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Abstract
Morphological hierarchies constitute a rich and powerful family of graph-based structures that can be used for imagemodeling,
processing and analysis. In this article, we focus on an important subfamily of morphological hierarchies, namely the trees
that model partial partitions of the image support. This subfamily includes in particular the component-tree and the tree of
shapes. In this context, we provide some new graph-based structures (one directed acyclic graph and three trees): the graph
of valued shapes, the tree of valued shapes, the complete tree of shapes and the topological tree of shapes. These new objects
create a continuum between the two notions of component-tree and tree of shapes. In particular, they allow to establish that
these two trees (together with a third notion of adjacency tree generally considered in topological image analysis) can be
defined and handled in a unified framework. In addition, this framework enables to enrich the component-tree with additional
information, leading on the one hand to a topological description of grey-level images that relies on the same paradigm as
persistent homology, and on the other hand to the proposal of a topological version of tree of shapes. This article provides a
theoretical analysis of these newmorphological hierarchies and their links with the usual ones. It also proposes an algorithmic
description of two ways of building these new morphological hierarchies, and a discussion on the links that exist between
these morphological hierarchies and certain topological invariants and descriptors.

Keywords Mathematical morphology · Grey-level imaging · Hierarchical models · Topological analysis · Component-tree ·
Tree of shapes · Topological tree of shapes

1 Introduction

1.1 Context

Hierarchical paradigms provide efficient solutions for mod-
eling, handling or analysing numerical images. In particular,
over the last 50 years, many hierarchical structures—
generally trees—have been proposed for various purposes,
e.g. topologicalmodeling (adjacency tree [49]), efficient nav-
igation (quad/octrees [60]) or multiscale analysis (irregular
pyramids [28]).
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In the field of mathematical morphology [32], the devel-
opment of the framework of connected operators [54] has led
to the proposal of a rich family of graph-based hierarchical
structures. These structures model finite sets of partitions of
the image support, organized with respect to the refinement
order relation.

The most popular are trees, i.e. rooted, connected acyclic
graphs. It is possible to classify them with respect to the par-
titions they model. On the one hand, these partitions can be
total. This is the case of the binary partition tree and its vari-
ants [45, 52], the α-tree [56] or the hierarchical watersheds
[31, 55]. On the other hand, these partitions can be partial
[47]. This is the case of the component-tree and its variants
[22, 44, 53] or the tree of shapes and its variants [9, 27, 57].

Other hierarchical structures are directed acyclic graphs
(DAGs). This is, for instance, the case of the component-
hypertree [39], the component-graph [41], the braid of
partitions [19] and the directed component hierarchy [43].

The partitions modeled by these hierarchical structures
are composed of connected sets. The notion of connectiv-
ity is then of paramount importance and was thoroughly
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investigated (an exhaustive overview is beyond the scope
of this discussion, see e.g. [6, 46]). It is generally expected
that a numerical (discrete) image content be structurally
organized with respect to the usual topological paradigms
of the underlying (continuous) space that it represents.
Under this hypothesis, the notion of connectivity is generally
expressed in topological frameworks designed to be well-
fitted with digital grids (e.g. Cartesian space [50], cubical
complex space [21]) or more general discrete spaces (e.g.
meshes, tesselations). In this context, efforts were geared
towards making these discrete topological frameworks com-
pliant between them [26] and with the standard topology in
Euclidean spaces [25], from the point of view of connectiv-
ity, but also with respect to important properties such as the
Jordan-Brouwer separation property [23].

1.2 Motivations

In this article, we focus on the partial partitions which are of
paramount interest, especially for grey-level imaging. In this
paradigm, the two most important trees are the component-
tree [53] and the tree of shapes [27]. The component-tree
models the inclusion relation of the connected components
of the successive threshold sets of the image, whereas the
tree of shapes models the isolines of the image, seen as a
topographic map. The tree of shapes is generally presented
as a self-dual version of the component-tree.

Although both trees carry topological information related
to the content of the modeled image, especially via the
notion of connectedness, the available topological informa-
tion remains incomplete and may sometimes be insufficient
to perform high-level topological analysis of the modeled
images. In particular, hierarchical structures are generally
less informative than high-level topological invariants /
descriptors, e.g. the homology groups / persistent homology
[14]. Enriching these trees to allow the embedding of supple-
mentary topological information is then a relevant purpose.

Then, we aim to investigate new hierarchical structures in
the perimeter of partial partition modeling, to better under-
stand and to improve the notions of component-tree and tree
of shapes.

1.3 Contributions

In this article, which is an extended and improved version
of the conference paper [36], we introduce a new family of
hierarchical structures, including one DAG and three trees,
namely:
– the graph of valued shapes;
– the tree of valued shapes;
– the complete tree of shapes;
– the topological tree of shapes;

dedicated to the modeling of grey-level images.

They aim to gather (i) connectedness / intensity informa-
tion carried by component- (min- and max-) trees [53] and
(ii) topological information carried by the adjacency tree, a
classical graph-based topological invariant [49].

Basically, we first build a DAG which is composed by
the min-tree and the max-tree (the two dual versions of the
component-tree) of a grey-level image, and we enrich the
nodes of these two trees by the adjacency tree at each grey-
level, leading to the notion of a graph of valued shapes. Then,
we establish that the graph of valued shapes can be turned into
a tree by discarding some transitive, redundant edges. This
leads to a simpler structure called tree of valued shapes. By
factorizing some spatially equivalent nodes, we then define a
more compact structure, called the complete tree of shapes.
We establish that this complete tree of shapes can be reduced
in two different ways, leading on the one hand to the usual
tree of shapes and on the other hand to the new topological
tree of shapes.

We provide a thorough description of these structures and
we explicit their links with other usual hierarchies. We pro-
vide algorithmic solutions for building them.We also discuss
on the links that exist between new structures and certain
topological invariants and descriptors.

1.4 Organization of the Article

This article is organized as follows.

– Section 2 provides basic definitions and notations.
– Section 3 defines a collection of useful orders and gives
the links between these orders and hierarchical graph-
based objects (trees, forests…).

– Section 4 describes the hypotheses on the handled
images.

– Section 5 provides the definitions of the classical notions
of component-tree, valued component-tree, tree of shapes
and adjacency tree in a unique formalism used to further
define the new hierarchical structures.

– Section 6 is a description of the new hierarchical struc-
tures.

– Section 7 is a discussion about the links that exist between
the new and the usual hierarchical structures.

– Section 8 deals with the algorithmic aspects of the con-
struction of these new hierarchical structures by building
upon the usual ones.

– Section 9 provides a discussion and focuses on the links
that exist between the proposed hierarchies and other
topological invariants and descriptors.

– Section 10 concludes the article.

For the sake of readability, the technical parts of the article
are deported in appendix. In particular:
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Table 1 Index of the principal notations

Sets of nodes Orders Hasse/reduced relation Trees, forests, graphs

Θ�
v , Θ

◦
v , Θ

•
v Equation (18)

Θ�, Θ◦, Θ• Equation (19) �Θ� , �Θ◦ , �Θ• �Θ� , �Θ◦ , �Θ• Equation (23) TΘ� , TΘ◦ , TΘ• Definitions 31–32 Component-tree

Θv Equation (46) �Θv
�Θv

Equation (47) TΘv
Definition 55 Adjacency tree

Θτ , T Equations (50, 54) �Θτ , �T �Θτ , �T Equations (51, 55) TΘτ , TT Definitions 62, 67 Tree of shapes

Θ , Ξ /∼Θ Equation (20), Sect. 6.3 �Θ , �Ξ /∼Θ
�Θ Equations (87–88) TΘ Definitions 113, 117 Complete tree of shapes

Ξ�
v , Ξ

◦
v , Ξ

•
v Equation (34)

Ξ�, Ξ◦, Ξ• Equation (39) �Ξ� , �Ξ◦ , �Ξ• �Ξ� , �Ξ◦ , �Ξ• Equation (41) TΞ� , TΞ◦ , TΞ• Definitions 47–48 Valued component-tree

Ξv Equation (65) �Ξv
�Ξv

Equation (67) TΞv
Section 6 Valued adjacency tree

Ξ Equation (69) �Ξ �Ξ Equation (80) TΞ Definition 109 Tree of valued shapes

�Ξ Equation (76) GΞ Definition 95 Graph of valued shapes

�ψ �ψ Equation (71) FΞ Section 6

�ϕ �ϕ Equation (74)

Ξτ Equation (111) �Ξτ Equations (112–113) TΞτ Section 8.7

�Ξτ Section 8.7 GΞτ Section 8.7

H Equation (92) �H �H Equation (94) TH Definition 130 Topological tree of shapes

M Equation (119) �M Section 9.1 TM Section 9.1 Topological monotonic tree

– Appendix A provides technical results on tree homeo-
morphism that allow to factorize various proofs that rely
on similar hypotheses.

– Appendix B provides the proofs of the most important
results, stated as “propositions”. (The proofs of other
results stated as “properties” are less technical and left to
the reader.)

2 Notations and Basic Notions

In this section, we recall usual notions and we introduce the
associated notations.More specific notions and notationswill
be introduced in the next sections. For the sake of readability,
they are gathered and indexed in Tables 1, 2. For the sake of
coherence, some notations used in this articlemay sometimes
differ from those used in [36].

The power set of a set A is noted 2A. If A is a finite set,
we note |A| the number of elements in A.

A (binary) relation ∝ on a set A is a subset of A× A. We
note a ∝ b to express the fact that (a, b) ∈ ∝. A subrelation
of ∝ is a subset of ∝. If A is finite, the couple (A,∝) is a
(directed) graph.

A function f from A to B is a subset of A × B such
that for all a ∈ A there exists at most one b ∈ B which
satisfies (a, b) ∈ f . We note b = f (a) to express the fact
that (a, b) ∈ f . A function from A to A is a relation on A.

An application f from A to B is a function such that for
all a ∈ A there exists b ∈ B which satisfies (a, b) ∈ f .
We note b = f (a) to express the fact that (a, b) ∈ f . An
application f from A to A is a relation on A.

A function / application f from A to B is noted f : A →
B. The restriction of f to a subset A′ ⊆ A is noted f|A′ .
If f is bijective, we note f −1 : B → A its inverse func-
tion / application. If f is not bijective, we define the reverse
function / application f −1 : 2B → 2A associated to f by
f −1(C) = {a ∈ A | f (a) ∈ C}. If C = {c}, we sometimes
note f −1(c) instead of f −1({c}) for the sake of concision.

An equivalence relation ∼ on A is a relation on A which
is reflexive, transitive and symmetric. For any a ∈ A, the
equivalence class of a is noted [a]∼ . The quotient set of all
the equivalence classes of A with respect to∼ is noted A/∼.

An order relation � on A is a relation on A which is
reflexive, transitive and antisymmetric. We say that (A,�)

is an ordered set.
The dual order relation 
 associated to � is defined by

(a 
 b) ⇔ (b � a). The strict order relation � associated
to � is defined by (a � b) ⇔ (a � b ∧ a 
= b).

For any a ∈ A and any order � we note a↑� = {b ∈ A |
a � b} and a↓� = a↑
.

If (A,�) is an ordered set and B ⊆ A, we note �B the
induced order on B. (We may remove the subscript B when
there is no ambiguity.)

If (A,�) is an ordered set, a suborder ̂� of � is an order
on A which is a subset of �.

If B ⊆ A, we note
∨� B (resp.

∧� B) the supremum
(resp. the infimum) of B in A with respect to � when it
exists. If

∨� B ∈ A (resp.
∧� B ∈ A), then it corresponds

to the maximum (resp. the minimum) of B with respect to�.
We note

�� B (resp.
�� B) the set of the maximal elements

(resp. the set of the minimal elements) of B with respect to
� when they exist. (We may remove the superscript � when
there is no ambiguity.)
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Table 2 Index of secondary notations

Functions

F Definition 27

ζ� , ζ� Equation (2)

Z� Definition 5

ψ , Ψ , ϕ, Φ Section 6

σ ◦, σ • Section 4.2

��, Section 5.1.1

τ Equation (12)

∂−∝ , ∂+∝ , ∂−, ∂+ Section 2

1(A,u) Proposition 44

κ Equation (33)

π
Θ

Θτ , πT
Θτ Section 5.2.2

π
Ξ

Θ , π
Ξ /∼Θ

Θ Section 6.3

Intervals, remanence

I
Θ�

X = �α
Θ�

X , ω
Θ�

X �≤� , δ
Θ�

X Definition 37

I
Θτ

X = �α
Θτ

X , ω
Θτ

X �≤�� , δ
Θτ

X Definition 71

I
Θ

X = �α
Θ

X , ω
Θ

X �≤�� , δ
Θ

X Definition 119

I
H
K = �αH

K , ωH
K �≤�� , δHK Definition 134

∼Θ Equation (86)

∼H Equation (92)

∼T Equation (53)

∼M Section 9.1

Graph relations

� Section 2

↘RT Section 2

↘EH Definition 21

↘H Definition 22

↘QH Definition 23

↘D Section 6.4

≡ Definition 25

Proper part of a node

ρ
Θ�

X Equation (24)

ρ
Θ

X Equation (25)

ρ
Ξ�

P Equation (44)

ρ
Ξ

P Equation (45)

ρ
Θτ

X Equation (60)

ρH
K Equation (100)

Orders

≤, ≤◦ Section 4.2

≥, ≤• Section 4.2

a↑� , a
↓
� Section 2

Table 2 continued

Orders

Ê� Definition 18

M(�) Definition 13

∞ Remark 85

Sets, subsets

K, V, Δ, ⊥, � Section 4.2

U Section 4

Uv Section 5.2.1

S Section 5

Λ Section 4.1

Λ◦, Λ• Remark 57

Λ◦
v , Λ

•
v Equation (16)

Π [X ] Section 4.1

J+(X), J−(X), J Section 4.1

U
+(J), Ů

+
(J), U

−(J), Ů
−
(J) Section 4.1

Hi (Λ) Section 9.2

We say that � is a total order (and that (A,�) is a totally
ordered set) if for all a, b ∈ A, we have a � b or b � a. We
say that � is a partial order (and that (A,�) is a partially
ordered set) if � is not a total order. If (A,�) is a totally
ordered set and a, b ∈ A with a � b, we note �a, b�� =
{c ∈ A | a � c � b} and �a, b��= {c ∈ A | a � c � b}
(and we can combine both open and closed bound symbols
to build ad hoc intervals). (We may remove the subscript �
when there is no ambiguity.)

If the relation� is the reflexive-transitive reduction of the
order relation�, we note�↘RT � or (A,�) ↘RT (A,�).
The relation � is then called the Hasse relation associated to
� and (A,�) is called the Hasse diagram of (A,�). In the
sequel, for each order relation noted�A on A, the associated
Hasse relation will be noted�A. If A is finite, then the Hasse
diagram (A,�) is a directed acyclic graph (DAG).Reversely,
if (A,�) is a DAG, then its reflexive-transitive closure � is
an order relation on A.

If G = (A,∝) is a directed graph and a ∈ A, the inner
(resp. outer) degree of a, noted ∂−∝ (a) (resp. ∂+∝ (a)) is equal
to |{b ∈ A | b ∝ a}| (resp. |{b ∈ A | a ∝ b}|). The inner
(resp. outer) degree of a graph G = (A,∝), noted ∂−(G) or
∂−(∝) (resp. ∂+(G) or ∂+(∝)) is equal to

∨≤{∂−∝ (a)}a∈A
(resp.

