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Abstract
Polarization encoded images improve on conventional intensity imaging techniques by providing access to additional param-
eters describing the vector nature of light. In a polarimetric image, each pixel is related to a 4× 1 vector named Stokes vector
(3×1 in a linear configuration, which is the framework retained afterwards). Such images comprise a valuable set of physical
information on the objects they contain, amplifying subsequently the accuracy of the analysis that can be done. A Stokes
imaging polarimeter yields data named radiance images from which Stokes vectors are reconstructed, supposed to comply
with a physical admissibility constraint. Classical estimation techniques such as pseudo-inverse approach exhibit defects,
hampering any relevant physical interpretation of the scene: (i) first, due to their sensitivity to noise and errors that may
contaminate the observed radiance images and that may then propagate to the evaluation of the Stokes vector components,
thus justifying an ad hoc a posteriori treatment of Stokes vectors; (ii) second, in not taking this physical admissibility criterion
explicitly into account. Motivated by this observation, the proposed contribution aims to provide a method of reconstruc-
tion addressing both issues, thus ensuring smoothness and spatial consistency of the reconstructed components, as well as
compliance with the prescribed physical admissibility constraint. A by-product of the algorithm is that the resulting angle of
polarization reflects more faithfully the physical properties of the materials present in the image. The mathematical formu-
lation yields a non-smooth convex optimization problem that is then converted into a min–max problem and solved by the
generic Chambolle–Pock primal-dual algorithm. Several mathematical results (such as existence/uniqueness of the minimizer
of the primal problem, existence of a saddle point to the associated Lagrangian, etc.) are supplied and highlight the well-posed
character of the modelling. Experiments demonstrate that our method provides significant improvements (i) over the least
square-basedmethod both in terms of quantitative criteria (physical admissibility constraint automatically met) and qualitative
assessment (spatial regularization/coherency), (ii) over the physical consistency of related relevant polarimetric parameters
such as the angle and degree of polarization, (iii) robustness of the method when applied on real outdoor scenes acquired in
degraded conditions (poor weather conditions, etc.).
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1 Introduction

In the following, we place ourselves in the context of linear
Stokes polarimetry. Note, however, that the modelling can
be straightforwardly extended to the full Stokes framework.
The only scientific obstacle we have identified is the compu-
tation load: indeed, some stages of the algorithm may not be
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stated in closed-form solutions; in particular, if the involved
subproblems are not separable with respect to the unknowns,
requiring thus additional iterative loops.

Besides, we would like to emphasize that the proposed
method abstracts from the type of acquisition equipment used
and is therefore intended to be applied independently of the
hardware aspect. The contribution is thusmoremethodologi-
cally oriented and not dedicated to an exhaustive comparison
of the performance of different materials. Our experimental
protocol was naturally dictated by the material resources at
our disposal at the time of writing the manuscript. It turns
out to be basic indeed (better performing cameras with spe-
cialized chip have been put on the market); we believe that
having worked within a fairly simple framework allows for
a more unbiased evaluation of the method, related more to
the quality of the mathematical model than to the material
framework used.

Polarization images, obtained from Stokes vector com-
putation, are a non-conventional modality in which each
reflected wave from a pixel is strongly linked to the physical
properties of the surface it impinges on. It is thus a richmodal-
ity that enables one to characterize an object by its reflective
properties: indeed, in such an image, each pixel encodes
information regarding the object intensity, its roughness, its
orientation and its reflection [1]. This modality is increas-
ingly used in applications ranging from indoor autonomous
navigation [2], depth map estimation [3], 3D object recon-
struction [4,5], to differentiation of healthy and unhealthy
cervical tissues in order to detect cancer at an early stage [6].
Recently, polarization imaging was exploited in autonomous
driving applications, either to enhance car detection [7], road
mapping and perception [8], or even to detect road objects in
adverse weather conditions [9]. While literature claims the
high informative character of polarization, it tends to hide
two important scientific barriers [10]: (i) first, Stokes vec-
tors are estimated from radiance measurements that might be
corrupted by noise and errors, even if current acquisition sys-
tems are calibrated to reduce their impact. These might then
be transferred to the prediction of Stokes vectors; (ii) second,
in classical reconstruction methods such as pseudo-inverse
approach, Bayesian approaches [11,12] or smoothly varying
reconstructions [13], the physical admissibility constraint is
not explicitly enforced, making erroneous any physical inter-
pretation of the content.

Thus, in this paper and in the context of automatic lin-
ear polarization image acquisition, we address the issue
of estimating the Stokes vectors with prescribed polariza-
tion physical constraints and prescribed regularity, ensuring
homogeneity of the vector constituents while preserving
sharp edges. To achieve this goal, the set of Stokes vec-
tors is viewed as the minimal argument (uniqueness holds
here) of a specifically designed cost function that encodes a
couple of geometrical criteria in addition to the data fitting

term (phrased as a classical L2-norm as will be seen below):
compliance with the prescribed physical admissibility con-
dition through inequality constraints (i.e. hard constraints)
and spatial consistency through a joint total variation term
increasing the relevancy of the resulting angle of polarization
that reflects more faithfully the physics of the scene. Inspired
by prior related works by Chambolle and Pock [14] dedi-
cated to primal-dual algorithms, the optimization problem is
then restated as a min–max one using the dual formulation
of the introduced coupled total variation. Extensive evalu-
ations are conducted on real indoor/outdoor scene possibly
degraded images, including accuracy/relevancy with respect
to two polarimetric parameters, the degree of polarization
(that ensures the physical admissibility of the estimated
Stokes vectors) and the angle of polarization (allowing the
assessment of the physical consistency of the scene), and
the suitability of joint total variation in comparison with an
uncoupling term. The estimated Stokes vectors exhibit realis-
tic physical properties andmight be used for any polarization
imaging application.

To summarize, our contributions are of different kinds:
(i) first, of a methodological nature that frees from the type
of material employed. Several criteria (compliance with the
physical admissibility constraint, spatial coherency enforce-
ment, coupling of the channels, etc.) are intertwined in the
design of a cost function whose minimal argument is the
sought set of reconstructed Stokes vectors; (ii) second, of
a more theoretical nature, by devising a constrained opti-
mization problem for which the existence/uniqueness of
a minimizer is ensured, together with a computationally
tractable algorithm including closed-form solutions at each
step. Several theoretical results are provided (existence of a
saddle point, convergence result, etc.), guaranteeing thewell-
posed character of the introduced model ; (iii) at last, of a
more applied nature, with extensive evaluations on real scene
images including accuracy with respect to classical quan-
titative metrics, qualitative assessment, comparisons with
standard strategies and conformity with physical reality.

2 Polarization Formalism andMotivations
for the Introduction of the ProposedModel

Before stating our problem, we review some pieces of polar-
ization and Stokes–Mueller formalism.

Light waves can oscillate in more than one orientation.
Polarization represents the direction of propagation of the
light wave electrical field. When the direction is linear, ellip-
tical or circular, the polarization state is said to be totally
polarized, while it is said to be partially polarized or non-
polarized when the light wave partly propagates in a random
way [15]. Polarimetric imaging consists in representing the
polarization state of the lightwave reflected according to each
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pixel of the image, which gives a cue of the material prop-
erties of the surface, its orientation and its shape. The linear
part of the reflected light can be described by measurable
parameters embedded in the so-called linear Stokes vector
S = (S0, S1, S2)T where S0 > 0 represents the total inten-
sity, S1 the amount of horizontally and vertically linearly
polarized light, and S2 the quantity of diagonally linearly
polarized light. By construction, the Stokes vector is physi-
cally admissible if and only if the two following conditions
are fulfilled:

S0 > 0 and S20 ≥ S21 + S22 . (1)

In the following, for theoretical purposes, we slightly relax
the former condition and convert it into a non-strict inequal-
ity, i.e. S0 ≥ 0 (the weakening of this condition not being
an obstacle as demonstrated in [16]). Other properties can
be derived from the Stokes vectors, the most important ones
being theDegreeOf Linear Polarization (DOLP) [17] and the
Angle Of Linear Polarization AOLP defined, respectively,
by:

DOLP =
√
S21 + S22
S0

and AOLP = 1

2
atan2 (S2, S1) .

The DOLP ∈ [0, 1] describes quantitatively the partial linear
polarization of the light beam [18]. It is up to 1 for totally
polarized light, 0 for unpolarized light, and between 0 and 1
for partially polarized light. The AOLP ∈ ] − π

2 ,+π
2 ] pro-

vides information about the object plane (surface normal)
that reflects the incoming light. In the absence of any form of
noise, the AOLP should be constant in homogeneous areas.

Polarization images encode the Stokes vectors which are
estimated from the acquired radiance images. The acquisition
device is composed of a polarizer filter oriented at an angle α

between the object and the sensor (camera) [19]. Physically,
the Stokes vector represents the reflected light from the object
that passes through the polarizer filter before reaching the
camera (cf. Fig. 1). To estimate the three components (in the
linear configuration), at least three acquisitions with three
different angles are required.

To achieve this goal, recent technologies allow for auto-
matic acquisition: the Polarcam 4D Technology polarimetric
camera is a commonly used one. Again, we highlight the
fact that the scope of the contribution is devoted to method-
ological aspects and not to an exhaustive comparison of
the performance of different materials. This camera pro-
vides simultaneously four images, respectively, obtained
with four different linear polarizers oriented at (αi )i=1,...,4 =
(0◦, 90◦, 45◦, 135◦). The polarimetric camera measures an
intensity Ip(αi ) of the scene for each angle αi . The rela-
tionship between the Stokes vector Sin simplified as S =

Fig. 1 The polarization device principle

(S0, S1, S2)T , and the intensities Ip(αi )i=1,...,4 simplified as
I reaching the camera is given by, ∀i ∈ {1, . . . , 4},

Iαi = 1

2

(
1 cos(2αi ) sin(2αi )

)
⎛
⎝
S0
S1
S2

⎞
⎠,

which can be rewritten in matrix form as

I = AS, (2)

where I = (
I0 I90 I45 I135

)T
refers to the four intensities

according to each angle of the polarizer (αi )i=1,...,4 and
A ∈ R

4×3 denotes the calibration matrix of the polarization
camera defined by:

A = 1

2

⎛
⎜⎜⎝

1 1 0
1 −1 0
1 0 1
1 0 −1

⎞
⎟⎟⎠ .

Figure 2 shows an example of polarimetric images according
to each angle of the polarizer filter.

