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Abstract
The paper presents an effective, robust and geometrically invariants, collection of contours or boundaries base local binary
pattern (LBP) for binary object shape retrieval and classification. The contours segmentation or deformations of an object is a
preprocessing step of shape retrieval and classification that segment the binary object shape in a shape-preserving sequence of
contours segment using a coordination number shape segmentation approach. The proposed local binary pattern extracts the
minimum decimal value corresponding to the pattern of object contour points for each and every contours segment. It is one
of the most important features in content-based image retrieval. At the matching stage, we find Euclidean distance between
eigenvalues of correlation coefficient of Hu’s seven moments corresponding to each contour segment for given two objects.
The LBP pattern corresponding to the image contour provides excellent power, which is demonstrated by excellent retrieval
performance on several popular shape benchmarks, includingMPEG-7CE-Shape-1 dataset andKimia’s dataset. Experimental
results obtained from popular databases demonstrate that the proposed linear binary pattern can achieve comparably better
results than existing algorithms.

Keywords Local binary pattern · Eigenvalue · Hu’s moments · Correlation coefficient · Coordination number

1 Introduction

Analysis of binary objects invariant to geometric transforma-
tion such as translation, rotation and scale is the most critical
task in pattern recognition, classification and other similar
applications. Shape is a key information to human vision
and machine vision for distinguishing objects from other
objects in the real world. Therefore, several approaches have
been developed to construct geometrically invariant features
for shape classification and recognition in machine vision.
Analysis of objects has been widely used in many applica-
tions such as object recognition and shape evolution [1–4],
medical image and protein analysis [5], robot navigation [6],
and topology in sensor networks [7], etc. It is one of the crit-
ical problems, as shape instances from the same category,
which look similar to humans, are often very different when
measured with geometric transformation (translation, rota-
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tion, scaling, etc) and nonlinear deformations (articulation,
noise and occlusion). Compared to geometric transforma-
tion, the nonlinear deformations are much more challenging
for shape similarity measures. Therefore, textual annota-
tion of images is inefficient and sometimes impossible in a
large database. Retrieval by the content-based image retrieval
(CBIR) method [1] received considerable attention to find
good shape descriptors and efficient matching measures that
are issues in the image vision research area. The shape recog-
nition and classification methodology developed by eminent
researcher’s in the field of computer-vision for the object
analysis has been broadly divided into two groups: (a) based
on the contour points and (b) based on the region pixels of
an object. The contour base shape descriptor extracts fea-
tures from boundaries points (outer pixels) of an object, and
the region base shape descriptor extracts features from the
inner pixels of an object. The preprocessing steps for object
recognition using boundary representation are sampling of
boundary points that’s used for extracting the features vec-
tor [2–4,8]. The sampling of contour points does not provide
enough information from objects that produced lossy data for
the shape classification and recognitionmodel. Also, the pix-
els of the region alone do not recognize the shape boundary
of an object. The shortfall of the present existing methodol-
ogy for boundary and region base shape classification can be
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overcome by a hybrid model that extracts features from inner
and outer pixels of an object [8]. To provide a novel object
recognition methodology, the proposed model is built on a
hybrid model that combines contour and region base shape
classification methods.

As a result, throughout our review of the literature, we
tested a variety of ways for achieving geometrically invari-
ant shape-based feature vectors for texture classification,
which may be further classified into two categories: the
statistical methods and the model-based methods, respec-
tively. As stated in the literature [2], shape descriptors with
only global or local information may probably fail to be
robust enough in statistical methods and model-based meth-
ods. Global descriptors are robust to local deformations, but
they cannot capture local details of shape boundary. Local
descriptors are precise to represent local shape features only,
while they are too sensitive to noise, those approaches are
discussed in the [6,9–16]. In fact, it is always challeng-
ing to distinguish between noise and local details of the
shape boundary. Naturally, one solution to this problem is
to define a rich shape descriptor, which consists of both
global and local shape features [8]. By combining local and
global shape features, we proposed local binary pattern and
combine it with Hu’s moment. In this paper, we fined the
local binary pattern of the subsequent boundaries of the
binary object using some predefined assumption base mor-
phological operation known as CoordinationNumber (CN)*.
Subsequently, erode the object and subtract the erode binary
object from the previous image until all pixels in the original
image have background pixels value. Therefore, the com-
bine LBP with Hu’s moment plays the most important role
in contours point pattern analysis. Our hybrid model is sup-
ported by recent work on shape classification and recognition
methodology. In [8], the author developed a hybrid model
that combines the height function characteristic of contour
points with the morphology feature of region base pixels.
The author of [11,12] constructed a model that combines the
Gabor features, histogram of oriented gradients (HoG), and
local binary pattern (LBP) for classification of Grass weed.
He has also described the texture of grass by modeling the
convolutional neural network (CNN) with local binary pat-
tern (LBP) of super-pixel. In [13], the author combines the
LBP with Hu’s seven moments for binary image analysis
and classification. In [14], the author map the binary image
to the lattices and compute the energy of pixels for shape
classification. The article, in [15], developed a model for
shape segmentation that segment the image based on statis-
tical range. The author of [16] constructed a model that map
the concept of the lattices from chemical science for binary
image analysis. In the article [17], the binary image shape
descriptor has been analyzed on a concurrent line by finding
the shortest distance from each points of a shape boundary.
The author of [18] constructed a model that’s offer a collec-