∨≤{∂+∝ (a)}a∈A).
If (A,∝A) is a (directed) graph, we say that (B,∝B) is

an induced subgraph of (A,∝A), and we note (B,∝B) �
(A,∝A) if B ⊆ A and ∝B = ∝A ∩ B × B. If ∝̂A is a
subrelation of ∝A, we say that (A, ∝̂A) is a partial graph of
(A,∝A).
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Fig. 1 Lattice structure of the inclusion links between the four kinds of
(piecewise) total orders and (piecewise) hierarchical orders, and asso-
ciated structure of the Hasse relations (trees vs. forests, degenerate vs.
non-degenerate)

3 Orders and Trees

In this section, we introduce four families of orders, which
will be used in the sequel of this study. These families of
orders are: the total orders, the piecewise total orders, the
hierarchical orders and the piecewise hierarchical orders. In
particular, the Hasse diagrams related to all these orders are
tree-based structures: degenerate trees, degenerate forests,
trees and forests, respectively. We state the links between
these families (see Fig. 1 for an overview). At the end of this
section, we also introduce two important notions related to
suborders of a (piecewise) hierarchical order: first, the notion
of maximal piecewise total suborders, which will be impor-
tant to establish the links between morphological hierarchies
and persistent homology (Sect. 9.2); second, the notion of
induced piecewise total suborders, which will be the cor-
nerstone to explicit the (quasi-)homeomorphisms that exist
between various morphological hierarchies (Appendix A).

Definition 1 (Piecewise hierarchical order) Let A be a finite
set and� an order on A with�↘RT �. Let us suppose that
∂+(�) ≤ 1. We then say that � is a piecewise hierarchical
order on A.

Remark 2 If � is a piecewise hierarchical order on A, then
(A,�) is a forest, such as defined in the graph theory litera-
ture.

An example of piecewise hierarchical order depicted by its
forest is illustrated in Fig. 2c.

Property 3 Let � be a piecewise hierarchical order on A.

For any a ∈ A, (a↑� ,�) is a totally ordered set.

Property 4 Let A be a finite set. Let�1 and�2 be two piece-
wise hierarchical orders on A, and �1, �2 their respective
Hasse relations. We have

�2 ⊆ �1 ⇐⇒ �2 ⊆ �1 (1)

i.e. �2 is a suborder of �1 iff the forest (A,�2) is a partial
graph of the forest (A,�1).

Definition 5 (Hasse function) Let A be a finite set and �
a piecewise hierarchical order on A. The Hasse relation �
associated to� is also a function from A to A. This function
is called the Hasse function and it is noted ζ� : A → A or
ζ� : A → A. It is defined by

ζ�(a) = b ⇐⇒ a � b (2)

In particular, this function is a surjective application from
A\�� A to A\�� A. We will note Z� : 2A → 2A the

application defined by Z�(B) = ζ−1
� (B).

Definition 6 (Hierarchical order) Let A be a finite set and
� a piecewise hierarchical order on A. If (A,�) admits a
maximum, then we say that� is a hierarchical order. In par-
ticular, the Hasse function ζ� is then a surjective application

from A\{∨� A} to A\�� A.

Remark 7 If � is a hierarchical order on A, then (A,�) is a
tree, such as defined in the graph theory literature. (In par-
ticular, a tree is a forest.)

An example of hierarchical order depicted by its tree is illus-
trated in Fig. 2b.

Remark 8 Let A be a finite set. Let�1 be a hierarchical order
and �2 a piecewise hierarchical order on A, and �1 and �2
their respective Hasse relations. Eq. (1) holds, i.e. �2 is a
suborder of�1 iff the forest (A,�2) is a partial graph of the
tree (A,�1).

Figure2b, c provides an example of a forest (c) which is
a partial graph of a tree (b), and equivalently a piecewise
hierarchical order which is a suborder of a hierarchical order.

Definition 9 (Piecewise total order) Let A be a finite set and
� a piecewise hierarchical order on A. If the Hasse func-
tion ζ� is an injective (and then bijective) application from

A\�� A to A\�� A or, equivalently, if ∂−(�) ≤ 1, then
we say that � is a piecewise total order.

Property 10 Let A be a finite set and � a piecewise total
order on A. For any a ∈ A, and a fortiori for any a ∈ �� A,
(a↓� ,�) is a totally ordered set. In particular, if (A,�)admits
a maximum, then � is a total order on A.

Remark 11 If� is a total order on A, then (A,�) is a degen-
erate tree, such as defined in the graph theory literature. If
� is a piecewise total order on A, then (A,�) is a forest
of degenerate trees (or degenerate forest, for brief), such as
defined in the graph theory literature.

An example of total order depicted by its degenerate tree is
illustrated in Fig. 2a. An example of piecewise total order
depicted by its degenerate forest is illustrated in Fig. 2d.
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Fig. 2 Aset A endowedwith various orders, represented via their Hasse
relation / function. a A degenerate tree (A,�0) corresponding to a total
order �0 on A. b A tree (A,�1) corresponding to a hierarchical order
�1 on A. c A forest (A,�2) corresponding to a piecewise hierarchical
order�2 on Awhich is a suborder of�1. dA degenerate forest (A,�3)

corresponding to a (non-maximal) piecewise total order�3 on A which
is a suborder of �2. e A degenerate forest (A,�4) corresponding to a
piecewise total order �4 on A which is a maximal piecewise total sub-

order of�1. f Adegenerate forest (A,�5) corresponding to a piecewise
total order �5 on A which is the induced piecewise total suborder of
�1. The round nodes depict the elements of A. The arrows depict the
Hasse relations �i . The green nodes are maximal elements (maxima
in (a,b)). The red nodes are minimal elements (minimum in (a)). The
yellow nodes are simultaneouslyminimal andmaximal elements (Color
figure online)

Remark 12 Let A be a finite set. Let �1 be a piecewise hier-
archical order and �2 a piecewise total order on A, and �1
and �2 their respective Hasse relations. Eq. (1) holds, i.e.
�2 is a suborder of �1 iff the degenerate forest (A,�2) is a
partial graph of the forest (A,�1).

Figure2c, d provides an example of a degenerate forest (d)
which is a partial graph of a forest (c), and equivalently a
piecewise total order which is a suborder of a piecewise hier-
archical order.

Definition 13 (Maximal piecewise total suborders) Let A be
a finite set and � a piecewise hierarchical order on A. Let
̂� be a piecewise total order on A such that ζ

̂� ⊆ ζ� . We
say that ̂� is a maximal piecewise total suborder of � if for
any piecewise total order ˜� on A such that ζ

̂� ⊆ ζ
˜� ⊆ ζ� ,

we have ̂� = ˜�. We note M(�) the set of all the Hasse
functions of maximal piecewise total suborders of �.

Remark 14 Let A be a finite set and � a piecewise hierar-
chical order on A with � ↘RT �. Let ̂� be a maximal
piecewise total suborder of � with ̂� ↘RT �̂. The par-
tial graph (A, �̂) of (A,�) is a degenerate forest and it is
maximal for this property.

Figure2e provides an example of a degenerate forest cor-
responding to a piecewise total order which is a maximal

piecewise total suborder of the piecewise hierarchical order
corresponding to the forest of Fig. 2b. (Note that the degener-
ate forest of Fig. 2d is not a maximal piecewise total suborder
of the piecewise hierarchical order corresponding to the
forest of Fig. 2b since it is a (strict) partial graph of the degen-
erate forest of Fig. 2e.)

Property 15 Let A be a finite set and � a piecewise hierar-
chical order on A with � ↘RT �. We have

|M(�)| =
∏

a∈A\�� A

∂−�(a) (3)

Property 16 Let A be a finite set and � a piecewise hierar-
chical order on A. We have

ζ� =
⊆
∨

M(�) =
⋃

M(�) (4)

Remark 17 If � is a piecewise total order, then we have
M(�) = {ζ�}. Otherwise, we have ζ� /∈ M(�) and ζ�
is then defined as a supremum, but not a maximum.

Definition 18 (Induced piecewise total suborder) Let A be
a finite set and � a piecewise hierarchical order on A. The
piecewise total suborder induced by �, noted Á�, is defined
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by its Hasse function as

ζ
Ê� =

⊆
∧

M(�) =
⋂

M(�) (5)

Figure2f provides an example of a degenerate forest cor-
responding to a piecewise total order which is the induced
piecewise total suborder of the piecewise hierarchical order
corresponding to the forest of Fig. 2b.

Remark 19 If� is a piecewise total order, thenwe have ζ
Ê� =

ζ� . Otherwise, we have ζ
Ê� /∈ M(�) and ζ

Ê� is then defined

as an infimum, but not a minimum.

Property 20 Let A be a finite set and � a piecewise hierar-
chical order on A. For any ζ

̂� ∈ M(�), we have

ζ
Ê� ⊆ ζ

̂� ⊆ ζ� (6)

The following three definitions are given for trees, but they
also hold for forests. (The usual notion of homeomorphism
is generally defined on graphs, but it is not required here to
provide such a general definition.)

Definition 21 (Elementary homeomorphism on trees) Let
TA = (A,�A) and TB = (B,�B) be two trees associ-
ated to the hierarchical orders�A and�B, respectively. We
say that there is an elementary decreasing homeomorphism
from TA to TB, and we write TA ↘EH TB, if there exist
a, b, c ∈ A with a �A b �A c, such that

B = A \ {b} (7)

Z�A
(b) = {a} (8)

∀x ∈ B \
{

a,

�A
∨

A
}

, ζ�B
(x) = ζ�A

(x) (9)

ζ�B
(a) = ζ�A

(ζ�A
(a)) = c (10)

We say that there is an elementary increasing homeomor-
phism from TA to TB if there exists a elementary decreasing
homeomorphism from TB to TA.

Definition 22 (Homeomorphism on trees) Let TA=(A,�A)

and TB = (B,�B) be two trees. We say that there is a
decreasing homeomorphism from TA to TB, and we write
TA ↘H TB, if there exists a finite sequence of trees 〈Ti 〉ti=1
(t ≥ 1) such that T1 = TA, Tt = TB and for any 1 ≤
i ≤ t − 1, we have Ti ↘EH Ti+1. We say that there is an
increasing homeomorphism from TA to TB if there exists a
decreasing homeomorphism from TB to TA.

Definition 23 (Quasi-homeomorphism on trees) Let TA =
(A,�A) and TB = (B,�B) be two trees associated to the

Fig. 3 a A tree TA corresponding to the one depicted in Fig. 2b.
b A tree TB such that there is a decreasing homeomorphism from
TA to TB (composed here as a sequence of 7 elementary decreasing
homeomorphisms). c A tree TC such that there is a decreasing quasi-
homeomorphism from TA to TC

hierarchical orders �A and �B, respectively. We say that
there is a decreasing quasi-homeomorphism from TA to TB,
and we write TA ↘QH TB, if TA ↘H TB or TA ↘H
̂TB with ̂TB = (B ∪ {ε},�B ∪ {(∨�B B, ε)}) for a given
element ε /∈ B. We say that there is an increasing quasi-
homeomorphism from TA to TB if there exists a decreasing
quasi-homeomorphism from TB to TA.

The notions of homeomorphism and quasi-homeomor-
phism are illustrated in Fig. 3.

Remark 24 The notion of quasi-homeomorphism authorizes
the existence of an extra edge located at the root of the
tree. In practice, two trees linked by a quasi-homeomorphism
are then “nearly homeomorphic”, since the location of this
extra edge at an extremity of the tree may allow to sym-
bolically omit it for further manipulations. The notion of
quasi-homeomorphism will be useful in particular when we
will establish some structural links between various morpho-
logical hierarchies.

Definition 25 (Isomorphism on graphs) Let GA = (A,∝A)

and GB = (B,∝B) be two graphs. We say that there is an
isomorphism betweenGA andGB, and we writeGA ≡ GB,
if there exists a bijective application γ : A → B and for any
a, b ∈ A

a ∝A b ⇐⇒ γ (a) ∝B γ (b) (11)

Remark 26 Let TA,TB,TC be trees. If there is a (decreas-
ing or increasing) homeomorphism from TA to TB and if
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there is an isomorphism between TB and TC then, by abuse
of language, we will also say that there is a (decreasing or
increasing) homeomorphism from TA to TC .

4 Definitions and Hypotheses

In this section, we provide the hypotheses under which we
define and handle the objects considered in this study.

Let U be an unbounded space endowed with a topological
structure. It satisfies the following two hypotheses:

(H1) the topology defined on U provides a notion of
connectedness (and the derived notion of connected
component);

(H2) the topology defined on U is compliant with the
Jordan-Brouwer separation property [7, 59].

In practice, we will consider U as a digital space, i.e.
Z
d (d ≥ 1) endowed with the usual digital topology

framework [50] (or more restrictive frameworks, e.g. the
well-composedness [23]). It was proved that the framework
of cubical complexes [26] and more generally the continu-
ous topology on R

d [25] are indeed compliant with digital
topology.

As a consequence, although our purpose and associated
algorithms will deal with digital topology (U = Z

d )—with
straightforward adaptations to other digital grids or complex
spaces—we will establish our theoretical results in a contin-
uous framework (U = R

d ).

4.1 Connected Components and JordanManifolds

Let Λ ⊆ U be a (closed or open) subset of U. If Λ 
= ∅, the
connected components (i.e. the maximally connected sub-
sets) of Λ form a partition of Λ, noted Π [Λ]. If Λ = ∅, we
set Π [Λ] = ∅.

From now on, we only consider some sets Λ ⊆ U which
are either empty or composed by a finite number k ≥ 1 of
connected components. In that second case, we assume that
at least k−1 connected components are bounded and at most
one is unbounded. A bounded connected component X of Λ

is bounded by one external Jordan manifold (hypersurface)
J+(X) and possibly by t ≥ 0 internal Jordan manifold(s)
J−
i (X) (1 ≤ i ≤ t) [35]. An unbounded connected compo-

nent X of Λ is not bounded by any external (Jordan or not)
manifold and is possibly bounded by t ≥ 0 internal Jordan
manifold(s) J−

i (X) (1 ≤ i ≤ t). In both cases, the t internal
Jordan manifolds J−

i (X) are the external Jordan manifolds
that bound the connected components that form the “holes”
of X . Note that if X is closed (resp. open), then the putative
manifolds J+(X) and J−

i (X) (1 ≤ i ≤ t) are inside (resp.
outside) of X .

LetJ be a Jordanmanifold.WenoteU
+(J) (resp. Ů

+
(J))

and U
−(J) (resp. Ů

−
(J)) the parts of U that lie outside and

inside of J and that include (resp. exclude) J, respectively.
Let X be a connected component of Λ. We define the

hole-closed set τ(X) associated to X as

τ(X) = X ∪
t

⋃

i=1

U
−(J−

i (X)) (12)

and this definition can be generalized to Λ ⊆ U with respect
to its k connected components X j (1 ≤ j ≤ k) as

τ(Λ) =
k

⋃

j=1

τ(X j ) (13)

Note in particular that τ(∅) = ∅ and τ(Λ) = U whenever Λ

is unbounded (with, in particular, τ(U) = U).

4.2 Stacks and Grey-Level Images

Let K be a non-empty set endowed with a total order ≤K

with ≤K ↘RT �
K
. Let V ⊆ K be a non-empty finite subset

of K and≤V (or simply≤) the total order induced by≤K on
V with ≤V ↘RT �

V
(or simply �). We set ⊥ = ∧≤

V and
� = ∨≤

V. We set Δ = |V|.
We note ≤◦ = ≤ and ≤• = ≥ with ≤◦ ↘RT �◦ and

≤• ↘RT �•. For any v ∈ V\{�} (resp. V\{⊥}), we note
σ ◦(v) = ζ�◦(v) (resp. σ •(v) = ζ�•(v)).