In order to recover the Stokes vector S, Eq. (2) should
be solved, but the system of equations is overdetermined,
the number of equations being strictly greater than the num-
ber of unknowns. Regardless of the physical admissibility
constraints, the most widespread solution in the literature to
find an approximate solution to this overdetermined system is
the pseudo-inverse approach also called least square method.
This leads to introducing the pseudo-inverse of matrix A
given by Ã = (AT A)−1AT ∈ R

3×4 to estimate S. The result-
ing Stokes vector is thus given by the following equation
(named normal equation):

S = ÃI =
⎛
⎝

1
2

1
2

1
2

1
2

1 −1 0 0
0 0 1 −1

⎞
⎠

⎛
⎜⎜⎝

I0
I90
I45
I135

⎞
⎟⎟⎠ . (3)
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Fig. 2 Example of polarimetric
images. From left to right and
top to bottom: I0, I45, I90, I135,
S0, S1, S2, AOLP, DOLP

Note that with this formula, an approximate solution is found
when no exact solution exists, and it gives an exact solution
when one does exist, i.e. when I ∈ Im A. The least square
approximation is straightforward to apply but has two main
drawbacks in the case of polarization formalism. The first
issue is that the obtained solution does not take into account
the physical admissibility constraint exhibited by the Stokes
vectors as defined in Eq. (1). The resulting Stokes compo-
nents violate these conditions most of the time, entailing
erroneous values of the polarization properties (AOLP and
DOLP) of the associated pixel. The second issue lies in the
pseudo-inverse form. Indeed, to compute back the intensities
I from the Stokes parameters of Eq. (3) using Eq. (2), the
following equation should hold:

I = AÃI ,

which applies if and only if

I0 + I90 = I45 + I135 . (4)

Unfortunately, this condition is hard to be fulfilled for each
pixel, even with a good camera configuration as it is the case
for the Polar4D camera.

To overcome these fundamental shortcomings in polari-
metric image acquisition and to be more consistent with the
physics, we phrase the Stokes vector reconstruction issue as
a constrained optimization problem, implying that the phys-
ical admissibility conditions are explicitly enforced. This is
the core of the next section, complemented by several theo-
retical results demonstrating the well-posed character of the
model.

3 Mathematical Modelling of the Proposed
ReconstructionModel and Theoretical
Results

3.1 Definition of the Primal Problem

We start by introducing the discrete setting that we will use
throughout the next sections and follow the notations of [20].
To simplify,weviewour images as two-dimensionalmatrices
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defined on a regular Cartesian grid G of size N × N :

G = {(ih, jh) | 1 ≤ i ≤ N , 1 ≤ j ≤ N } ,

h denoting the size of the spacing classically taken to 1, while
the indices (i, j) denote the discrete location (ih, jh) in the
image domain. The index i is the index associated with the
rows (y-direction) whilst j is the index related to the columns
(x-direction). Adaptation to other cases is straightforward.
We denote by X the Euclidean space RN×N equipped with
the standard scalar product

〈u, v〉X =
∑

(i, j)∈G
ui, j vi, j

and the related norm is defined by ‖u‖X = √〈u, u〉X =√∑
(i, j)∈G u2i, j .

If u ∈ X , the gradient ∇u is a vector in Y = X × X

defined by (∇u)i, j =
(
(∇u)1i, j , (∇u)2i, j

)
with

(∇u)1i, j =
{
ui+1, j − ui, j if i < N

0 if i = N
,

(∇u)2i, j =
{
ui, j+1 − ui, j if j < N

0 if j = N
.

We also define a scalar product on Y by

〈p, q〉Y =
∑

(i, j)∈G

(
p1i, j q

1
i, j + p2i, j q

2
i, j

)
,

with p = (p1, p2) ∈ Y and q = (q1, q2) ∈ Y . The discrete
divergence operator div : Y → X (defined analogously to
the continuous setting) is the opposite of the adjoint operator
of the gradient operator ∇, that is,

∀p ∈ Y , ∀u ∈ X , 〈−div p, u〉X = 〈p,∇u〉Y ,

div being thus given by

(div p)i, j =

⎧
⎪⎨
⎪⎩

p1i, j − p1i−1, j if 1 < i < N
p1i, j if i = 1

−p1i−1, j if i = N

+

⎧
⎪⎨
⎪⎩

p2i, j − p2i, j−1 if 1 < j < N
p2i, j if j = 1

−p2i, j−1 if j = N
.

We denote by K the closed convex set defined by

K = {S = (S0, S1, S2) ∈
X × X × X | ∀(i, j) ∈ G, (S0)i, j≥

√
(S1)2i, j+(S2)2i, j

}
.

We now turn to the design of the optimization problem we
consider next. It classically comprises a regularization on
the unknowns to be recovered, ensuring thus spatial consis-
tency, a data fidelity term, as well as geometrical constraint
enforcement. In order to both reconstruct S in compliance
with the prescribed physical conditions and induce some cou-
pling between the channels S1 and S2, the discontinuity sets
of both S1 and S2 being located at the same position, we
propose introducing an S1 − S2 joint total variation regular-
ization denoted by T VC(S1, S2). The underlying goal is to
capture a smooth angle of polarization reflecting more faith-
fully the physical properties of the materials present in the
image. It is defined by

T VC(S1, S2) =
∑

(i, j)∈G√(
(∇S1)

1
i, j

)2 +
(
(∇S1)

2
i, j

)2 +
(
(∇S2)

1
i, j

)2 +
(
(∇S2)

2
i, j

)2
.

(5)

As a shortened notation, the following will be used:

T VC(s̃) = T VC(S1, S2) =
∑

(i, j)∈G
‖(∇ s̃)i, j‖R4 , (6)

where (∇ s̃)i, j = (
(∇S1)i, j , (∇S2)i, j

)
. The motivation for

introducing such a regularizer is that it favours reconstruc-
tions of S1 and S2 in which contours are at the same location,
owing to the simple observation that

√
a2 + b2 ≤ √

a2+√
b2

(refer to [21] for further details). The joint S1 − S2 total vari-
ation is complemented by a standard total variation smoother
on S0 denoted by

T V (S0) =
∑

(i, j)∈G

√(
(∇S0)1i, j

)2 +
(
(∇S0)2i, j

)2

=
∑

(i, j)∈G
‖(∇S0)i, j‖R2 ,

a fidelity term F = F(S) defined by

F(S) = μ

2

∑
(i, j)∈G

‖ASi, j − Ii, j‖2R4 ,

and prescribed geometrical conditions, yielding the follow-
ing constrained optimization problem:

inf
S∈K

J (S) = T VC(S1, S2) + T V (S0) + F(S). (P)

A first theoretical result ensures the existence/uniqueness of
the minimizer of problem (P).

Theorem 1 Problem (P) admits a unique solution.
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Proof The set K is closed and convex, while the objective
function is continuous and coercive. Indeed, ∀(i, j) ∈ G,
one has:

μ

2
‖ASi, j − Ii, j‖2R4 ≥ μ

4
‖ASi, j‖2R4 − μ

2
‖Ii, j‖2R4

≥ μ

4

(
((S0)i, j )

2 + 1

2
((S1)i, j )

2 + 1

2
((S2)i, j )

2
)

− μ

2
‖Ii, j‖2R4 ,

(since AT A =
⎛
⎝
1 0 0
0 1

2 0
0 0 1

2

⎞
⎠), so that

J (S) ≥ μ

8

(
‖S0‖2X + ‖S1‖2X + ‖S2‖2X

)

− μ

2

∑
(i, j)∈G

‖Ii, j‖2R4 ,

or equivalently,

J (S) ≥ μ

8
‖S‖2X3 − μ

2
‖I‖2X4 ,

with the classical Euclidean norms and their standard nota-
tion. The related scalar products will be denoted by 〈·, ·〉,
without necessarily specifying the current dimension as
index.

In addition, the functional is strictly convex, which yields
the desired result. 
�

To lighten the notations, when there is no ambiguity about
the dimension of the mathematical objects we handle, we
omit the lower indices in the definition of the Euclidean
norms.

3.2 Reformulation as a Min–Max Problem

Motivated by prior related works by Chambolle and Pock
[14] dedicated to primal-dual algorithms, we now restate our
optimization problem as a min–max one, using the dual for-
mulation of the introduced coupled total variation.

Functional T VC is positively homogeneous of degree one
since ∀s̃ ∈ X × X , ∀λ > 0, T VC(λ s̃) = λ T VC(s̃), so that
its Legendre–Fenchel transform [22] T V ∗

C defined by

T V ∗
C (t̃) = sup

s̃∈X×X
〈s̃, t̃〉 − T VC(s̃)

is the indicator function of a closed convex set A:

T V ∗
C (t̃) =

{
0 if t̃ ∈ A

+∞ otherwise
.

Since T V ∗∗
C = T VC , it readily comes that

T VC(s̃) = sup
t̃∈A

〈s̃, t̃〉.

It remains to make the setA explicit. Going back to the basic
definition of T VC(s̃) (5)-(6), clearly, ∀s̃ ∈ X × X ,

T VC(s̃) = sup
p=(p1,p2)∈Y×Y

〈∇ s̃, p〉

= sup
p=(p1,p2)∈Y×Y

〈∇S1, p1〉Y + 〈∇S2, p2〉Y ,

with the supremum taken over p ∈ Y ×Y such that ∀(i, j) ∈
G,

‖pi, j‖R4 =√
((p1)1i, j )

2 + ((p1)2i, j )
2 + ((p2)1i, j )

2 + ((p2)2i, j )
2 ≤ 1.

Using the discrete divergence operator introduced earlier, we
get:

〈∇S1, p1〉Y + 〈∇S2, p2〉Y
= −〈S1, div p1〉X − 〈S2, div p2〉X ,

yielding

A = {div p =
(
div p1
div p2

)
with p ∈ Y × Y |

∀(i, j) ∈ G, ‖pi, j‖R4 ≤ 1
}
.

With this material and in particular the dual formulation of
the classical total variation (see [20]), we are now able to
rephrase our optimization problem as a min–max one.

inf
S=(S0,S1,S2)∈K

sup
p=(p0,p1,p2)∈B

L(S, p) (P̄)

:= 〈∇S, p〉 + μ

2

∑
(i, j)∈G

‖ASi, j − Ii, j‖2R4 ,

with

〈∇S, p〉 = 〈∇S0, p0〉Y + 〈∇S1, p1〉Y + 〈∇S2, p2〉Y ,

and B being the convex set defined by

B = {p = (p0, p1, p2) = (p0, p̃)

∈ Y × Y × Y | ∀(i, j) ∈ G, ‖ p̃i, j‖R4

≤ 1 and ‖(p0)i, j‖R2 ≤ 1
}
.

Afirst result ensures that the LagrangianL possesses a saddle
point. Before stating this theoretical result, we recall some
basic facts on duality by the minimax theorem mostly taken
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from [23, Chapter VI].We use the same notations as Ekeland
and Témam and consider the general minimization problem
phrased as

inf
u∈V �(u) (7)

and termed primal problem. We assume that �(u) can be
rewritten as a supremum in p of a function L(u, p) as

inf
u∈V sup

p∈Z
L(u, p). (8)

A related problem named dual of (7) is defined by

sup
p∈Z

inf
u∈V L(u, p). (9)

A natural question is to ask about the link between prob-
lems (8) and (9).

