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Abstract
We introduce a data-driven version of the plus Cartan connection on the homogeneous space M2 of 2D positions and
orientations. We formulate a theorem that describes all shortest and straight curves (parallel velocity and parallel momentum,
respectively) with respect to this new data-driven connection and corresponding Riemannian manifold. Then we use these
shortest curves for geodesic tracking of complex vasculature in multi-orientation image representations defined on M2. The
data-driven Cartan connection characterizes the Hamiltonian flow of all geodesics. It also allows for improved adaptation to
curvature and misalignment of the (lifted) vessel structure that we track via globally optimal geodesics. We compute these
geodesics numerically via steepest descent on distance maps on M2 that we compute by a new modified anisotropic fast-
marchingmethod.Our experiments range from tracking single blood vesselswith fixed endpoints to tracking complete vascular
trees in retinal images. Single vessel tracking is performed in a single run in the multi-orientation image representation, where
we project the resulting geodesics back onto the underlying image. The complete vascular tree tracking requires only two
runs and avoids prior segmentation, placement of extra anchor points, and dynamic switching between geodesic models.
Altogether we provide a geodesic tracking method using a single, flexible, transparent, data-driven geodesic model providing
globally optimal curves which correctly follow highly complex vascular structures in retinal images. All experiments in this
article can be reproduced via documented Mathematica notebooks available at van den Berg (Data-driven left-invariant
tracking inMathematica, 2022).
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1 Introduction

Retinal images are often used to examine the vascular system
with optical scanning devices that image the vasculature in
the retina noninvasively. The vasculature in the eye is known
to be typically representative of the vasculature throughout
the body. This allows doctors to monitor the circulatory sys-
tem and aids in the diagnosis of different kinds of diseases
like diabetes, hypertension [1–3] and Alzheimer’s disease
[4]. Typically, high levels of tortuosity in the vasculature
are a biomarker for such diseases [5–8]. Successful auto-
matic vessel tracking detects complex vasculature and aids
the effective diagnosis of such diseases. Here, geometric
models come into play via geodesic tracking methods where
geodesics are the shortest paths that follow the biological
blood vessels. They help in tracking and subsequent analysis
of the vascular tree in the retina originating from the optic
nerve [9–12].
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Fig. 1 a Visualization of a grayscale image f : R
2 → R and b its

corresponding orientation score U : M2 → R in the space of posi-
tions and orientations M2 given by (3), using a standard cakewavelet
as depicted in c. We use a volume-rendering where the orange spirals
indicate data-points p = (x, y, θ) ∈ M2 with high amplitudes |U (p)|
(Color figure online)

Geodesic tracking has been extensively studied where
many prevalent approaches perform the tracking in the stan-
dard 2D image domain [13–18]. For many methods in this
category, calculating the geodesics inR

2 leads to certain diffi-
culties in accurately following the blood vessel. For example,
one common difficulty is the inaccurate tracking of crossing
structures and bifurcations. This has motivated methods that
aim to lift the image function to higher dimensional spaces.
For example, the space of positions and orientations [19, 20]
or radius-lifted spaces [21] where the lifting yields the ben-
efit of disentangling seemingly complex crossing structures
in the retinal images.

In this article, we focus on the methods [12, 21–23]
that perform the geodesic tracking in the 3D-space of posi-
tions and orientations M2. This is based on lifted images,
or so-called orientation scores. The well-known benefit of
this lifted approach is that lines involved in crossings are
manifestly disentangled in M2. As visualized in Fig. 1, the
crossing circles in the image become disjoint spirals (cf.
Figure1b) in the homogeneous space of positions and ori-
entations.

However, practical considerations of working in (the
domainM2 of) orientation scores, likememory reduction and
enabling low computation times, result in some undesirable
effects. For example, using a limited number of orientations
leads to imperfections in the computation of the orientation
scores. Hence, some vessels can be assigned a near angu-
lar coordinate that may not reflect their true orientation, and
therefore does not align with the vessel data correctly. We
denote this problem as ‘misalignment’ (also referred to as
deviation from horizontality [24]). Moreover, considering a

Fig. 2 Orientations sampling bias in geodesic tracking. Sampling bias
can lead to wrong tracking results, and our new model will overcome
this as we will show later in more detail (Fig. 9) (Color figure online)

limited number of orientations results in a sampling bias on
orientations, and thereby the possibility of missing high cur-
vature regions yielding poor curvature adaptation (cf. Fig. 2).

In this article, we provide a novel, data-driven track-
ing model that improves upon existing geodesic tracking
methods. Our model demonstrates an improved curvature
adaptation, reduces misalignment, and exhibits a high degree
of geometric interpretability.

We will aim for a single geometric Finslerian model to
deal with complex vasculature without requiring heavy pre-
processing (e.g., placement of anchor points, pre-skeletoni
zation) and associated extra parameters, and without suffer-
ing from the ‘cusp problems’ reported in [12, 25, 26].

The cusp problem is tackled by creating an asymmetric
Finslerian model1 (M2,F U ) extension of the data-driven
Riemannian manifold similar to the much less data-driven
techniques in [28]. For a quick impression of such a ‘cusp’ in
a spatially projected sub-Riemannian geodesic, see Fig. 19a
in Appendix D. Clearly, cusps are undesirable for vascular
tracking, and an asymmetric Finslerian version of the Rie-
mannian manifold tackles this problem. Intuitively, cusps in
spatial projections of sub-Riemannian geodesics arise some-
times as optimal paths of a ‘Reed-Shepp’ car (imagine a car
driving along the geodesic track) [28, 29] where the car was
required to use its reverse gear to follow the optimal path.
In the asymmetric Finslerian model we turn off the reverse
gear of the car, while allowing for ‘in-place rotations’ see
Fig. 19b.

Pre-processing techniques for geodesic tracking such as
pre-skeletonization and iterative placement of anchor/key
points are typically used in conjunction with Bézier curves
[30] or splines on Lie-groups [30, 31], but often require
additional parameters and fine-tuning. Specifically, exten-
sive use of anchor points implies that anchors get relatively
close to each other, and then the choice of geometric model

1 In Finsler geometry [27, 28], the norm of tangent vectors may not be
induced by an inner product. Recall that in the Riemannian setting, one
does have F (p, ṗ) = √Gp(ṗ, ṗ).
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Fig. 3 This tracking result (bottom) of a vascular tree in an optical
image of the eye (top) is calculated with only two runs of the anisotropic
fast-marching algorithm. In the images, seeds, bifurcations, and tips are
indicated by green, purple, and red points, respectively. The white and
cyan lines denote the tracking results obtained in the first and second
run, respectively.Details follow in the experimental Sect. 6 (Color figure
online)

in between becomes increasingly less relevant (even non-
data-driven sub-Riemannian distance approximations suffice
as shown in the work by Bekkers et al. [31]). As a result,
this reduces the geometric interpretability of the overall
model. In this work, we therefore aim for a single geo-
metrical model. Therefore, we will not use pre-processing,
pre-skeletonization [21], multiple anchor points [32], and
connectivity by perceptional grouping [15, 31, 33], even
though these techniques are theoretically interesting and
applicable.

In tracking an entire vascular tree, we limit the number
of anchor points to at most one (which is computed with-
out explicit manual supervision) and only use the boundary
conditions for each vessel (see Fig. 3). Thanks to our new
modified version of the anisotropic fast-marching algorithm
[34], we can now better adapt to curvature and spatial mis-
alignment efficiently (see Fig. 4). We also address common
pitfalls at complex overlapping structures, where one must
impose additional constraints to avoid taking wrong exits in
the tracking. The implementation of such constraints is easily
accounted for in our model, as we will see.

Similarly to the plus-control variant of previous geomet-
ric curve optimization models [28] we replace symmetric,
anisotropic, (sub-)Riemannian geodesic tracking by asym-
metric, anisotropic Finslerian models that avoid cusps and
allow for automatic placement of in-place rotations (recall
Fig. 19 and see [28, 35]). As a result, our model automati-

Fig. 4 Tracking result of the previous left-invariant model [28] (red),
and the new data-driven left-invariant model (green). The tracking per-
formed in the lifted space of positions and orientations is projected back
onto the input 2D image. Our proposed model (in green) demonstrates
a significantly improved accuracy in adapting to curvature of blood
vessels in the optical image (Color figure online)

cally accounts for bifurcations, thereby reducing the number
of anchor points.

In summary, the main contributions of this article are:

1. We introduce a new geodesic tracking model that uses a
crossing-preserving approach for tracking complex vas-
culatures in M2. Our model uses a new anisotropic fast-
marching algorithm to compute cusp-free data-driven
geodesics. The induced geometric vessel tracking bet-
ter adapts for vessel curvature and orientation sampling
biases, compared to the previous model in [28].

2. We mathematically analyze these solutions (the family
of all geodesics) via our data-driven version of the plus
Cartan connection (Sect. 3) that underlies the Hamilto-
nian flow as we will show in Theorem 1.

3. Finally, we demonstrate our method on highly challeng-
ing examples of retinal images with complex vasculature
where adequate tracking results are obtained with only
two runs of the proposed anisotropic fast-marching algo-
rithm.

Structure of the Article

In Sect. 2, we provide background of the geometrical tools
underlying ourmethod.We explain the space of positions and
orientations M2, and why it is beneficial to apply tracking in
this 3D space rather than in 2D position space.

In Sects. 3 and 4, we describe our model. We begin in
Sect. 3 by introducing a new data-driven Cartan connection
∇U associated with a data-driven left-invariant metric tensor
field GU . These geometric tools allow for curvature adap-
tation and correction of misalignments in existing geodesic
tracking algorithms in M2.
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In Sect. 4 we use the data-driven Cartan connections and
data-driven left-invariant metric tensor fields.We present our
main theoretical result in Theorem1 where we

– characterize ‘straight curves’ and ‘shortest curves’ in
data-driven left-invariant Riemannian manifolds on a
finite-dimensional Lie group G,

– analyze the Hamiltonian flow of all geodesics together,
– provide the geodesic backtracking formula of the new
geodesic tracking model,

– address the symmetries of the geodesics and connections
of the new model.

Then in Sect. 5 we employ the geometrical models and tools
and present a numerical algorithm to compute the distance
map for the special case where the Lie group equals the
roto-translation group G = SE(2). Additionally, we explain
how to compute the backtracking of geodesics from end to
source point.Wepresent a newversion of the anisotropic fast-
marching algorithm [36] that applies to our new data-driven
model.

In Sect. 6, we report an extensive experimental evaluation
of geodesic tracking in retinal images from the annotated
STAR dataset [37, 38], and show that our new model allows
for adequate geometric tracking of highly complex vascula-
tures.

Finally, in Sect. 7, we end with a brief discussion of future
work and conclude.

2 Background

2.1 Lifted Space of Positions and OrientationsM2

We begin by introducing the lifted space of positions and
orientations M2. As motivated earlier, working in this space
allows for convenient ways to separate difficult crossing
structures in R

2. In this article, we specifically focus on the
challenging problem of vessel tracking in retinal images hav-
ing complex vasculature.

Definition 1 The space of two-dimensional positions andori-
entations M2 is defined as a smooth manifold

M2 := R
2

� S1,

where S1 ≡ R/(2πZ) using the identification

n = (cos θ, sin θ) ↔ θ. (1)

Elements in the homogeneous space are denoted by ordered
pairs (x, θ) ∈ R

2 × S1 but to stress the semidirect product
structure of the roto-translation group SE(2) := R

2
�SO(2)

acting on M2 we write M2 = R
2

� S1.

The space M2 is a homogeneous space under the transitive
action of roto-translations given by the following mapping:

Definition 2 (Lie group action on domain) For each roto-
translation g = (y, Rα) ∈ SE(2) the mapping of Lg : M2 →
M2 is given by

Lg(x, θ) := (y, α).(x, θ) = (y+ Rαx, α + θ), (2)

where Rα ∈ SO(2) is the matrix associated with a counter-
clockwise rotation with rotation angle α ∈ S1.

Clearly, the concatenation of two rigid body motions is again
a rigid body motion and indeed one has

Lg2Lg1 = Lg2g1 with g2g1 := (x2 + Rθ2x1, Rθ2+θ1),

for all g1, g2 ∈ SE(2), i.e., L is a group representation.
After setting a reference pointp0 = (0, 0) ∈ M2 wehave a

1-to-1 relation between the roto-translation (x, Rθ ) mapping
p0 to p = (x, θ) and the point in the homogeneous space
p = (x, θ) ∈ M2. In particular, p0 is then identified with the
unity element e := (0, I ).2 In short, we identify

M2 ≡ SE(2) via (x, θ) ↔ g = (x, Rθ ).

Under this identification, the product of two elements,
say (x1, θ1), (x2, θ2) ∈ M2, in the space of positions
(x1, x2 ∈ R

2) and orientations (θ1, θ2 ∈ S1) is given by

(x2, θ2) · (x1, θ1) = (x2 + Rθ2x1, θ2 + θ1),

wherehenceforth Rθ2 ∈ SO(2)denotes the counter-clockwise
rotation matrix with rotation angle θ2 ∈ R/(2πZ).

Definition 3 Let X be a Banach space, then B(X) denotes
the space of bounded linear operators on X .

As mentioned we lift the image from R
2 to SE(2) to sepa-

rate crossing structures in the correspondingorientation score
(Fig. 1). Next we explain how this is precisely done.

Definition 4 (OrientationScores)Theorientation score trans-
form Wψ : L2(R

2) → L2(SE(2)) using anisotropic wavelet
ψ maps an image f to an orientation score U = Wψ f . The
orientation score is given by

(Wψ f )(x, θ) := ∫

R2

ψ(R−1θ (y− x)) f (y) dy

= (Ugψ, f )L2(R2),

(3)

2 Since StabSE(2)(p0) = {e}.
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where the rotated and translatedmotherwavelets are obtained
by the Lie group action U : SE(2) → B(L2(R

2)) given by

(Ugψ)(y) = ψ(R−1θ (y− x)),

for all g = (x, Rθ ) ∈ SE(2) and all y ∈ R
2.