Let 〈Λ◦
v〉v∈V be a non-empty finite sequence of closed

subsets of U, bounded by Jordan manifolds, such that

– Λ◦⊥ = U

– Λ◦� = ∅
– ∀v ∈ V, v > ⊥ ⇒ Λ◦

v is bounded
– ∀u, v ∈ V, u < v ⇒ Λ◦

v ⊂ Λ◦
u

From this sequence,wecanbuild the complement sequence
〈Λ•

v〉v∈V of open subsets of U bounded by Jordan manifolds,
such that for all v ∈ V, we have Λ•

v = Λ◦
v = U\Λ◦

v . It is
plain that we have

– Λ•⊥ = ∅
– Λ•� = U

– ∀v ∈ V, v > ⊥ ⇒ Λ◦
v is unbounded

– ∀u, v ∈ V, u < v ⇒ Λ•
u ⊂ Λ•

v

Both kinds of sequences will be also called stacks.

Definition 27 LetF : U → V be the application defined, for
any x ∈ U, by

F(x) =
≤◦
∨

{v ∈ V | x ∈ Λ◦
v} (14)
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Fig. 4 a An application / grey-level image F : U → V. Here we have
U = Z

2 endowed with the digital topology, and V = �0, 7� ⊂ Z. We
then have ⊥ = 0 and � = 7. Note that for any x ∈ U not depicted in
this finite illustration, we haveF(x) = 0. b–iThe two stacks composing
the threshold sets of F: the closed (resp. open) subsets Λ◦

v in white (Λ
•
v

in black), for v = 0 (b) to 7 (i). In (b) (resp. in (c–i)), the unbounded
set Λ◦

0, in white (resp. Λ•
v , in black), is partly depicted

= σ •(
≤•
∨

{v ∈ V | x ∈ Λ•
v}

)

(15)

This application can be seen as a grey-level image defined
on U and taking its values in V. In this context, the stack
〈Λ◦

v〉v∈V (resp. 〈Λ•
v〉v∈V) defines the set of the upper (resp.

lower) threshold sets of the image associated to F

Λ◦
v = {x ∈ U | v ≤◦ F(x)} (16)

Λ•
v = {x ∈ U | σ •(v) ≤• F(x)} (17)

The notions of stacks and image are illustrated in Fig. 4.

5 Usual Hierarchical Structures

In this section, we recall some usual hierarchical structures:
(valued) component-trees, adjacency tree and tree of shapes.
We define these trees in a unified formalism in order to fur-
ther ease their handling and to facilitate the unifying study

between them and with the new hierarchical structures intro-
duced in Sect. 6.

Let 〈Λ◦
v〉v∈V with Λ•

v = Λ◦
v = U\Λ◦

v for all v ∈ V, and
F : U → V be such as defined in Sect. 4.2. In the sequel, �
stands for both ◦ and •.

From now on, when dealing with space and time costs,
we will assume that U is discrete and that for any v > ⊥, we
have |Λ◦

v| ≤ n. In particular, n will be considered as the size
of the finite support S ⊂ U of the image.

5.1 Component-Trees

The definitions of (valued) component-trees given in this
section require hypothesis (H1) but not hypothesis (H2). Of
course, they remain valid when (H2) holds, and we will con-
sider them in this context.

5.1.1 Min-tree andMax-tree

For any v ∈ V, we set

Θ�
v = Π [Λ�

v] (18)

i.e. Θ�
v is the partition of the connected components of Λ�

v .
We then define

Θ� =
⋃

v∈V

Θ�
v (19)

and

Θ = Θ◦ ∪ Θ• (20)

We consider the two applications �� : Θ → {◦, •} and
: Θ→{◦, •} defined such that X ∈ Θ��(X) and X /∈ Θ (X).

When there is no ambiguity, we simply write �� (resp. )
instead of ��(X) (resp. (X)).

Remark 28 The only element that belongs to both Θ◦ and
Θ• is U. By abuse of definition, we consider that we may
have ��(U) = ◦ or • and (U) = ◦ or •.
Remark 29 An element X ∈ Θ�� may belong to many sets
Θ�

v .

Property 30 We have

|Θ�| ≤
∑

v∈V

|Θ�
v | (21)

|Θ | = |Θ◦| + |Θ•| − 1 (22)

We define the partial order(s) �Θ� on Θ� as

X �Θ� Y ⇐⇒ X ⊆ Y (23)

with �Θ�↘RT �Θ�
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Fig. 5 Component-trees of the grey-level imageF of Fig. 4. Left: max-
tree. Right: min-tree. Each node (square) corresponds to an element
X of Θ��. The white part of the node corresponds to X . The blue-
bordered nodes correspond to unbounded X . The nodes are organised
with respect to the values (threshold sets) v ∈ V at which they are gen-

erated. The values of V are depicted on the left (round boxes). Since an
element X ∈ Θ�� may correspond to threshold sets at many values, it is

depicted at the level of the value ω
Θ��
X , see Eq. (26). The green arrows

correspond to the �Θ� relations (Color figure online)

Definition 31 (Component-tree [53]) The tree TΘ� = (Θ�,

�Θ�) is called the component-tree of 〈Λ�
v〉v∈V.

Definition 32 (Min-tree, max-tree [53]) The component-tree
TΘ◦ = (Θ◦,�Θ◦) of 〈Λ◦

v〉v∈V is also called the max-tree
of F. The component-tree TΘ• = (Θ•,�Θ•) of 〈Λ•

v〉v∈V is
also called the min-tree of F.

The min-tree and max-tree of the image F of Fig. 4 are
illustrated in Fig. 5.

The elements of Θ� are generally referred to as the nodes
of the component-tree. The elements of �Θ� are generally
referred to as the edges of the component-tree. We will use
this terminology for all the hierarchical structures considered
in this study.

Definition 33 ((External) proper part of a node) For any X ∈
Θ��, we define the proper part of X (in the component-tree)
as

ρ
Θ��
X = X \

⋃

X=ζ�
Θ�� (Y )

Y (24)

and the external proper part of X (in the component-trees)
as

ρ
Θ

X = X \
⋃

X=ζ�
Θ�� (Y )

τ (Y ) (25)

Property 34 The set {ρΘ�

X }X∈Θ� is a partition of U.

Remark 35 The set {ρΘ

X }X∈Θ may not be a partition of U.

Indeed, we have
⋃

X∈Θ ρ
Θ

X = U and for any two distinct

X ,Y ∈ Θ we have ρ
Θ

X ∩ ρ
Θ

Y = ∅. However, it may happen

that ρ
Θ

X = ∅.

Property 36 Let X ∈ Θ��. There exist αΘ��
X , ω

Θ��
X ∈ V such

that

�α
Θ��
X , ω

Θ��
X �≤�� = {v ∈ V | X ∈ Θ��

v } (26)

Definition 37 (Remanence of a node) For any X ∈ Θ��, we
note I

Θ��
X = �α

Θ��
X , ω

Θ��
X �≤�� and we define the remanence
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Fig. 6 Valued component-trees of the grey-level image F of Fig. 4.
Left: valued max-tree. Right: valued min-tree. Each node (square) cor-
responds to an element K = (X , v) of Ξ��. The white part of the node
corresponds to X . The blue-bordered nodes correspond to unbounded

X . The nodes are organised with respect to the values (threshold sets)
v ∈ V at which they are generated. The values of V are depicted on
the left (round boxes). The green arrow correspond to the�Ξ� relations
(Color figure online)

of X (in the component-tree) as

δ
Θ��
X = |IΘ��X | (27)

Definition 38 (Average remanence) The average remanence
δΘ� ∈ Q of the component-tree TΘ� is defined as

δΘ� = 1

|Θ�|
∑

X∈Θ�

δ
Θ�

X (28)

The average remanence δ ∈ Q of the image F is defined as

δ = 1

|Θ |
∑

X∈Θ

δ
Θ��
X (29)

Property 39 We have

1 ≤ δΘ�, δ ≤ Δ (30)

i.e. the average remanence and the component-trees and of
the image are lower than the size Δ of V.

The component-tree TΘ� = (Θ�,�Θ�) is composed of
a number of nodes (and edges) lower than the size n of the

image support. It generally stores each point of the image
support once by associating each node X ∈ Θ� with its

proper part ρ
Θ�

X . This justifies the following result.

Property 40 We have

|Θ�| = |�Θ� | + 1 = O(n) (31)

Property 41 We can store TΘ� with a space cost O(n).

There exist numerous algorithms to compute the compo-
nent-tree. The most efficient (sequential) ones present a
quasi-linear time cost [8].

Property 42 The construction ofTΘ� can be donewith a time
cost O(n log n).

Remark 43 In the component-treeTΘ� , each node X ∈ Θ� is

generally endowed with its “maximal value” ω
Θ�

X ∈ V (and

equivalently with I
Θ�

X ). In particular, this information allows
one to model F as a component-tree in a lossless way.

Property 44 ([17, 53]) The image F : U → V can be recov-
ered from either its max-tree or min-tree by setting, for any
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x ∈ U

F(x) =
≤V
∨

X∈Θ�

1(
ρ

Θ�

X ,κ�
(

ω
Θ�

X

))(x) (32)

with

κ�� =
{

idV if �� = ◦
σ • if �� = • (33)

and where 1(A,u) : U → V is the cylinder function of support
A ⊆ U and value u ∈ V defined by 1(A,u)(x) = u if x ∈ A
and ⊥ otherwise.

5.1.2 Valued Min-tree and Valued Max-tree

For any v ∈ V, we set

Ξ�
v = Θ�

v × {v} (34)

Property 45 We have

Ξ◦� = Ξ•⊥ = ∅ (35)

Ξ◦⊥ = {(U,⊥)} (36)

Ξ•� = {(U,�)} (37)

For any v ∈ V \ {⊥,�}, we have

Ξ�
v 
= ∅ (38)

Based on the definition of Eq. (34), we set

Ξ� =
⋃

v∈V

Ξ�
v (39)

Property 46 We have

Ξ� =
⋃

X∈Θ�

⋃

v∈I
Θ�

X

{(X , v)} (40)

We define the partial order(s) �Ξ� on Ξ� as

(X , v) �Ξ� (Y , w) ⇐⇒ X ⊆ Y ∧ w ≤� v (41)

with �Ξ�↘RT �Ξ�

Definition 47 (Valued component-tree [41]) The treeTΞ� =
(Ξ�,�Ξ�) is called the valued component-tree of 〈Λ�

v〉v∈V.

Definition 48 (Valued min-tree, valued max-tree [41]) The
valued component-treeTΞ◦ = (Ξ◦,�Ξ◦) of 〈Λ◦

v〉v∈V is also
called the valued max-tree of F. The valued component-tree
TΞ• = (Ξ•,�Ξ•) of 〈Λ•

v〉v∈V is also called the valued min-
tree of F.

The valued min-tree and valued max-tree of the image F
of Fig. 4 are illustrated in Fig. 6.

Property 49 We have

|Ξ�| =
∑

v∈V

|Ξ�
v | = |Θ�| · δΘ� (42)

Property 50 We have

|Ξ�| = |�Ξ� | + 1 = O(n · δΘ�) (43)

Definition 51 ((External) proper part of a node)For any P =
(X , v) ∈ Ξ�, we define the proper part of P (in the valued
component-tree) as

ρ
Ξ�

P =
{

ρ
Θ�

X if v = ω
Θ�

X

∅ if v 
= ω
Θ�

X

(44)

and the external proper part of X (in the valued component-
trees) as

ρ
Ξ

P =
{

ρ
Θ

X if v = ω
Θ�

X

∅ if v 
= ω
Θ�

X

(45)

Proposition 52 There is a decreasing homeomorphism from
the valued component-tree to the component-tree.

These homeomorphisms can be observed by comparison
between the max-tree (resp. min-tree) and the valued max-
tree (resp. valued min-tree) in Figs. 5 and 6.

The valued component-tree TΞ� = (Ξ�,�Ξ�) contains
more nodes (and edges) than the component-tree. However,
since exactly one connected component X appears into the

interval of values I
Θ�

X , it may be sufficient to model all the

nodes (X , v) for v ∈ I
Θ�

X and all the edges between these
successive nodes as a single node X endowed with the two

values α
Θ�

X and ω
Θ�

X (in practice, ω
Θ�

X is sufficient, since

�α
Θ�

X , ω
Θ�

X �≤� =�ω
Θ�

ζ�
Ξ�

(X), ω
Θ�

X �≤� . In such case, the space

cost is the same as for the component-tree and the algorithms
for building the component-tree allow to build the valued
component-tree.

Property 53 We can store TΞ� with a space cost O(n).

Property 54 The construction ofTΞ� can be donewith a time
cost O(n log n).

5.2 Trees of Shapes

The definitions of adjacency tree and tree of shapes given in
this section require both hypotheses (H1) and (H2).
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Fig. 7 Adjacency-tree of the binary image obtained by thresholding
F at value 3, corresponding to the sets Λ◦

3 and Λ•
3 (see Fig. 4e). Each

node (square) corresponds to an element X of Θ3. The white part of
the node corresponds to X . The blue-bordered node corresponds to the
unbounded node U3. The red arrows correspond to the �Θ3

relation

5.2.1 Adjacency Tree

For any v ∈ V, we set

Θv = Θ◦
v ∪ Θ•

v (46)

(see Eq. (18)).
We define the order �Θv

on Θv as

X �Θv
Y ⇐⇒ τ(X) ⊆ τ(Y ) (47)

with �Θv
↘RT �Θv

.

Definition 55 (Adjacency tree [49]) The tree
TΘv

= (Θv,�Θv
) is called the adjacency tree of Λ◦

v ∪Λ•
v .

We note Uv the maximum of TΘv
= (Θv,�Θv

). It is a
node of Θ•

v and the only unbounded node of Θv .
The adjacency tree of a threshold set of the image F of

Fig. 4 is illustrated in Fig. 7.

Remark 56 Since Λ•
v is deducted from Λ◦

v , and vice versa
(see Eqs. (16–17)), we may also consider that the adjacency
tree is defined for either Λ•

v or Λ◦
v .

Remark 57 In general, the adjacency tree is natively defined
for a binary image decomposed into a foreground Λ◦ and a
background Λ•. In Definition 55, we choose to define it for

a binary image obtained by thresholding a grey-level image.
This definition remains compliant with the usual definition
by simply considering that V = {⊥,�} with ⊥ 
= � and by
setting v = �.

Property 58 We have

|Θv| = |Θ◦
v | + |Θ•

v | = |�Θv
| + 1 = O(n) (48)

The adjacency tree TΘv
= (Θv,�Θv

) is composed of a
number of nodes (and edges) lower than the size n of the
image support. It generally stores each point of the image
support once, in the unique set X of Λ◦

v ∪ Λ•
v that contains

that point. This justifies the following result.

Property 59 We can store TΘv
with a space cost O(n).

There exist various simple ways for building an adjacency
tree [49], e.g. from a connected component labelling process
or by developing a variant of minimal spanning tree con-
struction on a binary-valued graph. Such algorithms present
a linear time cost.

Property 60 The construction ofTΘv
can be donewith a time

cost O(n).

5.2.2 Tree of Shapes

We set (see also Eq. (20))

Θ = Θ◦ ∪ Θ• =
⋃

v∈V

Θv (49)

and

Θτ = τ(Θ) (50)

Remark 61 An element X ∈ Θτ may be induced by elements
from many sets Θv .

We define the order �Θτ on Θτ as

X �Θτ Y ⇐⇒ X ⊆ Y (51)

with �Θτ↘RT �Θτ .

Definition 62 (Tree of shapes [27]) The tree
TΘτ = (Θτ ,�Θτ ) is called the tree of shapes of F (with
F defined in Definition 27).

Remark 63 Since F, 〈Λ◦
v〉v∈V and 〈Λ•

v〉v∈V contain equiva-
lent information, we may also consider that TΘτ is the tree
of shapes of either 〈Λ◦

v〉v∈V or 〈Λ•
v〉v∈V.