The sets A and B being arbitrary for the moment, a first
result states that if L is a function onA×B with real values,
one always has

sup
p∈B

inf
u∈A

L(u, p) ≤ inf
u∈A

sup
p∈B

L(u, p).

Let us now recall the definition of a saddle point.

Definition 1 Taken from [23, Chapter VI, Definition 1.1]We
say that a pair (ū, p̄) ∈ A×B is a saddle point of L onA×B
if, ∀u ∈ A, ∀p ∈ B,

L(ū, p) ≤ L(ū, p̄) ≤ L(u, p̄).

Proposition 1 Taken from [23, Chapter VI, Proposition 1.2]
The function L defined on A× B with real values possesses
a saddle point (ū, p̄) on A × B if and only if

max
p∈B

inf
u∈A

L(u, p) = min
u∈A

sup
p∈B

L(u, p),

and this number is then equal to L(ū, p̄).

Now, to legitimize the introduction of our min–max algo-
rithm, it remains to establish the connection between a saddle
point of L and a minimizer of the primal problem (7).

In that purpose, let us assume that (ū, p̄) is a saddle point
of L . From the left-hand side of the inequality inDefinition 1.,
one gets :

inf
u∈A

�(u) ≤ �(ū) = sup
p∈B

L(ū, p) ≤ L(ū, p̄).

Now, from the right-hand side of the inequality in Defini-
tion 1., it comes

L(ū, p̄) ≤ inf
u∈A

L(u, p̄).

But∀u ∈ A, L(u, p̄) ≤ sup
p∈B

L(u, p), yielding inf
u∈A

L(u, p̄) ≤
inf
u∈A

sup
p∈B

L(u, p) = inf
u∈A

�(u). Consequently, if (ū, p̄) is a

saddle point of L , then ū is a minimizer of �.
Before stating themain theoretical result, we recall a criterion
that will be useful in the proof.

Proposition 2 Taken from [23, Chapter VI, Proposition 1.3]
If there exists u0 ∈ A, p0 ∈ B and α ∈ R such that

∀p ∈ B, L(u0, p) ≤ α,

∀u ∈ A, L(u, p0) ≥ α,

then (u0, p0) is a saddle point of L and

α = inf
u∈A

sup
p∈B

L(u, p) = sup
p∈B

inf
u∈A

L(u, p).

Equipped with this material, we are now ready to state the
main theoretical result.

Theorem 2 The Lagrangian L of problem (P̄) possesses at
least one saddle point (S̄, p̄) on K × B.

The proof is an adaptation of the one of [23, Chapter VI,
Proposition 2.1] in which the sets A and B are assumed to
be bounded, which is not the case in our problem. We adopt
some of the notations of [23, Chapter VI, Proposition 2.1].

Proof For every p ∈ B, S �→ L(S, p) is strictly con-
vex, owing to the strict convexity of functional F . For each
p ∈ B, functional S �→ L(S, p) is continuous and coer-
cive. To establish such a coercivity inequality, denoting by
κ = ‖div‖ = sup

‖p‖Y3≤1
‖div p‖X3 , we first observe that with

the convention (p0)10, j = (p0)1N , j = (p0)2i,0 = (p0)2i,N = 0
(similarly for p1 and p2) and by applying twice the inequality
(a + b)2 ≤ 2

(
a2 + b2

)
,

‖div p‖2X3

=
∑

(i, j)∈G
[
(
(p0)

1
i, j − (p0)

1
i−1, j + (p0)

2
i, j − (p0)

2
i, j−1

)2

+
(
(p1)

1
i, j − (p1)

1
i−1, j + (p1)

2
i, j − (p1)

2
i, j−1

)2

+
(
(p2)

1
i, j − (p2)

1
i−1, j + (p2)

2
i, j − (p2)

2
i, j−1

)2]

≤ 4
∑

(i, j)∈G

[(
(p0)

1
i, j

)2 +
(
(p0)

1
i−1, j

)2 +
(
(p0)

2
i, j

)2 +
(
(p0)

2
i, j−1

)2]

+ 4
∑

(i, j)∈G

[(
(p1)

1
i, j

)2 +
(
(p1)

1
i−1, j

)2 +
(
(p1)

2
i, j

)2 +
(
(p1)

2
i, j−1

)2]

+ 4
∑

(i, j)∈G

[(
(p2)

1
i, j

)2 +
(
(p2)

1
i−1, j

)2 +
(
(p2)

2
i, j

)2 +
(
(p2)

2
i, j−1

)2]

≤ 8 ‖p0‖2Y + 8 ‖p1‖2Y + 8 ‖p2‖2Y = 8 ‖p‖2Y 3 .
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Thus, κ ≤ 2
√
2 and

L(S, p) ≥ μ

8
‖S‖2X3 − ‖div‖‖p‖Y 3‖S‖X3 − μ

2
‖I‖2X4

≥ μ

8
‖S‖2X3 − 4 N‖S‖X3 − μ

2
‖I‖2X4 ,

since p ∈ B, entailing that ‖p‖2
Y 3 ≤ 2N 2. Now, using

Young’s inequality with ε (valid for every ε > 0) and stated

by ab ≤ a2

2ε
+ ε b2

2
,

L(S, p) ≥
(μ

8
− ε

2

)
‖S‖2X3 − 8N 2

ε
− μ

2
‖I‖2X4 .

This latter inequality shows that by choosing ε sufficiently
small, the coercivity property is ensured. ∀p ∈ B, L(S, p)
is bounded below independently of p and one remarks that

∀p ∈ B, L(0, p) = μ

2
‖I‖2

X4 so that the infimum is finite.

Then, for each p ∈ B, functionalL(·, p) is continuous, coer-
cive and strictly convex so it admits a unique minimizer in
K denoted by e(p). We denote this minimum by f (p), i.e.

f (p) = min
S∈K

L(S, p) = L(e(p), p). (10)

Function p �→ f (p) is concave as the pointwise infimum of
concave functions (∀S ∈ K, p �→ L(S, p) is concave). This
is a standard result of analysis that we nevertheless recall
in Appendix A. for the sake of completeness. Also, f is
upper semi-continuous as the pointwise infimum of continu-
ous functions (∀S ∈ K, p �→ L(S, p) is continuous). Again,
this is a standard result of analysis for which we provide
a proof in Appendix B. It is therefore bounded above and
attains its upper bound as the set B is compact, at a point
denoted by p̄. Thus,

f ( p̄) = max
p∈B

f (p) = max
p∈B

min
S∈K

L(S, p).

Additionally, as f ( p̄) = min
S∈K

L(S, p̄), one has

∀S ∈ K, f ( p̄) ≤ L(S, p̄). (11)

By concavity ofLwith respect to the second argument (even
linearity), ∀S ∈ K, ∀p ∈ B and ∀λ ∈]0, 1[, L(S, (1−λ) p̄+
λ p) ≥ (1 − λ)L(S, p̄) + λL(S, p). Taking as particular
value S = eλ = e((1 − λ) p̄ + λ p), it yields, using again
that f ( p̄) = max

p∈B
f (p) and the concavity of L with respect

to the second argument,

f ( p̄) ≥ f ((1 − λ) p̄ + λ p) = L(eλ, (1 − λ) p̄ + λ p))

≥ (1 − λ)L(eλ, p̄) + λL(eλ, p).

As L(eλ, p̄) ≥ f ( p̄) = min
S∈K

L(S, p̄) , the latter inequality

implies that ∀p ∈ B,

f ( p̄) ≥ L(eλ, p). (12)

By virtue of the coercivity property established previously
and the fact that ∀p ∈ B, L(0, p) = μ

2 ‖I‖2
X4 , one has ∀p ∈

B, (parameter ε > 0 being sufficiently small so that μ
8 − ε

2 >

0),

(μ

8
− ε

2

)
‖eλ‖2X3 − 8N 2

ε
− μ

2
‖I‖2X4

≤ L(eλ, (1 − λ) p̄ + λ p) ≤ μ

2
‖I‖2X4 ,

showing that eλ is uniformly bounded. One can thus extract a
subsequence eλn with λn →

n→+∞ 0 converging to some limit

S̄. We show next that S̄ = e( p̄). In particular, S̄ depends
neither on p, nor on the selected sequenceλn .As bydefinition
L(eλ, (1−λ) p̄+λ p) = min

S∈K
L(S, (1−λ) p̄+λ p), ∀S ∈ K,

L(eλ, (1 − λ) p̄ + λ p) ≤ L(S, (1 − λ) p̄ + λ p),

and by concavity of L with respect to the second argument,
it follows that ∀S ∈ K,

(1 − λ)L(eλ, p̄) + λL(eλ, p) ≤ L(S, (1 − λ) p̄ + λ p).

The quantity L(eλ, p) is bounded below by f (p) so that
passing to the limit in the previous inequality when λn tends
to 0 yields, using the continuity of L,

L(S̄, p̄) ≤ L(S, p̄),

this being true for all S ∈ K. By uniqueness of the mini-
mizer of problem min

S∈K
L(S, p̄), we deduce that S̄ = e( p̄).

At last, passing to the limit in (12) yields L(S̄, p) ≤ f ( p̄),
∀p ∈ B, which combines with (11) and the invocation of
Proposition 2. enables one to conclude that (S̄, p̄) is a saddle
point of L. 
�

4 Numerical Algorithm

Our problem (P̄) falls within the general framework of
convex optimization problems with known saddle-point
structure addressed in [14] and for which the authors provide
a resolution algorithm with guaranteed convergence. Before
making this connection more explicit, we review some
preliminary mathematical results devoted to convex opti-
mization. The dimension N is considered next for purposes of
illustration, but the results can of course be extended/adapted
to other dimensions.
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4.1 Preliminary Mathematical Background

We denote by RN the usual N -dimensional Euclidean space
and by ‖ · ‖ its norm, while I refers to the identity matrix.

The domain of a function f : R
N →] − ∞,+∞] is

denoted by dom f and defined by
dom f = {x ∈ R

N | f (x) < +∞}.
The notation �0(R

N ) refers to the set of
lower-semicontinuous convex functions from R

N to ] −
∞,+∞] such that dom f �= ∅.

The subdifferential of f is the set-valued operator

∂ f : R
N → 2R

N : x �→{
u ∈ R

N | ∀y ∈ R
N , f (y) ≥ f (x) + (y − x)T u

}
.

Let C be a nonempty subset of RN . The indicator function
of C is such that:

iC : x �→
{

0 if x ∈ C
+∞ if x /∈ C

.