Definition 4 inputs an image f ∈ R
2 and yields a function

U ∈ SE(2). This is achieved by taking a convolution with
a rotated wavelet filter, where the canonical/mother wavelet
function ψ is rotated counter-clockwise with the angle θ , as
we can see in (3).Byvarying θ over all orientationsR/(2πZ),
the image is lifted from R

2 to M2. We use the real part of the
cake wavelets [23, 39] depicted in Fig. 1c as then the space of
orientation scores is naturally embedded in L2(SE(2)) [39],
and gives practically informative orientation scores [1].More
information on the orientation score transform, its range, its
invertibility, and the choice of wavelets ψ can be found in
previous works [1, 39–41].

We can rotate and translate images via f �→ Ug f . This
corresponds to a left action on the orientation score:

Wψ ◦Ug = Lg ◦Wψ (4)

for all g ∈ SE(2). Left actions are defined as follows:

Definition 5 (Lie group action on orientation scores) The
left regular representation Lg : SE(2) → B(L2(SE(2))) is
given by

LgU (h) := U (Lg−1h) = U (g−1h) (5)

for all g,h ∈ SE(2),U ∈ L2(SE(2)).
As shown in [39, Thm. 21], by construction of (3), orienta-

tion score processing must be left-invariant (i.e., equivariant
with respect to left actions Lg) and not right-invariant. The
key reason for this is the fundamental relation (4). This left-
invariance will also be crucial in our geometric tracking
which needs to be left-invariant (and not right-invariant).
Indeed rotating and translating the image should yield to an
equally rotated and translated (lifted) tracking output curve.

2.2 Metric Tensor Fields and Finsler Functions

To calculate shortest paths in orientation scores, we need to
establish local costs on tangents (velocities). We do so by
assigning a metric tensor Gp(·, ·) to every point p = (x, θ)

in the lifted space of positions and orientations. It is bene-
ficial to design this metric tensor depending on the specific
application. Typically, this choice of the metric tensor field
establishes the geometric model. Additionally, diagonalizing
this tensor at every point p provides a local frame of refer-
ence.

First,we introduce the static framedenotedby {∂x , ∂y, ∂θ },
induced by the coordinates x, y, θ for all points in M2. Its

dual frame, for the cotangent bundle T ∗(M2), is denoted by
{dx, dy, dθ}, and can be used to express the metric tensor
field G.

It is advantageous to use left-invariant vector fields for
our application, since it guarantees that tracking results are
equivariant to the group of roto-translations. More specifi-
cally, tracking is independent of the roto-translation of the
image, meaning that tracking on a roto-translated image is
identical to tracking on the original and roto-translating the
result.

Definition 6 (Frame of Left-Invariant Vector Fields) The
frame of left-invariant vector fields (left-invariant frame) is
obtained by a pushforward of the static frame at the origin
p0. We define the pushforward (Lg)∗ : Th(G) → Tgh(G) by

(Lg)∗ ∂x |p0 U = ∂x |p0 (U ◦ Lg),

for all smooth functions U : M2 → C. Then, the left-
invariant frame {A1,A2,A3} is defined by

Ai |(x,y,θ) = (L(x,y,θ))∗ Ai |p0 with
A1|p0 = ∂x |p0 , A2|p0 = ∂y

∣∣
p0

, A3|p0 = ∂θ |p0 .

After computations, we obtain the left-invariant vector fields

A1 = cos θ ∂x + sin θ ∂y,

A2 = − sin θ ∂x + cos θ ∂y and A3 = ∂θ .

The corresponding dual frame is given by {ωi }3i=1 where
ωi
(A j

) = δij . A brief computation gives

ω1= cos θ dx + sin θ dy,
ω2= − sin θ dx + cos θ dy and ω3 = dθ.

In addition to that, we define the left-invariant metric tensor
field:

Definition 7 Metric tensor field G on M2 is left-invariant iff

Gg·p((Lg)∗ṗ, (Lg)∗ṗ) = Gp(ṗ, ṗ)

for all p ∈ M2, all ṗ ∈ Tp(M2) and all g ∈ SE(2).

Remark 1 (Left-invariant Metric Tensor Field) Let G denote
a left-invariant metric tensor field on G. Then there exists a
unique constant matrix [gi j ]i j ∈ R

3×3 such that

G =
3∑

i, j=1
gi j ωi ⊗ ω j , (6)

where ⊗ denotes the usual tensor product.
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In the standard left-invariant model we restrict ourselves to
the case gi j = giiδi j , and then G is diagonal with respect to

the co-frame {ωi }i , i.e., G =
3∑

i=1
gii ωi ⊗ ωi .

Often we do not want to work with symmetric Rieman-
nian metric tensor fields (for instance to avoid cusps, and to
ensure that fronts only move forward, see Fig. 5), and then
we resort to the general Finsler geometry as done in [28, 34].
Essentially, this means that we replace the symmetric norm√G|γ (t) (γ̇ (t), γ̇ (t)) in the Riemannian distance/metric:

dG(p,q) = inf
γ ∈ 
1,

γ (0) = p, γ (1) = q

∫ 1

0

√
Gγ (t) (γ̇ (t), γ̇ (t)) dt (7)

by an asymmetric Finsler norm F (γ (t), γ̇ (t)), given by

F 2(p, ṗ) = Gp(ṗ, ṗ)+ g11(ε−2 − 1)min
{
0, ω1

p(ṗ)
}2

(8)

where the relaxation parameter 0 < ε � 1 punishes spatial
backward motions. For convergence results of geodesics and
distances if ε ↓ 0, see [28, 42].

Later in Sect. 2.4 we will explain all parameter settings
including the choice of g11, g22, g33 > 0 in F .

Next, we define some relevant geometrical tools associ-
ated to (7) and (8).

Remark 2 (The Space of Curves over which we optimize)
To adhere to standard conventions in Riemannian geometry
we optimize over the space of piecewise continuously differ-
entiable curves in M2 (indexed by T > 0):


T := PC1([0, T ], M2). (9)

In (7) we set T = 1, as there the choice of T is irrelevant by
parameterization independence of the functional.

Remark 3 (Control Sets) The control set in the tangent bun-
dle T (M2) is defined as

BG(p) :=
{
ṗ ∈ Tp(M2)

∣∣∣
√
Gp (ṗ, ṗ) ≤ 1

}
,

with p ∈ M2 andG the underlying Riemannian metric tensor
field.

The corresponding asymmetric control set in the tangent
bundle T (M2) is defined as

BF (p) := {ṗ ∈ Tp(M2) |F (p, ṗ) ≤ 1} , (10)

with p = (x,n) ∈ M2 and F the underlying Finslerian met-
ric tensor field. In the limiting case where backward motions
become prohibited as ε ↓ 0 (i.e., the sub-Finslerian setting)
we only get half of the Riemannian control sets
BF (p) = {ṗ = (ẋ, ṅ) ∈ BG(p)| ẋ · n ≥ 0}. (11)

2.3 Cartan Connections

The theory of Cartan connections was developed by Élie Car-
tan. His viewpoint on differential geometry relies on moving
frames of reference (repère mobile). The idea is to connect
tangent spaces by group actions on homogeneous spaces.
This geometric tool allows us to understand the geodesic
flow associated to (7) and its data-driven extensions.

The homogeneous space that we will use for crossing-
preserving 2D image processing is the homogeneous space
of positions and orientations M2. Here, the pushforward
(Lg)∗ of the left-multiplication connects Te(M2) to Tg(M2)

as it maps Te(M2) (isometrically3) onto Tg(M2) and (L−1g )∗,
known as the Cartan-Ehresmann form, maps Tg(G) back to
Te(G).

First, we introduce the general definition of Cartan con-
nections, after which we also introduce the Cartan plus
connection [43]. In this article, we will introduce a data-
driven version of the Cartan plus connection, leading to a
generalization of the existing theory on shortest and straight
curves in M2.

Definition 8 (Cartan Connection [43])
A Cartan connection on a Lie group G is a tangent bundle
connection with the following additional properties

1. left invariance: if X ,Y are left-invariant vector field then
∇XY is a left-invariant vector field,

2. for any A ∈ Te(G) the exponential curve is auto-parallel,
i.e., ∇γ̇ (t)γ̇ (t) = 0 where γ (t) = γ (0) exp(t A).

We use the following special case of a Cartan connection
to define shortest and straight curves. Note that this Cartan
connection is easily expressed in the left-invariant frame [21,
43–47].

Definition 9 (Cartan Plus Connection [43])
Consider a Lie groupG of finite dimension n, with Lie brack-
ets [·, ·] and structure constants cki j ∈ R s.t.

[Ai ,A j ] =
n∑

k=1
cki jAk .

Then the Cartan plus connection is given by

∇[+] :=
n∑

k=1

⎛

⎝
n∑

i=1
ωi ⊗

(
Ai ◦ ωk

)
+

n∑

i, j=1
ωi ⊗ ω j cki j

⎞

⎠Ak .

(12)

3 W.r.t. norm induced by the metric tensor field G in Definition 6.
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Remark 4 Note that the ◦ symbol denotes the composition of
functions such that for example

Ai ◦ ωk

(
n∑

l=1
αlAl

)

= Ai

(

ωk

(
n∑

l=1
αlAl

))

= Ai

(
αk
)

.

For explicit coordinate expressions, see [43]. Next, we
explain how to read and compute (12). The covariant deriva-
tive ∇XY of a vector field Y with respect to a vector field X
is again a vector field. Indeed the above formula gives

∇[+]X Y =
n∑

k=1

⎛

⎝
n∑

i=1
ωi (X)

(
Ai ◦ ωk(Y )

)
+

n∑

i, j=1
ωi (X)ω j (Y )cki j

⎞

⎠Ak ,

(13)

so that it becomes clear where X and Y typically enter in the
open slots of the expression (12). Note that vector fieldAi in
(13) is a differential operator applied to the smooth function
G � g �→ ωk

g(Yg) ∈ R.

Remark 5 The connection ∇[+] is called ‘Cartan plus con-
nection’ as we add the two sums between the two large round
brackets. In differential geometry one also has Cartan con-
nections with a realvalued scalar factor in front of the second
term, but this does not serve our applications [48].

Now that we explained Cartan connections, let us return to
the core purpose of designing a geometric model such that
projected geodesics follow the blood vessels.

2.4 Geodesic Tracking in the Space of Positions and
OrientationsM2

Geodesic tracking methods aim to find the shortest paths
following the underlying biological blood vessels in the
retinal image. Such shortest paths are obtained by finding
minimizing geodesics, which are defined as curves with the
shortest length functionals. Typically, such length function-
als are driven by a cost function that is small at locations of
the blood vessels and high at all other places. Many dif-
ferent approaches to determine the minimizing geodesics
have been proposed over the years, ranging from classical
geodesic tracking in the image domain [14] to tracking in
higher-dimensional homogeneous spaces [1, 12, 22, 28].

As already explained, we lift the input image f from R
2

to M2 using orientation scores in homogeneous spaces [40,
41] (see Fig. 1). The tracking process involves computing a
geodesic distance map inM2 and then using steepest descent
to find the shortest curve in the lifted space. Finally, we
project the curve back onto the input image in R

2 to get
the final tracking result, see the examples in Fig. 4.

Over time, different models have been introduced that
describe how the geodesics should behave. Imagine a car
moving along such geodesics. Then the Reeds–Shepp car

model [29] which describes the problem of shortest paths for
cars between an initial and final point, and the Reeds–Shepp
forward model [28] turns off the reverse gear of the car. In
both cases the spatially projected geodesics (optimal paths)
tend to follow blood vessels in medical images well.

2.4.1 Symmetric Reeds–Shepp Car Model

The left-invariantmetric tensor field of the symmetricReeds–
Shepp car model, G, is given by the symmetric tensor field

G = C2
(
ξ2ω1 ⊗ ω1 + ξ2

ζ 2
ω2 ⊗ ω2 +ω3 ⊗ ω3

)

⇔
Gp(ṗ, ṗ) = C(p)2

(
ξ2 |ẋ · n|2 + ξ2

ζ 2
‖ẋ ∧ n‖2 + ‖ṅ‖2

)
.

(14)

for allp = (x,n), ṗ = (ẋ, ṅ)with ‖ẋ∧n‖2 := ‖ẋ‖2−|ẋ·n|2.
The anisotropy parameter ζ penalizes vectorswith large side-
ways components. Note that the classical sub-Riemannian
model corresponds to the limit ζ ↓ 0. For formal convergence
results of the Riemannian model to the sub-Riemannian
model see [28, Thm. 2]. In practice, choosing ζ = 0.1
usually provides a good enough approximation of the sub-
Riemannian model for our purposes. The last parameter ξ , a
weighting parameter, influences the flexibility of the track-
ing. It either stimulates or discourages angular movement
over spatial movement [28].

The cost function C : M2 → [δ, 1], with δ > 0,
discourages movement at specific locations, e.g., outside
vessel structures. In this article, the smooth costfunction
(x, y, θ) �→ C(x, y, θ) is typically a version of the multi-
scale crossing-preserving vesselness map [49] explained in
Appendix D. For an impression of what such a map C looks
like see the 3D visualization in Fig. 18. As we consider rather
complex vasculatures it is oftenmore intuitive to display their
minimum projections over θ , see for example Fig. 13.

2.4.2 Asymmetric Reeds–Shepp Car Model

Besides the symmetric version of the left-invariant metric
tensor field of the Reeds–Shepp car model, an asymmetric
version has been introduced in [28]. The forward gear left-
invariant metric tensor field of this model is given by the
asymmetric Finsler norm/function

|F (p, ṗ)|2 = Gp(ṗ, ṗ)+ C(p)2
(
ε−2−1

)
ξ2 |(ẋ · n)−|2 (15)

for all p = (x,n), ṗ = (ẋ, ṅ), with a− := min{0, a}. Equa-
tion (15) coincides with (8) with g11 = ξ2, g22 = ξ2/ζ 2,
g33 = 1.

