44] fills the whole area
in black. The directional artefacts created by the method of
Tschumperlé [47] hint at suboptimal numerics in the origi-
nal paper. Due to its suitability for connecting level lines, the
Bornemann–März model [5] creates a satisfactory result but

suffers from directional inaccuracies. Edge-enhancing diffu-
sion (EED) [42, 55] reconstructs a perfect triangle. Schmaltz
et al. [42] attribute this high performance to the anisotropy
and the semilocality of the approach. By semilocality they
refer to the fact, that EED uses neighbourhood information
rather than acting purely local. RDS inpainting shares these
properties. The coherence-enhancing shock term introduces
a strong anisotropy, and the presmoothing procedures create
semilocality. It also creates a high quality result without any
directional artefacts, and the created edges are even sharper
than those created by EED. Additionally, in contrast to EED
our numerical algorithm for RDS inpainting also provides a
maximum–minimum principle in the discrete case.

In Fig. 8, we compare the performance of RDS inpaint-
ing to EED [49] and Euler’s elastica [32, 33], two methods
that produce state-of-the-art results in the context of shape
completion. Table 1 shows the evolution equation of EED
and the energy functional that corresponds to Euler’s elas-
tica. The results of Euler’s elastica are published in [43] and
were given to us by the authors. The cat data and the EED
inpainting of the cat are the original images from [53] that
were provided to us by the author. In both examples RDS
inpainting shows similar results as EED and Euler’s elastica.
Overall, RDS inpainting creates the sharpest results.

5.3 Evaluation of the Guidance Function

In the model of RDS inpainting, we use an arctan function as
the guidance function, whereas the original diffusion-shock
inpainting from [41] relies on the sgn function. While the
original model has already provided high quality results, it
requires the optimisation of four parameters, which makes
the method difficult to use in practice. In order to address
this drawback, we have proposed a parameter coupling in
a previous section. Applying these ideas to diffusion–shock
inpainting based on a sgn function decreases the inpainting
quality. This is not the case for RDS inpainting. Figure 9
demonstrates this by the triangle reconstruction example.
Clearly, the arctan-guided result is superior: It creates sharper
edges and reproduces a better directional accuracy.

The cat reconstruction experiment in Fig. 10 makes this
even more apparent. Here, we compare the result from Fig. 5
of our conference publication [41] which used a sgn-guided
diffusion-shock inpainting without parameter coupling (b),
sgn-guided diffusion-shock inpainting with parameter cou-
pling (c) and RDS inpainting with parameter coupling (d).
Clearly, RDS inpainting with parameter coupling creates a
result that is very similar to the conference publication. How-
ever, the sgn-guided diffusion-shock inpainting is not able
reconstruct the cat in a satisfactory way. This highlights the
necessity of the regularisation inRDS inpainting for a param-
eter coupling that does not lead to a loss of inpainting quality.
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Table 1 PDEs or energies corresponding to the inpainting operators that we compare to in our experiments.

Operator Evolution equation / Energy functional

Hom. Diff. [26, 27, 54] ∂t u = �u

Biharm. Interpol. [14] ∂t u = −�2u

Perona–Malik [37] ∂t u = div
(

∇u
1+|∇u|2/λ2

)

Kornprobst et al. [29] ∂t u =
{

β�u for T < |∇uσ |
β�u − γ sgn(∂ηηuσ )|∇u| for T ≥ |∇uσ |.

Fu et al. [19] ∂t u =

⎧
⎪⎪⎨
⎪⎪⎩

∂ξξ u
1+�1∂ξξ u − sgn(∂ηηuσ )|∇u| for |∇uσ | > T1(

∂ξξ u
1+�1∂ξξ u − |th(�2∂ηηu)|sgn(∂ηηuσ )|∇u|

)
for |∇uσ | ∈ (T2, T1]

�u else.

