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Abstract
Anisotropic and high-order diffusion variational models have excellent performances in image coherence and smoothness
preserving, respectively. In order to preserve these merits simultaneously in one variational model for image restoration, we
propose three second-order anisotropic variational models making use of directional Hessian. The first one is the double-
orientational bounded Hessian (DOBH) model; it is an extension to the isotropic bounded Hessian (BH) model. The second is
the double-orientational total generalized variation (DOTGV), which is an extension to the total generalized variation (TGV)
model. The third is the double-orientational total variation and bounded Hessian (DOTBH) model, which is a hybrid one
combining the first-order and second-order directional regularizers. The second-order directional derivatives are designed by
Hession and directional vectors which are derived from classic structure tensors. In order to cope with complex calculations of
these models, alternating direction method of multipliers (ADMM) algorithms are designed, respectively. Thus, the proposed
models can be decomposed into a set of simple sub-problems of optimization, which can be solved by fast FFT method or
soft thresholding formulas. In order to improve computational efficiency, fast ADMM algorithms with restart strategy are
designed and implemented finally. Experimental results demonstrate better performances compared with previous classical
models, especially in large-scale texture restoration.

Keywords Image denoising · Directional Hessian · Structure tensor · Anisotropic diffusion · ADMM

1 Introduction

Image denoising is a long-term topic in image processing
due to its fundamental significance in computer vision. Vari-
ational method has become one of the influential approaches
in these areas [1,2] in recent 30 years. The regularizers in vari-
ational models of image denoising are core parts since they
determine different feature preserving performances. Inves-
tigations on regularizers of high-order isotropic diffusion
for image smoothness preserving and first-order anisotropic
diffusion for image coherence preserving have made many
achievements. In this paper,wewill focus onvariationalmod-
els with second-order anisotropic diffusion regularizers for
more feature preserving.

Let Ω be an image domain, f : Ω → R and u : Ω → R

be noised and restored image, respectively, a typical varia-
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tional model for image denoising is usually stated as

min
u

{λF(u, f ) + R(u)} , (1.1)

where λ > 0 is a trade-off parameter. The first term in (1.1) is
a fidelity term which ensures u to be close to f . The second
term in (1.1) is a regularizer which determines what kinds of
image features can be preserved. The earliest regularizer for
linear isotropic diffusion is Tikhonov regularized term [3]
which leads to smeared edges. The nonlinear diffusion Total
variation (TV) regularizer proposed in [4] can overcome this
problem, but leads to staircase effects. So various regular-
izers with high-order derivatives and anisotropic strategies
for smoothness and edge preserving have attracted a lot of
investigations [5–8].

Anisotropic diffusion is an extension to isotropic diffu-
sion in scale space [9,10]; it depends on diffusion directions,
which can be estimated via structure tensor naturally [11–
13]. Some researchers proposed other direction estimation
framework; for example, [14] designed a parameterized
single orientation estimation approach for directional total
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variation (DTV) model and [15] proposed to estimate the
main direction according to edge gradient called edge adap-
tive directional total variation (EADTV) model. In addition,
TV regularization has been extended by the orientational
information to capture the local features in [16]. Further-
more, these directional regularizers were generalized from
first-order to higher-order form, such as directional total
generalized variation (DTGV) model [17] for texture image
diffusion single direction globally. [18] proposed a new
anisotropic higher-order total directional variation regular-
ize and extended it to third-order derivative to solve inverse
imaging problems.

There are also some researches on smoothing images in
multi-directional approach. Some authors proposed to esti-
mate directions by decomposing them into horizontal and
vertical as a two-dimensional problem. This concept was first
applied to the denoising of isotropic TV model to improve
efficiency of the algorithm [19]. Then, it was extended to
higher-order in [20], the variation regularizer with double-
orientational estimation based on BH model was established
to eliminate the staircase effect. By adding edge detection
functions, a new nonlinear anisotropic high-order model was
developed in [21], which has a better edge preserving ability.

In recent years, someothermethodswith anisotropic prop-
erties were also emerged. Anisotropic total variation (ATV)
model based on local weighting matrix and gradient oper-
ator was constructed in [22]. There were also non-local
techniques and other latest methods which utilize edge-
preserving in image restoration [23–35]. The representative
one in this category is non-local total variation (NLTV) regu-
larizer [23]. In [24], the discrete domain extension of NLTV
for vector-valued images was studied. [25] proposed a novel
approach to non-local adaptive nonparametric filtering. With
introducing of new various theories, anisotropic diffusional
equation has been widely used in the field of image process-
ing [26–29].