The parameters ζ and ξ and the cost function C have
the same meaning as in the symmetric model. However,
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we consider an extra variable ε ∈ (0, 1] in the asymmet-
ric Reeds–Shepp car model. This parameter determines how
strongly the model needs to adhere to the forward gear. Note
that when ε = 1, we find the symmetric Reeds–Shepp car
model, and when ε → 0, backward movement becomes
prohibited. In that case, we move from cusps to change ori-
entation to in-place rotations visualized (cf. Figure 19 in
Appendix D). These asymmetric Finslerian models are also
highly beneficial in image segmentation as shown by Chen
and Cohen [50].

2.5 Anisotropic Fast Marching

We provide here a brief overview of the partial differential
equation (PDE) framework associatedwith geodesic distance
maps, and of their numerical computation, see Sect. 5 for
further details. We already mentioned that it is common to
calculate minimizing geodesics in two steps; first calculat-
ing the geodesic distance map, then calculating the shortest
curve using steepest descent. To get a first impression of how
this looks like in practice, see Fig. 5. The geodesic distance
map is characterized, in the PDE framework, as the viscos-
ity solution of a static first-order Hamilton–Jacobi–Bellman
equation, known as the Eikonal Equation. For numerically
solving the Eikonal equation, it is discretized using for
instance finite differences [12], leading to a coupled non-
linear system of equations, which is typically solved using
a front propagation method such as the fast-marching algo-
rithm (FMM). Classical references on the FMM include [17,
51], anisotropic variants are presented in [34, 36, 52], and
the details related to our new model will follow in Sect. 5.1.

The fast-marching algorithm is a numerical method for
solving the coupled system of equations discretizing the
eikonal PDE. The algorithm proceeds in only one pass over
the domain hence providing significant efficiency gains, but
also requiring that the numerical scheme satisfies two condi-
tions (monotonicity and causality), see [34, 36, Def. 2.1].
The proposed variant of this method uses Selling’s algo-
rithm [53] to calculate in a preliminary step a decomposition
of the quadratic forms defining the dual metric. This dual
metric suitably only involves positive weights and vectors
with integer coordinates, see Proposition 2. These ingredi-
ents are used to devise an adaptive finite differences scheme,
discretizing the anisotropic Eikonal PDE and obeying the
required conditions, see Sect. 5.2. The eikonal PDE is solved
via an anisotropic fast-marching algorithm, and its solution
provides the desired distance map. Finally, the minimizing
geodesic is calculated by solving an ordinary differential
equation defined in terms of the distance map [34, 36].

In previous studies of the Reeds–Shepp model and vari-
ants [28, 34], the geodesic metric tensor matrix featured a
block diagonal structure, which was exploited in the dis-
cretization. However, while working with data-driven metric

tensor fields, this block format does not apply! Therefore we
adapt the anisotropic fast-marching algorithm to cope with
the general setting. In this article, we will briefly discuss
the changes that were necessary to solve data-driven metric
tensor fields. Such data-driven geometric models (that we
explain in the next section) give better tracking results than
the previous model, as one can see in Fig. 5. In addition to
that, using the anisotropic fast-marching algorithm to calcu-
late the geodesics, only a limited number of runs (one for
a single vessel, Fig. 5, and only two for a full vasculature,
Fig. 3) are needed to correctly track the vascular structures.

2.6 Flowchart and Overview of theMethodology

Before we dive into the details of our method, we provide a
sequential flowchart of our methodology, and more informa-
tion on where more details of each part will be addressed.

1. Create an orientation score of input image f (Eq. (3));
2. Calculate the Hessian (App. C);
3. Extract theData-Driven frame from theHessian (Eq. (17));
4. Determine the local cost function for tracking:Vesselness

Map (App. D);
5. Identify the Finsler Function (with +-control in App. E)

with the special Riemannian case (Eq. (8) with ε = 1) in
Theorem 1;

6. Identify the Dual Finsler Function (with +-control in
Lemma 2 and App. E);

7. Analyze the Hamiltonian Flow of all geodesics (Theo-
rem 1);

8. Determine the Eikonal PDE distance map (symmetric
case: Eq. (38), with +-control: Eq. (53));

9. Numerically solve theEikonal PDEusing anisotropic fast
marching:

(a) Calculate the stencils using Selling matrix decom-
position assuring causality for single parts (Proposi-
tion 2);

(b) Follow the procedure of Far-Trial-Accepted points
(Sect. 5.3);

10. Apply steepest descent on the distance map (Sect. 5.4);
11. Project the geodesic spatially by

�(x(t), y(t), θ(t)) = (x(t), y(t)).

3 Data-DrivenMetric and Data-Driven
Cartan Connection

In multi-orientation image processing, it is beneficial (for
vessel segmentation [37]) to rely on locally adaptive frames
[54, 55]. However, the locally adaptive frames in M2 typi-
cally require a stable selection of the principal eigenvector
(eigenvector corresponding to the largest eigenvalue) of a
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Fig. 5 Top row: All points in the orange surface have the same dis-
tance to the seed. The isocontours are projected back onto the image,
as depicted in the ground plane. Bottom row: Several isocontours are
projected onto the image and a projection of the curve is visualized.
Left: The Riemannian geodesic with parallel velocity to the Cartan plus
connection ∇[+] (red) takes a wrong shortcut. Right: The Riemannian

geodesic (green)with parallel velocity to theCartan plus connection∇U

in the Riemannian manifold (M2,GU )—or more precisely the Finsle-
rian manifold (M2,F U ) given by (17)—does not, and moreover adapts
for curvature in M2, cf. Fig. 7). Explicit formulas for ∇U and ∇[+] will
follow later in Table 2 (Color figure online)

symmetrizedHessian of the functionU : SE(2) → R. Recall
that a Hessian is defined by a (dual) connection. Even if one
uses the left Cartan connection, selecting the principal eigen-
vector can be locally unstable [55] and the largest eigenvalue
may not be unique. For instance, if line structures are not
locally present at all. Therefore, in this article, we take a
slightly different approach by creating an unconditionally
stable data-driven left-invariant metric tensor field.

Definition 10 (Data-Driven Left-Invariant Metric) LetG be
a Lie group. Then the metric tensor field GU is data-driven
left invariant when it satisfies for all (g, ġ) ∈ T (G) and all
q ∈ G:

GU
g (ġ, ġ) = GLqU

qg ((Lq)∗ġ, (Lq)∗ġ). (16)

Recall that in our case of interest where G = SE(2) and
where U = Wψ f is an orientation score of the image f ,
the equivariance relation (4) holds, so roto-translation of
an image f �→ Ug f is equivalent to roto-translation
U �→ LgU of the score.

Consequently (as will follow in Theorem 1) if a metric
tensor field is data-driven left invariant then a roto-translation
Ug f of the input image f yields a new geodesic γnew that
is rotated and translated accordingly: γnew(·) = gγ (·).

Thus, Definition 10 is a valid constraint in our applica-
tion as we want the vessel tracking along geodesics to be
equivariant with respect to roto-translations.

By creating such a data-driven metric tensor field GU on
our Lie group of interest G = SE(2) ≡ M2, data-driven
corrections are made for spatial and angular misalignment in
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existing models relying on the standard left-invariant frame
[24, 55, 56].We will see that a better fitted metric tensor field
GU has a significant impact on the tracking results for very
tortuous vessels, as shown in Fig. 5. For our case of interest
M2, a reasonable choice that satisfies the constraint, and that
we use in our experiments, is given by:

|FU (p, ṗ)|2 = |F (p, ṗ)|2+ λC2(p)

∥∥ HU |p(ṗ,·)∥∥2∗
max‖q̇‖=1

∥∥ HU |p(q̇,·)∥∥2∗

GU
p (ṗ, ṗ) = Gp(ṗ, ṗ)+ λ C2(p)

∥∥ HU |p(ṗ,·)∥∥2∗
max‖q̇‖=1

∥∥ HU |p(q̇,·)∥∥2∗
,

where G and F are given in (14) and (15),

(17)

with p = (x,n) ∈ M2 and ṗ = (ẋ, ṅ) ∈ Tp(M2). Here the
Hessian field HU is defined in Lemma 4 in Appendix C, and
‖ · ‖∗ the dual norm corresponding to the primal norm given
by
√Gp(ṗ, ṗ) with ζ = 1 in (14).
Parameter λ > 0 regulates inclusion of data-driven

2nd order line-adaptation to the orientation score data U ,
cf. Fig. 1.

Finally, the data-driven left-invariant metric tensor field
relies on the usual Reeds–Shepp car models G, respectively,
F with external smooth cost C(p) satisfying:

0 < δ ≤ C ≤ 1, (18)

computed from the orientation score U , as explained in
AppendixD. Therewe combine ideas on crossing-preserving
vesselness maps from [28, 37, 49].

Remark 6 Within G and F in (17) we set ζ 2 = 0.01 =
g11/g22 as relative costs for sideward motion, recall (14).
Ideally we want this to be high, but as we will prove in the
numerics section (Sect. 5.2), a spatial anisotropy of ζ 2 =
0.01 still guarantees numerical accuracy. We follow [12, 28]
and set bending stiffness ξ2 = g11 = 0.01 and g33 = 1.

Proposition 1 Metric tensor field GU given by Eq. (17) is
indeed data-driven left-invariant (i.e., satisfying (16)).

Proof See Lemma 6 in Appendix C. ��
Next, we list a few remarks that underpin and explain our

specific choice of metric tensor field.

Remark 7 In geometric image analysis [57], eigenvectors of
the Hessian typically provide a local coordinate frame along
lines. In orientation scores, this is not different [24]. In M2,
Hessians HU = ∇[+],∗dU are not symmetric and we rely
on a singular value decomposition via the dual norm in (17)
which only relies on the symmetric product, see Remark 9.

Remark 8 Formally speaking, the (old) metric tensor fieldsG
and asymmetric version F are also data-driven if it comes to

Fig. 6 Visualizations of the left-invariant frame and the data-driven left-
invariant frame inM2. Locally along one of the spirals in the orientation
score depicted in Fig. 1. In a, the main direction of A1 is not properly
aligned with the underlying 3D structure, whereas in b AU

1 is (Color
figure online)

scalar-adaptation via cost functionC , but as they do not adapt
for any kind of directional data-adaptation (as illustrated in
Fig. 6) we do not refer to them as ‘the data-driven model’.

Remark 9 Via the identification (1) we write p = (x, y, θ)

for short. Then in fixed coordinates on R
2 × R/(2πZ)

one may write ṗ = (ẋ, ẏ, θ̇ )�. The dual norm expression∥∥HU |p (ṗ, ·)∥∥2∗ in (17) then boils down to a straightforward
Euclidean norm:

∥∥HU |p(ṗ, ·)∥∥2∗=
∥∥∥∥∥∥
Mξ

(
Uxx (p) Uxy(p) Uxθ (p)+Uy(p)

Uyx (p) Uyy(p) Uyθ (p)−Ux (p)

Uθx (p) Uθ y(p) Uθθ (p)

)�
ṗ

∥∥∥∥∥∥

2

(19)

where Mξ = diag (ξ−1, ξ−1, 1) ∈ R
3×3.

For details of Hessians of functions on manifolds with a con-
nection, see Appendix C. For now let us focus on the notion
of data-driven left-invariant frames, where we improve upon
the ‘Locally Adaptive Derivatives (LADs)’ in [37, 55].

Definition 11 (Data-DrivenLeft-InvariantFrame)Anydata-
driven metric tensor field GU can be diagonalized:

GU =
3∑

i=1
αU
i (·) ωi

U ⊗ ωi
U (20)

and this defines the positively oriented data-driven left-

invariant co-frame
{
ωi
U

}3
i=1, dual to the primal frame

{
AU

j

}3

j=1 related by 〈ωi
U ,AU

j 〉 = δij .

Remark 10 (Advantages of our data-driven metric and
frame) The local frame of reference {AU

i } depends on the
image data, cf. Fig. 6. In fact, Eq. (20) is used to define the
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dual of the data-driven left-invariant frame via diagonaliza-
tion. This deviates from LADs in previous work [37, 43]. We
now have the advantage of coercivity

GU ≥ G ≥ δ > 0, (21)

recall (18), independent of the orientation score data U ,
which makes the tracking algorithms unconditionally stable.
Furthermore, we now have another advantageous property
over LADs, namely that AU

i = Ai for U constant.

In order to calculate distances using the new data-driven
metric tensor field, we need to introduce the data-driven Rie-
mannian distance.

Definition 12 (Data-DrivenRiemannianDistance)Thedata-
driven Riemannian distance dGU from a point p ∈ M2 to a
point q ∈ M2 is given by

dGU (p,q) = inf
γ ∈ 
1,

γ (0) = p,

γ (1) = q

∫ 1

0

√
GU

γ (t) (γ̇ (t), γ̇ (t)) dt (22)

where 
1 was defined in (9), and γ̇ (t) := d
dt γ (t).

Remark 11 If imageU is constant, thenGU = G, dGU = dG.

Remark 12 Note that this distance can always be transformed
to a quasi-distance when we are working in with the forward
gear version of the model:

dF U (p,q) = inf
γ ∈ 
1,

γ (0) = p, γ (1) = q

∫ 1

0
F U (γ (t), γ̇ (t)) dt .

Using the new data-driven metric frame, recall Definition 11,
we introduce the data-driven Cartan plus connection, which
will be used to express ‘short’ and ‘straight’ curves in Sect. 4.

Definition 13 (Data-Driven Cartan Plus Connection) The
data-driven Cartan plus connection is given by

∇U :=
n∑

k=1

⎛

⎝
n∑

i=1
ωi
U ⊗

(
AU

i ◦ ωk
U

)
+

n∑

i, j=1
ωi
U ⊗ ω

j
U c

k
i j

⎞

⎠AU
k .