Total Variation [44] E(u) = ∫
�

(
1
2 (u − f )2 − α|∇u|

)
dx

Tschumperlé [47] ∂t u = tr(TH) + 2
π

(∇u)�
π∫
0
J√

Taφ

√
Taφdφ

Bornemann–März [5] Algorithmic approach

EED [49] ∂t u = div (D∇u)

Euler’s Elastica [32, 33] E(u) = ∫
�

|∇u|(b + (1 − b)κ2(u))dx

We use the following notations: D: Diffusion tensor, H: Hessian, aφ = (cosφ, sin φ)�, J√
Taφ

: Jacobian of the vector field � → √
Taφ , T :

smoothing tensor, α, β, γ, �1, �2, b: weights, T1, T2, T : thresholds, κ: curvature, th: tanh, tr : trace

.latetsborpnroKckilaM–anorePbtupnia

d Fu et al. e AM shock term f RDS inpainting

Fig. 5 Comparison of RDS inpainting to related approaches. Parameters: b λ = 2. c β = γ = 1, σ = 1.5, T = 30. d �1 = 1, T1 = 40, T2 = 35,
σ = 2. e RDS inpainting with shock term of Alvarez and Mazorra, σ = 2, ν = 4, λ = 1.5. f σ = 2, λ = 1.5
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gnitniapniSDRcksambtupnia

Fig. 6 RDS inpainting from dipoles. Top: 128 × 128 image; σ = 2, λ = 1. Bottom: 127 × 127 image; σ = 1.8, λ = 3.2

a input b hom. diff. c biharmonic d TV

e Tschumperlé f BM g EED h RDS

Fig. 7 Comparison of inpainting methods. Top: Input image with
known data in the disks and noise in the unknown region, homoge-
neous diffusion, biharmonic interpolation, and TV inpainting. Bot-

tom: Tschumperlé’s approach, Bornemann–März (BM) method, EED
inpainting, RDS inpainting with σ = 3.5 and λ = 3. All images apart
from (h) were provided to us by the authors of [42]
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a original b input c elastica d EED e RDS

Fig. 8 Comparison of Euler’s elastica, EED, and RDS inpainting. Parameters for RDS inpainting: Top: σ = 2.5 and λ = 2. Bottom: σ = 2.1 and
λ = 5.5

a input b S0(x) = sgn(x) c Sε = 2
π arctan( x

ε )

Fig. 9 Comparison of diffusion–shock inpainting with parameter coupling guided by a sgn and arctan function. Parameters: b σ = 5.8, ν = ρ =
1.8 σ , λ = 3.5, and c σ = 3.5, λ = 3

a input
b S0(x) = sgn(x),

4 parameters

c S0(x) = sgn(x),

2 coupled parameters

d Sε = 2
π arctan( x

ε )

2 coupled parameters

Fig. 10 Comparison of diffusion–shock inpainting with parameter coupling guided by a sgn and arctan function, and the result from our conference
publication. Parameters: b σ = 4.2, ρ = 4.8, ν = 4.5, and λ = 7, c σ = 4.3, λ = 5.4, m = 1.8 and d σ = 2.1 and λ = 5.5

123



Journal of Mathematical Imaging and Vision (2024) 66:447–463 459

a original, 256 × 256 b input c RDS inpainting

Fig. 11 RDS inpainting of sparse greyscale images (20% randomly selected pixels). First row: σ = 1.5, λ = 5. Second row: σ = 2.1, λ = 4.
Third row: σ = 2.1, λ = 4.5

5.4 Natural Images

So far, we considered only binary images since they are espe-
cially challenging for PDE-based inpainting techniques. In
Figs. 11 and 12, we show that RDS inpainting is also a suit-
able method for the reconstruction of natural images from
sparse data. Figure 11 shows this for greyscale images of
size 256× 256. There, the runtime was 2.3 s for the peppers
image, 2.5 s for the walter image and 2 s for the house image
on a PCwith an Intel c© Core™i9-11900KCPU@3.50 GHz.