Property 64 We have:

|Θ | ≥ |Θτ | = |�Θτ | + 1 = O(n) (52)
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Let π
Θ

Θτ : Θ → Θτ be the surjective application defined

by π
Θ

Θτ (X) = τ(X).
Let ∼T be the equivalence relation on Θ defined by

X∼T Y ⇐⇒ π
Θ

Θτ (X) = π
Θ

Θτ (Y ) (53)

We set

T = Θ/∼T (54)

Let πT
Θτ : T → Θτ be the application defined by

πT
Θτ ([X ]∼T ) = π

Θ

Θτ (X).

Property 65 πT
Θτ is bijective.

This property allows us to define the relation�T on T by

J �T K ⇐⇒ πT
Θτ (J ) �Θτ πT

Θτ (K ) (55)

with �T↘RT �T .

Property 66 We have

(T ,�T ) ≡ (Θτ ,�Θτ ) (56)

This property motivates the following alternative definition
of the tree of shapes.

Definition 67 (Tree of shapes (alternative)) The tree TT =
(T ,�T ) is called the tree of shapes of F.
Property 68 Let K ∈ T . For all X ∈ K, we have either
��(X) = ◦ or ��(X) = •.
This property allows us to extend the definition of �� and
to the nodes of Θτ such that for all X ∈ Θ , we have

��(τ (X)) = ��(X) and (τ (X)) = (X). By convention, we
set ��(U) = ◦ and (U) = •.
Property 69 The maximum of the tree of shapes TΘτ =
(Θτ ,�Θτ ), namely U, corresponds to the equivalence class
[U]∼T = {Uv}v∈V, i.e. the set of all the maxima of the adja-
cency trees of F at each threshold set.

The tree of shapes of the image F of Fig. 4 is illustrated
in Fig. 8. In this figure, each element of Θτ is depicted as an
element X ∈ Θ such that τ(X) ∈ Θτ .

Property 70 Let X ∈ Θτ . There exist α
Θτ

X , ω
Θτ

X ∈ V such
that

�α
Θτ

X , ω
Θτ

X �≤�� =
⋃

Y∈[X ]∼T

�α
Θ��
Y , ω

Θ��
Y �≤�� (57)

= �

≤��
∧

Y∈[X ]∼T

α
Θ��
Y ,

≤��
∨

Y∈[X ]∼T

ω
Θ��
Y �≤�� (58)

Fig. 8 Tree of shapes of the grey-level image F of Fig. 4. Each node
(square) corresponds to an element X of Θ such that τ(X) ∈ Θτ .
The white part of the node corresponds to X . The blue-bordered nodes
correspond to the unbounded X . The yellow arrows correspond to the
�Θτ relation (Color figure online)

Definition 71 (Remanence of a node) For any X ∈ Θτ , we

note I
Θτ

X = �α
Θτ

X , ω
Θτ

X �≤�� and we define the remanence of
X (in the tree of shapes) as

δ
Θτ

X = |IΘτ

X | (59)

Remark 72 It is possible to determine �� : Θτ → {◦, •} and
: Θτ → {◦, •} without knowledge on �� : Θ → {◦, •} and
: Θ → {◦, •}, by applying recursively the following rules

from the root U of the tree of shapes:
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– if X = U, then α
Θτ

X = ω
Θτ

X = ⊥ and ��(X) = ◦;
– if X 
= U and I

Θτ

X ∩ I
Θτ

ζ�
Θ

τ (X) = ∅, then ��(X) =
��(ζ�

Θτ
(X)) and we have α

Θτ

X = σ��(ω
Θτ

ζ�
Θτ

(X));

– if X 
= U and I
Θτ

X ∩ I
Θτ

ζ�
Θτ

(X) 
= ∅, then ��(X) =
(ζ�

Θτ
(X)) and we have α

Θτ

X = ω
Θτ

ζ�
Θτ

(X) with in par-

ticular I
Θτ

X ∩ I
Θτ

ζ�
Θτ

(X) =
{

α
Θτ

X

} = {

ω
Θτ

ζ�
Θτ

(X)

}

.

Definition 73 (Proper part of a node) For any X ∈ Θτ , we
define the proper part of X (in the tree of shapes) as

ρ
Θτ

X = X \
⋃

X=ζ�
Θτ

(Y )

Y (60)

Property 74 The set {ρΘτ

X }X∈Θτ is a partition of U.

Property 75 Let X ∈ Θτ . Let ̂X = ∧�
Θ�� (πT

Θτ )
−1(X). We

have

ρ
Θ

̂X
= ρ

Θτ

X (61)

∀Y ∈ [̂X ]∼T \ {̂X}, ρΘ

Y = ∅ (62)

Remark 76 From Eq. (61), we have access to the external
proper parts of (the nodes of) the component-trees from the
proper parts of (the nodes of) the tree of shapes, and vice
versa, with a time cost O(n).

The notion of tree of shapes generalizes the notion of adja-
cency tree.

Property 77 If V = {⊥,�} with ⊥ 
= �, then there is an
isomorphism between the tree of shapes TΘτ = (Θτ ,�Θτ )

and the adjacency tree TΘ� = (Θ�,�Θ�
).

Δ = 2 "⇒ TΘ� ≡ TΘτ (63)

The tree of shapes TΘτ = (Θτ ,�Θτ ) generally stores
each point of the image support once by associating each

node X with its proper part ρ
Θτ

X . This justifies the following
result.

Property 78 We can store TΘτ with a space cost O(n).

There exist numerous algorithms to compute the tree of
shapes. The most efficient (sequential) ones present a quasi-
linear complexity [16].

Property 79 The construction of TΘτ can be done with a
time cost O(n log n).

Remark 80 In the tree of shapes, each node X ∈ Θτ is

generally endowed with its “maximal value” ω
Θτ

X ∈ V. In

particular, with ρ
Θτ

X and ω
Θτ

X known for any node X ∈ Θτ

it is possible to model F as a tree of shapes in a lossless way.

Property 81 The image F : U → V can be recovered from
its tree of shapes by setting, for any x ∈ U

F(x) =
≤V
∨

X∈Θτ

1(
ρ

Θτ

X ,κ��(

ω
Θτ

X

))(x) (64)

6 NewHierarchical Structures

In this section, we introduce four new hierarchical structures:
the graph of valued shapes (Sect. 6.1), the tree of valued
shapes (Sect. 6.2), the complete tree of shapes (Sect. 6.3) and
the topological tree of shapes (Sect. 6.4). Starting from the
valued component-trees and the adjacency treeswhichmodel
a grey-level image, these structures are defined sequentially
until providing information that can lead both to the usual
tree of shapes or to the topological tree of shapes.

Let v ∈ V. We set

Ξv = Θv × {v} (65)

Property 82 We have

|Ξv| = |Θv| (66)

We define the order �Ξv
on Ξv as

(X , v) �Ξv
(Y , v) ⇐⇒ X �Θv

Y (67)

with �Ξv
↘RT �Ξv

.
We noteTΞv

= (Ξv,�Ξv
) and we call this tree the valued

adjacency tree (at value v).

Property 83 There is a trivial isomorphismbetween the adja-
cency tree and the valued adjacency tree.

TΘv
≡ TΞv

(68)

Remark 84 �Ξv
is a hierarchical order which admits (Uv, v)

as maximum.

We set

Ξ =
⋃

v∈V

Ξv = Ξ◦ ∪Ξ• (69)

Remark 85 From now on, we identify (U,⊥) and (U,�)

which are considered as a unique element of Ξ noted∞.
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Fig. 9 Graph of valued shapes of the grey-level imageF of Fig. 4. Each
node (square) corresponds to an element (X , v) of Ξ . The white part
of the node corresponds to X . The blue-bordered nodes correspond to
unbounded X . The two nodes marked as ∞ are identified as a unique

node. The nodes are organisedwith respect to the values (threshold sets)
v ∈ V at which they are generated. The values of V are depicted on
the left (round boxes). The green arrows correspond to the �ϕ relation.
The red arrows correspond to the �ψ relation (Color figure online)

We extend the definition of �� and to the nodes of Ξ

such that for all P = (X , v) ∈ Ξ , we have ��(P) = ��(X)

and (P) = (X). By convention, we set ��(∞) = • and
(∞) = ◦.

Property 86 We have

|Ξ | =
∑

v∈V

|Ξv| − 1 = |Ξ◦| + |Ξ•| − 1 = O(n · δ) (70)

We define the order �ψ on Ξ as �ψ = ⋃

v∈V
�Ξv

, i.e.

P �ψ Q ⇐⇒ ∃v ∈ V, P �Ξv
Q (71)

with �ψ ↘RT �ψ .
We set FΞ = (Ξ ,�ψ).

Property 87 Up to the identification of (U,⊥) and (U,�),
there is a trivial isomorphism between (Ξ ,�ψ) and the
union of all the (Θv,�Θv

), namely
(
⋃

v∈V
Θv,

⋃

v∈V
�Θv

) = FΞ . In particular, the Hasse dia-
gram of these structures is a forest that corresponds to the
union of the adjacency trees.

Property 88 �ψ is a piecewise hierarchical order. The max-
imal elements of (Ξ ,�ψ) are gathered in the set

�ψ

�
Ξ = {(Uv, v)}v∈V (72)

Property 89 We have

|�ψ | = |Ξ | + 1− Δ (73)

Property 90 Let P = (X , v), Q = (Y , w) ∈ Ξ such that
P �ψ Q. We have ��(Q) = (P). We also have v = w and
τ(X) ∈ Π [Y ] = Π [U\Y ].

We define the order �ϕ on Ξ as the union of �Ξ◦ and
�Ξ• , i.e.

P �ϕ Q ⇐⇒ P �Ξ◦ Q ∨ P �Ξ• Q (74)

with �ϕ ↘RT �ϕ .

Property 91 Up to the identification of (U,⊥) and (U,�),
there is a trivial isomorphism between (Ξ ,�ϕ) and the
union of (Ξ◦,�Ξ◦) and (Ξ•,�Ξ•), namely (Ξ◦ ∪Ξ•,�Ξ◦
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Fig. 10 Reduction of the graph of valued shapes of Fig. 9 (first step). The edges removed from the graph of Fig. 9 (depicted in light grey) are those
that correspond to the transitive pattern of Eq. (81) (Color figure online)

Fig. 11 Reduction of the graph of valued shapes of Fig. 9 (second step). The edges removed from the graph of Fig. 10 (depicted in light grey) are
those that correspond to the transitive pattern of Eq. (82)
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Fig. 12 Tree of valued shapes, defined as the reduction of the graph of valued shapes of Fig. 9 (third step). The edges removed from the graph
of Fig. 11 (depicted in light grey) are those that correspond to the transitive pattern of Eq. (83). The green and red arrows correspond to the �Ξ

relation

∪ �Ξ•). In particular, the Hasse diagram of these structures
is a tree that corresponds to the union of the valued min- and
max-trees.

Property 92 �ϕ is a hierarchical order that admits ∞ as
maximum.

Property 93 We have

|�ϕ | = |Ξ | − 1 (75)

Property 94 Let P = (X , v), Q = (Y , w) ∈ Ξ such that
P �ϕ Q. We have ��(Q) = ��(P). We also have X ⊆ Y and
v = σ��(w).

For the sake of concision, we will note ϕ = ζ�ϕ , Φ =
Z�ϕ , ψ = ζ�ψ and Ψ = Z�ψ .

6.1 Graph of Valued Shapes

Let �Ξ be the relation defined as the union of �ϕ and �ψ ,
i.e.

P �Ξ Q ⇐⇒ P �ϕ Q ∨ P �ψ Q (76)

Definition 95 (Graph of valued shapes) The graph of valued
shapes is the graph GΞ = (Ξ ,�Ξ ).

Remark 96 Since the intersection of �ϕ and �ψ is empty,
we can consider GΞ as (Ξ ,�Ξ ) or as (Ξ ,�ϕ,�ψ) =
(Ξ , ϕ,ψ).

The graph of valued shapes of the image F of Fig. 4 is
illustrated in Fig. 9.

Property 97 We have

|�Ξ | = 2 · |Ξ | −Δ (77)

Proposition 98 GΞ is a directed acyclic graph.

We set �Ξ as the reflexive-transitive closure of �Ξ .

Property 99 (Ξ ,�Ξ ) is an ordered set that admits ∞ as
maximum.

The graph of valued shapes allows to establish the (recur-
sive) links between the proper parts of the nodes of the
component-trees (Eq. (24)) and the external parts of these
nodes (Eq. (25)), which are directly related to the proper part
of the nodes of the tree of shapes (Eqs. (61–62)).

Property 100 Let X ∈ Θ�. We set P = (X , ω
Θ�

X ), which
satisfies P ∈ Ξ . We have

ρ
Θ�

X =ρ
Θ

X ∪
⋃

Y∈Φ(X)

⋃

Z∈Ψ (Y )

ρ
Θ

Z (78)
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ρ
Θ

X =ρ
Θ�

X \
⋃

Y∈Φ(X)

⋃

Z∈Ψ (Y )

ρ
Θ

Z (79)

Property 101 From the above property, it is possible to build
the external proper parts (resp. the proper parts) from the
proper parts (resp. the external proper parts) of the nodes in
the component-trees with a time cost O(n).

6.2 Tree of Valued Shapes

Let �Ξ be the relation on Ξ defined by

�Ξ ↘RT �Ξ (80)

Let P ∈ Ξ . Let us consider the following three equalities

ψ(P) = [ϕ ◦ ψ ◦ ϕ](P) (81)

ϕ(P) = [ϕ ◦ ψ ◦ ψ](P) (82)

ϕ(P) = [ϕΔ−2 ◦ ψ](P) (83)

Remark 102 If P satisfies Eq. (81), then we have P �Ξ

ψ(P) and ¬(P �Ξ ψ(P)). If P satisfies Eq. (82) or (83),
then we have P �Ξ ϕ(P) and ¬(P �Ξ ϕ(P)).

Proposition 103 Let P ∈ Ξ be such that ϕ(P) and ψ(P)

exist. One of Eqs. (81–83) is satisfied.

Remark 104 If follows from Proposition 103 that for any
P ∈ Ξ such that both ψ(P) and ϕ(P) exist, we have
¬(P �Ξ ψ(P)) or¬(P �Ξ ϕ(P)). Since (Ξ ,�Ξ ) admits
a maximum (namely ∞), for each P ∈ Ξ \{∞}, we have
either P �Ξ ψ(P) or P �Ξ ϕ(P).

The following property derives from these facts.

Property 105 Let P ∈ Ξ .

1. If exactly one of ϕ(P), ψ(P) is defined, then it is ϕ(P)

and we have P �Ξ ϕ(P).
2. If both ϕ(P) and ψ(P) are defined, then we have either

P �Ξ ϕ(P) or P �Ξ ψ(P).

In Proposition 105, the first case corresponds to the nodes
P which are maximal elements for the relation�ψ and/or for
the relation �ϕ . If P is a maximal element for �ϕ , then it is
themaximumfor this order, i.e. P = ∞ and in that caseψ(P)

is not defined (a contradiction). Otherwise, if P is a maximal
element for�ψ , then it is the maximumUv (⊥ < v < �) for
the adjacency tree at value v (i.e. one of the blue-bordered
nodes inFigs. 9–11, except∞). For suchnodeUv , there exists
a node Uu (with u = σ •(v)) such that Uv �Ξ ϕ(Uv) = Uu

and thus Uv �Ξ ϕ(Uv) = Uu . The second case corresponds

to the nodes P which are neither maximal elements for �ψ

nor for�ϕ . This means that both ϕ(P) andψ(P) exist. From

Proposition 103 and Remark 102, we have ¬(P �Ξ ψ(P))

or ¬(P �Ξ ϕ(P)). But we cannot have ¬(P �Ξ ψ(P))

and ¬(P �Ξ ϕ(P)) since �Ξ admits a (unique) maximum
distinct from P . As a consequence, we have either ¬(P �Ξ

ψ(P)) or ¬(P �Ξ ϕ(P)), and equivalently, we have either
P �Ξ ψ(P) or P �Ξ ϕ(P). This is illustrated in Fig. 12
by the fact that each black-bordered node presents exactly
one (green or red) arrow starting from it and linking it to its
successor with respect to the Hasse relation �Ξ .