In this paper, inspired by structure tensor, three second-
order anisotropic variational regularizers are developed
based on directional Hessian. The orthogonal system of the
diffusion tensor including directional Hessian is constructed
which tends to describing local neighborhoods in double
orientations. The required directional information can be
calculated efficiently by eigenvectors without explicit ori-
entational analysis. Meanwhile, corresponding eigenvalues
as the diffusion intensity are recommended to divide image
features. It is worth noting that our methods which make ori-
entations seem more useful for describing local structures.
Unlike estimating directions of the image from both hori-
zontal and vertical directions, a set of orthogonal directions
according to gradients changes are obtained by directional
Hessian. Compared with parameterized single-orientation
estimational approach, diffusion intensity can be designed
flexibly and visually. Direction estimational methods which

can improve robustness are adept in handling two directions
of mutual occlusion.

By introducing proper auxiliary variables, original mod-
els are decomposed into several simple minimization sub-
problems and can be solvedwith alternating directionmethod
of multipliers (ADMM). In addition, effective acceleration
methods are applied to optimize iterative process until the
convergence is guaranteed.

Both the theoretical and numerical details are described
within variation formulations. In the contrast experiments,
except for classical second-order variational models such as
BH and TGV models, anisotropic first-order and second-
order models such as TDV, non-local TV and BM3D are
equally competitive to the proposed models. Experimental
results showed that proposedmodels have better performance
in preserving image features. Especially they are more suit-
able for processing large-scale texture image restoration.

2 Background and Foundation

2.1 RelatedModels

Since the functional regularizers are particularly concerned,
related anisotropic works are reviewed in this section.

2.1.1 Structure Tensor

Weickert’s structure tensor allowsbothorientation estimation
and image structure analysis. For image function u : Ω →
R, it is defined as

Jρ(∇uσ ) = Kρ∗Jσ (∇uσ ) =
(
J11 J12
J21 J22

)
, (2.1.1)

with

Jσ (∇uσ ) := ∇uσ ⊗ ∇uσ , (2.1.2)

where ∇uσ is vector-valued structure descriptor, Jσ is
resulted from the tensor product⊗, and the symmetricmatrix

Jρ(∇uσ ) =
(
J11 J12
J21 J22

)
is positive semidefinite. σ , ρ are

non-negative parameters, uσ =Kσ ∗u. Kρ , Kσ are Gaussian
kernels with standard deviations as σ , ρ, respectively. Usu-
ally, σ and ρ fulfill σ � ρ, where σ is associated to
noise scale, and ρ integrates orientational information. For
∇uσ �= 0, structure tensor Jρ(u) has two orthogonal eigen-
vectors T and N which approximate isophote direction and
gradient direction. Eigenvectors reflect the minimum and
maximum variational directions of the local image, respec-
tively. The corresponding nonzero real eigenvalues are λ1
and λ2.
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The structure tensor in (2.1.1) can be rewritten as

Jρ(∇uσ ) = λ1(T ⊗ T) + λ2(N ⊗ N), (2.1.3)

with

U =
[

2J12
J22 − J11 +

√
(J11 − J22)2+4(J12)2

]
,N = U

|U| ,

(2.1.4)

V =
[
J11 − J22 −

√
(J11 − J22)2+4(J12)2

2J12

]
,T = V

|V| .

(2.1.5)

where N is normal direction and T is tangential direction.
Corresponding eigenvalues λ1 and λ2 are

⎧⎪⎪⎨
⎪⎪⎩

λ1 =
1

2

(
J11 + J22 +

√
(J11 − J22)2 + 4(J12)2

)

λ2 =
1

2

(
J11 + J22 -

√
(J11 − J22)2 + 4(J12)2

) . (2.1.6)

Eigenvalues of Jρ(u) provide useful information about
consistency of the structure, and the coherence is expressed
as

(λ1 − λ2)
2 = (J11 − J22)

2 + 4J12
2. (2.1.7)

For any x ∈ Ω , structure image information is classified
according to the size of λ1 and λ2.

If λ1 ≈ 0 , λ2 ≈ 0, then x is likely to belong to a homo-
geneous region;

If λ1 
 λ2 ≈ 0, then x is likely to lie on an edge;
If λ1 ≈ λ2 > 0, then x is likely to be a corner point.
Since the choice of diffusion tensor should reflect local

image structure that it reveals the same set of eigenvectors
T and N as Jρ(u). The desired goal of the filter affects the
choice of corresponding eigenvalues set as gT and gN . It is
required to adaptively use different diffusion coefficients in
various directions to preserve image features. The choice of
eigenvalues reflects the degree of diffusion in distinct inten-
sity.

Weickert studied two representatives of anisotropic diffu-
sion processes according to diverse selection of eigenvalues.