tion of weighted sum rule-based techniques based on a set of
widely used shape descriptors (shape context, height func-
tions, and inner-distance shape context). In [19], the author
has devised the pattern spectrum shape descriptors on the
basis of pixel energies in an object. These shape descrip-
tors are transformed into a matrix, from which a collection
of texture descriptors is produced. Despite the sophisticated
methods deployed by researchers, it has been a challenge
for us. Hence, the aim of researchers has been to cautiously
acquire the new model based on a convolution neural net-
workwith chemical properties of pixels. In particular [20,21],
machine learning (ML) techniques based on deep learning
and convolutional neural networks (CNNs) are increasingly
being investigated in several areas due to their high accuracy.
Therefore, our aim to enabling them to be the state of the art
in various binary shape classification and recognition. The
deep learning and CNN-based architecture discussed in [21]
is not invariant to rotation of object structure. In this case,
the precise modification of subsampling and flattening layers
is crucial for classification accuracy and the object descrip-
tor’s invariance to the geometric transformation. In [20],
author deployed the PDE-based framework that generalizes
group equivariant convolutional neural networks (G-CNNs)
for roto-translation objects. The research’s main goal is to
create a revolutionary binary form categorization and sever-
ity system. The Map Reduce framework also supports an
analysis of the proposed model. The input is obtained and
processed in the Map Reduce architecture. Throughout the
data partitioning process, partitioned input is used in themap-
per step to remove noise from the input image, and the phase
of pre-processing is applied to the image. Segmentation is
carried out with the pre-processed data using a generative
adversarial network (GAN) called min filter and then the
non-reliant components are taken out as needed to boost the
performance.

The rest of this paper is organized as follows: Sect. 2
describes the morphological operation: Erosion. Section 3
discusses the coordination number (CN)* of an object. Sec-
tion 4 analyzes the sequence of shape contour CS(n) of a
binary object. Section 5 discussed a brief review of the local
binary pattern (LBP). Section 6 describes the seven Hu’s
moment invariants. Section 7 discusses the shape similar-
ity measure using PCA. Section 8 analyzes the experimental
results and discussions. Finally, Sect. 9 concludes the paper.

2 Erosion
The original idea of erosion is given in [22]. It is the funda-
mental morphological transformation which combines two
sets using the vector subtraction of set elements. If A and
B as set in Z2, the erosion of A by B denoted by A � B is
defined as:
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A � B = {Z | (B)z ⊆ A} (1)

In words, this equation indicates that the erosion of A by
B is the set of all points Z such that B, translated by Z , is
contained in A. In the following discussion, set B is assumed
to be a structuring element. Equation (1) is the mathematical
formulation.Because the statement that B has to be contained
in A is equivalent to B not sharing any common elements
with the background, we can express erosion in the following
equivalent form:

A � B = {Z | (B)z ∩ Ac = ∅} (2)

where Ac is the complement of A and ∅ is the empty set.
Here, we concentrate on object boundary points and dis-

cussions from Eqs. (1) or (2) represent that erode pixels from
binary objects depend on structuring elements and the object
after erosion varies from one shape to another shape. The
contour of an object acts as a vital role in binary object anal-
ysis for shape classification that motivates toward selecting
an effective structuring element for boundaries representa-
tion. One method for fixed points boundaries of objects is
discussed inMoore boundary tracking algorithm afterMoore
[1968]. The Moore boundary tracking algorithm represents
boundaries as a sequence of the set of ordered boundary
points that does not represent the contribution of object pixels
in a boundary.

Therefore, we need to select an effective structuring ele-
ment as shown in Fig. 1 that fixed the object points as a
boundary by considering a square binary shape structuring
element. This pattern erodes the foreground object pixels that
share with 8-neighbor of background object pixels by a non-
informal manner. The object boundary for a given binary
object using a square binary pattern does not represent con-
tribution of boundary points by numerically or informally.
So, we are motivated toward the representation of the object
boundary by informal manner using coordination number
(CN)* that will be discussed in the next section.

3 Coordination Number (CN)*
The solid substances in chemical science are generally clas-
sified as either crystalline or amorphous. Crystalline solids
are characterized by a regular, ordered arrangement of par-
ticles. Therefore, the coordination number is the number of
nearest neighbors (or touching particles) that a particle has in

Fig. 1 Square binary pattern in
Z2

a crystal, which is called its coordination number. In a body-
centered cubic unit cell, the atom at the center of the unit cell
is surrounded by amaximumof eight neighbor atoms. There-
fore, all possible coordination numbers in crystalline solids
are given in set S = (0, 1, 2, 3, 4, 5, 6, 7, 8), and we defined
contour points as all those points which have a coordination
number between 1 and 7. The atom with the CN = 0 value
is an isolated point that does not contribute to the formation
of any shape. There exist multiple possible geometric com-
binations for each value of the coordination number for the
central atom.