Proposition 106 (Ξ ,�Ξ ) is a tree.

Property 107 �Ξ is a hierarchical order and�Ξ ↘RT �Ξ .

Property 108 We have

|�Ξ | = |Ξ | − 1 (84)

Definition 109 (Tree of valued shapes) The tree of valued
shapes is the tree TΞ = (Ξ ,�Ξ ).

Figures10–12 illustrate the transitive reduction procedure
from the graph of valued shapes GΞ to the tree of valued
shapes TΞ of the image F of Fig. 4. The edges of �Ξ that
correspond to the transitive patterns of Eq. (81) are removed
in Fig. 10. Then, the edges of �Ξ that correspond to the
transitive patterns of Eq. (82) are removed in Fig. 11. Finally,
the edges of �Ξ that correspond to the transitive patterns of
Eq. (83) are removed in Fig. 12. The edges that remain in
Fig. 12 correspond to �Ξ and the associated tree is the tree
of valued shapes.

The tree of valued shapes is defined from the set of nodes
Ξ . As a consequence, it inherits the notion of external proper
part of the valued component-trees to define its own notion
of proper part.

Definition 110 (Proper part of a node) For any P =
(X , v) ∈ Ξ , we define the proper part of P (in the tree
of valued shapes) as

ρ
Ξ

P =
{∅ if P = ζ�Ξ

((X , σ��(v)))

ρ
Θ

X otherwise
(85)

6.3 Complete Tree of Shapes

Let π
Ξ

Θ : Ξ → Θ be the surjective application defined by

π
Ξ

Θ ((X , v)) = X .
Let ∼Θ be the equivalence relation on Ξ defined by

P∼Θ Q ⇐⇒ π
Ξ

Θ (P) = π
Ξ

Θ (Q) (86)

Property 111 For any K ∈ Ξ/∼Θ , (K ,�Ξ ) is a totally
ordered set.
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Fig. 13 The complete tree of shapes of the grey-level imageF of Fig. 4.
This tree is obtained by a decreasing homeomorphism from the graph
of valued shapes of Fig. 12. Each node (square) corresponds to an ele-
ment K = [(X , v)]∼Θ of Ξ /∼Θ , or equivalently an element X ∈ Θ .

The white part of the node corresponds to X . The blue-bordered nodes
correspond to unbounded X . The green and red arrows correspond to
the �Θ relation

Let �Ξ /∼Θ
be the order relation on Ξ/∼Θ defined by

J �Ξ /∼Θ
K ⇐⇒

�Ξ
∧

J �Ξ

�Ξ
∧

K (87)

Property 112 (Ξ /∼Θ ,�Ξ /∼Θ
) is a tree.

Definition 113 (Complete tree of shapes) The complete tree
of shapes is the tree (Ξ /∼Θ ,�Ξ /∼Θ

).

Let π
Ξ /∼Θ

Θ : Ξ/∼Θ → Θ be the application defined by

π
Ξ /∼Θ

Θ ([P]∼Θ ) = π
Ξ

Θ (P).

Property 114 π
Ξ /∼Θ

Θ is bijective.

This property allows us to define the relation �Θ on Θ

by

X �Θ Y ⇐⇒
(

π
Ξ /∼Θ

Θ

)−1
(X) �Ξ /∼Θ

(

π
Ξ /∼Θ

Θ

)−1
(Y )

(88)

with �Θ ↘RT �Θ .

Property 115 We have

|�Θ | = |Θ | − 1 (89)

Property 116 We have

(Ξ /∼Θ ,�Ξ /∼Θ
) ≡ (Θ,�Θ ) (90)

This property motivates the following alternative definition
of the complete tree of shapes.

Definition 117 (Complete tree of shapes (alternative)) The
complete tree of shapes is the tree TΘ = (Θ,�Θ ).

Proposition 118 There is a decreasinghomeomorphism from
the tree of valued shapes to the complete tree of shapes.

The complete tree of shapes of the image F of Fig. 4
is illustrated in Fig. 13 and with a tree-like embedding in
Fig. 14.

As for the component-trees and the tree of shapes, it is
possible to define, for each node X ∈ Θ , an interval I

Θ

X
of values at which the connected component X exists in F
and then a notion of remanence. In particular, this interval
and the associated bounding values are the same as in the
component-trees.
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Fig. 14 The same complete tree of shapes as in Fig. 13, depicted with
a tree-like embedding

Fig. 15 The topological tree of shapes of the grey-level image F of
Fig. 4. This tree is obtained by a decreasing homeomorphism from the
complete tree of shapes of Fig. 14. Each node (square) corresponds to an
element [X ]∼H of H = Θ/∼H . The white part of the node corresponds
to an element Y ∈ [X ]∼H (which is chosen here arbitrarily). The blue-
bordered nodes correspond to unbounded X . The green and red arrows
correspond to the �H relation
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Fig. 16 The tree of shapes of the grey-level imageF of Fig. 4. This tree
is obtained by a decreasing homeomorphism from the complete tree of
shapes of Fig. 14. The blue-bordered nodes correspond to unbounded
X . The green and red arrows correspond to the �Θτ relation. This tree
is the same as in Fig. 8 (Color figure online)

Definition 119 Let X ∈ Θ . We set α
Θ

X = α
Θ��
X , ω

Θ

X = ω
Θ��
X

and I
Θ

X = �α
Θ

X , ω
Θ

X �≤�� = I
Θ��
X . We define the remanence of

X (in the complete tree of shapes) as

δ
Θ

X = δ
Θ��
X (91)

The complete tree of shapes is defined from the set of
nodes Θ . As a consequence, it inherits the notion of external
proper part of the valued component-trees to define its own
notion of proper part.

Definition 120 (Proper part of a node) For any X ∈ Θ , we
define the proper part of X (in the complete tree of shapes)

as ρ
Θ

X (see Eq. (25)) i.e. as the external proper part of X (in
the component-trees).

6.4 Topological Tree of Shapes

Let X ,Y ⊆ U, with Y ⊂ X . We aim to characterize the
preservation of topological properties by a decreasing trans-
formation from X to Y . A frequent strategy is to consider the
notion of homotopic transformation. In particular, if there
exists a (decreasing) homotopic transformation from X to Y ,
then X and Y have the same homotopy type. In the discrete
frameworks, i.e. when U = Z

d or equivalent combinato-
rial spaces, this paradigm is tractable for d = 2 [20] and
under specific conditions for d = 3 [2] especially thanks to
the notion of simple point [4]. However, it becomes hardly
tractable in the general case for d = 3 [24, 38] and a fortiori
for d > 3 [10].

Then, we consider a weaker topological invariant induced
by the notion of strongly deletable set introduced in [48].

Definition 121 (Strongly deletable set [48]) Let Λ ⊆ U. Let
D ⊂ Λ. Let ι : Π [Λ \ D] → Π [Λ] and ι : Π [Λ] →
Π [Λ\D] be the applications defined by X ⊆ ι(X) and Y ⊆
ι(Y ). We say that D is a strongly deletable set if both ι and ι

are bijective.

Remark 122 In dimension 2 the existence of a strongly de-
letable set D ⊂ X implies that there exists a decreasing
homotopic transformation from X to Y = X\D. When d ≥
3 this is no longer true in general, since the applications
ι and ι rely on connectedness, but do not handle high level
topological features such as tunnels, that appear at dimension
3.Nonetheless, even ford ≥ 3, the invariancebasedon strong
deletability carries valuable topological information.

Let P = (X , v), Q = (Y , w) ∈ Ξ be such that
ζ�Ξ

(P) = Q. If Z�Ξ
(Q) = {P} and Y\X is a strongly

deletable set for Y , then we note Q ↘D P .

Property 123 If Q ↘D P, then we have ζ�Ξ
(P) = ϕ(P).
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Proposition 124 Let P ∈ Ξ . Let A = Φ(ϕ(P))∪Ψ (ϕ(P)).
Let B = {ϕ(P)} ∪ Ψ (P). We have ϕ(P) ↘D P iff the
restricted application ϕ|A : A → B is a bijection from A to
B.

Let ∼H be the equivalence relation on Ξ defined as the
reflexive-transitive-symmetric closure of↘D . We set

H = Ξ/∼H (92)

Property 125 Let K ∈ H. For all P ∈ K, we have either
��(P) = ◦ or ��(P) = •.
This property allows us to extend the definition of �� and to
the nodes of H such that for all K = [P]∼T ∈ H , we have
��(K ) = ��(P) and (K ) = (P).

Property 126 We have

|Θ | ≥ |H | = O(n) (93)

Property 127 For all K ∈ H, (K ,�Ξ ) is a totally ordered
set.

Let �H be the order relation on H defined by

J �H K ⇐⇒
�Ξ
∧

J �Ξ

�Ξ
∧

K (94)

with �H↘RT �H .

Proposition 128 (H ,�H ) is a tree.

Property 129 We have

|�H | = |H | − 1 (95)

Definition 130 (Topological tree of shapes) The topological
tree of shapes is the tree TH = (H ,�H ).

Property 131 For any P, Q ∈ Ξ , we have

P∼Θ Q "⇒ P∼H Q (96)

Remark 132 From the above property, we can consider by
abuse of notation that∼H is an equivalence relation on Ξ or
on Θ , i.e. that H = Ξ/∼H or H = Θ/∼H . In the sequel,
we consider H = Θ/∼H .

As for the component-trees, the tree of shapes and the
complete tree of shapes, it is possible to define, for each
node K ∈ H , an interval I

H
K of values at which the node K

exists inF and then a notion of remanence. In particular, this
interval and the associated bounding values are the same as
in the component-tree.

The next property has the same structure as Proposition
70 proposed in the case of the tree of shapes.

Property 133 Let K ∈ H. There exist αH
K , ωH

K ∈ V such that

�αH
K , ωH

K �≤�� =
⋃

X∈[K ]∼H

�α
Θ

X , ω
Θ

X �≤�� (97)

= �

≤��
∧

X∈[K ]∼H

α
Θ

X ,

≤��
∨

X∈[K ]∼H

ω
Θ

X �≤�� (98)

Definition 134 (Remanence of a node) For any K ∈ H, we
note I

H
K = �αH

K , ωH
K �≤�� and we define the remanence of K

(in the topological tree of shapes) as

δHK = |IHK | (99)

Each node of the topological tree of shapes is defined as an
equivalence class of nodes ofΘ . As a consequence, it inherits
the notion of proper part of the complete tree of shapes to
define its own notion of proper part.

Definition 135 (Proper part of a node) For any K ∈ H, we
define the proper part of K (in the topological tree of shapes)
as

ρH
K =

⋃

X∈K
ρ

Θ

X (100)

Remark 136 In practice, it is more convenient to decompose
the proper part of K as the sequence of the proper parts of
its respective elements, i.e. as

PH
K = 〈ρΘ

Kv
〉v∈I

H
K

(101)

where for any v ∈ I
H
K , we have (Kv, v) ∈ Ξ and Kv ∈ K .

This decomposition will be useful in particular for develop-
ing image processing applications from the topological tree
of shapes.

Proposition 137 There is a decreasinghomeomorphism from
the complete tree of shapes to the topological tree of shapes

This homeomorphism can be observed by comparison
between the complete tree of shapes and the topological tree
of shapes in Figs. 14 and 15.

7 Links Between Usual and NewHierarchies

The graph of valued shapes GΞ presents a DAG structure,
similarly to other morphological hierarchies, e.g. the compo-
nent-graph [41], the directed component hierarchy [43] or the
braid of partitions [19]. The graph GΞ is also organized via
two kinds of relations, similarly to the component-hypertree
[39] and the directed component hierarchy [43] (where the
initial order can be split into two distinct orders).
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Fig. 17 a Links between the various hierarchical structures. b Con-
struction of the new hierarchies from the (valued) component-trees and
the adjacency trees (Sect. 8.6). c Construction of the new hierarchies
from the tree of shapes (Sect. 8.7). Black links: state-of-the-art con-
struction algorithms (Sect. 8.1). Blue links: construction by increasing
/ decreasing homeomorphism based on intervals (Sect. 8.2). Purple
links: construction by decreasing homeomorphism based on equiva-
lence (Sect. 8.5). Green links: construction by aggregation / extraction
(Sect. 8.3). Red links: construction by transitive reduction / closure

(Sect. 8.4). Pink links: construction by isomorphism (Sect. 8.5). The
arrows indicate that one structure can be built from the other. Notations
(see also Tab. 1): F: image, TΘ◦ : max-tree, TΘ• : min-tree, TΘv

: adja-
cency tree(s), TΞ◦ : valued max-tree, TΞ• : valued min-tree, FΞ : forest
of the valued adjacency trees,GΞ : graph of valued shapes,GΞτ : valued
graph of shapes, TΞτ : valued tree of shapes, TΞ : tree of valued shapes,
TΘ : complete tree of shapes, TH : topological tree of shapes, TΘτ : tree
of shapes

But, contrary to these morphological hierarchies, GΞ

can be simplified in a lossless fashion as a tree structure,
namely the tree of valued shapes TΞ . This may open the
way to efficient construction strategies compared e.g. to the
component-hypertree [29], the component-graph [40] or the
braid of partitions [58], the construction of which remains
complex and/or costly.

Beyond these considerations, the graph of valued shapes
GΞ and the trees we can derive from it (tree of valued shapes
TΞ , complete tree of shapes TΘ , topological tree of shapes
TH ) also allow to build bridges between various morpholog-
ical trees.

Property 138 The valued max-tree and the valued min-tree
are induced subgraphs of the graph of valued shapes.

TΞ� � GΞ (102)

Remark 139 From Proposition 52, there is a decreasing
homeomorphism from thevaluedmax-tree (resp. valuedmin-
tree) to the max-tree (resp. min-tree).

TΞ� ↘H TΘ� (103)

Property 140 Let v ∈ V. From Proposition 83, there is
an isomorphism between the adjacency-tree and the valued
adjacency-tree at value v. In addition, the valued adjacency-
tree is an induced subgraph of the graph of valued shapes.

TΘv
≡ TΞv

� GΞ (104)

Remark 141 The tree of valued shapes is obtained by tran-
sitive reduction of the graph of valued shapes (Sect. 6.2).

GΞ ↘RT TΞ (105)

Remark 142 From Proposition 118, there is a decreasing
homeomorphism from the tree of valued shapes to the com-
plete tree of shapes.

TΞ ↘H TΘ (106)

Remark 143 From Proposition 137, there is a decreasing
homeomorphism from the complete tree of shapes to the
topological tree of shapes.

TΘ ↘H TH (107)
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Proposition 144 There is adecreasingquasi-homeomorphism
from the complete tree of shapes to the tree of shapes.

TΘ ↘QH TΘτ (108)

Property 145 If |Π [τ(Λ◦
σ ◦(⊥))]| = 1 (a fortiori if |Π [Λ◦

σ ◦(⊥)]|= 1) then there is a decreasing homeomorphism from the
complete tree of shapes to the tree of shapes.

|Π [τ(Λ◦
σ ◦(⊥))]| = 1 "⇒ TΘ ↘H TΘτ (109)

The homeomorphism from the complete tree of shapes to
the topological tree of shapes can be observed by compari-
son between Figs. 14 and 16. Note that in this example, we
have |Π [Λ◦

σ ◦(⊥)]| = 2 
= 1 but |Π [τ(Λ◦
σ ◦(⊥))]| = 1, which

satisfies the hypothesis of Eq. (109).
The continuum between all the—usual and new—hier-

archical structures discussed in this study is illustrated in
Fig. 17a.