Explicit coordinate expressions will follow in Lemma 1.
In Table 1, an overview of the notation used for the new

concepts introduced in this work and concepts introduced in
earlier work is given.

In Fig. 7, the exponential curves and the control sets for
both discussed Cartan connections, ∇[+] and ∇U are visu-
alized. In addition to that, the tracking results relying on

different models are plotted. One sees that the data-driven
Cartan connection better adapts for curvature leading tomore
accurate tracking results.

4 The NewGeometric TrackingModel:
Asymmetric Finsler Functions Steered by
Locally Adaptive Frames

We discuss a new data-driven version of the Cartan con-
nection. This result applies to all Lie-groups G of finite
dimension dim(G) = n. Note that SE(2) ≡ M2, but the
result does not apply to all homogeneous spaces (likeMd for
d > 2). The notation used in this section is summarized in
Table 2.

We consider a locally adaptive frame
{AU

i

}n
i=1 with dual

frame
{
ωi
U

}n
i=1. This can be any well-defined frame that

depends on the underlying data. The (data-driven)metric ten-
sor field that is considered, is given by (20). The data-driven
terms can adapt for curvature and deviation from horizon-
tality where the direction of the left-invariant frame deviates
from the underlying line structure.

4.1 Combine Optimally Straight and Short: A New
Data-DrivenVersion∇U of the Cartan
Connection

In previous works, the Cartan plus connection, which relies
on the left-invariant frame, has been used to describe straight
and shortest curves in Lie groups [48]. However, this frame
is not always adequate in multi-orientation image processing
as it does not always align perfectly with the underlying line
structures in the orientation scores (see Fig. 6). To improve
the tracking results, we, therefore, switch to using a data-
driven Cartan connection associated with the data-driven
metric tensor field GU given by (17). Let us first define what
we mean by a ‘data-driven Cartan connection’.

Definition 14 The data-driven Cartan connection and its cor-
responding dual are given by

∇U =
n∑

k=1

(
n∑

i=1
ωi
U ⊗

(AU
i ◦ ωk

U

)+
n∑

j=1

(
ωi
U ⊗ ω

j
U

)
c̃ki j

)

AU
k , (28)

(∇U
)∗ =

n∑

i=1

(
n∑

j=1
ω

j
U ⊗

(
AU

j ◦AU
i

)
+

n∑

k, j=1

(
ω

j
U ⊗AU

k

)
c̃ki j

)

ωi
U , (29)

where
(∇U

)∗
X λ := (∇U

)∗
(X , λ) and ∇U

X Y := ∇U (X , Y ).

Remark 13 The relation between ∇ and its dual ∇∗ is

〈∇∗Xλ,Y 〉 := X〈λ,Y 〉 − 〈λ,∇XY 〉 (30)

for all vector fields X ,Y and all covector fields λ onG, which
may be interpreted as a product rule for the pairing between
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Table 1 Comparison of
(notation of) current and
previous work. Diagonalization
is w.r.t. dual frame associated to
the frames depicted in Fig. 6

Metric tensor field Diagonalization Cartan connection

Earlier work G {
ωi
}n
i=1 ∇[+]

Current work GU
{
ωi
U

}n
i=1 ∇U

Fig. 7 The advantage of using data-driven Cartan connections ∇U

instead of the non-data-driven Cartan plus connection ∇[+]. In gray,
a shortest curve (geodesic) between two points in M2 is visualized,
along with its spatial projection. The left geodesic has parallel momen-
tum w.r.t. ∇U (cf.Thm 1) and the right w.r.t. ∇[+] [43, Thm. 1]. The
new geodesic better adapts for curvature (and spatial alignment). This is
also visible in the corresponding control sets (11) depicted by the white
closed surfaces above at several green points on the geodesics. The red
arrow indicates the principal direction of the local metric tensor (left:

G, right: data-driven GU ). The control sets belonging to ∇[+] are only
aligned to the underlying structure in the spatial domain, whereas the
control sets belonging to∇U align with the appropriate curvature in the
tangent space as well. In the bottom row, we depict exponential curves
through the green points with a tangent in the principal direction (left of
G, right of GU ). They are straight-curves of ∇[+] (left) and ∇U (right),
and ‘steer’ the geodesic tracking as wewill show in Thm 1 (Color figure
online)
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e
al
so

(3
1)

D
ua
lD

at
a-
D
ri
ve
n
C
ar
ta
n
C
on

ne
ct
io
n

( ∇
U
) ∗
=

n ∑ i=
1

(
n ∑ j=
1
ω

j U
⊗
( AU

j
◦A

U i

)
+

n ∑ j,
k=

1

( ω
j U
⊗

AU k

)
c̃k ij

(·)
)

ω
i U

se
e
al
so

(3
2)
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the vectors and co-vectors. In particular for X=AU
i ,Y =AU

j

and λ = ωk
U we get

c̃kj i
(29)= 〈(∇U )∗AU

i
ωk
U ,AU

j 〉
(30)= AU

i 〈ωk
U ,AU

j 〉 − 〈ωk
U ,∇U

AU
i
AU

j 〉
= AU

i (δkj )− 〈ωk
U ,∇U

AU
i
AU

j 〉
= −〈ωk

U ,∇U
AU

i
AU

j 〉
(28)= −c̃ki j .

In the next lemma, we will express the data-driven Cartan
connection and its corresponding dual explicitly in coordi-
nates, which will provide us an expression on which we will
build in the proof of our main theorem, Theorem 1.

Lemma 1 WhenexpressingEqs. (28) and (29)more explicitly
in data-driven left-invariant frame components (gauge frame
components for short), one finds

(
∇U
)

X
Y =

n∑

k=1

⎛

⎝ ˙̃yk +
n∑

i, j=1
c̃ki j (·)x̃ i ỹ j

⎞

⎠AU
k , (31)

and for the dual connection

(
∇U
)∗
X

λ =
n∑

i=1

⎛

⎝ ˙̃λi +
n∑

k, j=1

(
x̃ j λ̃k

)
c̃ki j (·)

⎞

⎠ωi
U , (32)

where X =
n∑

i=1
x̃ iAU

i |γ , Y =
n∑

i=1
ỹiAU

i |γ and

λ =
n∑

i=1
λ̃iω

i
U , and where derivations of the components

of Y and λ equal

˙̃yk(t) := d
dt ỹ

k(γ (t)) = (X (ỹk)) ( γ (t) ),
˙̃
λi (t) := d

dt λ̃i (γ (t)) =
(
X
(
λ̃i

))
( γ (t) ),

along a flow-line4 γ : [0, 1] → M2 of smooth vector field
X.

Proof See Appendix A. ��

4.2 Main Theorems

Our goal is to analyze and structure the Hamiltonian flow
belonging to the new data-driven geometric model deter-
mined by a data-driven metric tensor field GU . For con-
venience, we restrict ourselves in our main theorem to the
case where the homogeneous space equals a full finite-
dimensional Lie groupG as the basemanifold.We aremainly

4 A curve γ satisfying γ̇ (t) = Xγ (t).

interested in the case G = SE(2) ≡ M2 with n = 3 and with
data-driven metric tensor field GU given by (17).

In geometric control curve optimization problems, the
Hamiltonian flow is a powerful mechanism [58–62]. It typi-
cally allows us to analyze the behavior of all geodesics (and
their momentum) together, see e.g., [62]. In the left-invariant
(non-data-driven) setting, the Hamiltonian flows were char-
acterized [43, Thm. 1&2] via the plus Cartan connection,
where shortest curves (geodesics) have parallel momentum.
It has led to exact formulas [26, 63] for specific settings (uni-
form cost case in the left-invariant model G given in (14),
C = 1 which was introduced on M2 ≡ SE(2) by Citti and
Sarti [64] and deeply analyzed by Sachkov [65]). Remark-
ably, the Cartan plus connection ∇[+] has torsion resulting
in different ‘straight curves’ (parallel velocity) and ‘shortest
curves’ (parallel momentum), and it underlies many multi-
orientation image analysis applications [43].

Before stating the main theoretical result, that generalizes
[43, Thm. 1&2] to data-driven metric tensor fields GU , we
introduce the concepts of parallel momentum and parallel
velocity. They are now determined by the data-driven Cartan
connection ∇U and its dual

(∇U
)∗
.

Definition 15 (Parallel momentum) Let γ : [0, 1] → G be a
smooth curve. Then, the curve γ (·) has ∇U parallel momen-
tum λ(·)

⇔
{(∇U

)∗
γ̇

λ = 0

GU γ̇ = λ.
(33)

Definition 16 (Parallel velocity) Let γ : [0, 1] → G be a
smooth curve. Then, the curve γ (·) has parallel velocity γ̇ (·)
w.r.t. connection ∇U

⇔
(
∇U
)

γ̇
γ̇ = 0. (34)

Remark 14 Using the antisymmetry of the structure functions
(26) and (31) in Lemma 1 we can rewrite Eq. (34) to

(
∇U
)

γ̇
γ̇ = 0⇔ ∃(c1,...,cn)∈Rn constant s.t. γ̇ =

n∑

i=1
ciAU

i |γ .

Next, we formulate the main theoretical results where we
generalize the main results [43, Thm. 1&2] from the left-
invariant setting (G,G) with connection ∇[+], to the new
data-driven geometric models (G,GU )with connection∇U .
In more detail, the next theorem shows

1. how to compute globally optimal distanceminimizers in a
geometry that relies on data-driven left-invariant frames:
These geodesics have parallel momentum w.r.t. connec-
tion ∇U (Definition 15).
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2. that the locally optimal straight curves are the straight
curves w.r.t. connection ∇U : These curves have parallel
velocity (i.e., are auto-parallel) w.r.t.∇U (Definition 16).

Note that the equation for geodesics of the new data-driven
model (M2,GU ) gives a wild expression in the left-invariant
frame. In the fixed frame it is even worse. However, our new
tool of the connection ∇U expressed in the locally adaptive
frameωU

i allows us to describe these geodesic equations (and
the Hamiltonian flow) concisely and intuitively by the next
theorem, using the tools listed in Table 2.

Theorem 1 (Straight and shortest curves: parallel velocity
and momentumw.r.t. connection∇U ) In a Riemannian man-
ifold (G,GU ) with data-driven left-invariant metric tensor
field GU satisfying (16), and with induced Riemannian met-
ric dGU (22), we have:

– γ is a straight curve with respect to ∇U def.⇔ ∇U
γ̇ γ̇ = 0

⇔ ∃ (c1, . . . , cn) ∈ R
n constant s.t. γ̇ =

n∑

i=1
ciAU

i |γ .

– γ is a shortest curve with respect to ∇U ⇒ the curve-
momentum pair ν = (γ, λ) : [0, 1] → T ∗(G) satisfies
the Hamiltonian flow

ν̇ = −→
h (ν) ⇔

{
(∇U )∗̇γ λ = 0

GU γ̇ = λ,
(35)

where one has the following pullback symmetry5 of the
data-driven Cartan connection

(Lq)
∗(∇LqU )∗ = (∇U )∗ for all q ∈ G, (36)

with left actions L and L given by (2) and (5), respec-
tively.

The shortest curve γ : [0, 1] → G with γ (0) = g and
γ (1) = g0 may be computed by steepest descent backtrack-
ing on the distance map W (g) = dGU (g, g0)

γ (t) := γU
g,g0

(t) = Expg(t v(W )) t ∈ [0, 1], (37)

where Exp integrates the following vector field on G:

v(W ) :=−W (g)(GU )−1dW =−W (g)
n∑

k=1
|αk |−1AU

k (W )AU
k

and where W is the viscosity solution of the eikonal PDE sys-
tem

5 For the definition of pullback of a dual connection, see Remark 26 in
Appendix B.

{
‖gradGU W‖ = 1,

W (g0) = 0,
(38)

where we assume g is neither a 1st Maxwell-point nor a
conjugate point. As v(W ) is data-driven left-invariant, the
geodesics carry the symmetry

γ
LqU
qg,qg0(t) = q γU

g,g0
(t) for all q, g, g0 ∈ G, t ∈ [0, 1]. (39)

Proof See Appendix B. ��
Remark 15 (Assumptions on point g in backtracking (37))
For the geodesic backtracking formulated above, we need a
differentiable distance map along the path and a well-posed
Hamiltonian flow (i.e., the mapping from ν(0) to ν(t) aris-
ing from (35) must have a non-vanishing Jacobian) along the
path. If g would be a first Maxwell-point (i.e., two distinct
geodesics meet for the first time at g) the distance map is not
differentiable at g. If gwould be a conjugate point (often lim-
its of first Maxwell points [12]) then the Hamiltonian flow
breaks down. In the latter case, local optimality is lost. In
the first case, global optimality is lost. Fortunately the vis-
cosity property of the viscosity solution [66] of (38) kills
non-optimal fronts [12] and one may resort to multi-valued
backtracking via sub-gradient backtracking.

The next 3 remarks show how incredibly simple the
Hamiltonian flow, the eikonal PDE, and the backtracking
of geodesics become when expressed in the data-driven left-
invariant frame.

Remark 16 Equation (33) is in gauge frame components sim-
ply:

⎧
⎪⎨

⎪⎩

˙̃γ i = λ̃i i = 1, . . . , n

˙̃
λi =

n∑

j=1

n∑

k=1
c̃kj i (γ (·)) λ̃k λ̃

j i = 1, . . . , n.

Remark 17 Equation (38) is in gauge frame components sim-
ply:

⎧
⎪⎨

⎪⎩

n∑

j=1
αU
j (·)−1(AU

j W )2 = 1

W (γ (0)) = 0.