• 2 for Linear
• 3 for Trigonal planar, trigonal pyramidal, or T-shaped
• 4 for Square planar or tetrahedral
• 5 for Trigonal bipyramidal or square pyramid structures
• 6 for Trigonal prism structure, hexagonal planar, or octa-
hedral

• 7 for Pentagonal bipyramidal, capped octahedron, or a
capped trigonal prism structure.

• 8 for Cubic, hexagonal bipyramidal, square antiprism, or
dodecahedron

Therefore, for a given binary object the boundary or contour
of an object are those pixels having a coordination number
that satisfies Eq. (3).

(CN ) = j ; where j ∈ {1, 2, 3, 4, 5, 6, 7} (3)
The coordination number of a binary object pixel can be
obtained by computing the number of 8-neighbor object pix-
els, as discussed below.

CN (x, y) = f (x − 1, y − 1) + f (x − 1, y) + f (x −
1, y + 1) + f (x, y − 1) + f (x, y + 1) + f (x + 1, y − 1) +
f (x +1, y)+ f (x +1, y+1) where f represents the object
pixels. So, rewrite Eq. (3) as follows:

CN (x, y) = j ; where j ∈ {1, 2, 3, 4, 5, 6, 7} (4)

Equation (4) represents the coordination number of object
pixels at (x, y) coordinate that are invariant to translation,
rotation and represents the contribution of object pixels in
an object boundary by informal manner. In boundary-based
binary object analysis or classification, informal knowledge
of boundary points gives comparatively better features that
will be discussed in the result section.

4 Shape Contour

In this section, we define one of the principal applications of
morphology that are useful in the representation and descrip-
tion of object shape. In particular, we considermorphological
algorithms for extracting the successive shape-based contour
of a compact binary object relative to a binary pattern as
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shown in Fig. 1. These are discussed in [23]. Let X ⊆ Z2

represent a finite-extent discrete binary image and let B ⊆ Z2

be a fixed finite binary pattern with (0, 0) ∈ B then the suc-
cessive shape contour for a given binary object X are denoted
by CS(n) and defined as follows:

CS(n) = (X � nB) − (X � (n + 1)B) (5)

for n = 0, 1, 2, ..., N . where N = max(n ≥ 0 :
X � nB �= ∅). Equation (5) represents the splitting
of an object in a sequence of N -number of successive
closed boundaries in two-dimensional space that contained
all object pixels in the form of boundaries of boundary
points. This conclusion is that an object may be recon-
structed by merging the boundary points of a set of bound-
aries. The abovementioned explanation is shown in Fig. 2.

(a)

(b)

(c)

(d)

Fig. 2 a A binary square shape. b 1st boundary of a square shape. c
2nd boundary of a square shape. d 3rd boundary of a square shape

Consider, a binary 5 × 5 a square shape as shown in
Fig. 2a and their deformations sequence of shape contours
CS(n = 3) is shown in Fig. 2b–d. The square shape of con-
tour points represents the pixels value only at those particular
contour points, but those contour points share different con-
tributions in object formation. The deformations of an object
in shape contours do not give enough knowledge for further
processing in shape classification and analysis. Therefore,we
have needed more informal information from the sequence
of shape contours that can be justified by using the coordi-
nation number that has been discussed in Sect 2. Now, we
consider the square shape shown in Fig. 2a and will discuss
the shape deformations by using (CN)* that’s the informal
boundary representation. Figure 3a–d represents the overall
concepts of shape-based contour segmentations using coor-
dination number (CN)*.
Figure 3a represents the coordination number of a square
shape object as shown in Fig. 2a. By the definition of
coordination number base contour segmentation which is
stated in Sect. 2, the contour points of an object are those
points having coordination number belonging to set S =
(0, 1, 2, 3, 4, 5, 6, 7).
The deformations of a square shape object using (CN)*
are shown in Fig. 3b–d, which represents the contributions
of object pixels in boundary formation by informal man-
ner. This concludes and supports the shape contour section
and algorithm 1 for further processing in shape analysis
and classifications. The algorithm 1 describes the compu-
tational method of contour segments CS(n) for j th image in
a database.

5 A Brief Review of the Local Binary Pattern
(LBP)

In this section, we provide a brief review of the LBP that
has an excellent metric which focuses on the structure of
the object boundary [10]. It is a powerful tool for translation
and rotation invariant features extraction from shape bound-
aries. As we have mentioned above, the LBP is a method
that provides shape pattern descriptor in the form of decimal
value corresponding to their shape contour point. The LBP
computation on a binary object boundary point is done as
follows.