The distance from x ∈ R
N to C is defined by dC (x) =

inf
y∈C ‖x − y‖. If the set C is closed and convex, the projection

of x ∈ R
N onto C is the unique point PC x ∈ C such that

dC (x) = ‖x − PC x‖.
The projection PC x of x ∈ R

N onto the nonempty closed
convex set C ⊂ R

N can be viewed as the solution of the
problem

min
y∈RN

iC (y) + 1

2
‖x − y‖2,

function iC being an element of �0(R
N ) due to the assump-

tions on C .
This formulation led Moreau [24] to extend the notion of

projection wherein an arbitrary function f ∈ �0(R
N ) is now

a substitute for iC . This yields the definition of the so-called
proximal or proximity operator.

Definition 2 Proximal/Proximity operator (Taken from [25,
Definition 10.1]) Let f ∈ �0(R

N ). For every x ∈ R
N , the

minimization problem

min
y∈RN

f (y) + 1

2
‖x − y‖2

admits a unique solution denoted by prox f (x). The operator
prox f : RN → R

N thus defined is the proximal operator of
f .

The proximal operator exhibits suitable properties.With f ∈
�0(R

N ), it is characterized by:

∀(x, p) ∈ R
N × R, p = prox f (x) ⇐⇒ x − p ∈ ∂ f (p).

It enjoys another fine property well-suited for iterative min-
imization algorithms: it is firmly nonexpansive and its fixed
point set is precisely the set of minimizers of f , which
dictates the way proximal operator-based algorithms are
designed.

4.2 The Generic Chambolle–Pock Primal-dual
Algorithm

Equipped with this material, we now relate our problem with
the general framework developed in [14] and see how the
primal-dual algorithm presented therein can be adapted to
our case. As made explicit in Sect. 4.3, problem (P̄) falls
within the generic saddle-point problem addressed in [14]
and phrased as

min
x∈X max

y∈Y 〈Kx, y〉 + G(x) − F∗(y), (13)

X and Y being two finite-dimensional real vector spaces

equipped with an inner product 〈·, ·〉 and norm ‖ ·‖ = 〈·, ·〉 1
2 ,

K : X → Y being a continuous linear operator with induced
norm

‖K‖ = max {‖Kx‖ | x ∈ X with ‖x‖ ≤ 1} ,

G and F∗ being proper, convex, lower semi-continuous (lsc),
and F∗ being itself the convex conjugate of a convex lsc
function F . Then, the general given algorithm in [14] reads
as:

Algorithm 1 General Chambolle–Pock primal-dual algo-
rithm ([14, Algorithm 1.])
1: Initialization: Choose τ , σ > 0, θ ∈ [0, 1], (x0, y0) ∈ X × Y and

set x̄0 = x0.
2: for n = 0, 1, · · · do
3: yn+1 = proxσ F∗ (yn + σ K x̄n);
4: xn+1 = proxτ G(xn − τ K ∗ yn+1);
5: x̄n+1 = xn+1 + θ

(
xn+1 − xn

)
.

6: end for

Remark 1 It can be easily observed that fixed points of Algo-
rithm 1 are saddle points of the associated Lagrangian.
Indeed, if one considers a fixed point (x∗, y∗) of the algo-
rithm, owing to the fact that

r = prox f (s) ⇐⇒ s − r ∈ ∂ f (r)

⇐⇒ ∀t, f (t) ≥ f (r) + 〈s − r , t − r〉,
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the first relation y∗ = proxσ F∗(y∗+σ K x∗)of the algorithm
gives

∀y ∈ Y , σ F∗(y) ≥ σ F∗(y∗) + 〈y − y∗, σKx∗〉
⇐⇒ ∀y ∈ Y , −F∗(y)+〈y, Kx∗〉 ≤ −F∗(y∗)+〈y∗, Kx∗〉,

(14)

while the second relation x∗ = proxτ G(x∗−τ K ∗ y∗) yields

∀x ∈ X , τ G(x) ≥ τ G(x∗) − 〈τK ∗y∗, x − x∗〉
⇐⇒ ∀x ∈ X , G(x) ≥ G(x∗) − 〈K ∗y∗, x − x∗〉
⇐⇒ ∀x ∈ X , G(x∗) + 〈K ∗y∗, x∗〉 ≤ G(x) + 〈K ∗y∗, x〉.

(15)

Summing (14) and (15) leads to

∀x ∈ X , ∀y ∈ Y , 〈Kx∗, y〉 + G(x∗) − F∗(y)
≤ 〈Kx, y∗〉 + G(x) − F∗(y∗),

showing that (x∗, y∗) is a saddle point of the associated
Lagrangian.

Remark 2 A convergence result is established in [14, Theo-
rem 1] with θ = 1 and provided that τσ‖K‖2 < 1.

4.3 Design of our Numerical Algorithm

Our problem is a special instance of (13) with K = ∇, F∗ =
iB and G(S) = iK(S) + μ

2

∑
(i, j)∈G ‖ASi, j − Ii, j‖2

R4 and
can be rephrased as

min
S=(S0,S1,S2)∈X3

max
p=(p0,p1,p2)∈Y 3

(P̃)

〈∇S,p〉+iK(S)+μ

2

∑
(i, j)∈G

‖ASi, j − Ii, j‖2R4 − iB(p).

Thus, the first step of the algorithm 1. reads as

pn+1 = proxσ iB (pn + σ ∇ S̄n),

which amounts to computing the projection of pn + σ ∇ S̄n

onto the closed convex set B denoted by PB(pn + σ ∇ S̄n).
More precisely, given z = (z0, z1, z2) ∈ Y 3 = (z0, z̃) ∈
Y × Y 2, ∀(i, j) ∈ G,

(PB(z))i, j =

⎛
⎜⎜⎝

(z0)i, j
max(1, ‖(z0)i, j‖R2)

z̃i, j
max(1, ‖z̃i, j‖R4)

⎞
⎟⎟⎠ .

The second step of the algorithm reads as

Sn+1 = proxτ G(Sn + τ div pn+1),

or equivalently,

Sn+1 = argmin
S̃∈X3

1

2
‖S̃ −

(
Sn + τ div pn+1

)
‖2X3 + iK(S̃)

+ τμ

2

∑
(i, j)∈G

‖AS̃i, j − Ii, j‖2R4 .

Weobserve that the problem is separable with respect to each
S̃i, j so that

proxτ G(w) =
(
proxτ gi, j (wi, j )

)
(i, j)∈G ,

w being an element of X3, gi, j being defined by gi, j : R3 �
u = (u0, u1, u2) �→ iĈ(u) + μ

2 ‖A u − Ii, j‖2
R4 with Ĉ ={

t = (t0, t1, t2) ∈ R
3 | t0 ≥

√
t21 + t22

}
, which leads us to

focus on the single three-dimensional subproblem

u∗ = argmin
ũ∈R3

1

2τ
‖ũ − u‖2

R3 + μ

2
‖Aũ − I‖2

R4 + iĈ(ũ)

= proxτ g(u) = argmin
ũ∈R3

l(ũ) + iĈ(ũ), (16)

(for the sake of generalization, the indices (i, j) on g and I
have been removed and I is nowavector ofR4).Additionally,

we denote by R
3 � b = (b0, b1, b2)T =

(
b0
b̄

)
= AT I and

by h the function h : t = (t0, t1, t2) ∈ R
3 �→

√
t21 + t22 − t0.

According to [22,ChapterV,TheoremV.8.] (Kuhn-Tucker
theorem), u∗ is a solution of (16) if and only if there exists
λ ∈ R

+ such that
{
0 ∈ ∂l(u∗) + λ ∂h(u∗)

λ h(u∗) = 0.
(17)

Due to the separability property h(t) = h0(t0) + h1(t1, t2),
one has

∂h(t) = (∂h0(t0), ∂h1(t̄ = (t1, t2))
)

= {v = (v0, v̄ = (v1, v2)) ∈ R × R
2 | v0

∈ ∂h0(t0), v̄ ∈ ∂h1(t̄)
}
.

The inclusion
(
∂h0(t0), ∂h1(t̄)

) ⊂ ∂h(t) is straightforward.
Suppose that (v0, v̄) ∈ ∂h0(t0)× ∂h1(t̄). Then, by definition
of the subdifferential, ∀u = (u0, u1, u2) = (u0, ū) ∈ R

3,

{
h0(u0) ≥ h0(t0) + (u0 − t0)v0,
h1(ū) ≥ h1(t̄) + 〈ū − t̄, v̄〉.

Summing the two previous inequalities yields, ∀u ∈ R
3

h(u) ≥ h(t) + 〈u − t, v〉,
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hence v ∈ ∂h(t).
Toprove the converse inclusion ∂h(t) ⊂ (∂h0(t0), ∂h1(t̄)

)
,

we argue by contradiction and consider v ∈ ∂h(t) such that
v /∈ (∂h0(t0), ∂h1(t̄)

)
. Without loss of generality, we may

assume that v̄ /∈ ∂h1(t̄) (the reasoning being the same if
v0 /∈ ∂h0(t0) is assumed). Consequently, there exists ū ∈ R

2

such that

h1(ū) < h1(t̄) + 〈ū − t̄, v̄〉.

Let us now take u = (u0, ū) with ū defined as above and
u0 = t0. Then

h(u) = h0(u0) + h1(ū) < h0(t0) + h1(t̄) + 〈u − t, v〉
= h(t) + 〈u − t, v〉,

which contradicts the fact that v ∈ ∂h(t). In the end,

∂h(t) = (∂h0(t0), ∂h1(t̄)
) =

(
−1, ∂‖·‖

R2
(t̄)
)

=
⎛
⎝−1,

∣∣∣∣∣∣

t̄

‖t̄‖R2
if t̄ �= 0R2

{
a ∈ R

2 | ‖a‖R2 ≤ 1
}
if t̄ = 0R2

⎞
⎠ .

We now go back to the necessary and sufficient conditions
(17). These now read as (u∗ = (u0∗, u1∗, u2∗) = (u0∗, u∗))

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1

τ
+ μ

)
u0∗ − 1

τ
u0 − μb0 − λ = 0,

(
1

τ
+ μ

2

)
u∗ − 1

τ
ū − μb̄ + λ ∂‖·‖

R2
(u∗) � 0,

λ
(‖u∗‖R2 − u0∗) = 0.

(18)

Setting z0 =
1

τ
u0 + μ b0

α
and z̄ =

1

τ
ū + μ b̄

β
with α =

1

τ
+ μ and β = 1

τ
+ μ

2
, these conditions amount to

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

u0∗ = z0 + λ

α
,

u∗ − z̄ + λ

β
∂‖·‖

R2
(u∗) � 0,

λ
(‖u∗‖R2 − u0∗) = 0.