Remark 18 Equation (37) is in gauge frame components sim-
ply:

˙̃γ k = 1

W (g)
|αU

k |−1(AU
k W )(γ̃ ), k = 1, . . . , n. (40)

This explains the definition of v(W ) below (37). A more
explicit integration formula for (37) can be obtained in a
similar way as in [26, 63] (where exact solutions are derived
for C = U = 1) via momentum preservation laws.
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4.3 Asymmetric Finsler Extension to Automatically
Deal with Bifurcations

One can always decide to include a positive control vari-
ant, to avoid cusps in the spatial projection of geodesics
in G = SE(2). This is done by considering the geodesics
in the asymmetric Finslerian manifold (M2,F U ), recall
(17), rather than the geodesics in the Riemannian manifold
(M2,GU ).

It is not too hard in practice: a slight adaptation of the
eikonal PDE (taking the positive part of one momentum
component) will guarantee that all optimal geodesic wave-
fronts propagate in the preferred forward direction around the
source point, as can be observed in Fig. 5 where the fronts
initially move ‘down-left’ (and not ‘up-right’).

The asymmetric Finslerian model (M2,F U ) is still well-
posed (controllable and piecewise regular geodesics) even
if ζ ↓ 0. In fact, such asymmetric Finslerian geodesics
are by construction piecewise concatenations of Riemannian
geodesics and in-place rotations. These observations follow
by a straightforward generalization of [28, Thm. 1, 2, 4] to
the data-driven setting, where the control set formulation of
the geodesic distances, still applies:

dFU (p,q) =
inf
{
T ≥ 0 | ∃γ ∈ 
T , γ (0)=p, γ (T )=q, γ̇ ∈BFU (γ )

}(41)

where 
T was defined in (9). Moreover, the field of control
sets given by p �→ BFU (p) recall (10) remains continuous
when using F U or GU (instead of F or G), which directly
follows by [28, Lemma 6] in conjunction with the important
coercivity property (21).

The nice thing in practice is that in-place rotations are
automatically placed at optimal locations by the eikonal PDE
system (solved by the anisotropic fast-marching algorithm
that we discuss in the next section). It is not surprising that,
when using a reasonable cost function C (see Figs. 12 and
13), these in-place rotations are automatically placed at bifur-
cations in complex vascular trees as can be observed in the
upcoming Fig. 16.

5 Numerical Solutions to the Eikonal PDE
System: Extension of the Anisotropic
Fast-Marching Algorithm that Allows for
All Left-Invariant Data-DrivenMetrics

In this section we describe the computation of globally min-
imizing geodesics for the new models F U considered in
this paper, whose fundamental ingredient is the numerical
solution to an anisotropic eikonal PDE. The Reeds–Shepp
forward optimal control model F , of which a variant F U

is considered in this paper, has already been addressed

numerically using a Semi-Lagrangian [28] and Eulerian [34]
discretization of the corresponding eikonal PDE. Both works
however take advantage of the fact that the original geodesic
model F regards the tangent spaces to the physical R

2 and
the angular S1 domains as orthogonal to each other. How-
ever, in our case of interest (with model F U given by (17)),
we cannot expect such a block-matrix structure in the fixed
coordinate system (x, y, θ).

To overcome this problem, we describe below the exten-
sion of [34] to the adaptive frame setting considered here,
where this orthogonality relation is lost; in contrast, [28]
could not be generalized in an efficient manner.

Remark 19 (Convenience notations for the numerical sec-
tion) Throughout this section, we label the dependence w.r.t.
the relaxation parameter ε ∈ (0, 1], so as to analyze it more
easily, and to investigate the limit ε → 0. In contrast,weoften
drop the dependence w.r.t. the data U , which is regarded as
fixed.

We also take advantage of the fact that the manifold
M2 := R

2
� S1 ≡ R

2 ×R/(2πZ) has a trivial tangent bun-
dle: Tp(M2) ≡ R

2 × R ≡ R
3 canonically for any p ∈ M2,

and likewise T ∗p (M2) ≡ R
3. As a result, by identifying co-

vectors and vectors by their components inR
3, the functional

brackets 〈·, ·〉 below boil down to the ordinary dot product on
R
3. Similarly, the tensor product ω⊗ ω boils down to ωω�.

5.1 Asymmetric Quadratic Eikonal PDE

The Reeds–Shepp forward model, is defined through a sub-
Finslerian quasi-metric,6 relaxed by a small parameter ε > 0,
recall F was given by Eq. (8) and its data-driven version
F U was given by (17). Throughout this section, and in our
vessel tracking experiments, we are concerned with the case
where sidewardmotions and backwardmotions become very
expensive: we set spatial anisotropy parameter ζ = ε with
0 < ε � 1 in the Finsler norm F U given by (17).

The generic form of the data-driven Finsler metric func-
tion considered in this paper (17) reads:

Fε(p, ṗ)2 = C(p)2·(〈ṗ, M0(p)ṗ〉 + ε−2〈ω2(p), ṗ〉2 + ε−2〈ω1(p), ṗ〉2−
)
,

(42)

for any point p ∈ �, within a given bounded connected
domain� ⊂ M2, and any tangent vector ṗ ∈ Tp(M2) ≡ R

3,
and where the two small parameters ε, ε relate via

ε−2 := (ε−2 − 1)ξ2. (43)

In the following analysis, we only use the property that the
tensor field M0 is pointwise positive definite, that the differ-

6 i.e., the cost associated with a velocity at a point is non-Riemannian,
non-symmetric, and possibly infinite.
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ential forms ω1 and ω2 are pointwise linearly independent,
and that M0 : � → S++3 , and ω1, ω2 : � → R

3 (follow-
ing the conventions of Remark 19) have Lipschitz regularity.
Here S++3 denotes the space of 3 × 3 symmetric positive
definite real-valued matrices.

Remark 20 In the normal left-invariant setting F U=1 = F
the asymmetric metric expressed in the fixed frame (ẋ, ẏ, θ̇ ),
of the tangent space at any coordinates (x, y, θ), has a block
diagonal structure. In contrast the data-driven metrics GU ,
F U , in general, does not have a block-matrix structure, as
the independent elements {ωi

U }3i=1 may point anywhere due
to their data-driven nature, as can be seen in Fig. 6, keeping
in mind the duality (23). Therefore, we must introduce a new
modification of the anisotropic fast-marching algorithm.

The purpose of the second term in (42) is to increase the
cost of sideways motions, whereas the final term prevents
motions in reverse gear; both are excluded in the genuine
Reeds–Shepp forward car model obtained in the limit (akin
to [28, Thm. 2]) as ε → 0, which is non-holonomic.

The distance mapW : � → R from a given point p0 ∈ �

and w.r.t. the Finsler function Fε, is the unique viscosity
solution to the following anisotropic eikonal system

{F ∗
ε (p, dW (p)) = 1, p ∈ M2

W (p0) = 0
(44)

where the dual Finsler function equals by definition

F ∗
ε (p, p̂) := sup{〈p̂, ṗ〉 | ṗ ∈ Tp(M2) and Fε(p, ṗ) ≤ 1},

with p̂ ∈ T ∗p (M2).
The structure of the metric (44), referred to as asymmetric

quadratic, allows to compute a closed form expression of the
dual metricF ∗

ε , and thereby the eikonal PDE (44), as we will
see below.

Lemma 2 Let M ∈ S++3 and ω ∈ R
3, and define

F (p, ṗ)2 := 〈ṗ, M ṗ〉 + 〈ω, ṗ〉2−.

Then F is a quasi-norm (i.e., an asymmetric norm), whose
dual quasi-norm reads for all p̂ ∈ R

3

F ∗(p, p̂)2 = 〈p̂, Dp̂〉 + 〈p̂, η〉2+, (45)

with D := (M+ω ω�)−1 andη := M−1ω/
√
1+ ω�M−1ω.

Proof See [28, Lemma 4]. ��
For concreteness, we apply Lemma 2 to our Finsler func-

tion Fε of interest (44), defined pointwise by the parameters

Mε := M0 + ε−2ω2(ω2)�, and ωε := ε−1ω1. (46)

This then results in the following dual Finsler functions:

Lemma 3 (Dual Finsler Functions) With our choice (42) of
Finsler function Fε used in (44), the dual Finsler function
F ∗

ε is given for all p̂ ∈ T ∗p (M2) ≡ R
3 by

F ∗
ε (p, p̂)2 = 〈p̂, Dε p̂〉 + 〈p̂, ηε〉2+, with (47)

Dε = ωω�

ω�M0ω
+ O(ε2), (48)

ηε = M−1(ω1
U − αω2

U )
√

(ω1
U )�M−1(ω1

U − αω2
U )

+ O(ε2), (49)

where we used the shorthand notation M−1 := (M0)−1, the
cross-product ω := ω1

U × ω2
U , and the orthogonalization

coefficient α := (ω2
U )�M−1ω1

U/(ω2
U )�M−1ω2

U .

Proof Follows byLemma2 andTaylor expansion, for details,
see Appendix F. ��

Note that by (43), O(ε2) = O(ε2) for small values of ε.
Lemma 3 shows that one can define an ideal sub-Finsler

function F ∗
0 that arises in the limiting case ε ↓ 0, and that

F ∗
ε (p, p̂) = F ∗

0 (p, p̂)+ O(ε2). (50)

Our goal, achieved in Sects. 5.1 and 5.2, is to design a numer-
ical scheme that is consistent with the sub-Finslerian eikonal
PDE F ∗

0 (p, dW (p)) = 1, and which satisfies the conditions
that make the fast-marching algorithm applicable.

5.2 Discretization and Consistency

We discretize the eikonal PDE (44), which has an asymmet-
ric quadratic structure (45), using adaptive finite differences
on the Cartesian grid�h := �∩hZ

3 of the domain�, where
h > 0 denotes the grid scale. Note that 2π/h must be an inte-
ger, for consistency with the periodic boundary conditions in
the angular coordinate. The numerical scheme construction
relies on Selling’s decomposition of positive definite matri-
ces [53] and on a corollary related to the approximation of the
squared positive part of a linear form. The versions of these
results presented in [34, Corollary 4.12, Corollary 4.13] are
gathered in the following proposition.

We denote μ(D) := √‖D‖‖D−1‖, for any D ∈ S++3 ,
and a+ := max{0, a}, for any a ∈ R.

Proposition 2 (Selling matrix decomposition, see [34])
For any D ∈ S++3 , there exists ė1, · · · , ėI ∈ Z

3 and
λ1, · · · , λI ≥ 0, such that for all p̂ ∈ R

3

〈p̂, Dp̂〉 =
∑

1≤i≤I

λi 〈p̂, ėi 〉2.
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For any η ∈ R
3, ε > 0, there exists ḟ1, · · · , ḟI ∈ Z

3 and
μ1, · · · , μI ≥ 0, such that for all p̂ ∈ R

3

〈p̂, η〉2+ ≤
∑

1≤i≤I

μi 〈p̂, ḟi 〉2+ ≤ 〈p̂, η〉2+ + ε2(‖p̂‖2‖η‖2 − 〈p̂, η〉2).

In addition ‖ėi‖, · · · , ‖ėI‖ ≤ Cμ(D) and ‖ḟi‖, · · · , ‖ḟI ‖ ≤
Cε−1. The above holdswith the constants I := 6, C := 4

√
3.

Remark 21 A key aspect of Proposition 2 is that the vectors
(ėi ) and (ḟ j ) have integer coordinates, hence we avoid (off-
grid) interpolations in our discretization.

Proposition 2 suggests the following discretization of
F ∗(dW (p)), as in (45), for arbitrary D ∈ S++3 , η ∈ R

3,
ε > 0:

∑

1≤i≤I
λi max

{
0, W (p)−W (p−hėi )

h ,
W (p)−W (p+hėi )

h

}2

+ ∑

1≤ j≤I
μ j max

{
0, W (p)−W (p−h ḟi )

h

}2 =: FW (p),
(51)

with suitable boundary conditions. This numerical scheme
falls within the Hamiltonian fast-marching framework [36],
and thus can be efficiently solved numerically, see Sect. 5.3.
Before that, we discuss its consistency with the eikonal equa-
tion: inserting afirst orderTaylor expansion in (51),weobtain
(using Proposition 2):

FW (p) = 〈∇W (p), D∇W (p)〉 + 〈∇W (p), η̇〉2+
+O(Rh + ε2),

(52)

where R := max{μ(D), ε−1} > 0 denotes the stencil radius.
We next analyze the approximation error toward the ideal

model as ε → 0 and h → 0 suitably. To this end we denote
byFh

ε the finite differences scheme on�h associated with the
parameters Dε and ηε of our application (47). Note that the
stencil radius is Rε = max{μ(Dε), ε

−1} = O(ε−1), since
μ(Dε) = μ(Mε) = O(ε−1) in view of (46). Now combining
(50) with (52), we obtain the overall consistency error

{
Fh

εW (p) = F ∗
0 (p, dW (p))+ O(ε−1h + ε2) = 1,

Fh
εW (p0) = 0.

(53)

The optimal order of the consistency errorO(h
2
3 ) is achieved

with the scaling ε = h
1
3 . In our practical experiments how-

ever, we rather use the small fixed value ζ = ε = 0.1 which
by (53) indeed yields a sufficiently accurate scheme [34]!

5.3 Anisotropic Fast-Marching for Computing
Distance Maps of Data-Driven Left-Invariant
Finsler Models

In fast-marchingmethods (FMM), one divides the grid points
into 3 categories: Far, Trial, and Accepted. In each step of

the FMM, one selects the trial point p whose function value
W (p) is minimal. The point p is moved into the accepted
set, and W (p) is frozen. In contrast, all the trial or far points
whose stencil containsp see their function valueupdated, and
they are moved into the trial set. This procedure generalizes
and abstracts the classical FMM [51], for details see [21].
When all points have moved to the accepted category, the
FMM terminates, and a geodesic can be easily calculated by
steepest descent as described in Sect. 5.4.

The update of a single function value W (p) is defined as
follows: isolate W (p) in the numerical scheme expression
(51), and express it by the values of its neighbors so as to
obey FW (p) = 1. The latter equation admits by construction
a unique solution, which is obtained as the largest root of a
quadratic equation.