LBP1(x, y) = CN (x + 1, y) ∗ 27 + CN (x + 1, y + 1) ∗ 26

+CN (x, y + 1) ∗ 25 + CN (x − 1, y + 1)

∗24 + CN (x − 1, y) ∗ 23
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(a)

(b)

(c)

(d)

Fig. 3 a The coordination number (CN)* matrix corresponding to square shape, b the 1st contour of square shape using (CN)*, c the 2nd contour
of square shape using (CN)*, d the 3rd contour of square shape using (CN)*

Algorithm 1 Calculate CS(n)

Require: Input Binary Object’s m j .
Ensure: The 0 represent the background pixels and 1 represents the

forground pixels in an object.
1: while Pixels(m j ) �= 0 do
2: Compute(CN )∗ ⇐ CN (x, y)
3: CS(n) ⇐ (CN )∗ ∈ {1, 2, 3, 4, 5, 6, 7}
4: if CN (m j ) == 8 then
5: m j ⇐ 1
6: else
7: m j ⇐ 0
8: end if
9: end while

+CN (x − 1, y − 1) ∗ 22 + CN (x, y − 1)

∗21 + CN (x + 1, y − 1) ∗ 20 (6)

LBP2(x, y) = CN (x + 1, y + 1) ∗ 27 + CN (x, y + 1) ∗ 26

+CN (x − 1, y + 1) ∗ 25 + CN (x − 1, y)

∗24 + CN (x − 1, y − 1) ∗ 23

+CN (x, y − 1) ∗ 22 + CN (x + 1, y − 1)

∗21 + CN (x + 1, y) ∗ 20 (7)

LBP3(x, y) = CN (x, y + 1) ∗ 27 + CN (x − 1, y + 1) ∗ 26

+CN (x − 1, y) ∗ 25 + CN (x − 1, y − 1)

∗24 + CN (x, y − 1) ∗ 23

+CN (x + 1, y − 1) ∗ 22 + CN (x + 1, y)

∗21 + CN (x + 1, y + 1) ∗ 20 (8)

LBP4(x, y) = CN (x − 1, y + 1) ∗ 27 + CN (x − 1, y) ∗ 26

+CN (x − 1, y − 1) ∗ 25 + CN (x, y − 1)

∗24 + CN (x + 1, y − 1) ∗ 23

+CN (x + 1, y) ∗ 22 + CN (x + 1, y + 1)

∗21 + CN (x, y + 1) ∗ 20 (9)
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LBP5(x, y) = CN (x − 1, y) ∗ 27 + CN (x − 1, y − 1) ∗ 26

+CN (x, y − 1) ∗ 25 + CN (x + 1, y − 1)

∗24 + CN (x + 1, y) ∗ 23

+CN (x + 1, y + 1) ∗ 22 + CN (x, y + 1)

∗21 + CN (x − 1, y + 1) ∗ 20 (10)

LBP6(x, y) = CN (x − 1, y − 1) ∗ 27 + CN (x, y − 1) ∗ 26

+CN (x + 1, y − 1) ∗ 25 + CN (x + 1, y)

∗24 + CN (x + 1, y + 1) ∗ 23

+CN (x, y + 1) ∗ 22 + CN (x − 1, y + 1)

∗21 + CN (x − 1, y) ∗ 20 (11)

LBP7(x, y) = CN (x, y − 1) ∗ 27 + CN (x + 1, y − 1) ∗ 26

+CN (x + 1, y) ∗ 25 + CN (x + 1, y + 1)

∗24 + CN (x, y + 1) ∗ 23

+CN (x − 1, y + 1) ∗ 22 + CN (x − 1, y)

∗21 + CN (x − 1, y − 1) ∗ 20 (12)

LBP8(x, y) = CN (x + 1, y − 1) ∗ 27 + CN (x + 1, y) ∗ 26

+CN (x + 1, y + 1) ∗ 25 + CN (x, y + 1)

∗24 + CN (x − 1, y + 1) ∗ 23

+CN (x − 1, y) ∗ 22 + CN (x − 1, y − 1)

∗21 + CN (x, y − 1) ∗ 20 (13)

LBP = min(LBPk); wherek = 1, 2, 3, 4, 5, 6, 7, 8

(14)

In our work, the LBP is computed for the object shape con-
tour CS(n) pixels with 8 neighbors. These LBP values are
represented in the form of Hu’s moment invariants function
[24], and details are given in the subsequent next section.

6 Moment Invariants

In this section, we defined two-dimensional (p + q)th order
moments that are invariant to translation, rotation and scaling
and discussed in [24].

mpq =
∫ ∞

−∞

∫ ∞

−∞
x p yq LBP(x, y) dxdy (15)

where p, q = 0, 1, 2, ...

If the contour points function LBP(x, y) is a piecewise
continuous bounded function that are uniquely determined
by local binary pattern also the moment of all orders exist
and the moment sequence mpq is uniquely determined by
LBP(x, y) . One should note that the moment in [25] may
be not invariant when LBP(x, y) changes by translation,
rotation and scaling. The invariant features can be achieved
using central moment, which are defined as follows:

μpq =
∫ ∞

−∞

∫ ∞

−∞
(x − x)p(y − y)q LBP(x, y) dxdy (16)

where p, q = 0, 1, 2, ... ; x = m10
m00

and y = m01
m00

.