(19)

We distinguish two cases:

• Case for which λ = 0 : Then

{
u∗
0 = z0
u∗ = z̄

, with z0 ≥
‖z̄‖R2 .

• Case for which λ > 0 :

• Subcase z0 ≥ 0: u∗
0 = ‖u∗‖R2 . u∗

0 �= 0 otherwise λ

would be negative. Thus, u∗ �= 0R2 so that the sec-

ond KKT condition in (19) reads u∗ + λ
β

u∗
‖u∗‖

R2
= z̄

expressing the fact that u∗ and z̄ are colinear with a
positive coefficient. Straightforward computations give

u∗ =
(
1 − λ

β ‖z̄‖
R2

)
z̄ with λ < β ‖z̄‖R2 . At last, the

first condition of (19) combined with the slackness con-
dition (third equation of (19)) leads to

λ = αβ

α + β

(‖z̄‖R2 − z0
)

with z0 < ‖z̄‖R2 (λ < β ‖z̄‖R2 is ensured). Thus,

⎧
⎪⎪⎨
⎪⎪⎩

u∗
0 = α

α + β
z0 + β

α + β
‖z̄‖R2 ,

u∗ =
(

β

α + β
+ α

α + β

z0
‖z̄‖R2

)
z̄.

• Subcase z0 < 0 : u∗
0 = ‖u∗‖R2 .

If u∗ = 0R2 , then u∗
0 = 0 and λ = −α z0. The second

KKT condition in (19) gives β ‖z̄‖R2 ≤ −α z0.
If u∗ �= 0R2 , again the second KKT condition in (19)
shows that u∗ and z̄ are colinear with positive coefficient(
1 − λ

β ‖z̄‖
R2

)
so λ < β ‖z̄‖R2 . The first condition of (19)

combined with the slackness condition (third equation of
(19)) leads to

λ = αβ

α + β

(‖z̄‖R2 − z0
)

(λ > 0 is automatically satisfied), the constraint λ <

β ‖z̄‖R2 reads equivalently β ‖z̄‖R2 > −α z0 and in the
end,

⎧
⎪⎪⎨
⎪⎪⎩

u∗
0 = α

α + β
z0 + β

α + β
‖z̄‖R2 ,

u∗ =
(

β

α + β
+ α

α + β

z0
‖z̄‖R2

)
z̄.

To summarize, it can be checked that:

• If z0 ≥ 0

(i) If ‖z̄‖R2 ≤ z0, proxτ g(u) = (z0, z̄);
(ii) If ‖z̄‖R2 > z0,

proxτ g(u) =
(

α

α + β
z0

+ β

α + β
‖z̄‖R2 ,

(
β

α + β
+ α

α + β

z0
‖z̄‖R2

)
z̄

)
;

• If z0 < 0
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(i) If β ‖z̄‖R2 ≤ −α z0, proxτ g(u) = (0, 0R2);
(ii) If β ‖z̄‖R2 > −α z0,

proxτ g(u) =
(

α

α + β
z0

+ β

α + β
‖z̄‖R2 ,

(
β

α + β
+ α

α + β

z0
‖z̄‖R2

)
z̄

)
.

Remark 3 An alternative technique based on the orthogo-
nal projection onto epigraphs can be provided to obtain the
expression of proxτ g(u). This can be found in Appendix C.

According to Remark 2, convergence is ensured if θ = 1 and
τσ‖∇‖2 < 1. Since ‖div‖ = ‖∇‖ ([26, Chapter IV, Sect.
5, Theorem 6]) and due to the previous estimate on ‖div‖,
convergence is thus guaranteed as soon as τσ < 1

8 .

5 Validation

5.1 Experimental Results

To achieve the validation of the proposed theory on real
Stokes images, experiments are conducted on intensity
images acquired from a polarimetric camera. Note that the
data that support the findings of this study are not openly
available but are available from the corresponding author
upon reasonable request. In our experiments, the trioptics
polar4D camera is used, providing four images I0, I45, I90
and I135. The Stokes images are calculated both with the
classical least squaremethod (LS) andwith the proposed one.
The question of assessing the validity of the proposed model
over the classical least square-based one encompasses sev-
eral levels of discussion. Indeed, the presented experiments
are intended to quantify both the relevancy of the regulariza-
tion and the compliance of the recovered Stokes vectors with
the physical admissibility criterion as well as sensitivity to
noise. To achieve this goal and in addition to visual inspec-
tion, two metrics that encode those aspects are assessed: on
the one hand, the monitoring of the DOLP for the physical
admissibility verification, and on the other hand, the control
of the AOLP for the physical consistency of the scene. As
previously stressed, the DOLP lies between zero and one,
whilst the AOLP should be homogeneous on objects made
of the same material. The Stokes images calculated with the
least square method as usually done in the literature are com-
pared to those computed using the proposed solution. More
precisely, to demonstrate the validity/relevance of the regu-
larization and its influence on the AOLP over the classical
least squaremethod (LS), three configurations are considered
when relevant: (i) the pure geometrical model without regu-
larization namedGeometricalModel Alone (GMA) in which
the TV regularization has been removed, thus consisting of

the classical L2-penalization coupled with the geometrical
constraints, (ii) the model with decoupled regularization on
each channel referred to as DecoupledModel (DM) in which
total variation regularization is applied independently on
each channel, and (iii) our Coupled Model (CM). By saying
‘when relevant’, we mean when LS produces DOLP values
strictly greater than 1, otherwise we restrict ourselves to a
mere comparison between LS and CM since in this case, the
physical admissibility constraints will not be active in GMA.

Extensive experiments conducted to discriminate between
DM and CM show the preeminence of CM over DM, both in
terms of quantitative criteria such as the AOLP and DOLP,
and qualitative assessment (spatial regularization/coherency,
more refined details). Thus in the presentation, we limit our-
selves to the comparisons of the LS method, GMA and CM,
the latter model being the one detailed in the paper. The
best solution is the one achieving a DOLP between 0 and
1, while exhibiting a piecewise homogeneous AOLP. The
first condition related to the DOLP (S0 ≥

√
S12 + S22)

reflects the fact that the total energy of the light wave S02

is always greater than the energy of the deterministic part of
that wave, S12 + S22, whereas the condition on AOLP trans-
lates the fact that two spatially close identical objects should
mainly reflect the light in the same direction. The experi-
ments are split into two sets of images: simple indoor images
containing object/background and real outdoor images with
non-controlled light.

5.1.1 Experiments on Synthetic Data and Indoor Images

In order to substantiate the relevancy of the proposed
approach, simulations on synthetic data for which ground
truth is known have been performed. The artificial data have
been generated based on an earlier code by Dr. Sylvain
Faisan (ICube - MIV, Université de Strasbourg) dedicated
to the reconstruction of full Stokes vectors [10] and that
we adapted to our setting. We synthesized a 256×256 pixel
Stokes image Sgt = [Sgt0 , Sgt1 , Sgt2 ] composed of two distinct
regions: (i) a background with a uniform polarization signa-
ture Sgt = [1, 1√

2
, 1√

2
] (totally polarized light), and (ii) a

circle of radius 100 pixels with a smoothly varying partially
polarized Stokes signature. The associated radiance images
I gt = [I gt0 , I gt90 , I

gt
45 , I

gt
135] are computed (I gt = ASgt ) and

are then degraded by an additive white Gaussian noise of
variance σ 2 = 0.02. These are depicted in Fig. 3 (both clean
radiance images and degraded counterparts). The initial set
of data is shown in Fig. 3 second row, while the reconstructed
Stokes vectors are displayed in Fig. 4 second row, the tuning
parameters being set, respectively, to σ = 0.3 (Chambolle–
Pock algorithm), γ = 1, θ = 0.5 and μ = 1.5. Visually, the
reconstruction is smooth and spatially consistent, emphasiz-
ing the benefit of total variation regularization and obeys the
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Fig. 3 First row: synthetic clean
radiance images, from left to
right I gt0 , I gt90 , I

gt
45 , I

gt
135. Second

row: their counterpart degraded
by a white additive Gaussian
noise with σ 2 = 0.02. Third
row: recovered radiance images
I ∗ obtained by computing AS∗.
The PSNR between the
noise-free radiance images I gt

and the estimated ones I ∗ is
37.36

admissibility constraint criterion, the DOLP being an ele-
ment of [0, 1] (see Fig. 5). As the ground truth is known,
these elements can be corroborated by the accuracy assess-
ment, by comparing the estimated values S∗ with the original
ones Sgt through the formula (see again [10])

E(Sgt , S∗) = 100

√√√√ 1

P

∑
x

‖Sgt (x) − S∗(x)‖2
‖Sgt (x)‖2 ,

with P the number of pixels and ‖ · ‖ denoting the Euclidean
norm in R

3. In our experiment, the Stokes vector estima-
tion error is E(Sgt , S∗) = 2.79. Note that if the Total
Variation regularization proves to be relevant in removing
noise while preserving sharp edges, one of its limitations
is the contrast loss (see [27]). To circumvent this issue in
future works, several lines of research could be consid-
ered among which: sequential pipelines with a posteriori
contrast enhancement while still preserving the physical
admissibility constraint (histogram equalization, gray-scale
transformation algorithms, PDE-basedmethods, etc.) or joint
frameworks including new fidelity terms.

In a second configuration, experiments are conducted on
real indoor images with a few objects on a unified back-
ground. In order to avoid strong reflections focused on areas
where the light source is shining, acquisitions are carried
out under uniform illumination, during the day and without
any artificial illumination. The protocol is illustrated on an
acquisition example in Fig. 6.

The objective of this first cohort of experiments is to
demonstrate, on simple object images, the quality of the
recovered AOLP without any parasitic incident illumination
as well as the homogeneity of the Stokes components. The
media of the pot as well as the plant are not reflective, which
avoids any disturbing specular reflection. Figure 7 displays
the three polarization channels S0, S1 and S2 of a plant in its
pot obtained, respectively, with CM constrained by σ = 0.1
(Chambolle–Pock algorithm), γ = 1, θ = 0.5 and μ = 20,
LS and GMA, while Fig. 8 depicts the AOLP and DOLP
metrics in each case. Components S1 and S2 produced by
CM are smoother than those obtained with LS and GMA,
highlighting the benefit of TV regularization whilst pre-
serving significant information. As for the DOLP, although
visually similar, the ranges are not the same and in par-
ticular, the DOLP exceeds 1 at some pixels with the LS
method. Those pixels having a DOLP > 1 are not physi-
cally admissible. In comparison, the DOLP calculated with
the proposed method, with or without (CM/GMA) regular-
ization, is always between 0 and 1 for each pixel, due to the
exact geometrical constraint enforcement. It is worth remind-
ing the reader that the non-compliance of some pixels with
the physical constraint leads gradually to an erroneous reflec-
tion from the pixel and then to an irrelevant estimation of the
object surface properties represented by the corresponding
Stokes vectors. In that case, there is even no guarantee that
the estimated Stokes vectors of pixels fulfilling the physical
admissibility criterion are pertinent. This way of calculating
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Fig. 4 First row: ground truth
Stokes vector
Sgt = [Sgt0 , Sgt1 , Sgt2 ]. Second
row: estimated Stokes vector S∗

Fig. 5 Left: ground truth DOLP
computed from Sgt . Right:
DOLP computed from the
estimated Stokes vector S∗

the Stokes vectors is potentiallywrong, showing the superior-
ity of the proposed solution that not only respects the physical
constraints of the polarization formalism but ensures homo-
geneity of the AOLP as will be seen next.