There are two crucial properties of the discretization F:

– Discrete Degenerate ellipticity: FW (p) is a non-
decreasing function of the finite differences in (51).

– Causality: FW (p) only depends on the positive part of
all finite differences in (51).

These are the two key7 assumptions of [52, Theorem 2.3],
implying that the discretized PDE (53) admits a unique solu-
tion W ε

h , which is computable in a single pass over the
discretization domain �h , using anisotropic fast-marching.

Following the steps of the proof [34] associated with the
standard Reeds–Shepp forward model, and with straightfor-
ward adaptations, we obtain thatW ε

h converges uniformly as
ε → 0 and h/ε → 0 to the solution W of the sub-Finslerian
Eikonal PDE F ∗

0 (p, dW (p)) = 1.

5.4 Steepest Descent for the Finslerian Geodesics

In previous work [28, Thm. 4], standard Riemannian steepest
descent tracking on the distance mapW , recall (37) in Theo-
rem 1, is generalized from the symmetric Riemannian setting
to the (possibly asymmetric) Finsler model setting. That idea
also transfers to the new data-driven left-invariant model as
the Finslerian backtracking [28, App. B] still applies. Steep-
est descent tracking (37) from p to source point p0 again
becomes (using the embedding of M2 ⊂ R

3)

γ (t) = p− 1

W (p)

t∫

0

dF ∗
ε ( γ (s) , dW (γ (s)) ) ds, t ∈ [0, 1],

(54)

7 There are two other minor assumptions, the existence of a sub- and
super-solution to the scheme, and a perturbation property, which can
be established analogously to the Riemannian case in [52, Proposition
2.5].
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with 0 < ε � 1 and where the derivative is taken with
respect to the second entry of the dual Finsler function, and
whereW is the viscosity solution of the eikonal PDE system
(44).

In the practical implementations we use a second order
Runge–Kutta method for time integration approximations
and at time t = 1 we arrive at the source-point p0.

This geodesic backtracking in (M2,F U ) again boils down
to piecewise concatenations of

1. symmetric Riemannian geodesics in M2 with metric ten-
sor field GU

p (ṗ, ṗ) recall (17), and
2. symmetric Riemannian geodesics in M2 with metric ten-

sor field GU
p (ṗ, ṗ)+ (ε−2− 1)|ω1

U (ṗ)|2 that are in-place
rotations, at locations where AU

1 ≈ A1 if 0 < ε � 1.

Remark 22 Taking the negative part of the final term in (42)
means that we switch between two Riemannian
manifolds (one with the final term active and with the final
term non-active). At locations where ω3

U ≈ ω3, for instance
at locations where AU

1 ≈ A1 this means that one switches
between anisotropic geodesics and spherical geodesics (in-
place rotations). In the vessel tracking applications we want
such in-place rotations to appear above bifurcations in the
vasculature.

A closely related situation is discussed in [28, Thm. 4], but
now it is applied to the new data-driven model F U (17) with
dual (F U )∗ = lim

ε↓0 F
∗
ε .

By Theorem 1 the Riemannian geodesics have parallel
momentum and their transitions toward spherical geodesics
is like C continuously differentiable. The surface S where
Finslerian geodesics of F U in M2 switch from one Rieman-
nian manifold to the other is given by

S = {p ∈ M2 | ω1
U (∇W (p)) = (AU

1 W )(p) = 0}.

Interestingly, in the mixed-model F M that we will explain
later in Sect. 6, the condition inRemark 22 is satisfied at bifur-
cations. Then in-place rotations are indeed automatically
placed at the bifurcations in the tracking of blood vessels,
as can be seen in Fig. 16.

6 Experiments

We choose the data-driven left-invariant metric tensor field
with forward gear F U as given in Eq. (17). An elabora-
tion on the calculation of the cost function can be found
in Appendix D. We will discuss the new model’s ability to
adapt for curvature. Additionally, we show and discuss some
full vascular tree tracking results.

Fig. 8 Influence of data-drivenmetric tensor fields: (top) Tracking with
the vanilla left-invariantmetric tensor field from (14). (bottom)Tracking
with the proposed data-driven left-invariant metric tensor field from
(17). To isolate its effect in the tracking process and record the effect
of only directional adaptation of the underlying metric, we have set the
cost function C = 1. We observe that the data-driven nature of our
model allows for a better fidelity to the underlying vascular structure.
The parameters are given by g11 = 0.01, g22 = 1, g33 = 1, λ = 100
(Color figure online)

6.1 Curvature Adaptation

The data-driven left-invariant metric tensor field GU and its
asymmetric variant F U both consists of a “standard” left-
invariant metric tensor field to which a data-driven term is
added, as introduced in (17). The idea of the second data-
driven term in this equation is that it pushes themain direction
of the model into the direction of the underlying vessel, as
illustrated in Fig. 8, where no data-dependent cost function
C = 1 was used to generate the tracking result. We see
that the data-driven left-invariant metric tensor field takes the
image data into account and steers the tracking in the direc-
tion of the underlying vascular structure, even when the cost
function does not contain information about vessel locations
and curvature.

The data-driven term also leads to better tracking results
of very tortuous vascular structures as we see in Fig. 9.
In Fig. 9a, the tracking results relying on (solely) the left-
invariant metric tensor field F fail to follow the underlying
vessel correctly, contrary to the newdata-driven left-invariant
model F U (17) which follows the vascular structure cor-
rectly. In addition, one sees that when using the left-invariant
model, the wave fronts (indicated in orange) suffer from
the discretization. In the data-driven left-invariant model,
these discretization artifacts are gone, and thewavefronts fol-
low the underlying vascular structure correctly. When only
considering 8 orientations, as in Fig. 9b, the data-driven left-
invariant frame is still able to follow the vascular structure
correctly. Although the discretization is clearly visible in the
tracking results, the data-driven left-invariant metric tensor
field is still able to follow the vessel correctly. It is impor-
tant to note that both models use the same cost function. The
differences in the tracking results are due to the data-driven
left-invariant metric tensor fields’ ability to better adapt for:
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Fig. 9 Comparison tracking results of left-invariant and data-driven
left-invariant metric tensor field: Tracking results for left-invariant met-
ric tensor field F (left) and data-driven left-invariant metric tensor field
F U (right). The parameters for the (data-driven) left-invariant metric
tensor field are given by g11 = 0.01, g22 = 0.16, g33 = 1, λ = 100.
The cost function is given by C = 1/(1 + 200|U f |2). We see that
the isocontours of the data-driven metric tensor field follow the vessel
structure better, and the tracking is correct (even with 8 orientations)
(Color figure online)

1. gradual curvature change of blood vessels. The same
applies to other applications such as the detecting of
cracks, see Fig. 10,

2. orientation biases by orientation score data- alignment as
depicted in Fig. 6.

6.2 Complete Vascular Tree Tracking

In the previous section, we discussed the curvature adaption
feature of the new (asymmetric) data-driven left-invariant
metric tensor field F U . This model also can automati-
cally place ‘in-place’ rotations in globally optimal geodesics
which are typically placed at bifurcations.

However, these valuable abilities of the model may also
lead to extremely complex structures to some undesirable
behavior. In full vascular tree tracking, we see that the data-
driven term may steer the tracking away from the actual
vessel at crossings in extreme cases, as can be seen in Fig. 11.

To overcome this problem (see item c in Fig. 11), and
to still take advantage of improved data-adaptation (like in
Figs. 5, 8 and 9) we introduce a (new) mixed model that
prevents this undesirable behavior at (extreme) complex

Fig. 10 Application in crack detection: Tracking results for the left-
invariant and data-driven left-invariant metric tensor field on an image
of cracks in a building. The presented results are calculated using 32
orientations, and parameter settings g11 = 0.01, g22 = 1, g33 = 1. In
regions with high curvature, the data-driven model adapts more gradu-
ally for curvature to getmore data evidence than the left-invariantmodel
which tends to prefer in-place rotations (Color figure online)

structures, where it locally relies on the old model. Then in
between (extreme) complex structures we still benefit from
the directional data adaptation in the orientation score.

The mixed metric tensor field GM (and its asymmetric
version F M ) is given by the data-driven left-invariant metric
tensor field away from the crossing structures, and by the
left-invariant metric tensor field otherwise:

GM
p (ṗ, ṗ) = κ(x)Gp(ṗ, ṗ)+ (1− κ(x)) GU

p (ṗ, ṗ),

F M (p, ṗ)2 = κ(x)F (p, ṗ)2 + (1− κ(x))F U (p, ṗ)2, (55)

for all p = (x,n) ∈ M2, and all p̂ = (ẋ, ṅ) ∈ Tp(M2), and
where κ(x) = 1A ∗ Gσ (x) with A = ∪N

i=1[xi − a, xi + a],
where xi representing N ∈ N crossing locations in the image.

The results are typically not sensitive to the choice of a
and σ in our application as long as a > 2. Therefore we
always set a = 5 and σ = 1 pixel-size in our experiments.

This construction of the metric tensor field ensures that
the metric tensor field is not tempted to move in the wrong
direction in extreme cases where vessels cross each other.
The tracking result relying on the mixed metric tensor field
is visualized in Fig. 11c, and does not show the earlier men-
tioned undesirable behavior, as shown in Fig. 11b. Therefore,
this new model will be used in all full vascular tree tracking
results. All results presented in this section are calculated
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Fig. 11 Motivation mixed model: Too much curvature adaptation at
crossings is dangerous in extreme cases. The mixed model, introduced
in Eq. (55), is preferable as it only adapts for curvature (like in Fig. 9)
in between those complex structures, and indeed provides correct tracts
everywhere, as can be seen in Fig. 11c. The geodesics of both models
are computed using λ = 100 (Color figure online)

using parameters g11 = 0.01, g22 = g33 = 1. For the curve
optimization this is the same as setting ε = ζ = 0.1 in (15)
used in (17). Even for such extreme anisotropy settings, our
numerical algorithm is appropriate as motivated in Sect. 5.
We always observed that tracking is stable with respect to
small variations in these parameters, so there was no point in
fine-tuning them.

6.2.1 Asymmetric Double Step

The tracking results were computed in two steps; first tips
are connected to the nearest bifurcation/seed (cost function
visualized in Fig. 12), after which those points are connected
to the nearest seed (cost function visualized in Fig. 13). The
used cost functions (from tip to nearest bifurcation and from
bifurcation to seed) support movement along the thin and

Fig. 12 Projected cost functions for tracking in two steps—from bifur-
cation to tip: Cost used to connect tips to the nearest bifurcation. Black
and white mean low and high costs, respectively. This cost function
supports movement along the thin vessels very well. The multiscale
vesselness is computed as explained in Appendix D, and the considered
spatial scales is σs = 1

thick vessels, respectively. The tracking results that corre-
spond to these cost functions are depicted in Fig. 14. The
calculated geodesics are all correct, except for 2 difficulties
when:

1. crossings and bifurcations are very close to each other,
2. vascular structures are kissing.

Next, we compare the results of the newmixedmodelF M

and the left-invariant modelF in Fig. 15. There are some vis-
ible differences between both tracking methods, marked in
pink and blue. First, we see that the tracking results rely-
ing on the mixed method ensure that the centerline is better
followed, and multiple geodesics are at approximately the
same place (in blue). Second, we see the ability of the mixed
method to adapt to the direction of the vascular structure (in
pink). Instead of moving toward a bifurcation point away
from the seed in the left-invariant metric tensor field, the
curvature adaptation ensures that the tracking results imme-
diately move toward the seed it is connected to.

6.2.2 Asymmetric Single Step with Prior Classification of
Seeds and Tips

Common practical setups in vascular tracking of retinal
images include the prior knowledge of the locations of tips
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Fig. 13 Projected cost functions for tracking in two steps—from seed to
bifurcation: Cost used to connect bifurcations to optic nerve. Black and
whitemean low and high costs, respectively. This cost function supports
movement along the thick vessels very well. The multiscale vesselness
is computed as explained in App. D, and the considered spatial scales
are σs ∈ {1, 2}

Fig. 14 Two-step tracking of Vascular Tree structures: Tracking with
mixed model (M2,F M ) proposed in (55). The first step involves con-
necting the tips (marked in red) to the nearest bifurcation (marked in
purple) using the cost function depicted in Fig. 12. Second, these bifur-
cations are now tracked to the seeds (marked in green) using the cost
function depicted in Fig. 13 (Color figure online)

Fig. 15 Two-step tracking of vascular tree structures: The first step
involves connecting the tips (marked in red) to the nearest bifurcation
(marked in purple). Second, these bifurcations are now tracked back to
the seeds (marked in green). The cost functions used in the first (white)
and second (blue) step are given in [28], with σ = 800 and p = 4,
and Fig. 13, respectively. The main differences between both models
indicate that the mixed model F M follows the vascular structure better
and is better able to follow the centerline of a given vascular tree (marked
by pink and blue circles, respectively) (Color figure online)

and seeds of vessel structures. We implemented our data-
driven model using a prior classification of the connected
tips and seeds. More specifically, in every run of the fast-
marching algorithm, one of the seeds is considered together
with its corresponding tips, and the connecting vessel struc-
tures are tracked. Figure16 shows our result in this setup and
demonstrates that our approach can determine the geodesics
that accurately follow the vascular structure in the retinal
image.