The pixel points (x, y) are the centroid of the shape con-
tour CS(n) of a given binary object, defined in Eq. (3).
The centroid moment μpq computed using the centroid of
a corresponding shape contour points function CN (x, y) is
equivalent to thempq whose center has shifted to centroid of
the CS(n). Therefore, the central moment are geometrically
invariant to translations and rotations. Scale invariance can
be achieved by using normalization of central moments, and
its formulation is described as follows:

ηp,q = μpq

μ
γ
00

, γ = (p + q + 2)

2
, p + q = 2, 3, ... (17)

Based on normalized central moments, Hu’s [25] intro-
duced seven moment invariants functions known as Hu’s
moment invariants function and details are given below.

∅1 = η20 + η02 (18)

∅2 = (η20 − η02)
2 + 4η211 (19)

∅3 = (η30 − 3η12)
2 + (3η21 − η03)

2 (20)

∅4 = (η30 + η12)
2 + (η21 + η03)

2 (21)

∅5 = (η30 − 3η12)(η30 + η12)[(η30 + η12)
2 − 3(η21 + η03)

2]
+(3η21 − η03)(η21 + η03)[3(η30 + η12)

2 − (η21 + η03)
2]
(22)

∅6 = (η20 − η02)[(η30 + η12)
2 − (η21 + η03)

2]
+4η11(η30 + η12)(η21 + η03) (23)

∅7 = (3η21 − η03)(η30 + η12)[(η30 + η12)
2 − 3(η21 + η03)

2]
−(η30 − 3η12)(η21 + η03)[3(η30 + η12)

2 − (η21 + η03)
2]
(24)

These, ∅1,∅2,∅3,∅4,∅5,∅6,∅7 seven moment invariants are
useful properties of being unchanged under geometrical vari-
ant binary objects.

7 Similarity Measure Using the PCA

For the task of shape recognition and classification, usually a
shape similarity or dissimilarity is computed using principal
component analysis (PCA) by finding the optimal correspon-
dence of features extracted by applying Hu’s seven moments
invariant functions on shape contours CS(n), which is used
to rank the database shapes for shape retrieval and classi-
fication. In this paper, we use Euclidean distance between
eigenvalues of correlation coefficient of Hu’s sevenmoments
corresponding to shape contours of an object that reduced the
dimension of extracted features in a similar scale for robust
data handling between two objects. In a given shape contour
segment CS(n) from Eq. (5), we find ∅n1,∅n2,∅n3,∅n4,∅n5,∅n6,∅n7
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Table 1 Hu’s seven moments function of CS(n) of an object

CS(n) Hu’s seven moments function

n = 1 ∅11 ∅12 ∅13 ∅14 ∅15 ∅16 ∅17
n = 2 ∅21 ∅22 ∅23 ∅24 ∅25 ∅26 ∅27
... ... ... ... ... ... ... ...

n = N ∅N
1 ∅N

2 ∅N
3 ∅N

4 ∅N
5 ∅N

6 ∅N
7

for n = 1, 2...N that gives up a Nx7 matrix for further pro-
cessing of shape features as shown in Table 1.

The algorithm2describes the procedure for computing the
value of Hu’s seven moments (∅ni ) in each contour segments
CS(n) n=1,2,...,N for a given object. TheHu’s sevenmoments
describe the shape in terms of their pixel structures at N
different contour segments.

Algorithm 2 Calculate λ
j
i=1,2,...,7

Require: Input CS(n) f or j th image.
Ensure: 0 ≤ n ≤ N

for CS := CS(0) to CS(N ) do
for CS(x, y) : Each Contour Points

for k := 1 to 8 do
Compute(LBPk)

end
LBP(x, y) ⇐ min(LBPk)

end
Compute ∅ni

end

Now, our main focus to measure the shape dissimilar-
ity or similarity between two objects in the context of any
distance metric. And it can be computed by computing the
Euclidean distance between two shapes. For this purpose,
the generated Hu’s seven moments are not efficient due
to dimensionally variant from shape to shape. The dimen-
sion of Table 1 is Nx7 for CS(n), n = 1, 2, ..., N ; where
N = max(n ≥ 0 : X � nB �= ∅). Here, we com-
pute the correlation coefficient of Hu’s seven moments for
dimension reductions that can be efficiently represented by
the Euclidean distance metric. This gives up the minimum
error rate for shape segments analysis and recognition. Equa-
tion 25 presents the correlation coefficient(ri, j ) with respect
to co-variance between ∅ni and ∅nj . We have been finding the

relation between the ri, j and co-variance of i th Hu’s seven
moment to j th Hu’s seven moment for each and every CS(n).
The interpretation of ri, j with respect to −1 ≤ ri, j ≤ +1
generates Table 2 that has been used in next step of shape
recognition and analysis process. The beauty of this proposed
methodology is that the methodology does not only depend
on contour pixels or region pixels only. The methodology
analyzes the segment of contours that has been characterized