8 Construction of the Hierarchies

In this section we assume that U is discrete and that for any
v > ⊥, we have |Λ◦

v| ≤ n. In particular, n will be considered
as the size (i.e. the number of points) of the finite support S

of the image with S connected and Λ◦
v ⊆ S for any v > ⊥.

We discuss on the algorithmic aspects of the construction
of the different morphological hierarchies considered in this
article. Figure17 summarizes this discussion.

For the sake of simplicity, we will consider the various
trees and graphs defined in their mathematical form. In other
words, we will not consider space cost optimization of these
structures that would also lead to time cost optimization for
their construction.

In the algorithms, we use the following notations:

– “A := B” means that a variable A is set with B;
– “A ← B” means that B is added to a variable set A;
– “A → B” means that the variable B is set as an element
removed from the variable set A.

8.1 Construction of the Usual Hierarchies and
Hypotheses

We do not come back to the construction of the usual hierar-
chies. As already mentioned, there exist efficient algorithms
to build from F:

– the component-tree in O(n log n);
– the tree of shapes in O(n log n);
– the adjacency tree at any threshold value in O(n).

Algorithm 1: From (Θ,�Θ ) to (Ξ ,�Ξ )

Input: (Θ , �Θ )

Output: (Ξ ,�Ξ )

1 Ξ := ∅
2 �Ξ := ∅
3 foreach X ∈ Θ do
4 foreach v ∈ I

Θ

X do
5 Ξ ← (X , v)

6 if v 
= ω
Θ

X then
7 �Ξ ← ((X , σ��(v)), (X , v))

8 if v = α
Θ

X and X 
= U then
9 Y := ζ�Θ

(X)

10 �Ξ ← ((X , α
Θ

X ), (Y , ω
Θ

Y ))

We can go from the component-tree (Proposition 44) or
from the tree of shapes (Proposition 81) to the initial image
F with a time cost O(n) and from the adjacency-trees at all
threshold sets with a time cost O(n · Δ), with n the size of
the image support and Δ the number of values of V.

We assume that for each hierarchy, we have access for any
node X to:

– the interval IX or equivalently αX and ωX ;
– the characterizations ��(X) and (X);
– the proper part ρX of X .

The computation of these information has been discussed in
Sects. 5–6.

8.2 Construction of Valued Trees fromNon-valued
Ones (andVice Versa)

We first give two simple algorithms that allow, on the one
hand, the construction of valued trees from non-valued ones,
i.e.

– the valued max-tree from the max-tree;
– the valued min-tree from the min-tree;
– the tree of valued shapes from the complete tree of shapes;
– the valued tree of shapes (a technical structure that will
be required in Sect. 8.7) from the tree of shapes;

and, on the other hand, the construction of the non-valued
trees from the valued ones. Both Algorithms 1 and 2 are
presented for the tree of valued shapes vs. the complete tree
of shapes; however they remain the same for the other trees.
They correspond to the blue arrows in Fig. 17.

Property 146 Based on Algorithm 1, we can build:

– the valued min-tree from the min-tree;
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Algorithm 2: From (Ξ ,�Ξ ) to (Θ,�Θ )

Input: (Ξ ,�Ξ )

Output: (Θ ,�Θ )

1 Θ := ∅
2 �Θ := ∅
3 L ← {(∞,∅)}
4 while L 
= ∅ do
5 L → ((X , v), Y )

6 P := (X , v)

7 b := true
8 while b do
9 C := Z�Ξ

(P)

10 if |C| = 1 then
11 C → (Z , w)

12 if X = Z then
13 P := (Z , w)

14 else
15 C ← (Z , w)

16 b := f alse

17 else
18 b := f alse

19 foreach Q ∈ C do
20 L ← (Q, X)

21 Θ ← X
22 if Y 
= ∅ then
23 �Θ ← (X , Y )

– the valued max-tree from the max-tree;
– the tree of valued shapes from the complete tree of shapes;
– the valued tree of shapes from the tree of shapes;

with a time cost O(n · δ).

Property 147 Based on Algorithm 2, we can build

– the min-tree from the valued min-tree;
– the max-tree from the valued max-tree;
– the complete tree of shapes from the tree of valued shapes;
– the tree of shapes from the valued tree of shapes;

with a time cost O(n · δ).

8.3 Construction of the Graph of Valued Shapes
from the Component-Trees and Adjacency Trees
(andVice Versa)

The graph of valued shapes is obtained by agglomeration
of the nodes of the valued min- and max-trees (or equiva-
lently the nodes of the adjacency-trees) and the edges of the
min- and max-trees (ϕ) and those of the adjacency-trees (ψ).
These trivial constructions correspond to the green arrows in
Fig. 17.

Property 148 We can build the graph of valued shapes from
the valued min- and max-trees and the forest FΞ which gath-
ers the adjacency-trees (Proposition 87) with a time cost
O(1).

Property 149 We can build the valued min- and max-trees
and the forest FΞ which gathers the adjacency-trees (Propo-
sition 87) from the graph of valued shapes with a time cost
O(1).

8.4 Construction of the Tree of Valued Shapes from
the Graph of Valued Shapes (andVice versa)

The graph of valued shapesGΞ has the same nodes as the tree
of valued shapesTΞ . The difference between both structures
lies in the extraction of �Ξ from �Ξ which is a transitive
reduction [1] but can be carried out with a lower compu-
tational cost due to the specific configurations of �Ξ . In
particular, based on the analysis proposed in Sect. 6.2, we
can perform an exhaustive search of the transitive patterns
formalized by Eqs. (81–83), which leads to the procedure
described inAlgorithm3. This transitive reduction procedure
is reversible, and the reverse procedure described in Algo-
rithm 4 allows to build the graph of valued shapes GΞ from
the tree of valued shapes TΞ . These procedures correspond
to the red arrows in Fig. 17.

Property 150 The tree of valued shapesTΞ can be built from
the graph of valued shapes GΞ by Algorithm 3 with a time
cost O(n · δ).

Property 151 The graph of valued shapes GΞ can be built
from the tree of valued shapesTΞ by Algorithm 4 with a time
cost O(n · δ).

8.5 Construction of the Tree of Shapes and the
Topological Tree of Shapes

The topological tree of shapes TH gathers in H the nodes
of the complete tree of shapes TΘ as equivalence classes,
and directly inherits its relation �H from �Θ . In practice, it
is convenient to build TH from both TΘ (in order to build
the edges) and GΞ (in order to characterize the equivalence
classes of nodes of Θ ). Indeed, the construction of H can
be performed from Proposition 124 by scanning the struc-
ture of ad hoc nodes in GΞ . This procedure is described in
Algorithm 5.

Property 152 The topological tree of shapesTH can be built
from the complete tree of shapes TΘ and the graph of valued
shapes GΞ by Algorithm 5 with a time cost O(n · ∂−(ψ)).

Remark 153 IfU = Z
2, the notion of strongly deletable set is

equivalent to the notion of simple set [38]. This implies that
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Algorithm 3: From (Ξ ,�Ξ ) to (Ξ ,�Ξ )

Input: (Ξ ,�Ξ ) = (Ξ , ϕ,ψ)

Output: �Ξ

1 �Ξ := ∅
2 foreach P ∈ Ξ do
3 if ϕ(P) exists then
4 if ψ(P) does not exist then
5 �Ξ ← (P, ϕ(P))

6 else
7 if ϕ(P) = ∞ then
8 �Ξ ← (P, ψ(P))

9 else
10 if ψ(P) = [ϕ ◦ ψ ◦ ϕ](P) then
11 �Ξ ← (P, ϕ(P))

12 else
13 �Ξ ← (P, ψ(P))

Algorithm 4: From (Ξ ,�Ξ ) to (Ξ ,�Ξ )

Input: (Ξ ,�Ξ )

Output: �Ξ = (ϕ, ψ)

1 �Ξ := �Ξ

2 L := {∞}
3 while L 
= ∅ do
4 L → P = (X , v)

5 if P 
= ∞ then
6 Q = (Y , w) := ζ�Ξ

(P)

7 if v = w, i.e. (P, Q) ∈ ψ then
8 �Ξ ← (P, [ϕ ◦ ψ ◦ ψ](P)) ∈ ϕ

9 else
10 if ψ(Q) exists then
11 �Ξ ← (P, [ϕ ◦ ψ ◦ ϕ](P)) ∈ ψ

12 foreach R ∈ Z�Ξ
(P) do

13 L ← R

if X \ Y is strongly deletable, then X and Y have the same
homotopy type and Y is obtained from X by a decreasing
homotopic transformation defined as the iterative removal of
a sequence of simple points [4].

This remark straightforwardly leads to the following prop-
erty.

Property 154 If U = Z
2, then the topological tree of shapes

TH can be built from the complete tree of shapes TΘ with a
time cost O(n).

The tree of shapes TΘτ = (Θτ ,�Θτ ) is composed by
nodes of Θτ which are defined as the topological closing of
nodes of Θ . Equivalently, the tree of shapes can be defined
as TT = (T ,�T ). The equivalence classes of T can be com-
puted from the complete tree of shapes TΘ , and the tree of

Algorithm 5: From (Θ,�Θ ) and (Ξ ,�Ξ ) to (H ,�H )

Input: (Θ , �Θ ) and (Ξ ,�Ξ )

Output: (H ,�H )

1 H := ∅
2 �H := ∅
3 L := {(U,∅)}
4 while L 
= ∅ do
5 L → (X , J )

6 P := (X , ω
Θ

X )

7 K := {X}
8 b := true
9 while b do

10 C := Z�Θ
(X)

11 if |C| = 1 then
12 C → Y

13 Q := (Y , α
Θ

Y )

14 if ϕ(Ψ (P)) = Ψ (Q) and |Ψ (P)| = |Ψ (Q)| then
15 K ← Y
16 P := Q

17 else
18 C ← Y
19 b := f alse

20 else
21 b := f alse

22 foreach Z ∈ C do
23 L ← (Z , K )

24 H ← K
25 if J 
= ∅ then
26 �H ← (K , J )

shapes directly inherits its relation �T from �Θ . The corre-
sponding procedure is described in Algorithm 6.

Property 155 The tree of shapes TΘτ can be built from the
complete tree of shapes TΘ by Algorithm 5 with a time cost
O(n).

Remark 156 The procedures for building the tree of shapes
and the topological tree of shapes both rely on the same
algorithmic scheme. They differ only with regard to the con-
sidered equivalence relation and the way it leads to gather
nodes of Θ as equivalence classes either in T or H (see line
14 in Algorithms 5–6).

8.6 Construction of the New Hierarchies from the
Component-Trees and Adjacency Trees

Based on the above algorithmic discussion, it appears that
we can build the graph of valued shapes, the tree of valued
shapes, the complete tree of shapes and the topological tree
of shapes from the (valued)min- andmax-trees and the forest
FΞ which gathers the adjacency-trees (Proposition 87). The
corresponding workflow is illustrated by Fig. 17b.
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Algorithm 6: From (Θ,�Θ ) to (Θτ ,�Θτ )

Input: (Θ ,�Θ )

Output: (Θτ ,�Θτ ) modeled as (T ,�T )

1 T := ∅
2 �T := ∅
3 L := {(U,∅)}
4 while L 
= ∅ do
5 Let L → (X , J )

6 P := (X , ω
Θ

X )

7 K := {X}
8 b := true
9 while b do

10 C := Z�Θ
(X)

11 if |C| = 1 then
12 C → Y

13 Q := (Y , α
Θ

Y )

14 if ρ
Θ

X = ρ
Θ

Y then
15 K ← Y
16 P := Q

17 else
18 C ← Y
19 b := f alse

20 else
21 b := f alse

22 foreach Z ∈ C do
23 L ← (Z , K )

24 T ← K
25 if J 
= ∅ then
26 �T ← (K , J )

It is worthmentioning that this algorithmic scheme, which
goes from the min- and max-trees to the topological tree of
shapes, is somehow similar to the algorithmic scheme pro-
posed in [27] for building the tree of shapes. Basically, in
both cases, the initial data are the nodes of two trees (the
min- and max-trees), which are then gathered in a same tree.
In [27], the nodes of the component-trees are explicitly hole-
filled. In our approach, this hole-filling (formalized by the τ

function) is not explicitly carried out and the tree of shapes
may be obtained, similarly to the topological tree of shapes,
via the definition of a decreasing homeomorphism acting on
the complete tree of shapes.

Property 157 The graph of valued shapes, the tree of valued
shapes, the complete tree of shapes and the topological tree
of shapes can be built from F via its (valued) min- and max-
trees and its adjacency trees with a time cost O(n.(log n +
Δ + ∂−(ψ))).

Remark 158 In most cases, we have

log n + ∂−(ψ) & Δ (110)

and then the actual time cost for building the new hierarchies
isO(n ·Δ), i.e. it is simultaneously linear with respect to the
size of the support S of the image and the size of the set of
values V.

8.7 Construction of the New Hierarchies from the
Tree of Shapes

We now describe an alternative way of building the graph of
valued shapes, the tree of valued shapes, the complete tree
of shapes and the topological tree of shapes from the tree of
shapes. The correspondingworkflow is illustrated in Fig. 17c.

This strategy relies on two structures, denoted as TΞτ and
GΞτ . The first one, TΞτ is called the valued tree of shapes. It
is a valued version of the tree of shapes, defined as follows.

We set Ξτ as

Ξτ =
⋃

X∈Θτ

{X} × I
Θτ

X (111)

and the relation �Ξτ on Ξτ by

∀v ∈ I
Θτ

X \ {ωΘτ

X }, (X , σ��(v)) �Ξτ (X , v) (112)

(X , α
Θτ

X ) �Ξτ (ζ�
Θτ

(X), ω
Θτ

ζ�
Θτ

(X))

(113)

It is plain that TΞτ is built from TΘτ by Algorithm 1.
Moreover, we have the following property.

Property 159 We have

TΞτ ≡ TΞ (114)

The second structure, GΞτ = (Ξτ ,�Ξτ ) is obtained by
applying Algorithm 4 with TΞτ as input. By construction,
we then have the following property.

Property 160 We have

GΞτ ≡ GΞ (115)

Nevertheless, at this stage, having access to GΞτ is not
equivalent with having access to GΞ . In particular, for any
Pτ = (X τ , v) ∈ Ξτ , the node P = (X , v) ∈ Ξ in bijection
with Pτ (with X τ = τ(X)) is not yet characterized since X
is unknown.

In a first time, we can check for two nodes P =
(X , v), Q = (W , w) ∈ Ξ if X = W by observing the nodes
Pτ = (X τ , v) ∈ Ξτ and Qτ = (W τ , w) ∈ Ξτ . This can be
done by the following formula:

X = W ⇐⇒ (Xτ = W τ )∧
(

⋃

(Y ,v)∈Ψ (P)

{Y τ } =
⋃

(Z ,w)∈Ψ (Q)

{Zτ }
)

(116)
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The equalities of the right hand side term can be assessed
easily since Ξτ has been built from Θτ .

For each identified node X ∈ Θ , the external proper part

ρ
Θ

X of X can be defined from the proper part ρ
Θτ

X available
in the tree of shapes TΘτ (Proposition 75) and the proper

part ρ
Θ��
X can be obtained from the external proper part ρ

Θ

X
(Proposition 100).

Property 161 The graph of valued shapes, the tree of valued
shapes, the complete tree of shapes and the topological tree
of shapes can be built from F via its tree of shapes with a
time cost O(n.(log n + δ + ∂−(ψ))).