6.3 Accuracy of theModel

Wenow present some quantitative evaluations tomeasure the
accuracy of our data-driven metrics for geodesic tracking.
We measure the mistake ratio E for the images in the STAR
dataset. For these images, the ground truth of the vessels is
known, which allows us to calculate the percentage of the
vessel that is not on the correct vascular structure, where

E = # pixels not on correct vessel

# pixels of all geodesics
.

We have calculated this accuracy for images of the STAR
dataset where we connect the tips to their nearest bifurcation,
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Fig. 16 Tracking of Vascular Tree per Seed: Tracking with the mixed
model (M2,F M ) proposed in (55). Prior grouping of tips (in red) and
seeds (in green) results in perfect tracking of the vessel tree, using only
one efficient anisotropic fast-marching run via the numerical method
in Sect. 5. Both results are calculated with the cost function visualized

in Fig. 13. At the purple points, we have bifurcations and our track-
ing is solely based on the mixed model produced (spatially projected)
geodesics γ with (automatic) in-place rotations at such bifurcations
(Color figure online)

since one should use the new model away from crossing
structures. The results are presented in Fig. 17. We see that
formost tracks, the performance improveswhen switching to
the new data-driven model, and in the cases where there is no
improvement, the results do not get significantly worse. On
average, we find an improvement of 10.7% of the calculated
tracks for the considered images.

7 Conclusion and FutureWork

In this article, we introduced the concept of a data-driven left-
invariant metric tensor field GU and its asymmetric variant
F U . The metric tensor field is defined by the underlying
image, where movement along line structures is encouraged
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Fig. 17 Visualization of the scatterplot of the accuracy of the mixed
model vs. the left-invariantmodel applied on images in theSTARdataset
(1, 2, 8, 9, 13, 15, 16, 24, 38, 48). The accuracy is calculated on the cal-
culated tracks between the tips and the nearest bifurcation for all vessels
in one single run. The red area marks where the former left-invariant
model performs better than the new mixed model, incidences indicated
by an ‘x’. The green area marks where the new mixed model performs
better than the former left-invariant model, incidences are indicated
by an ‘o’. Most measurements show the improved performance of the
mixed models compared to the left-invariant model (LIF) (Color figure
online)

by its design in (17). In addition, a data-driven version∇U of
the plus Cartan connection, relying on GU , was introduced.

We used these geometrical tools to formulate a challeng-
ing data-driven version of [43, Thm. 1], which was stated and
proved in Theorem 1. In this theorem, ‘straight’ and ‘short’
curves are described with respect to the data-driven Cartan
connection. In particular, it describes the entire Hamiltonian
flow of the new Riemannian manifold model (M2,GU ) in
terms of the new data-driven Cartan connection ∇U , and
explains the backtracking procedure for backtracking data-
driven left-invariant geodesics in (M2,GU ). As subsequently
explained this can be extended to the asymmetric Finsler
model (M2,F U ) that often yields the same geodesics, but
also automatically places in-place rotations. The latter is ben-
eficial at bifurcations in complex vasculature when using
crossing-preserving vesselness costs for the cost function C .

The diagonalization of the new data-driven left-invariant
models GU and F U provides locally adaptive frames that
are beneficial over previous approaches to locally adaptive
frames in M2 [37, 55, 67] in the sense that:

1. they coincide with the usual left-invariant frame if the
data is locally constant,

2. they are more stable as they are constructed by coercive
metric tensor fields, recall (21).

To calculate theminimizing geodesics efficiently, an adap-
tation to the efficient anisotropic fast-marching algorithm
was required and presented in Sect. 5. The metric tensor
component matrix was no longer of block form in the fixed
coordinate system, and the necessary changes to overcome
this have been discussed and analyzed in Sect. 5.We also pro-
vide an asymptotic error analysis of our numerical scheme.

To show the performance of the data-driven metric tensor
field and the mixed metric tensor field, we have tested them
on 2D images of the retina. All experiments confirm that the
new model is better able to adapt for curvature. In addition
to that, for the tracking of a single vessel, a low number
of orientations is sufficient to find the correct minimizing
geodesic, as can be seen in Fig. 9. Full vascular tree tracking
needs to be handledwith care at difficult crossings structures,
which is done in the mixed model F M introduced in (55).

In general, the tracking results perform very well in the
discussed two-step approach (see e.g., Figure15), where tips
are first connected to the nearest bifurcation, after which the
geodesics connecting these bifurcations to the corresponding
seeds are calculated. After prior classification of seeds and
tips belonging to the same vascular tree, the tracking results
follow the vessels perfectly, recall Fig. 16.

Despite some very appealing theoretical and practical
advantages of our model, we still require considerable com-
putation and runtime (tripling the overall processing time) to
make the data-driven metric-tensor field and distance maps.
Therefore, the exact usage of the proposed data-drivenmetric
depends on the specific context of the tracking requirements.

For future work, it would be interesting to look into the
possibilities to train the cost function C using PDE-G-CNNs
[68], which is now geometrically computed as explained in
Appendix D. In the past, this method had promising results
for vessel segmentation. Besides using PDE-G-CNNs to con-
struct the cost function, it would be worth looking into the
possibilities to use neural networks to calculate the distance
function as was done in [69].
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Appendix A: Proof of Lemma 1

Writing out the definition (28) gives

(
∇U
)

X
Y =

n∑

k=1

(
n∑

i=1
ωi
U (X)AU

i ωk
U (Y )

+
n∑

i, j=1
ωi
U (X)ω

j
U (Y )c̃ki j (·)

⎞

⎠AU
k

=
n∑

k=1

⎛

⎝
n∑

i=1
x̃ iAU

i ỹk +
n∑

i, j=1
x̃ i ỹ j c̃ki j (·)

⎞

⎠AU
k

=
n∑

k=1

⎛

⎝ ˙̃yk +
n∑

i, j=1
c̃ki j (·)x̃ i ỹ j

⎞

⎠AU
k ,

where the last equality holds since

˙̃yk(t) = d

dt
ỹk(γ (t)) =
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˙̃γ i
(
AU

i ỹk
)
(γ (t))

=
n∑

i=1
x̃ i
(
AU

i ỹk
)
(γ (t)) = X

(
ỹk
)
(γ (t)).

Similarly, we have for (29)

(
∇U
)∗
X
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j
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where the last equality holds since

˙̃
λi (t) = d

dt
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Appendix B: Proof of Theorem 1

Firstly, we address the characterization of straight curves.(∇U
)
γ̇

γ̇ = 0 ⇔ ¨̃γ k +∑n
i, j=1 cki j (γ (t)) ˙̃γ i ˙̃γ j = 0 for k =

1, . . . , n.
Since [AU

i ,AU
j ] = −[AU

j ,AU
i ] due to (25) and (26), we

have c̃ki j = −c̃kj i and c̃kii = 0.

Consequently, we are left with ¨̃γ k = 0 ⇒ ˙̃γ k − ck = 0.
Summarizing we have

(
∇U
)

γ̇
γ̇ = 0⇔ γ̇ =

n∑

k=1
˙̃γ kAU

k =
n∑

k=1
ckAU

k .

Secondly, we address the characterization of shortest curves.
ThePontryaginMaximumPrinciple is givenby (Hamiltonian
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flow on co-tangent bundle T ∗(G))

{
ν̇ = −→

h (ν)

ν(0) = (γ (0), λ(0)),

where ν(t) = (γ (t), λ(t)) ∈ T ∗(G), λ(t) ∈ T ∗γ (t)(G). (56)

For details see [60].

Remark 23 (Liouvilles Theorem) By the chain law, for any
smooth function f : T ∗(G) → R, one has

d

dt
f (γ (t), λ(t)) = ∇γ f (v(t)) · ∇λh(v(t))

− ∇λ f (v(t)) · ∇γ h(v(t))

= {h, f }|γ (t) , (57)

where h denotes the Hamiltonian flow, and where∇γ and∇λ

denote the gradient with respect to γ and λ, respectively.

The result of Eq. (56) can be expressed in coordinates

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

γ (t) = (x(t), y(t), θ(t))

λ(t) =
n∑

i=1
λ̃i ωi

U
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γ (t)

γ̇ (t) =
n∑

i=1
˙̃γ (t)AU

i (γ (t)).

The horizontal part is given by

˙̃γ i = 〈ωi
U , γ̇ 〉 = λ̃i i = 1, . . . , n. (58)

This follows from the computation of the Hamiltonian via
the Fenchel transform.

The vertical part is given by
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In the above derivation, we have used that

{
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}
=
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k=1
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Additionally, it is important to note that
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∂λk
AU
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sinceAU
k λ̃i = 0. Consequently, we find
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since the Hamiltonian is constant. So in total we have
⎧
⎪⎨

⎪⎩

˙̃γ i = λ̃i (t)

˙̃
λi (t) =

n∑

j=1

n∑

k=1
c̃kj i (γ (t)) λ̃k(t)λ̃ j (t).

This is equivalent to

⎧
⎪⎪⎨

⎪⎪⎩

˙̃γ i (t) =
((

GU
∣∣
γ (t)

)−1
λ̃(t)

)i

˙̃
λi (t)−

n∑

j,k=1
c̃kj i (γ (t))λ̃k(t)λ̃ j (t) = 0

⇔
⎧
⎨

⎩
γ̇ (t) =

(
GU
∣∣
γ (t)

)−1
λ(t)

(∇U
)∗
γ̇

λ = 0

⇔
⎧
⎨

⎩
λ(t) =

(
GU
∣∣
γ (t)

)
γ̇ (t)

(∇U
)∗
γ̇

λ = 0.

Remark 24 (Justification of Eq. (58)) We have Lagrangian

L(γ, γ̇ ) = 1

2

n∑

i=1
αi (·)

( ˙̃γ i
)2

.

From this expression, we can determine the Hamiltonian h:

h(γ, λ) = sup
γ̇∈Tγ (G)

{〈λ, γ̇ 〉 −L(γ, γ̇ )}

= max
(v1,...,vn)

{
n∑

i=1
λ̃iv

i − 1

2
αi (·)

(
vi
)2
}

.

The maximum is calculated by taking the derivative w.r.t. v:

⎛

⎜
⎝

λ̃1 − α1(·)vimax
...

λ̃n − αn(·)vimax

⎞

⎟
⎠ =

⎛

⎜
⎝

0
...

0

⎞

⎟
⎠⇔

⎛

⎜
⎝

λ̃1
...

λ̃n

⎞

⎟
⎠ =

⎛

⎜
⎝

vmax
1
...

vmax
n

⎞

⎟
⎠ ,

where

λ̃i = αi (·)λ̃i and vmax
i = αi (·)vimax.
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Consequently, we find λ̃i = vimax for i = 1, . . . , n, and the
Hamiltonian is given by

h =
n∑

i=1
λ̃i λ̃

i − 1

2
αi (·)

(
λ̃i
)2

=
n∑

i=1

(
λ̃i λ̃

i − 1

2
λ̃i λ̃

i
)
= 1

2

n∑

i=1
λ̃i λ̃

i .

Hence, we also have found that λ̃i = ˙̃γi and λ̃i = ˙̃γ i , which
we aimed to show. Note that reformulation in a coordinate-
free matter yields

∀i∈{1,...,n} ˙̃γ i = λ̃i ⇔ λ|γ (t) = G−1U

∣∣∣
γ (t)

γ̇ (t),

for all t ∈ [0,W (g)].
Remark 25 In Theorem1we give a backtracking formulation
(where geodesics go ‘down-hill’ to the origin via steepest
descent)wherewe rescaled timeback to the interval t ∈ [0, 1]
(as this is more practical). Similar to [28, Thm. 4, Eq. 28] this
is done as follows: in the ODE backtracking for geodesics
(37) we included an extra negative scaling factor −W (g) in
comparison with all the canonical ODEs above.

Thirdly, we address the symmetry (36) of the data-driven
Cartan connection.

By construction of (17) and (28), we have the correct sym-
metry (36). Indeed from (17), it follows that

ALqU
i

∣∣∣
gp
= (Lg)∗ AU

i

∣∣
p and ωi

LqU

∣∣∣
gp
= (Lg)

∗ ωi
U

∣∣
p

and via (28) we get (Lg)
∗ (∇LgU

)∗ = (∇U )∗, where we
use the fact that GU is diagonal w.r.t. basis {AU

i } and where
we, respectively, applied the pushforward of a vector field,
the pullback of a covector field, and the pullback of a dual
connection.

Remark 26 In general the pullback �∗∇∗ of a dual connec-
tion∇∗ onmanifoldG under a smoothmapping� : G → G
is given by (�∗∇∗X )(�∗λ) = �∗(∇∗�∗X λ) with λ ∈ T ∗(G)

and X ∈ T (G).

Finally, we address the integration of geodesics and their
symmetry. Eq. (37) follows by (35). Here λ = dW implies
we must indeed set the following momentum components:

λ̃k = AU
k W (γ (·)) for all k = 1, . . . , n.

Furthermore in (35) we invert the data-driven left-invariant
metric tensor fieldGU (recall Eq. (20)) and express the veloc-
ities as ˙̃γ k = g−1kk λk = gkkλk . Then via Remark 18we obtain
that the geodesics indeed follow by integration of the vector

field v(W ) on G. Clearly, this vector field is data-driven left-
invariant (as all the vector fields AU

i are) and thereby one
has:

d

dt

(
γ
LgU
qg,qg0

)
(t) = (Lq)∗

d

dt
γU
g,g0

(t),

for all q, g, g0 ∈ G, t ∈ [0, 1], from which the symmetry
(39) follows by integration. ��

Appendix C: The Used Metric Tensor Field
is Indeed a Data-Driven Left-Invariant Metric
Tensor Field

We first rely on a convenient standard formula of the Hessian
of smooth function on a manifold relative to a connection on
that manifold in Lemma 4. Then we provide an alternative
formulation of such a Hessian in Lemma 5 (via the notion of
parallel transport).

Finally, we prove that GU , that heavily relies (17) on a
Hessian HU of a sufficiently smooth orientation score U :
SE(2) → R, is indeed a data-driven left-invariant vector field
in Lemma 6.

Lemma 4 The Hessian HU = ∇∗dU of a smooth function
U : M → R relative to connection∇ onmanifold M satisfies

HU (X ,Y ) = X(YU )− ∇XYU . (60)

Proof One can easily see that

HU (X ,Y ) = ∇∗dU (X ,Y ) = 〈∇∗XdU ,Y
〉

(30)= X 〈dU ,Y 〉 − 〈dU ,∇XY 〉
= X(YU )− (∇XY )U .