Table 2 Correlation coefficient with respect to Table 1

r1,1 r1,2 r1,3 r1,4 r1,5 r1,6 r1,7

r2,1 r2,2 r2,3 r2,4 r2,5 r2,6 r2,7

r3,1 r3,2 r3,3 r3,4 r3,5 r3,6 r3,7

r4,1 r4,2 r4,3 r4,4 r4,5 r4,6 r4,7

r5,1 r5,2 r5,3 r5,4 r5,5 r5,6 r5,7

r6,1 r6,2 r6,3 r6,4 r6,5 r6,6 r6,7

r7,1 r7,2 r7,3 r7,4 r7,5 r7,6 r7,7

by the contour pixels as well as region pixels of an object
based on the contour segment CS(n).

ri, j = Cov(∅ni ,∅nj )√
Var(∅ni )

√
Var(∅nj )

; f or i, j = 1, 2, ..., 7

and n = 1, 2, ..., N ; where

N = max(n ≥ 0 : X � nB �= ∅). (25)

A7,7 =

⎛
⎜⎜⎜⎝

r1,1 r1,2 · · · r1,7
r2,1 r2,2 · · · r2,7
...

...
. . .

...

r7,1 r7,2 · · · r7,7

⎞
⎟⎟⎟⎠ (26)

Equation 26, which has been generated from Table 2,
transforms the shape features in terms of the correlation coef-
ficient square matrix A7,7 of order 7. In this work, we have
computed the object shape distance between two shapes by
using the characteristic equation A7,7 − λI = 0. The object
shape dissimilarity can be measured by using the charac-
teristic equation represented in Eq. 27. The latent roots or
characteristic roots of the matrix A7,7 describe the shape dis-
similarity in the context of contour segment CS(n).

A7,7 − λI =

⎛
⎜⎜⎜⎝

1 − λ r1,2 · · · r1,7
r2,1 1 − λ · · · r2,7
...

...
. . .

...

r7,1 r7,2 · · · 1 − λ

⎞
⎟⎟⎟⎠ = 0 (27)

In Table 2, we have computed the correlation coefficient
between moments that are generated from contour seg-
ments. It is one of the primary stages to fix the different
length of the data matrix in some predefined scale for shape
similarity measure. For two given shapes A and B with
their eigenvalue sequences characterized by Eq. 27, A =
λa1, λ

a
2, λ

a
3, λ

a
4, λ

a
5, λ

a
6 .λ

a
7 and B = λb1, λ

b
2, λ

b
3, λ

b
4, λ

b
5, λ

b
6.λ

b
7

corresponding to the correlation coefficient given in Table 2.
The matching cost of sequence of two eigenvalues λai and λbi
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is defined by Euclidean distance E(A, B).

E(A, B) =
√√√√ i=7∑

i=1

(λai − λbi )
2 (28)

The design of E(A, B) as shown in Eq. (28) is to determine
the shape similarity in the context of higher to lower eigen-
values.

8 Results and Discussions

In the experiment, we assumed a negative value correspond-
ing to the coordination number of all background pixels that
differentiated from the coordination number of object pixels.
The experiments have been done by assuming the coordina-
tion number of background pixels as any negative number
with respect to foreground object pixels that are computed
by computing the coordination number. The experimental
results on popular benchmarks datasets using our proposed
algorithm achieved encouraging results. We used Kimia’s 99
[26] and MPEG-7 [27] dataset for the experiments. During
experiments, we take shape contour points of an object for
CN= j, for j=2,3,4,5,6,7 in case of Kimia’s 99 dataset and CN
= j, for j=2,3,4,5,6,7 in case ofMPEG-7 CE-Shape-1 dataset.
All experiments are conducted using a C-Programming tool
and tested on Intel CORE-i5 CPU with 3GB RAM on Linux
Mint operating system (OS).

8.1 Kimia’s dataset

The Kimia’s [26] dataset is widely used for testing the per-
formances of shape contour preserving descriptors in the
recent era of shapematching and classification. It contains 99
images from nine categories, each category contains eleven
images (as shown in Fig. 4). In the experiment, every binary
object in the data set is considered a query, and the retrieval
result is summarized as the number of tops 1 to top 10 clos-
est matches in the same class (excluding the query object).
Therefore, the best possible result for each of the rankings
is 99. Table 3 lists the results of our proposed method and
someother recentmethods. The performance of our approach
is comparably better than recent approaches.
According to an experimental setting, Table 3 shows the out-
comes of the suggested methodology, which outperforms
the current strategy. In the experimental setting, we have
designed the shape in terms of the pixel’s structure. The struc-
ture of pixel’s in an object can be estimated by the neighbor
pixel’s so-called coordination number. It can also be defined
by convolving the object by the 3 × 3 box filter. Figure 3a,
specified in sect. 4, is the results of convolution on the square
shape defined in Fig. 2a by the box filter specified in Fig. 1.
The method we suggest is equivalent to convolution by box
filters, followed by application of a min filter to the convolu-
tion outputs. Here, we have presented a robust and effective
methodology for geometric transformation invariant object
recognition and classification in computer vision using the
chemical properties of a lattice that is also backed by a deep
learning model in the current era.