Remark 162 In many cases, we have

log n ' ∂−(ψ) ' δ (117)

and then the actual time cost for building the new hierarchies
isO(n · δ), i.e. it is simultaneously linear with respect to the
size of the support S and the dynamics of the image. Building
the new hierarchies from the tree of shapes is, in particular,
less costly than from the component-trees and adjacency trees
(Sect. 8.6).

9 Discussion

When starting this work, we initially designed the notion
of a graph of valued shapes by gathering the min- / max-
trees and adjacency trees with a precise idea in mind.
Indeed, our initial purpose was to develop adequate tools
that would allow us to carry out the topological analysis of
objects in non-binary paradigms (e.g. for grey-level images
or fuzzymodeling), especially for understanding the topolog-
ical alterations induced on numerical images by geometric
transformations [37].

In this section we provide preliminary elements of dis-
cussion related to the links that exist between the proposed
hierarchical structures and other topological invariants and
descriptors adapted to grey-level image analysis.

9.1 Links with the Topological Monotonic Tree

In [57], the notion of a topological monotonic tree was intro-
duced. In this article, the term “monotonic tree” actually
referred to the notion of a tree of shapes. As a consequence,
the tree proposed in that work was also a “topological tree
of shapes”, such as the topological tree of shapes (Definition
130) proposed in our work. Both trees are related but actually
distinct.

The topological monotonic tree proposed in [57] can be
seen as a compression of the usual tree of shapes. In par-
ticular, it can be defined as follows. Let �M be the relation

defined in Θτ by

X�MY ⇐⇒ ZΘτ (X) = {Y } (118)

Let ∼M be the equivalence relation obtained by reflexive-
transitive-symmetric closure of �M . We set

M = Θτ/∼M (119)

Each equivalence class of ∼M gathers the nodes of a (max-
imal) branch without bifurcation of the tree of shapes so
that the obtained tree, noted TM = (M,�M ) has the same
structure as the tree of shapes. In particular, the topological
monotonic tree TM can be built from the tree of shapes TΘτ

by applying an algorithm similar to Algorithms 5–6, by sim-
ply modifying line 14 to introduce the characterization of
Eq. (118).

By a proof similar to the proof of Proposition 144, we
have the following result.

Property 163 There is a decreasing quasi-homeomorphism
from the tree of shapesTΘτ to the topological monotonic tree
TM.

TΘτ ↘QH TM (120)

In practice, Eq. (118) could be alternatively defined on
the nodes of Θ , i.e. for the complete tree of shapes, then
leading to an equivalence relation ∼M on Θ . In addition,
the equivalence relation∼H is a subrelation of∼M , and it is
then possible to define the equivalence relation∼M on H . In
these two cases, the topological monotonic tree TM can then
also be built from the complete tree of shapes TΞ and from
the topological tree of shapes TH by the same algorithm as
Algorithms 5–6.

By a proof similar to the proof of Proposition 144, we
have the following result.

Property 164 There is a decreasing quasi-homeomorphism
from the topological tree of shapes TH to the topological
monotonic tree TM.

TH ↘QH TM (121)

9.2 Links with Persistent Homology

Persistent homology [13, 14] aims at analysing the evolution
of the homology groups of an object K with respect to a
given filtration. In general, the analysis takes place in R

d+1

(d ≥ 1), endowedwith its canonical basis {ei }di=0. The object
K is defined as a subset of U = R

d , generated by {ei }ni=1,
whereas the filtration is defined in K = R generated by {e0}
so that R

n+1 = U ⊕ K. In general, the result Kt ∈ U of the
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filtration ofK at value t ∈ K, is defined asKt = K∩ (t+U)

with t = t · e0.
In particular,Kt is topologically described by its d homol-

ogy groups 〈Hi (Kt )〉d−1
i=0 . For each 0 ≤ i ≤ d − 1, the

evolution of the homology group Hi (Kt ) with respect to
t ∈ (−∞,+∞) is then assessed.

In the context of grey-level imaging, the object K corre-
sponds to the image F and we set K = V. In particular, for
any v ∈ V each Kv corresponds to Λ◦

v .
The first homology group H0(Λ

◦
v) corresponds to the

connected components of Λ◦
v , namely Π [Λ◦

v], whereas the
dth homology group Hd−1(Λ

◦
v) corresponds to the “holes”

of Λ◦
v , i.e. the connected components of Λ•

v except the
unbounded one, namely Π [Λ•

v] \ {Uv}. When d > 2, there
exist other homology groupsHi (Λ

◦
v) (0 < i < d) which are

not captured by the notion of connectedness (e.g. the notion
of tunnel that corresponds to the second homology group for
d = 3). We focus here only on the first and dth homology
groups.

When considering two successive values u, v ∈ V (i.e.
v = σ (u)), we say that an element E of a homology group
persists if it exists both in Hi (Λ

◦
u) and Hi (Λ

◦
v).

In the case of the first (resp. dth) homology group,
this means that a connected component in Π [Λ◦

u] (resp.
Π [Λ•

u] \ {Uu}) still exists in Π [Λ◦
v] (resp. Π [Λ•

v] \ {Uv})
possibly with evolution of its geometry, but without being
split or merged with other connected components. For each
E , we then observe its evolution, from its “birth” (by cre-
ation, splitting, merging) to its “death” (by deletion, splitting,
merging) along the values of K. In particular, we store the
values bE , dE ∈ K of birth and death of E . The homology
persistence diagram is formed by all the elements E for all
the homology groups, endowed with their values bE , dE .

The max-tree TΘ◦ (resp. the min-tree TΘ•) of F allows
to model the part of the homology persistence diagram
corresponding to the first (resp. dth) homology group. In
particular, the following property formalizes this fact.

Property 165 Let F be a grey-level image. Let TΘ◦ and TΘ•
be the max- and min-tree of F, respectively and let �Θ◦
and�Θ• be the order relations associated to �Θ◦ and �Θ• ,
respectively.

– The part of the persistence diagram of F corresponding
to the first homology group is isomorphic with (Θ◦, �̃Θ◦)

where �̃Θ◦ ∈ M(�Θ◦) is the Hasse function of a maxi-
mal piecewise total suborder of�Θ◦ (see Definition 13).

– The part of the persistence diagram of F corresponding
to the dth homology group is isomorphic with (Θ•, �̃Θ•)

where �̃Θ• ∈ M((�Θ•) is the Hasse function of a
maximal piecewise total suborder of �Θ• . (In practice,

(Θ•, �̃Θ•) contains an extra element that corresponds

to the unbounded connected components of the back-
ground.)

More precisely, each connected set that persists in the dia-
gram corresponds to a degenerate tree of the degenerate
forest (Θ◦, �̃Θ◦) or (Θ•, �̃Θ•).

Note that the min- and max-trees were already used years
ago as topological invariants for grey-level images (see e.g.
[34]), whereas the links between homology persistence and
mathematical morphology structures continue to be an active
research field [5].

There exist, in general, many maximal piecewise total
suborders for a same hierarchical order (Proposition 15).
This emphasizes that the way of defining the persistence of
the elements of the first and dth homology groups is not
unique. Indeed, when many connected components of the
object (resp. the complementary of the objects) are merged,
we consider arbitrarily that one of them persists, whereas the
others die.

Modeling the first and dth homology groups of a grey-
level image via its max- and min-trees is then relevant, since
it provides the whole information required to handle these
homology groups, plus additional information about:

– the embedding of the elements of the homology groups
in U;

– the information about the elements that are split and
merged.

In this context, considering the graph of valued shapes
also allows to have access to complementary information
regarding the adjacency links between the elements of the
first and dth homology groups, an important information that
is not natively providedby the standardpersistencehomology
diagrams.

10 Conclusion

In this work, we have proposed new hierarchical structures
in the framework of mathematical morphology. These new
trees and graph allow to establish a continuum between usual
morphological hierarchies, in particular the component-tree
and the tree of shapes.We also described all these former and
new hierarchical structures in a unified framework.

We proposed some algorithmic solutions for building the
new hierarchies. This is a preliminary study, and we will
investigate some optimized ways for storing them with a
lower space cost, but also to construct themwith a lower time
cost. Indeed, at this stage, we built upon the algorithms of
other tree construction, whereas such step may be avoided.
We could also investigate some distributed algorithms, for
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instance by finding inspiration in related works dedicated to
the construction of component-trees of very large images (in
space or spectrum) [15, 30] and out-of-core approaches for
tree structure computation [12].

By side effect, we will also aim to propose some efficient
implementations for building and using these new structures.
Currently, we developed a first prototype based onHigra [42]
and additionally on standard graph manipulation libraries. A
full integration in Higra in order to popularize and facilitate
the use of these structures is a short term perspective.

We will also develop some new image processing tools
based on the proposed hierarchical morphologies, with a
specific focus on image simplification / compression and
topological noise removal.

In Sect. 9, we started a discussion about the perspectives
offered by these new hierarchies with regard to topology. We
will deepen the investigations on the links that may be estab-
lished with persistence homology. In addition, other research
trails may be considered. On the one hand, we will study the
links thatmay exist between the notions of topological tree of
shapes and the topology-preserving transformations it allows
to define, with other paradigms of topology-preserving trans-
formations developed for grey-level or fuzzy images [3, 11,
51]. On the other hand, we will study how some topology-
preserving simplifications of grey-level images could allow
to use some vectorized versions of images [18], thus opening
theway to the extension of paradigms of topology-preserving
transformation relying on polygonal representations of digi-
tal binary objects [33].
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A Technical Results on Tree (quasi-)
Homeomorphisms

A.1 (Quasi-)homeomorphisms and Suborders

Let A be a set and �A a hierarchical order on A.
Let�0

A and�1
A be two (piecewise hierarchical) suborders

of �A with �0
A ↘RT �0

A and �1
A ↘RT �1

A such that

�0
A ∪ �1

A = � (122)

�0
A ∩ �1

A = ∅ (123)

ζ�0
A
⊆ ζ

Ê�A
(124)

We also consider the following condition

�A
∨

A ∈
�0

A�
A (125)

that may be fulfilled or not. Eq. (124) means that �0
A is a

suborder of the induced piecewise total suborder Á�A of �A.
Eq. (125) means that the maximum of �A is a minimal ele-
ment of �0

A.

Remark 166 From Eq. (124), �0
A is a piecewise total order,

i.e. (A,�0
A) is a degenerate forest.

Let αA : ��0
A A → ��0

A A be the bijective application

defined for all x ∈ ��0
A A by αA(x) = ∨�0

A x↑�0
A
.

Let ̂A = ��0
A A.

Let �
̂A
be the relation on ̂A defined by

x �
̂A
y ⇐⇒ αA(x) �A y (126)

Property 167 (̂A,�
̂A
) is a tree.

Lemma 168 If the hypotheses of Eqs. (122–125) hold, then
we have

(A,�A) ↘H (̂A,�
̂A
) (127)

Proof The proof is by induction on p = |�0
A| ∈ N.

Initialization – Let p = 0, i.e. �0
A = ∅. The relation �0

A
is = on A and it satisfies Eqs. (124–125). We have ̂A =
��0

A A = ��0
A A = A. The application αA : A → A is idA.

From Eq. (126) we have �
̂A
= �1

A. From Eq. (122) we have

�1
A = �A. Then we have �

̂A
= �A. It comes (A,�A) =

(̂A,�
̂A
) and thus (A,�A) ↘H (̂A,�

̂A
).
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Induction – Let p > 0. We suppose that the property
holds for any 0 ≤ k ≤ p − 1. We have �0

A 
= ∅. Then
there exists (a, b) ∈ A × A such that a �0

A b. We choose

a ∈ A accordingly. We have b = ζ�0
A
(a) /∈ ��0

A A. Two

cases can occur: (C1) b /∈ ��0
A A or (C2) b ∈ ��0

A A. If
(C1) there exists c ∈ A such that c = ζ�0

A
(b). If (C2), from

Eq. (125) we have b 
= ∨�A A. Then there exists c ∈ A
such that c = ζ�A

(b). It follows from Eqs. (122–123) that
c = ζ�1

A
(b).

Let B = A \ {b}. From Eq. (124), we have Z�(b) = {a}.
We define the relation�B on B as follows: ζ�B

(x) = ζ�A
(x)

for any x ∈ B\{a,
∨�A A} and ζ�B

(a) = ζ�A
(ζ�A

(a)) =
c. From Definition 21, we have (A,�A) ↘EH (B,�B). In
particular (B,�B) is a tree. We note �B the hierarchical
order defined as the reflexive-transitive closure of �B .

The relation �B can be subdivided into �0
B and �1

B
defined as follows: (C1) ζ�0

B
(a) = ζ�0

A
(ζ�0

A
(a)) or (C2)

ζ�1
B
(a) = ζ�1

A
(ζ�0

A
(a)), and for all x ∈ B \ {a,

∨�A A},
if x ∈ ��0

A A then ζ�1
B
(x) = ζ�1

A
(x) and if x /∈ ��0

A A

then ζ�0
B
(x) = ζ�0

A
(x). By definition, we have |�0

B | =
|�0

A| − 1 = p − 1 and |�1
B | = |�1

A|. We also have
�0

B ∪ �1
B = �B and �0

B ∩ �1
B= ∅.

The order relation �0
B induced by the reflexive-transitive

closure of�0
B is a suborder of the induced piecewise suborder

Á�B of �B and the maximum of �B is a minimal element of
�0

B .

Let αB : ��0
B B → ��0

B B be the bijective application

defined for all x ∈ ��0
B B by αB(x) = ∨�0

B x↑�0
B
. Since

b /∈ ��0
A A we have

��0
B B = ��0

A A. Let z = ∧�0
A a↓�0

A
.

For all x ∈ ��0
B B \ {z}, we have αB(x) = αA(x), whereas

(C1) αB(z) = αA(z) or (C2) αB(z) = a.

We note ̂B = ��0
B B = ̂A. Let �

̂B
be the relation on

̂B defined by (x �
̂B

y) ⇔ (αB(x) �1
B y). Let x, y ∈ ̂B.

If a /∈ x↑�0
B
, then we have x �

̂B
y iff x �

̂A
y. Let us now

suppose that a ∈ x↑�0
B
. If (C1), we have αA(x) = αB(x) and

then x �
̂B

y iff x �
̂A
y. If (C2), we have αA(x) = b and

αB(x) = a. By construction, we have b �1
A y iff a �1

B y.
Thus, we have x �

̂B
y iff x �

̂A
y. As a consequence, we

have �
̂B
= �

̂A
.

From the induction hypothesis, we have (B,�B) ↘H

(̂B,�
̂B
). But we have (̂B,�

̂B
) = (̂A,�

̂A
) and then

(B,�B) ↘H (̂A,�
̂A
). Since we have (A,�) ↘EH

(B,�B) it follows that (A,�) ↘H (̂A,�
̂A
). �

Lemma 169 If the hypotheses of Eqs. (122–124) hold, then
we have

(A,�A) ↘QH (̂A,�
̂A
) (128)

Proof If
∨�A A ∈ ��0

A A, then Eq. (125) holds and from
Lemma 168, we have (A,�A) ↘H (̂A,�

̂A
) and thus

(A,�A) ↘QH (̂A,�
̂A
).