��
Remark 27 (Alternative Formulation Hessian) Let M be a
smooth manifold with connection ∇. Let p ∈ M and
Xp,Yp ∈ Tp(M), i.e., two tangent vectors not necessarily
associated to a vector field. Let f ∈ C∞(M, R).

Let X : [−δ, δ] → M , with δ > 0, such that

⎧
⎪⎨

⎪⎩

X(0) = p

Ẋ(0) = Xp

∇Ẋ(t)Ẋ = 0 ∀t ∈ [−δ, δ],

i.e.,X is the unique auto-parallel curve throughpwith tangent
vector Xp. For all s, t ∈ [−δ, δ] let PX

s,t : TX(s)M → TX(t)M
be the parallel transport operator along the curveX, which is
uniquely defined by the following properties
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1. PX
t,t = id ∀t ∈ [−δ, δ],

2. PX
t2,t3 ◦ PX

t1,t2 = PX
t1,t3 , ∀t1, t2, t3 ∈ [−δ, δ],

3. smooth with respect to X, t and s.

Then t �→ PX
0,t Yp ∈ Tγ (t)M gives a smooth vector field along

the curve X that is unique parallel transport of Yp along that

curve, i.e., with the property ∇Ẋ(t)

(
PX
0,·Yp

)
= 0.

Lemma 5 We can now define the Hessian of a (sufficiently)
smooth function f : M → R also as follows

H f |p (Xp,Yp) : = ∂t

(
(PX

0,t Yp) f
)

(0)

: = lim
t↓0

(PX
0,t Yp) f − Yp f

t
. (61)

Proof If X and Y are smooth vector fields then

(∇XY )|p = ∇XpY = lim
t→0

PX
t,0YX(t) − Yp

t
.

Note that limt→0 PX
t,0 = id, so

lim
t→0

YX(t) − PX
0,t Yp

t
= lim

t→0
PX
t,0

YX(t) − PX
0,t Yp

t

= lim
t→0

PX
t,0YX(t) − Yp

t
= ∇XpY . (62)

Now, we have

H f (Xp,Yp)
(61)= lim

t→0

PX
0,t Yp f − Yp f

t
(62)= lim

t→0

(Y f )(X(t))− (Y f )(X(0))

t
−∇XpY f

= Xp(Y f )−∇XpY f ,

which is the same as Eq. (60). ��
Lemma 6 The metric tensor field GU introduced in Eq. (17)
is a data-driven left-invariant metric tensor field.

Proof We recall that the dual norm used in the definition of
the data-driven metric tensor field GU is given by

‖HU |p(ṗ, ·)‖∗ = sup
Y∈Tp(M2)

‖Y‖=1

|HU |p(ṗ,Y )|.

In order to prove thatGU is a data-driven left invariant metric
tensor field, we need the following identities:

((
Lg
)
∗ Y
)
gp

(LgU
) = Yp(U ), (63)

∇(Lg)∗X
(
Lg
)
∗ Y = (Lg

)
∗ ∇XY , (64)

where (63) is the definition of the pushforward, and (64) is
the equivariance of the Cartan connection ∇ = ∇U=1. In
addition, it is important that

Yp �→
(
Lg
)
∗ Yp is an isometry Tp(M2) → Tgp(M2), (65)

so ‖Y‖ = ‖Ỹ‖, where Y ∈ Tp(M2) and Ỹ ∈ Tgp(M2).
We check the data-driven left invariance for the separate

terms of the metric tensor field, starting with Gp(ṗ, ṗ):

Ggp
((
Lg
)
∗ ṗ,

(
Lg
)
∗ ṗ
)

=
n∑

i, j=1
gi j ωi

∣∣∣
gp

((
Lg
)
∗ ṗ
)

ω j
∣∣∣
gp

((
Lg
)
∗ ṗ
)

=
n∑

i, j=1
gi j ωi

∣∣∣
p
(ṗ) ω j

∣∣∣
p
(ṗ) = Gp (ṗ, ṗ) .

Then, we study the data-driven left invariance of the term

∥∥HU |p (ṗ, ·)∥∥2∗ = sup
Y∈Tp(M2)

‖Y‖=1

∣∣HU |p (ṗ,Y )
∣∣2

= sup
Y∈Tp(M2)

‖Y‖=1

∣∣ṗ(YU )− dU∇ṗY
∣∣2 ,

which is satisfied since (set Ỹ = (Lg)∗Y )

∥∥∥H
(LgU

)∣∣
gp

((
Lg
)
∗ ṗ, ·)

∥∥∥
2

∗
= sup

Ỹ∈Tgp(M2)

‖Ỹ‖=1

∣∣∣
(
Lg
)
∗ ṗ(ỸLgU ) −dLgU∇(Lg)∗ṗỸ

∣∣∣
2

= sup
Y∈Tp(M2)

‖Y‖=1

∣∣ṗYU − dU∇ṗY
∣∣2 = ∥∥HU |p(ṗ, ·)∥∥2∗ .

Note that since ‖HU |p(ṗ, ·)‖2∗ satisfies the data-driven left-
invariant property, we also have

‖H(LgU )|gp((Lg)∗ṗ, ·)‖2∗
max

q̇∈Tq(M2)

‖q̇‖=1
‖H(LgU )|gp((Lg)∗q̇, ·)‖2∗

= ‖HU |p(ṗ, ·)‖2∗
max

q̇∈Tp(M2)

‖q̇‖=1
‖HU |p(q̇, ·)‖2∗

.

Thereby, GU is data-driven left-invariant:

GLgU
gp ((Lg)∗ṗ, (Lg)∗ṗ) = Ggp((Lg)∗ṗ, (Lg)∗ṗ)

+ λ
‖H(LgU )|gp((Lg)∗ṗ, ·)‖2∗

max
q̇∈Tp(M2)

‖q̇‖=1
‖H(LgU )|gp((Lg)∗q̇, ·)‖2∗
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= Gp(ṗ, ṗ)+ λ
‖HU |p(ṗ, ·)‖2∗

max
q̇∈Tp(M2)

‖q̇‖=1
‖HU |p(q̇, ·)‖2∗

= GU
p (ṗ, ṗ).

��

Appendix D: Cost Function C: A Multi-scale
Crossing-PreservingVesselness FilterVariant

The differentiable cost function C : M2 → [δ, 1] is an
important tool used to encode where vascular structures are
located. Costs are high (“1”) outside the blood vessels, and
low (δ given in experiments) at the center of the blood ves-
sels, stimulating the geodesic to move along the vascular
structure. Many approaches to automatically calculate the
vessel locations have been proposed over the years [12, 37,
49]. In the calculation of the tracking results, we use a cost
function inspired by [49]. The precise relation between the
cost and the vesselness filter follows later in (67). The ves-
selness expression VSE(2)(Ua

f ) : SE(2) → R
+ is, as in [49,

71]

VSE(2)(Ua
f ) =

⎧
⎨

⎩

0 if Q ≤ 0,

exp

(
−R2

2σ 2
1

)(
1− exp

(
−S2

2σ 2
2

))
if Q > 0,

(66)

whereUa
f (x, θ), a > 0 fixed, is a single layer of a multilayer

wavelet transform. In all experiments, we set σ1 = 0.5 and
σ2 = 0.5 ‖S‖∞. In (66), the anisotropy measure R, structure
measure S and convexity criterion Q are given by

R=

∣∣∣∣∣∣∣

(
A2

1U
a
f

)s,β,σs,Ext ,σa,Ext

(
A2

2U
a
f

)s,β,σs,Ext ,σa,Ext

∣∣∣∣∣∣∣
,Q=

(
A2

2U
a
f

)s,β,σs,Ext ,σa,Ext
,

S=
√((

A2
1U

a
f

)s,β,σs,Ext ,σa,Ext
)2
+
((
A2

2U
a
f

)s,β,σs,Ext ,σa,Ext
)2

,

where A2
i U

a
f := AiAiUa

f , and where the superscripts s,β

denote Gaussian derivatives at spatial scale s = 0.5σ 2
s and

angular scale 0.5β2, where β = 0.75, and where the super-
scripts σs,Ext ,σa,Ext denote external regularization with spatial
scale σs,Ext = σs = a and angular scale σa,Ext .

Here, we implement the dual norm ‖HU |p(ṗ, ·)‖2∗ is com-
puted by (19) using Gaussian derivatives with scales σs,Ext
and σa,Ext .

Last, we apply erosion with scale se on VSE(2), denoting
the result by VSE(2)

se . Then, the cost function C : SE(2) →

Fig. 18 3D visualization of a cost function (x, y, θ) �→ C(x, y, θ) cal-
culated with the introduced multiscale crossing-preserving vesselness
variant, of a retinal image f , with σs ∈ {1, 2} and σa,Ext = 0 (Color
figure online)

R
+ is defined as (similar to [12])

(
VSE(2) (U f

))
(x, θ) := μ−1∞

Ns∑

l=1

(
VSE(2)

se

(
Ual

f

))
(x, θ),

C(x, θ) :=
(
1+ λ

((
VSE(2) (U f

))
(x, θ)

)p)−1
(67)

where Ns denotes the number of scales, and al denotes the
different scales that are considered. The scaling parameter

μ∞ is defined as μ∞ :=
∥∥∥
∑Ns

l=1VSE(2)
s2

(
Ual

f

)∥∥∥∞. In all

experiments, the values of parameters σa,Ext , λ ≥ 0 and p >

0 are chosen to be0, 1000 and2, respectively. InFig. 18, a cost
function constructed by the above formulation is visualized.
Here, the vertical structures at bifurcations allow for in-place
rotations, as depicted in Fig. 19.

Appendix E: Adaptation to Asymmetric Data-
Driven Finsler Functions

A generalization of [28, Thm. 1, 2, 4] to go from the sym-
metric model (M2,GU ) to the asymmetric model (M2,F U ),
means in practice that we have to adapt the Eikonal equation
(38) to

(
αU
1 (·)

)−1 (
(AU

1 W )+
)2 +

3∑

j=2

(
αU
j (·)

)−1 (AU
j W
)2 = 1,

where (x)+ = max{x, 0}, and backtracking (40) to

˙̃γ 1 = 1

W (g)
|αU

1 |−1
(
(AU

1 W )+
)

(γ̃ )
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Fig. 19 Visualization of a cusp in a spatially projected geodesic in
the Riemannian manifold (M2,GU=1) (left) and an in-place rotation
in spatially projected Finslerian geodesic (M2,F U=1) (right) (Color
figure online)

˙̃γ k = 1

W (g)
|αU

k |−1
(
AU

k W
)

(γ̃ ) , k = 2, 3.

This adapted model does work reasonably well in practice.
However, cusps may still occur in projected geodesics of
this adopted model since the required (‘no reverse gear’)
condition

γ̇ 1 = ẋ cos θ + ẏ sin θ = ẋ · n(θ) ≥ 0 (68)

differs from the actually applied condition ˙̃γ 1 ≥ 0. If the
angle between AU

1

∣∣
γ̃
and A1|γ̃ is not too large (which is

often the case when geodesics pass locations with low cost),
projected geodesics usually do not exhibit cusps.

Amuch less obvious andmore precise solution—that does
exclude cusps altogether—in spatially projected data-driven
geodesics, is given in Lemma 3 in the Numerical Section
with computational scheme (52) and backtracking (54).

Essentially, in this approach (used in our experiments!)
one takes the positive part of 〈M−1(ω1

U − αω2
U )|γ̃ , ˙̃γ 〉 to

ensure (68), rather than taking the positive part of ˙̃γ 1 =
〈ω1

U |γ̃ , ˙̃γ 〉.
If U is constant, then α = 0, ω1

U = ω1 and then we have
˙̃γ 1 = γ̇ 1 ≥ 0, thereby ifU is constantwe indeed endup in the
standard Reeds–Shepp car model without reverse gear [28].

Appendix F: Proof of Lemma 3

Only in this proof we briefly write ωi := ωi
U for i = 1, 2, 3.

Let P be a 3× k matrix of rank k (1 ≤ k ≤ 3). Then, by
the Woodbury formula, one has

(Id3 + ε−2PP�)−1 = Id3 − ε−2P(Idk + ε−2P�P)−1P�

= Id3 − P(P�P)−1P� + O(ε2),

which is up to O(ε2) error equal to the orthogonal projection
Id3 − P(PT P)PT onto Span(P)⊥. Calculating the expres-
sion for Dε by Woodbury formula and Taylor expansion
gives:Dε := (M0 + ε P̃ P̃�)−1 = (M0)−

1
2

(
Id3 + ε−2PP�

)−1
(M0)−

1
2 ,

where P := (M0)−1/2 P̃ and P̃ = [
ω1 ω2

]
. Notic-

ing Span{P}⊥ = Span{ω̃}, with ω̃ := (
√
M0−1ω1) ×

(
√
M0−1ω2), one has

Dε = (M0)−1/2 ω̃ω̃�

ω̃�M0ω̃
(M0)−1/2 + O(ε2).

Simplification yields D = ωω�
ω�M0ω

+O(ε2), with ω := ω1×
ω2 as stated in (48).

Likewise, via Lemma 2, the Woodbury formula, and
applying a Taylor expansion, we obtain that

M−1
ε = (M0 + ε−2ω2(ω2)�)−1

= (M0)−1/2(Id3 − ω̃2((ω̃2)�ω̃2)−1(ω̃2)�)(M0)−1/2

+ O(ε2),

where ω̃2 := (M0)−1/2ω2 and

(Id3 − (M0)−1/2ω2((ω2)�(M0)−1ω2)−1(ω2)�(M0)−1/2)

is up to O(ε2) error the orthogonal projection onto
Span{(M0)−1/2ω2}⊥. The further simplification of

ηε = ε−1M−1
ε ω1

√
1+ ε−2(ω1)�M−1

ε ω1

boils down to (49). ��
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