Fig. 4 The Kimia’s 99 dataset

Table 3 Retrieval results on
Kimia’s 99 dataset

Algorithms 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

Salient Points [28] 99 99 98 96 95 93 93 90 84 77

IDSC [4] 99 99 99 98 98 97 97 98 94 79

Height function [2] 99 99 99 99 98 99 99 96 95 88

Our method 99 99 99 99 98 99 98 96 97 94
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8.1.1 MPEG-7 Dataset

The other widely tested dataset isMPEG-7CE-Shape-1 [27],
which consists of 1400 silhouette images from 70 classes.
Each class has 20 different binary objects, some typical
objects are shown in Fig. 5. The recognition rate is measured
by the Bull’s eye test used by several authors in literature
[2,3,9]. The Bull’s eyes score for every query image in the
datasets is described by hit ratio. It is matched with all other
images in the dataset and the top 40 most similar images
are counted. These 40 images, at most 20 images are from
the query image class that is correctly hit. The score of the
test is the ratio of the number of correct hits of all images to
the highest possible number of hits. In this case, the highest
possible number of hits is 20 ∗ 1, 400 = 28, 000. Table 4
shows the result of our proposed algorithm and comparison
with some other existing context. In this table, we have cal-
culated the retrieval rate on the MPEG-7 dataset in terms of
the percentage of Bull’s eyes score.

% of Bull ′s eyes score = 100 ∗ Nsq

Nhp
, where Nsq

= Number of correctly hi t

images corresponding to each Query

image in the top 40 most similar

images = 27, 129 ( f or our proposed algori thm)

and Nhp = The Highest Possible number of hi ts

= 28, 000 .

(29)

Equation 29, explains the percentage of the Bull’s eyes score.
Based on Bull’s eyes score, we have compared the proposed
methodology with the existing algorithms for shape classifi-
cation and recognition. The LBP for the segments of contour
pixels structure outperforms on theMPEG-7 dataset. Numer-
ous methods for classifying shapes have been developed by
eminent researchers, and their results have been published
in the literature. One of them has reported an 85.40% suc-
cess rate, the best Bull’s eye score on his findings, for the

inner-distance shape classification using dynamic program-
ming mentioned in [4]. Although the framework for shape
recognition, based on adaptive contour evolution (ACE) and
shape context (SC), which is discussed in [28], reported an
87.54% success rate when the redundant pixels are filtered
out from the object contour. The devised method uses the
salient points on the contour for constructing the SC, fol-
lowed by dynamic programming (DP) for shape matching.
In our proposedmethodology, we have constructed the struc-
ture of each object pixel and so our result is better. In our
experiment, we have constructed the LBP of those pixels that
have coordination numbers greater than 1. The pixels hav-
ing coordination numbers 0 or 1 have been filtered out from
each contour segment of an object. Since the isolated points
do not form a discernible shape, and their corresponding LBP
in each point would have been 0, and 1 ∗ 20=1. Therefore,
the removal of outlayers from Hu’s seven moments attained
superior performance. In addition to the retrieval and recog-
nition tests conducted on the MPEG-7 CE-Shape-1 dataset,
several researchers demonstrate that the similarities found
by the proposed method can be enhanced by combining it
with the locally constrained diffusion process (LCDP), a
context-sensitive learning technique that is covered in [2],
and reported 96.45% Bull’s eyes score. Herein the author
also combines the shape complexity with height function in

Table 4 Retrieval rate (Bull’s eye score) of different algorithms for the
MPEG-7 CE-Shape-1 dataset

Algorithms Score

IDSC+DP [4] 85.40%

Salient points [28] 87.54%

A bioinformatics approach [29] 77.24%

Height functions [2] 89.66%

Height functions + shape complexity [2] 90.35%

Height functions+LCDP [2] 96.45%

Our Method 96.89%

Fig. 5 The MPEG-7
CE-Shape-1 dataset
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his finding and deployed a 90.35% score; however, in their
proposed methodology he has reported 89.66% score.

Besides the above explanation in support of our work,
we have also analyzed the shape classification network
(SCN) using CNN as discussed in [20,21,30]. The kind of
hybrid structure is enhanced in an end-to-end procedure
that’s composed of a semantic segmentation model, fol-
lowedby a feature generator anddiscriminator. Therefore,we
have devised a hybrid model using the coordination number
(semantic segmentation) followed by LBP (feature genera-
tor) and eigenvalues (discriminator) and reported a 96.89%
Bull’s eyes score on the MPEG-7 CE-Shape-1 dataset. In
[30], the author deployed a model inspired by LeNet5 [21]
basic network structure, and in his findings, the model used
transposed convolution and reported 90.99% classification

accuracy on the MPEG-7 dataset. The standard CNN archi-
tecture used for image classification is translation equivalent,
but it is not always comparable with regard to rotation, scal-
ing, and other transformations, according to the author in
[20]. Herein, the author has chosen PDE-based group CNNs
because they exhibit similar behavior on images as tradi-
tional CNNs do through convolution, pooling, and ReLU for
roto-translation image datasets. The pooling layer is mainly
used for the reduction of object size. The results of the pool-
ing layer do not preserve the shape structure in their feature
descriptor. So, we have used the proposed architecture sim-
ilar to convolving an object by a box filter followed by a
min filter. Figure 3a, represents the results of convolution
in Fig. 2a by the box filter given in Fig. 1. After the con-
volution, we applied the min filter, and we get the results