The second metric that has been considered here is the
AOLP. When the classical least square-based method is
applied, the AOLP seems to be corrupted by randomly dis-
tributed points, whereas it should be comparable for an object
made of the same material. This issue is always present in
the AOLP estimation and is, most of the time, a direct con-
sequence of the non-compliance of some pixels with the

physical admissibility constraint, even if it affects only a few
of them. The AOLP is better represented with the proposed
CM model. In this case, the AOLP is smoother, more homo-
geneous for an area made of the same material, especially in
the regions where the incident light is uniform.

In order to substantiate even better the interest of the
proposedmodel that handles both the issue of physical admis-
sibility and spatial consistency, the acquired raw images from
the polarimetric camera are degraded by an additive white
Gaussian noise of zero mean and with variance σ 2 = 0.25.
Without loss of generality and to evaluate the sensitivity of
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Fig. 6 The experimental protocol

the LS method, this perturbation is applied only on one of
the intensity channels arbitrarily chosen to be I45 in that case,
that is then normalized between 0 and 1. These are displayed
in Fig. 9, while the reconstructed Stokes components S0, S1,
S2 with CM constrained by σ = 0.3 (Chambolle–Pock algo-

rithm), γ = 1, θ = 0.5 and μ = 4 are depicted in Fig. 10,
jointly with those obtained by LS and GMA.

The DOLP and AOLP are illustrated in Fig. 11 for each
method. Table 1 lists the DOLP mean of the noise-free
images and the one of the degraded images, together with
the respective standard deviations to measure the amount
of dispersion. The different figure contents correlated with
the table elements express clearly the relevance of the pro-
posed method to preserve the admissibility of polarimetric
images even in noisy acquisitions and in rendering a smooth
AOLP map. Moreover, when considering the DOLP calcu-
lated with the three methods, it is clear that CM is the one
giving the smoother one, emphasizing the ability of themodel
to handle data corrupted by noise. Slightly smaller standard
deviations are obtained in the case of the CM method (noisy
andnoise-free frameworks), reflecting a smaller dispersion of
the DOLP. The significance of the proposed method is also
corroborated by the images of the AOLP. Once again, the
AOLP of CM is more homogeneous and is more successful
in highlighting the homogeneous reflections when dealing
with the same material. This analysis is finally substantiated

Fig. 7 Row 1: three-dimensional Stokes images S0, S1, S2 of a plant in its pot reconstructed with CM. Row 2: three-dimensional Stokes images S0,
S1, S2 of a plant in its pot reconstructed with LS. Row 3: three-dimensional Stokes images S0, S1, S2 of a plant in its pot reconstructed with GMA
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Fig. 8 Row 1: DOLP according to LS method (left), GMA (middle) and CM (right) with colorbar. Row 2: AOLP according to LS method (left),
GMA (middle) and CM (right) with colorbar

Fig. 9 Corrupted radiance images

by the recovered radiance components I = AS with S the
recovered Stokes vectors by CM (Fig. 12), with in particular
an estimated I45 component that exhibits less noise.

5.1.2 Experiments on Outdoor Polarimetric Images

For the second part of our experiments, the proposed
method is evaluated on outdoor scenes with highly reflec-
tive objects, uncontrolled heterogeneous incident lights and
several objects of different nature. Figure 13 displays the
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Fig. 10 Row 1: three-dimensional Stokes images S0, S1, S2 from cor-
rupted radiance data reconstructed with CM. Row 2: three-dimensional
Stokes images S0, S1, S2 from corrupted radiance data reconstructed

with LS. Row 3: three-dimensional Stokes images S0, S1, S2 from cor-
rupted radiance data reconstructed with GMA

reconstructed Stokes components with CM constrained by
σ = 0.1 (Chambolle–Pock algorithm), γ = 1, θ = 0.5 and
μ = 35, while Fig. 14 emphasizes the results obtained for
the DOLP and AOLP with the three methods.

Again, the DOLP with the proposed solution is physi-
cally admissible for the whole pixels of the image while for
the least square-based model, it is greater than 1 for around
5% of the pixels. As for the AOLP, the proposed method
clearly outperforms the classical one, providing a smooth
consistent map. For the least square-based method, the map
is corruptedbypoints,meaning that the reflection is strong for
these pixels. This phenomenon is physically irrelevant since
neighbouring pixels lying on a same material should almost
have the same reflection, i.e. the same AOLP. As in indoor
scenes, this issue occurs because of the non-physical admis-
sibility of the Stokes vectors of some pixels. This problem
is amplified for the AOLP estimation. In the coupled regu-
larization model, the AOLP is much better. The reflection in
homogeneous areas is roughly the same. Nevertheless, some
areas exhibit a highAOLPwhich indicates a strong reflection:

this occurs in regions where the sun is directly shining. As
these areas are localized and not largely spread in the image
unlike the least square-based solution, an idea to overcome
this problemwould be to combine the proposed solutionwith
methods aiming to mitigate specular reflection as presented
in [28] or with solutions relying on inpainting to recover the
lost part of theAOLP [29]. This is, however, beyond the scope
of the proposed work, the problem being independent of the
physical admissibility of the Stokes vectors.

The last but not least experiment focuses on complicated
outdoor scenes with reduced visibility and poor weather con-
ditions such as heavy fog or snow (see Fig. 15). Recent
researches claim that an excellent alternative solution for
analysing such complicated images is polarimetric vision,
where classical RGB images fail to overcome the drawback
of lowvisibility, resulting in a drop of performances. This can
be explained by the fact that an object reflects light evenwhen
the visibility is altered. The results of the estimated Stokes
vectors with CM constrained by σ = 0.1 (Chambolle–Pock
algorithm), γ = 1, θ = 0.5 and μ = 55 as well as the
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Fig. 11 Row 1: DOLP according to LS method (left), GMA (middle) and CM (right). Row 2: AOLP according to LS method (left), GMA (middle)
and CM (right)

Table 1 Comparison of the DOLP mean of noise-free images and noisy images with LS method, GMA and CM: the maximum is in brackets

LS GMA CM

Noise-free images 0.061 ± 0.07 (0.9) 0.061 ± 0.07 (0.9) 0.046 ± 0.051 (0.66)

Noisy images 0.226 ± 0.223 (1.278) 0.225 ± 0.222 (1) 0.202 ± 0.2088 (0.8)

Fig. 12 Reconstructed radiance
images by CM
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Fig. 13 Row 1: three-dimensional Stokes images S0, S1, S2 of an outdoor scene reconstructed with CM. Row 2: three-dimensional Stokes images
S0, S1, S2 of an outdoor scene reconstructed with LS. Row 3: three-dimensional Stokes images S0, S1, S2 of an outdoor scene reconstructed with
GMA

polarization characteristics are shown in Figs. 16 and 17,
respectively. Note that the LS method produces DOLP val-
ues that are lower than 1 so we restrict ourselves to a strict
comparison between CM and LS. This experiment thus aims

to support again the fact that coupled TV regularization
improves the results. As in all the previous cases, the pro-
posed CM outperforms the classical LS. The AOLP is still
not perfect in that case, but one can see much better reflec-
tion from distant objects, meaning that the estimated Stokes
vectors are more representative of the physical content of the
scene (see for instance [30]).
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Fig. 14 Row 1: DOLP according to LS method (left), GMA (middle) and CM (right) for the outdoor scene. Row 2: AOLP according to LS method
(left), GMA (middle) and CM (right) for the outdoor scene

Fig. 15 Image of a road scene under heavy fog

6 Discussion and Conclusion

This paper shows that a unique solution to the polarization
optimization problem can be designed, encoding both the
compliance with the physical admissibility constraints and
homogeneity/regularity properties, and overcoming thus the
limits of the classical least square-based method that is prone
to errors. In this latter case, even if these miscalculations
might only affect a small amount of pixels, they lead to an

inaccurate physical representation and interpretation of the
scene.

Polarization modality is able to characterize an object by
multiple physical properties including its intensity, its reflec-
tion, its surface nature and roughness, and other induced
physical properties such as the DOLP and the AOLP which
reflect the magnitude and the direction of the reflection. As
most computer vision applications rely on the quantity of
information extracted from a scene, it makes polarization
modality the best alternative for applications where the clas-
sical RGB modality fails. The relevance of the information
given by polarization relies first on the correctness of the
computed Stokes vectors, crux point of the interpretation of
the scene physical content.