Figure12 depicts several RDS inpainting results created
from sparse colour images. The original images are cropped

versions of images from the Kodak dataset [16]. The sparse
data are created by randomly selecting 20%of the pixels. The
results show the effect of using a joint structure tensor and a
joint weighting function for vector-valued images: Edges are
formed in a synchronised way, and no unexpected colours or
colour artefacts are introduced.

6 Conclusions and FutureWork

Wehaveproposed regulariseddiffusion–shock (RDS) inpaint-
ing as an extension of our diffusion–shock inpainting from
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a original, 512× 512 b input c RDS inpainting

Fig. 12 RDS inpainting for sparse colour images (20% randomly selected pixels). First row: σ = 3, λ = 3. Second row: σ = 1.5, λ = 5. Third
row: and σ = 1.5, λ = 4

[41]. Diffusion–shock inpainting is the first method to
utilise the perfect sharpness and directional accuracy of a
coherence-enhancing shock filter [52] in the field of inpaint-
ing. Together with homogeneous diffusion [26, 27, 54], it
creates results that rival the quality of popular PDE-based
inpainting operators such as edge-enhancing diffusion [49]
and Euler’s elastica [32, 33]. However, in contrast to these
methods, its numerical algorithm also satisfies a maximum–
minimum principle in the discrete case.

RDS inpainting introduces a regularisation to the original
model. It stabilises the model w.r.t. the choice of parameters,
and thereby allows the reduction of the number of parameters

to two. This solves the largest disadvantage of the original
diffusion–shock inpainting model from [41].

RDS inpainting is a second order integrodifferential pro-
cess consisting of two simple components: homogeneous dif-
fusion and coherence-enhancing shock filtering. We showed
that it can offer equal or higher quality than higher order
methods. However, higher order methods are algorithmi-
cally more challenging and often do not provide stability
guarantees. On the other hand, our RDS inpainting allows a
simple discretisation with an explicit scheme that provides
a maximum–minimum principle. It constitutes a high qual-
ity second order integrodifferential process that questions the
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necessity of higher ordermethods in practice. This highlights
the potential behind this class of methods, and we are aiming
at gaining a deeper understanding of such integrodifferential
processes in our ongoing work.

Most PDEs for inpainting are elliptic or parabolic. How-
ever, our results emphasise that hyperbolic processes deserve
far more attention. They are a natural concept for modelling
discontinuities, and shock filters are a prototype for this.
For our application the coherence-enhancing shock filter in
combination with homogeneous diffusion is the ideal choice.
Interestingly, both components have been around for at least
20 years. This indicates that there still lies a huge potential
in PDE-based inpainting, especially in hyperbolic concepts.
Thus, we aim at exploring them further in our future work.
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34. Novak, A., Reinić, N.: Shock filter as the classifier for image
inpainting problem using the Cahn-Hilliard equation. Comput.
Math. Appl. 123, 105–114 (2022)

35. Osher, S., Rudin, L.I.: Feature-oriented image enhancement using
shock filters. SIAM J. Numer. Anal. 27, 919–940 (1990)

36. Pathak, D., Krähenbühl, P., Donahue, J., Darrell, T., Efros, A.A.:
Context encoders: feature learning by inpainting. In: Proceedings
of 2016 IEEE Conference on Computer Vision and Pattern Recog-
nition. pp. 2536–2544. IEEE Computer Society Press, Las Vegas,
NV (2016)

37. Perona, P., Malik, J.: Scale space and edge detection using
anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12,
629–639 (1990)

38. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.:
High-resolution image synthesis with latent diffusion models. In:
Proceedings of 2022 IEEE/CVF Conference on Computer Vision
and Pattern Recognition. vol. 1, pp. 10684–10695. New Orleans,
LA (2022)

39. Rouy, E., Tourin, A.: A viscosity solutions approach to shape-from-
shading. SIAM J. Numer. Anal. 29(3), 867–884 (1992)