Let us now suppose that
∨�A A /∈ ��0

A A. Let a =
∧�A (

∨�A A)
↓
�0

A
. Let A0 = a↑�A0

and �A0
the restric-

tion of �A to A0. Let A1 = (A\A0) ∪ {a} and �A1
the

restriction of �A to A1. Both (A0,�A0
) and (A1,�A1

)

subdivide (A,�A). More precisely, we have A0 ∪ A1 =
A and A0 ∩ A1 = {a}, whereas �A0

∪ �A1
= �A

and �A0
∩ �A1

= ∅. On the one hand, (A0,�A0
) is

a degenerate tree and we trivially have (A0,�A0
) ↘H

({a,
∨�A A}, {(a,

∨�A A)}). On the other hand, (A1,�A1
)

is a tree and it satisfies the hypotheses of Eqs. (122–125)
(since a ∈ A1). From Lemma 168, we have (A1,�A1

) ↘H

(̂A1,�
̂A1

) and it is plain that ̂A1 = ̂A and �A1
= �A. By

merging (̂A1,�
̂A1

) and ({a,
∨�A A}, {(a,

∨�A A)}), and by
setting ε = ∨�A A it comes (A,�A) ↘H (̂A ∪ {ε},�

̂A

∪ {(∧�A (
∨�A A)

↓
�0

A
, ε)}) and the result follows. �

A.2 (Quasi-)homeomorphisms and Equivalences

Let A be a set and �A a hierarchical order on A.
Let ∼ be an equivalence relation on A such that

∀K ∈ A/∼, (K ,�K ) is a totally ordered set (129)

∀K ∈ A/∼, K = �

�K
∧

K ,

�K
∨

K ��A
(130)

Let �0
A =

⋃

K∈A/∼ �K with �0
A ↘RT �0

A.

Remark 170 From Eq. (129), �0
A is a piecewise total order,

i.e. (A,�0
A) is a degenerate forest.

We also assume that

ζ�0
A
⊆ ζ

Ê�A
(131)

and we consider the following condition

{

�
∨

A
}

∈ A/∼ (132)

that may be fulfilled or not.
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Let �A/∼ be the relation on A/∼ defined by

J �A/∼ K ⇐⇒
�0

A
∧

J �A

�0
A

∧

K (133)

Property 171 (A/∼,�A/∼) is a tree.

The following two lemmae are direct corollaries of Lem-
mae 168 and 169, respectively.

Lemma 172 If the hypotheses of Eqs. (129–132) hold, then
we have

(A,�) ↘H (A/∼,�A/∼) (134)

Lemma 173 If the hypotheses of Eqs. (129–131) hold, then
we have

(A,�) ↘QH (A/∼,�A/∼) (135)

B Proofs of Propositions

Proof or Proposition 52 Let π
Ξ�

Θ� : Ξ� → Θ� be the sur-

jective application defined by π
Ξ�

Θ� ((X , v)) = X . Let ∼Θ�

be the equivalence relation on Ξ� defined by (P∼Θ�Q) ⇔
(π

Ξ�

Θ� (P) = π
Ξ�

Θ� (Q)). Let K ∈ Ξ�/∼Θ� . There exists

X ∈ Θ� such that K = �(X , ω
Θ�

X ), (X , α
Θ�

X )��
Ξ�
. In

particular, the hypotheses of Eqs. (129–130) are satisfied.
We have

∨�
Ξ�

Ξ� = ∞. For any P = (X , v) ∈ Ξ�,
P∼Θ�∞ implies X = U, and thus P = ∞. Then, we
have [∞]∼Θ� = {∞}, which satisfies Eq. (132). Let �0

Ξ�=
⋃

K∈Ξ�/∼Θ�
�K where �K is the restriction of �Ξ� to K .

Let P = (X , v), Q = (Y , w) ∈ Ξ�. Let us suppose that
P �0

Ξ� Q. From the definition of �0
Ξ� , we have X = Y , and

it follows that Z�
Ξ�

(Q) = {P}, and then (P, Q) ∈ Á�Ξ� .
We then have ζ�0

Ξ�
⊆ ζ

Ê�Ξ�
, which satisfies Eq. (131). The

result follows from Lemma 172. �

Proof of Proposition 98 Let P = (X , v), Q = (Y , w) ∈ Ξ .
Let 〈Pi 〉ti=1 (t > 1) be a sequence of elements ofΞ such that
P1 = P , Pt = Q and for all 1 ≤ i < t, Pi = (Xi , vi ) �Ξ

Pi+1 = (Xi+1, vi+1). Let us suppose that for all 1 ≤ i < t ,
we have Pi �ϕ Pi+1. From Eq. (74), it comes that X ⊂ Y or
(X = Y and w <�� v). Let us now suppose that there exists
1 ≤ i < t such that Pi �ψ Pi+1. For all 1 ≤ i < t we have
τ(Xi ) ⊆ τ(Xi+1). But since Pi �ψ Pi+1, it comes from
Eqs. (47) and (67) that τ(Xi ) ⊂ τ(Xi+1) and then X ⊂ Y .
The acyclicity of (Ξ ,�Ξ ) follows. �

Proof of Proposition 103 Let P = (X , v) ∈ Ξ be such that
ϕ(P) and ψ(P) exist.

Case 1: ϕ(P) = (U,⊥) = ∞ and ψ(P) = (Uv, v). We
have ϕΔ−2((Uv, v)) = (U,�) = ∞ = ϕ(P). Thus Eq. (83)
holds.
Case 2: ϕ(P) = (U,⊥) andψ(P) 
= (Uv, v). Fromψ(P) 
=
(Uv, v) it comes that [ψ ◦ψ](P) exists.We have v = σ ◦(⊥).
It follows that [ϕ◦ψ◦](P) = (U,⊥) = ϕ(P). Thus Eq. (82)
holds.
Case 3: ϕ(P) = (U,�). Then, we have ��(P) = •. By
hypothesis,ψ(P) exists. Since ��(P) = •,ψ(P) is bounded.
It follows that [ψ ◦ ψ](P) exists. We have v = σ •(�). It
follows that [ϕ◦ψ◦ψ](P) = (U,�) = ϕ(P). Thus Eq. (82)
holds.
Case 4: ϕ(P) 
= ∞ and ψ(P) = (Uv, v). Then we have
��(P) = ◦. We have [ψ ◦ ϕ](P) = (Uw,w) with (Uv, v) =
ϕ((Uw,w)). It follows that [ϕ ◦ ψ ◦ ϕ](P) = (Uv, v) =
ψ(P). Thus Eq. (81) holds.
Case 5: ϕ(P) 
= ∞ and ψ(P) 
= (Uv, v). Let us sup-
pose that Eq. (82) does not hold. Let P0 = (X0, u) = P ,
P1 = (X1, u) = ψ(P), P2 = (X2, u) = [ψ ◦ ψ(P)].
Let Q0 = (Y0, v) = ϕ(P) = ϕ(P0), Q1 = (Y1, v) =
[ψ ◦ ϕ](P) = ψ(Q0), Q2 = (Y2, v) = [ϕ ◦ ψ ◦ ψ](P) =
ϕ(P2). The set X0 ⊂ U is connected and externally bounded
by the Jordan manifold J+(X0). The set X1 ⊂ U is con-
nected, externally bounded by the Jordan manifold J+(X1)

and internally bounded by (at least) J−(X1) = J+(X0).
The set X2 ⊂ U is connected, externally bounded by the Jor-
dan manifold J+(X2) and internally bounded by (at least)
J−(X2) = J+(X1). The set Y0 ⊂ U is connected and
externally bounded by the Jordan manifold J+(Y0). The
set Y1 ⊂ U is connected, externally bounded by the Jor-
dan manifold J+(Y1) and internally bounded by (at least)
J−(Y1) = J+(Y0). The set Y2 ⊂ U is connected and
externally bounded by the Jordan manifold J+(Y2). Since
Eq. (82) does not hold, we have ϕ(P) 
= [ϕ ◦ψ ◦ψ](P) i.e.
Q0 
= Q2 i.e. (Y0, u) 
= (Y2, u). It follows that Y0 
= Y2.
Since Q0 = ϕ(P0) and Q2 = ϕ(P2), we have X0 ⊆ Y0
and X2 ⊆ Y2. From X0 ⊆ Y0, it comes that J+(Y0) ⊆
U
+(J+(X0)) = U

+(J−(X1)). From Y0 
= Y2, it comes
that X0 and X2 are not connected in Y0. It follows that
J+(Y0) ⊆ Ů

−
(J−(X2)) = Ů

−
(J+(X1)). Since we have

J+(Y0) = J−(Y1), by merging the two results, we have

J−(Y1) ⊆ U
+(J−(X1)) ∩ Ů

−
(J+(X1)). It follows that

Y1 ∩ X1 
= ∅, and then Y1 ⊆ X1. This implies ϕ(Q1) = P1,
i.e. [ϕ ◦ ψ ◦ ϕ](P) = ψ(P), hence Eq. (81) holds. �

Proof or Proposition 106 From Proposition 98, (Ξ ,�Ξ ) is
acyclic. Then the reflexive-transitive closure of �Ξ , namely
�Ξ is an order on Ξ . For any P ∈ Ξ \{∞}, ϕ(P) or ψ(P)

exist(s) and from Proposition 105 there is then a unique Q ∈
Ξ such that P �Ξ Q. It follows that (Ξ ,�Ξ ) is a tree. �

Proof or Proposition 118 Let π
Ξ

Θ : Ξ → Θ be the sur-

jective application defined by π
Ξ

Θ ((X , v)) = X . Let ∼Θ
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be the equivalence relation on Ξ defined by (P∼Θ Q) ⇔
(π

Ξ

Θ (P) = π
Ξ

Θ (Q)). Let K ∈ Ξ/∼Θ . There exists X ∈
Θ such that K = �(X , ω

Θ

X ), (X , α
Θ

X )��Ξ
. In particular,

the hypotheses of Eqs. (129–130) are satisfied. We have
∨�Ξ Ξ = ∞. For any P = (X , v) ∈ Ξ , P∼Θ∞ implies
X = U, and thus P = ∞. Then, we have [∞]∼Θ = {∞},
which satisfies Eq. (132). Let �0

Ξ= ⋃

K∈Ξ /∼Θ
�K where

�K is the restriction of �Ξ to K . Let P = (X , v), Q =
(Y , w) ∈ Ξ . Let us suppose that P �0

Ξ Q. From the

definition of �0
Ξ , we have X = Y , and it follows that

Z�Ξ
(Q) = {P}, and then (P, Q) ∈ Á�Ξ . We then have

ζ�0
Ξ

⊆ ζ
Ê�Ξ

, which satisfies Eq. (131). The result follows

from Lemma 172. �
Proof or Proposition 124 Let X = π

Ξ

Θ (P). By definition, X

is connected, i.e.Π [X ] = {X}. The setΠ [X ] is composed by
one infinite set X0 = U\τ(X) and k ≥ 0 set(s) Xi (1 ≤ i ≤
k) such that {Xi }ki=1 = τ(π

Ξ

Θ (Ψ (P))). Let Y = π
Ξ

Θ (ϕ(P)).

By definition, Y is connected, i.e.Π [Y ] = {Y }. The setΠ [Y ]
is composed by one infinite setY0 = U\τ(Y ) and � ≥ 0 set(s)
Y j (1 ≤ j ≤ �) such that {Y j }�j=1 = τ(π

Ξ

Θ (Ψ (ϕ(P)))). Let
D = Y \ X .
“⇒” side of the proof. Let us suppose that ϕ(P) ↘D P .
Then,we haveΦ(ϕ(P)) = {P}. Since D is deletablewe have
k = � and (up to reindexing), for any i ∈ �0, k�, Yi ⊆ Xi .
For each i ∈ �0, k�, there exists ̂Pi = (̂Xi , v) ∈ Ψ (P) such
that Xi = τ(̂Xi ) and ̂Qi = (̂Yi , w) ∈ Ψ (ϕ(P)) such that
Yi = τ(̂Yi ). We have Yi ⊆ Xi and then τ(̂Yi ) ⊆ τ(̂Xi ). We
set Di = D ∩ ̂Xi . We have τ(̂Xi\Di ) = τ(̂Xi )\Di = τ(̂Yi ).
It follows that ̂Yi ⊆ ̂Xi , and ϕ is then bijective between
Ψ (ϕ(P)) and Ψ (P).
“⇐” side of the proof. Let us suppose that ϕ is bijective
between Φ(ϕ(P)) and {ϕ(P)}. Then both P = ϕ(P) \ D
and ϕ(P) are connected and P ⊂ ϕ(P). Let us suppose that
ϕ is bijective between Ψ (ϕ(P)) and Ψ (P). The function
τ ◦ π

Ξ

Θ is a bijection between Ψ (P) (resp. Ψ (ϕ(P))) and

{Xi }ki=1 (resp. {Y j }�j=1). It follows that ϕ(P) ↘D P . �
Proof or Proposition 137 Let K ∈ H . Let �K be the restric-
tion of �Θ to K . Let X ,Y ∈ K . From the definition of ∼H ,

there exists (up to switching X and Y ) a sequence 〈Xi 〉ti=1
(t ≥ 1) such that X1 = X , Xt = Y , Xi ∈ Θ for all
1 ≤ i ≤ t , and Xi ↘D Xi+1 but also Xi+1 �Θ Xi for
all 1 ≤ i < t . It follows that Y ⊆ X and then Y �Θ X . In
particular, Eq. (129) is satisfied. By considering the sequence
〈Xi 〉ti=1 such as defined above with X1 = ∨�Θ K and

Xt = ∧�Θ K , it follows that Eq. (130) is satisfied. We have
∨�Θ Θ = U. For any X ∈ Θ , X∼HU implies X = U.
Then, we have [U]∼H = {U}, which satisfies Eq. (132). Let
�0

Θ= ⋃

K∈Θ/∼H
�K where �K is the restriction of �Θ to

K . Let X ,Y ∈ Θ . Let us suppose that X �0
Θ Y . From the

definition of �0
Θ , we have Y ↘D X , and it follows that

Z�Θ
(Y ) = {X}, and then (X ,Y ) ∈ Á�Θ . We then have

ζ�0
Θ

⊆ ζ
Ê�Θ

, which satisfies Eq. (131). The result follows

from Lemma 172. �

Proof or Proposition 144 Let K ∈ T . Let �K be the restric-
tion of �Θ to T . Let X ,Y ∈ T . We have X ∩ Y 
= ∅ and

��(X) = ��(Y ). It follows that X ,Y ∈ Θ�� and thus, up to
switching X and Y , we have X ⊆ Y and then X �Θ Y . It
follows that Eq. (129) is satisfied. More generally, for any
X ∈ �

∧�Θ K ,
∨�Θ K ��Θ

, we have ��(X) = ��(
∧�Θ K ),

and then
∧�Θ K �Θ X �Θ

∨�Θ K , i.e.
∧�Θ K ⊆ X ⊆

∨�Θ K , which implies τ(
∧�Θ K ) = τ(X) = τ(

∨�Θ K ).
It follows thatEq. (130) is satisfied.Let�0

Θ= ⋃

K∈Θ/∼T
�K

where �K is the restriction of �Θ to K . Let X ,Y ∈ Θ . Let

us suppose that Y �0
Θ X . We have (Y , α

Θ

Y ) �Ξ (X , ω
Θ

X ).

From the definition of �0
Θ , we also have τ(X) = τ(Y ). Let

us suppose that there existsW ∈ Z�Θ
(X). If X = ϕ(W ) then

we have (W , α
Θ

Y ) �Ξ (X , ω
Θ

X ). But since τ(X) = τ(Y ) we
have τ(W ) = τ(Y ) and then W = Y , or τ(W ) ⊂ τ(Y ), and
then W �Θ Y : a contradiction. If X = ψ(W ) then we have

(W , ω
Θ

X ) �Ξ (X , ω
Θ

X ). But then, ϕ((W , ω
Θ

X )) = (V , α
Θ

Y )

is such that V �Θ Y : a contradiction. Then, we have
Z�Θ

(X) = {Y }. It comes that Eq. (131) is satisfied. The
result follows from Lemma 173. �
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