We emphasize that the correctness and suitability of the
computed Stokes vectors is the primary contribution of our
work. Even if the AOLP is still not perfect in the pres-
ence of noise, namely in Fig. 11 where noise is deliberately
added or in Fig. 17 in the presence of heavy fog and snow,
we are nevertheless ensured that, with the proposed solu-
tion, the issue does not stem from the non-respect of the
physical admissibility constraint, which is essential when
dealing with polarization modality. This problem could be
addressed in the future by including some pre-processing
steps in the pipeline to mitigate the noise affecting acqui-
sitions or to enhance the visibility in the intensity channels
before transforming them into Stokes channels. Thus, the
restoration phasewould be upstream, on the radiance images,
and not a posteriori as in the proposed work.. These first
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Fig. 16 Row 1: three-dimensional Stokes images S0, S1, S2 of an outdoor scene under heavy fog reconstructed with CM. Row 2: three-dimensional
Stokes images S0, S1, S2 of an outdoor scene under heavy fog reconstructed with LS

Fig. 17 Row 1: DOLP
according to LS method (left)
and CM (right) for the outdoor
scene under heavy fog. Row 2:
AOLP according to LS method
(left) and CM (right) for the
outdoor scene under heavy fog
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results are cornerstone steps for further processing tasks
such as segmentation, classification, detection or more gen-
erally, applications requiring ametric or a distance computed
directly on Stokes images. So far, for such applications, only
the intensity images (I0, I90, I45, I135) have been utilized as
complementary information when dealing with polarization-
encoded images. Someworks, taking advantage of the AOLP
and DOLP metrics, are emerging, e.g. shape from polariza-
tion [31], transparent object normal estimation [5], showing
that this field of research is thriving, enclosing a lot of inter-
esting scientific trails, in particular in computation imaging
and graphical display community. Yet, generally, Stokes vec-
tors as well as AOLP and DOLP are most often used to
visualize details difficult to see in classical images, such
as transparent objects or objects exhibiting specular reflec-
tion caused by frontal sunlight. Polarization is also used
for scene enhancing, where classical modality fails, such as
image dehazing, depth estimation [32,33] or to characterize
the dependency of the scene on the illumination conditions
[30]. We believe that the proposed work could pave the way
to more involved analyses of the Stokes vectors. Indeed, up
to now in the literature, no quantitative study entailing the
Stokes vectors or a physical combination of them has been
introduced. The main reason comes from the mathematical
shape of the Stokes vectors: they do not lie in a vector space
owing to the physical admissibility constraint. It is therefore
inaccurate to use the Euclidean distance to compare pix-
els represented by two Stokes vectors. Also, two spatially
close pixels may lie on different materials. The problem of
comparing Stokes vectors is an ill-posed one in polariza-
tion formalism and represents a real disability to leverage
the pure physical part of the polarization (Stokes vectors,
AOLP, DOLP). This is a line of research we will investigate
in future works by, for instance, projecting the Stokes vec-
tors into the Minkowski space or the Krein space. However,
before dealing with this pointed issue, a correct estimation
of the Stokes parameters is paramount and this is what we
have accomplished in this paper.
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Appendix A: Pointwise Infimum of Concave
Functions

Let us denote by f (p) = inf
S∈K

L(S, p) = inf
S∈K

LS(p). In our

case, for each p the infimum is reached so that we could

write equivalently f (p) = min
S∈K

LS(p). Let us prove that f

is concave.
We recall a preliminary result.

Theorem 3 Let X be a set and let f : X → R̄. The hypo-
graph of f is defined by

hypo f = {(x, t) ∈ X × R | f (x) ≥ t} .

A function f : X → R̄ is concave if and only if its hypograph
is convex.

Coming back to our problem,

hypo f = {(p, t) ∈ B × R | f (p) ≥ t} , (A1)

=
{
(p, t) ∈ B × R | inf

S∈K
LS(p) ≥ t

}
, (A2)

=
⋂
S∈K

{(p, t) ∈ B × R | LS(p) ≥ t} , (A3)

which is convex as the intersection of convex sets.

Appendix B: Pointwise Infimum of Continu-
ous Functions

Theorem 4 Let (X , τ ) be a topological space and let f :
X → R̄ be a function. Function f is upper semi-continuous
if ∀α ∈ R, the set {x ∈ X | f (x) < α} is open.

Let us prove that f : p ∈ B �→ inf
S∈K

L(S, p) is upper

semi-continuous. Let α ∈ R. Let p ∈ f −1((−∞, α)).
Then, inf

S∈K
L(S, p) < α and there exists S̄p ∈ K such that

L(S̄p, p) = LS̄p (p) < α. This implies that

f −1((−∞, α)) =
⋃
S∈K

L−1
S ((−∞, α))

which is open as the union of open sets.

Appendix C: Alternative Proof to Get the
Proximal Operator of �g

Consider the three-dimensional optimization problem

u∗ = proxτ g(u = (u0, u1, u2))

= argmin
ũ=(ũ0,ũ1,ũ2)∈R3

1

2τ
‖ũ−u‖2

R3
+μ

2
‖Aũ−I‖2

R4
+iĈ(ũ).
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Using the identity

ν (a − b)2 + μ (a − c)2

= (ν + μ) a2 − 2a(νb + μc) + ν b2 + μ c2

= (ν + μ)

(
a − νb + μc

ν + μ

)2

− (νb + μ c)2

ν + μ
+ νb2 + μc2,

and the fact that AT A =
⎛
⎝
1 0 0
0 1

2 0
0 0 1

2

⎞
⎠, the minimization prob-

lem can be equivalently restated as:

u∗ = argmin
ũ∈R3

α (ũ0 − z0)
2 + β (ũ1 − z1)

2

+ β (ũ2 − z2)
2 + iĈ(ũ)

= argmin
ũ∈R3

(√
αũ0 − √

αz0
)2 +

(√
βũ1 −√βz1

)2

+
(√

βũ2 −√βz2
)2 + iĈ(ũ), (C1)

with

{
α = 1

2τ + μ
2

β = 1
2τ + μ

4
, and z0 = 1

2τ u0+ μ
2 b0

α
, z1 = 1

2τ u1+ μ
2 b1

β

and z2 = 1
2τ u2+ μ

2 b2
β

.

We then set

⎧
⎨
⎩
ū0 = √

α ũ0
ū1 = √

β ũ1
ū2 = √

β ũ2

,

⎧
⎨
⎩
z̄0 = √

α z0
z̄1 = √

β z1
z̄2 = √

β z2

and C the

closed convex set defined by

C =
{
t = (t0, t1, t2) ∈ R

3 | t0 ≥
√

α

β

√
t21 + t22

}
,

and consider the auxiliary problem related to (C1)

argmin
ū=(ū0,ū1,ū2)∈R3

‖ū − z̄‖2
R3 + iC(ū), (C2)

which thus amounts to computing the projection of z̄ =
(z̄0, z̄1, z̄2) onto C. Once the (unique) solution of (C2) is
obtained, it suffices to use the previous change of variable to
recover the u∗

i ’s.
Let us now recall the following result dedicated to orthog-

onal projection onto epigraphs.

Theorem 5 Orthogonal projection onto epigraphs, taken
from [34,Chapter 6,Theorem6.36]withEaEuclidean space,
let

C = epi(g) = {(x, t) ∈ E × R : g(x) ≤ t} ,

where g : E → R is convex. Then,

PC ((x, s)) =
{

(x, s) if g(x) ≤ s
(proxλ∗ g(x), s + λ∗) if g(x) > s

,

where λ∗ is any positive root of the function

�(λ) = g(proxλ g(x)) − λ − s.

In addition, � is nonincreasing.

We invoke the previous theorem with g(·) =
√

α
β

‖ · ‖R2

to obtain the formula and follow the arguments of Beck ([34,
Chapter 6]) (we respect the same order in the arguments of
PC(·) as in [34])

PC(ẑ = (z̄1, z̄2), z̄0)

=
⎧
⎨
⎩

(z̄1, z̄2, z̄0) if z̄0 ≥
√

α
β

‖ẑ‖R2

(prox
λ∗
√

α
β
‖·‖

R2
(ẑ), z̄0 + λ∗) if z̄0 <

√
α
β

‖ẑ‖R2
,

where λ∗ is any positive root of the function �(λ) =√
α
β

‖prox
λ
√

α
β
‖·‖

R2
(ẑ)‖R2 − λ − z̄0.

Let (ẑ, z̄0) be such that z̄0 <
√

α
β

‖ẑ‖R2 .

Recall that

prox
λ
√

α
β
‖·‖

R2
(ẑ) =

⎡
⎢⎢⎣1 −

λ
√

α
β

max(‖ẑ‖R2 , λ

√
α

β
)

⎤
⎥⎥⎦ ẑ.

Plugging the above into the expression of � leads to

�(λ) =
√

α

β

⎡
⎢⎢⎣1 −

λ
√

α
β

max(‖ẑ‖R2 , λ

√
α

β
)

⎤
⎥⎥⎦ ‖ẑ‖R2 − λ − z̄0

=
⎧
⎨
⎩

√
α
β

‖ẑ‖R2 − λ α
β

− λ − z̄0 if ‖ẑ‖R2 ≥ λ
√

α
β

−λ − z̄0 if ‖ẑ‖R2 < λ
√

α
β

.

The unique positive root λ∗ of the piecewise linear function
� is

λ∗ =

⎧
⎪⎪⎨
⎪⎪⎩

√
α
β

‖ẑ‖R2 − z̄0

1 + α
β

if ‖ẑ‖R2 ≥ −z̄0
√

α
β

−z̄0 if ‖ẑ‖R2 < −z̄0
√

α
β

,
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resulting in

(prox
λ∗
√

α
β

‖·‖
R2

(ẑ), z̄0 + λ∗)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(0, 0, 0) if ‖ẑ‖R2 < −z̄0
√

α
β⎛

⎝
⎛
⎝ 1

1 + α
β

+
√

α
β

1 + α
β

z̄0
‖ẑ‖R2

⎞
⎠

ẑ,

α
β
z̄0 +

√
α
β
‖ẑ‖R2

1 + α
β

⎞
⎠ if ‖ẑ‖R2 ≥ −z̄0

√
α
β

.

If we summarize the whole results, coming back to the initial
variables, we see that we recover the results obtained with
the necessary and sufficient KKT condition. Indeed,

• If z̄0 ≥
√

α
β

‖ẑ‖R2 or equivalently, z0 ≥
√
z21 + z22,

(√
αu∗

0,
√

βu∗
1,
√

βu∗
2

)
= (z̄0, z̄1, z̄2)

=
(√

αz0,
√

βz1,
√

βz2
)

,

yielding

(
u∗
0, u

∗
1, u

∗
2

) = (z0, z1, z2).

• If z̄0 <
√

α
β

‖ẑ‖R2 or equivalently, z0 <

√
z21 + z22,

(i) If z̄0 ≥ 0 (or equivalently z0 ≥ 0), then ‖ẑ‖R2 ≥ −z̄0
√

α
β

or equivalently β

√
z21 + z22 ≥ −α z0, and intermediate

computations lead to

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u∗
0 = α

α + β
z0 + β

α + β

√
z21 + z22

u∗
1 =

⎛
⎝ β

α + β
+ α

α + β

z0√
z21 + z22

⎞
⎠ z1

u∗
2 =

⎛
⎝ β

α + β
+ α

α + β

z0√
z21 + z22

⎞
⎠ z2

.

(ii) If z̄0 < 0 (or equivalently, z0 < 0) and ‖ẑ‖R2 < −z̄0
√

α
β

or equivalently β

√
z21 + z22 < −α z0, then

(
u∗
0, u

∗
1, u

∗
2

) = (0, 0, 0).

(iii) If z̄0 < 0 (or equivalently, z0 < 0) and ‖ẑ‖R2 ≥ −z̄0
√

α
β

or equivalently β

√
z21 + z22 ≥ −α z0, then intermediate

computations lead to

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u∗
0 = α

α + β
z0 + β

α + β

√
z21 + z22

u∗
1 =

⎛
⎝ β

α + β
+ α

α + β

z0√
z21 + z22

⎞
⎠ z1

u∗
2 =

⎛
⎝ β

α + β
+ α

α + β

z0√
z21 + z22

⎞
⎠ z2

.