Fig. 6 Myth sample image

Table 5 The average shape
characteristic roots of Myth
dataset

Humans 6.43937136+0.j, 0.95028907+1.19968829j, 0.95028907-1.19968829j,

0.03263699+0.39876336j, 0.03263699-0.39876336j,

0.29738826+0.20223521j, 0.29738826-0.20223521j

Horse 12.14212501e+00+0.j, 2.75451412e-01+0.08431875j,

2.75451412e-01-0.08431875j, 2.64114207e-01+0.j,

5.60313406e-03+0.09499525j, 5.60313406e-03-0.09499525j,

3.16516943e-02+0.j

Centaurs 8.49360274+0.j, 0.46158032+0.7588645j,

0.46158032-0.7588645j, 0.61718778+0.94845985j,

0.61718778-0.94845985j, 1.17033639+0.j,

2.02484596+0.j
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Fig. 7 Tool’s dataset

given in Fig. 3c. The proposed algorithm shrinks the size
of an object by preserving the structure. After all, in each
shrinking phase, we have extracted the LBP feature descrip-
tor from their boundary structure and reported better results
than comparable existing algorithms.
During the experiments on all non-commercial-available
datasets, we assumed a negative number for (CN)* of back-
ground pixels and then analysis that the object pixels having
coordination number either 0 or 1 does not belong to the
object. The (CN)* belongs to 0 or 1 does not construct any
shape in objects. It is either outliers or noise in a shape.

8.1.2 The Myth and Tools Dataset

Myth dataset used by [2,8,31] contains 15 samples of binary
images, which consists of 3 classes (humans, horses, cen-
taurs), and each class contains 5 sample images. The myth
dataset is shown in Fig. 6, and Table 5 represents its corre-
sponding average eigenvalues for three different classes.

Table 5 shows the average eigenvalues sequences corre-
sponding to 5 shapes in each class of the myth database
that has been minimized the intra-class variation and at
the another hand the proposed algorithm maximized the
inter-class variation. Table 5 demonstrates our methodol-
ogy by discriminating the shape features for humans, horses,
centaurs that have describing by Euclidean distances of
eigenvalues corresponding to correlation coefficient of Hu’s
seven moments.

The Tool’s dataset, shown in Fig. 7, used by [2,7,8,31],
consists of 7 classes of 35 sample objects of different types
of instruments, and each class contains 5 images. Table 6 rep-
resents the shape features of the Tool’s dataset corresponding
to Fig. 7, and its retrieval results have been shown in terms
of total sum of each shape characteristic roots in a dataset.

The total sum of the characteristic roots for each shape
=

∑i=7
i=1 λai corresponding to the roots of Eq. 27 for tool’s

dataset. In this case, λai is the i th eigenvalue corresponding
to the given shape ’a’.

Table 6 The total sum of characteristic roots for each shape of Tool’s
dataset

14.768 10.965 16.036 20.186 15.984 20.166 23.592

14.333 10.294 16.464 21.677 16.812 21.687 24.987

14.875 10.689 16.819 22.438 15.863 22.418 23.965

14.452 11.263 17.772 23.979 15.436 23.939 23.648

14.846 11.594 18.222 22.880 16.516 22.860 23.921

Table 6 demonstrates the proposed shape descriptor
methodology in terms of

∑
λai that has been describes by

contour segmentation of an object using the properties of
a shape pixels coordination number. The data in Table 6
extracted from tool’s dataset have similar values for the same
class. The methodology can be extended to the classification
of noisy shape dataset. The proposed methodology would
be more compact in case of selective object pixels due to
specific characteristics in coordination number for removing
noisy pixels from object’s.

9 Conclusions and FutureWorks

This paper has presented an analysis of binary objects that are
deformed in a sequence of shape contour-based features vec-
tor using local binary pattern and Hu’s moments on different
shape contours of an image. Our finding of moment invariant
features corresponding to LBP is more robust and geometri-
cally invariant to shape. Here, we have designed the classifier
by measuring eigenvalues of a correlation coefficient matrix
corresponding toHu’s sevenmoments of a sequence of shape
contours of an object. Experimental results on standard shape
databases exhibit the success of the proposed LBP approach
using (CN)*. Several extensions of the proposed approach
are possible. In this paper, LBP and (CN)* are only used
for the contour points of an object, and it can also apply
on local and global points of an object for finding LBP and
(CN)* corresponding to a given binary object. Moreover, it is
possible to apply LBP and (CN)* to contour points function
into the hierarchical matching frameworks that may be called
decision-making tree for shape classification, segmentation
and retrieval.
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