40. Sapiro, G.: Vector (self) snakes: Aa geometric framework for color,
texture andmultiscale image segmentation. In: Proceedings of 1996
IEEE International Conference on Image Processing. vol. 1, pp.
817–820. Lausanne, Switzerland (1996)

41. Schaefer, K., Weickert, J.: Diffusion-shock inpainting. In: Cala-
troni, L., Donatelli, M., Morigi, S., Prato, M., Santavesaria, M.
(eds.) Scale Space and Variational Methods in Computer Vision.
Lecture Notes in Computer Science, vol. 14009, pp. 588–600.
Springer, Cham (2023)

42. Schmaltz, C., Peter, P., Mainberger, M., Ebel, F., Weickert, J.,
Bruhn, A.: Understanding, optimising, and extending data com-
pression with anisotropic diffusion. Int. J. Comput. Vis. 108(3),
222–240 (2014)

43. Schrader, K., Alt, T., Weickert, J., Ertel, M.: CNN-based Euler’s
elastica inpainting with deep energy and deep image prior. In: 10th
European Workshop on Visual Information Processing (EUVIP).
Lisbon (2022)

44. Shen, J., Chan, T.F.: Mathematical models for local non-texture
inpaintings. SIAM J. Numer. Anal. 62(3), 1019–1043 (2002)

45. Sohl-Dickstein, J., Weiss, E.A., Maheswaranathan, N., Ganguli,
S.: Deep unsupervised learning using nonequilibrium thermody-
namics. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd
International Conference on International Conference on Machine
Learning. vol. 37, pp. 2256–2265. Lille, France (2015)

46. Soille, P.:Morphological ImageAnalysis, 2nd edn. Springer, Berlin
(2004)

47. Tschumperlé, D.: Fast anisotropic smoothing of multi-valued
images using curvature-preserving PDE’s. Int. J. Comput. Vis.
68(1), 65–82 (2006)

48. van den Boomgaard, R.: Decomposition of the Kuwahara–Nagao
operator in terms of linear smoothing and morphological sharp-
ening. In: Talbot, H., Beare, R. (eds.) Mathematical Morphology:
Proceedings of Sixth International Symposium. pp. 283–292. Syd-
ney, Australia (2002)

49. Weickert, J.: Theoretical foundations of anisotropic diffusion in
image processing. Comput. Suppl. 11, 221–236 (1996)

50. Weickert, J.: Coherence-enhancing diffusion of colour images. In:
Sanfeliu,A.,Villanueva, J.J.,Vitrià, J. (eds.) Proc. SeventhNational
Symposium on Pattern Recognition and ImageAnalysis, vol. 1, pp.
239–244. Spain, Barcelona (1997)

51. Weickert, J.: Coherence-enhancing diffusion filtering. Int. J. Com-
put. Vis. 31(2/3), 111–127 (1999)

52. Weickert, J.: Coherence-enhancing shock filters. In: Michaelis, B.,
Krell, G. (eds.) Pattern Recognition. Lecture Notes in Computer
Science, vol. 2781, pp. 1–8. Springer, Berlin (2003)

53. Weickert, J.: Mathematische Bildverarbeitung mit Ideen aus der
Natur. Mitteilungen der DMV 20, 80–92 (2012)

54. Weickert, J., Ishikawa, S., Imiya, A.: Linear scale-space has first
been proposed in Japan. J. Math. Imag. Vis. 10(3), 237–252 (1999)

55. Weickert, J., Welk, M.: Tensor field interpolation with PDEs. In:
Weickert, J., Hagen, H. (eds.) Visualization and Processing of Ten-
sor Fields, pp. 315–325. Springer, Berlin (2006)

56. Welk, M., Weickert, J.: PDE evolutions for M-smoothers in one,
two, and three dimensions. J. Math. Imaging Vis. 63, 157–185
(2021)
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