References

1. Wolff, L.B., Andreou, A.G.: Polarization camera sensors. Image
Vis. Comput. 13(6), 497–510 (1995)

2. Berger, K., Voorhies, R., Matthies, L.H.: Depth from stereo polar-
ization in specular scenes for urban robotics. In: 2017 IEEE
International Conference on Robotics andAutomation (ICRA), pp.
1966–1973 (2017)

3. Zhu, D., Smith, W.A.P.: Depth From a Polarisation + RGB Stereo
Pair. In: 2019 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pp. 7578–7587 (2019)

4. Morel, O., Stolz, C., Meriaudeau, F., Gorria, P.: Active lighting
applied to three-dimensional reconstruction of specular metallic
surfaces by polarization imaging. Appl. Opt. 45(17), 4062–4068
(2006)

5. Miyazaki, D., Saito, M., Sato, Y., Ikeuchi, K.: Determining surface
orientations of transparent objects based on polarization degrees in
visible and infrared wavelengths. J. Opt. Soc. Am. A 19(4), 687–
694 (2002)

6. Rehbinder, J., Haddad, H., Deby, S., Teig, B., Nazac, A., Novikova,
T., Pierangelo, A., Moreau, F.: Ex vivo Mueller polarimetric imag-
ing of the uterine cervix: a first statistical evaluation. J. Biomed.
Opt. 21(7), 1–8 (2016)

7. Wang, F., Ainouz, S., Meriaudeau, F., Bensrhair, A.: Polarization-
based car detection. In: 2018 25th IEEE International Conference
on Image Processing (ICIP), pp. 3069–3073 (2018)

8. Aycock, T.M., Chenault, D.B., Hanks, J.B., Harchanko, J.S.:
Polarization-based mapping and perception method and system.
Google Patents. US Patent 9,589,195 (2017)

9. Blin, R.,Ainouz, S., Canu, S.,Meriaudeau, F.: Road scenes analysis
in adverse weather conditions by polarization-encoded images and
adapted deep learning. In: 2019 IEEE Intelligent Transportation
Systems Conference (ITSC), pp. 27–32 (2019)

10. Faisan, S.,Heinrich,C.,Rousseau, F., Lallement,A., Zallat, J.: Joint
filtering estimation of Stokes vector images based on a nonlocal
means approach. J. Opt. Soc. Am. A 29(9), 2028–2037 (2012)

11. Zallat, J., Heinrich, C.: Polarimetric data reduction: a Bayesian
approach. Opt. Express 15(1), 83–96 (2007)

12. Zallat, J., Heinrich, C., Petremand, M.: A Bayesian approach for
polarimetric data reduction: theMueller imaging case.Opt. Express
16(10), 7119–7133 (2008)

13. Valenzuela, J.R., Fessler, J.A.: Joint reconstruction of Stokes
images from polarimetric measurements. J. Opt. Soc. Am. A 26(4),
962–968 (2009)

14. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for
convex problems with applications to imaging. J. Math. Imaging
Vis. 40(1), 120–145 (2011)

15. Bass, M., Van Stryland, E.W., Williams, D.R., Wolfe, W.L.: Hand-
book of Optics, Third Edition Volume II: Design, Fabrication and
Testing, Sources and Detectors, Radiometry and Photometry, 3rd
edn. McGraw-Hill, Inc., New York (2009)

123



616 Journal of Mathematical Imaging and Vision (2023) 65:592–617

16. Terrier, P., Devlaminck, V.: Robust and accurate estimate of the
orientation of partially polarized light from a camera sensor. Appl.
Opt. 40(29), 5233–5239 (2001)

17. Ainouz, S., Morel, O., Fofi, D., Mosaddegh, S., Bensrhair, A.:
Adaptive processing of catadioptric images using polarization
imaging: towards a pola-catadioptric model. Opt. Eng. 52(3), 1–9
(2013)

18. Zubko, E., Chornaya, E.: On the ambiguous definition of the degree
of linear polarization. Res. Notes AAS 3(3), 45 (2019)

19. Wang, Z., Zheng, Y., Chuang, Y.-Y.: Polarimetric camera calibra-
tion using an LCD monitor. In: 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 3738–3747
(2019)

20. Chambolle, A.: An algorithm for total variation minimization and
applications. J. Math. Imaging Vis. 20(1), 89–97 (2004)

21. Pierre, F., Aujol, J.-F., Bugeau, A., Papadakis, N., Ta, V.-T.:
Luminance-chrominance model for image colorization. SIAM J.
Imaging Sci. 8(1), 536–563 (2015)

22. Azé, D.: Éléments d’analyse convexe et variationnelle. Mathéma-
tiques pour le 2ème cycle. Ellipses, Paris (1997)

23. Ekeland, I., Témam, R.: Convex Analysis and Variational Prob-
lems. Society for Industrial andAppliedMathematics, Philadelphia
(1999)

24. Moreau, J.-J.: Fonctions convexes duales et points proximaux dans
un espace hilbertien. C. R. Acad. Sci. 255, 2897–2899 (1962)

25. Combettes, P.L., Pesquet, J.-C.: Proximal splitting methods in sig-
nal processing. In: Bauschke, H.H., Burachik, R.S., Combettes,
P.L., Elser, V., Luke, D.R., Wolkowicz, H. (eds.) Fixed-Point
Algorithms for Inverse Problems in Science and Engineering, pp.
185–212. Springer, New York (2011)

26. Kolmogorov, A., Fomine, S.: Éléments de la Théorie des Fonctions
et de l’Analyse Fonctionnelle, 2nd edn. Mir, Moscow (1977)

27. Tang, L., Fang, Z.: Edge and contrast preserving in total variation
image denoising. EURASIP J. Adv. Signal Process. 2016, 1–21
(2016)

28. Wang, F., Ainouz, S., Petitjean, C., Bensrhair, A.: Specularity
removal: a global energy minimization approach based on polar-
ization imaging. Comput. Vis. Image Underst. 158, 31–39 (2017)

29. Wang, Y., Jiang, Z., Shi, J.: Highlight area inpainting guided by
illumination model. In: Fifth International Conference on Graphic
and Image Processing (ICGIP 2013), vol. 9069, p. 90691 (2014).
International Society for Optics and Photonics

30. Kupinski, M.K., Bradley, C.L., Diner, D.J., Xu, F., Chipman, R.A.:
Angle of linear polarization images of outdoor scenes. Opt. Eng.
58(8), 082419 (2019)

31. Baek, S.-H., Jeon, D.S., Tong, X., Kim,M.H.: Simultaneous acqui-
sition of polarimetric SVBRDF and normals. ACM Trans. Graph.
37(6) (2018)

32. Schechner, Y.Y., Narasimhan, S.G., Nayar, S.K.: Polarization-
based vision through haze. Appl. Opt. 42(3), 511–525 (2003)

33. Sarafraz, A., Negahdaripour, S., Schechner, Y.Y.: Enhancing
images in scattering media utilizing stereovision and polarization.
In: 2009 Workshop on Applications of Computer Vision (WACV),
pp. 1–8 (2009). IEEE

34. Beck, A.: First-Order Methods in Optimization. Society for Indus-
trial and Applied Mathematics, Philadelphia (2017)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted

manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

Carole Le Guyader received the
French engineering degree (equiv-
alent to M.Sc. degree) in mathe-
matical engineering and the Post-
graduate degree in engineering
sciences from the National Insti-
tute of Applied Sciences (NIAS),
Rouen, France, in 2002, and the
Ph.D. degree in applied mathe-
matics from NIAS, Rouen, in
2004. Her thesis was dedicated
to segmentation under geometri-
cal constraints from a theoretical
and applied point of view. She
held visiting research positions at

the University of California, Los Angeles (Summer 2005 and 2007)
and then, a position of Assistant Professor at the NIAS, Rennes. She
is currently a Full Professor at the NIAS, Rouen, France. Her research
interests include variational methods in image processing, hybridiza-
tion of variational and machine-learning-based methods, curve and
surface evolution using PDEs, viscosity solutions, and approximation
of surfaces.

Samia Ainouz is a full professor
at INSA Rouen Normandy. She
is the head of the team Intelli-
gent Transportation systems since
June 2019. Her research area is
around Multimodality for intel-
ligent vehicle navigation includ-
ing data fusion, 3D reconstruc-
tion, VSLAM. She supervised 7
PhD students around road scene
analysis and autonomous naviga-
tion. Recently, she focused her
research towards non-conventional
imaging for autonomous naviga-
tion in adverse weather conditions

using Deep learning tools. She is currently the head of the ANR
project ICUB dealing with road scene analysis in adverse weather con-
ditions with collaboration with Peugeot PSA, Stereolabs and ImVia.

Stéphane Canu received the Ph.D.
degree in applied mathematics sci-
ence from the University of Tech-
nology of Compiègne (UTC),
France, in 1986 where he got its
first permanent position as asso-
ciate professor. Founder of the
Computer Science department at
INSA in Rouen Normandy, he is
now Professor at INSA Rouen
Normandy and a member of the
LITIS Research Laboratory, where
he was director from 2005 to 2012.
He has been also a lecturer at
l’école Polytechnique from 2017

to 2020. He has been doing research for 35 years in the field of Artifi-

123



Journal of Mathematical Imaging and Vision (2023) 65:592–617 617

cial Intelligence, Machine Learning and Data Science. He is the author
of more than one hundred articles with a h-index of 38 according
to Google Scholar. From 2016 to 2020, he coordinated the Deep in
France program funded by the ANR on the crucial question of the

energy sobriety of deep learning and now holds an IA Chair on the
robustness of deep learning. He was a member of CNU 61 from 2012
to 2019, scientific officer at HCERES from 2019 to 2020 and is AI
officer at MESR since 2020. He was co-chair of ECML 2022.

123


	A Physically Admissible Stokes Vector Reconstruction in Linear Polarimetric Imaging
	Abstract
	1 Introduction
	2 Polarization Formalism and Motivations for the Introduction of the Proposed Model
	3 Mathematical Modelling of the Proposed Reconstruction Model and Theoretical Results
	3.1 Definition of the Primal Problem
	3.2 Reformulation as a Min–Max Problem

	4 Numerical Algorithm
	4.1 Preliminary Mathematical Background
	4.2 The Generic Chambolle–Pock Primal-dual Algorithm
	4.3 Design of our Numerical Algorithm

	5 Validation
	5.1 Experimental Results
	5.1.1 Experiments on Synthetic Data and Indoor Images
	5.1.2 Experiments on Outdoor Polarimetric Images


	6 Discussion and Conclusion
	Acknowledgements
	Appendix A: Pointwise Infimum of Concave Functions
	Appendix B: Pointwise Infimum of Continuous Functions
	Appendix C: Alternative Proof to Get the Proximal Operator of tau g
	References