The first one is called edge-enhancing anisotropic diffu-
sion, which has the advantage of dealing with noisy edges.
The corresponding designs for gT and gN are

⎧⎪⎪⎨
⎪⎪⎩

gT = 1,

gN =
{
1 (p ≤ 0)

1 − exp
( −Cm

(p/λ0)
m

)
(p > 0)

, (2.1.8)

where m = 4, C4= 3.31488, λ0 > 0.

Constant Cm is calculated in such a way that flux Φ(p) =
pg(p) is increasing for p ∈ [0, λ0] and decreasing for p ∈
[λ0,∞].

The second one is coherence-enhancing anisotropic dif-
fusion, which can be well adapted to processing one-
dimensional features. The corresponding designs for gT and
gN are

⎧⎪⎨
⎪⎩
gT=

{
l i f λ1 = λ2

l+ (1 − l) exp
( −C

(λ1−λ2)
2m

)
else

,

gN = l

(2.1.9)

where l = 0.001,C = 1,m = 1.

2.1.2 Directional Total Variation

Further, in [14], the discrete DTV introduced for image
denoising in a single dominant direction was expressed as

min

{
E(u) = λ

∫
Ω

∣∣∇θ,au
∣∣dx + 1

2

∫
Ω

(u − f )2dx

}
.

(2.1.10)

The circular unit ball generated by L2-norm is transformed
into an ellipse. Major semi-axis is a > 1 rotated by θ which
penalizes variations for a. Rθ and �a denote rotation and
scaling matrices, respectively, as

Rθ =
[
cos θ − sin θ

sin θ cos θ

]
,�a =

[
a 0
0 1

]
. (2.1.11)

Intrinsic gradient and divergence functions are

{∇θ,au = Rθ�a∇u
∇θ,av = ∇ · (R−θ�av)

. (2.1.12)

[15] proposed to spatially vary the direction θ in multiple
directions as

(cos θ, sin θ) = (∇uσ )T

|∇uσ | . (2.1.13)

2.1.3 Directional Total Generalized Variation

The main advantage of TGV model is to reconstruct piece-
wise polynomial functions. Compared with traditional TV
regularization which can only reconstruct piecewise constant
function, thismethod has superior restorational performance.

The regularization term given by DTGV [17] is

min

{
1

2
(u − f )2 + λ1

∫
Ω

∣∣∇θ,αu - p
∣∣dx + λ2

∫
Ω

|ε(p)|dx
}

.

(2.1.14)
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Directional symmetrized derivative ε(·) is the adjoint oper-
ator. [17] focused on DTGV analysis under continuous
settings and only single directional estimation was designed
for entire image.

2.2 Anisotropic Diffusion

In order to improve the quality of image denoising, orien-
tational information is introduced to the image denoising
process. In various image filtering and analysis tasks, ori-
entational estimation is essential.

Local orientational estimation is an important issue in
image processing and computer vision. A group of methods
obtained the local geometry by calculating structure tensor,
eigenvalues and orthogonal eigenvectors of structure tensor.
The diffusion tensor are used to defined to control the direc-
tion of flux in partial differential equation. [36] divided these
methods into divergence-based, trace-based, and curvature-
based methods, all of them have been deeply studied in
[37–39]. The curvature-based method related to line inte-
gral convolution [9] is more suitable for recovery of sharp
nodes than the other two methods. Many authors dealt with
single-orientational estimation through the methods men-
tioned above for subsequent denoising [17,18].

The standard structure tensor method can be extended
with a combination of higher-order derivatives to obtain its
advantages. Odd-order filters and even-order filters can be
used for edge detection and straight line detection, respec-
tively. Mixed-order filters can be used for phase invariance.
On the basis of studying local orientation, a unified multiple
orientationsmathematicalmodelwas established.Novel esti-
mational schemes for an arbitrary number of superimposed
orientations in bivariate images aswell as double orientations
in signals of arbitrary signal dimensionality were derived in
[40–44]. In general, double-orientational approach for bivari-
ate images is more valid, robust, and accurate.

A continuous diffusion equation is denoted as follows:

∂u

∂t
= ∇ · (D∇u). (2.2.1)

where D is diffusion tensor. It can be rewritten as follows:

∂u

∂t
= cT IT T + cN INN , (2.2.2)

where IT T , IN N are second-order derivatives of correspond-
ing two directions and T,N are two orthogonal vectors.

We define the DH = IT T + IN N as directional Hessian.
IT T , IN N are given as follows:

{
ITT = TTHT
INN = NTHN

. (2.2.3)

As for double-orientation tensors, the derivatives along
the direction of T and N can be expressed as

{
UN = N · ∇u

UT = T · ∇u
. (2.2.4)

Energy functional which realizes linear anisotropic diffu-
sion is defined as

min

⎧⎪⎨
⎪⎩

E (u) = 1

2

∫
Ω

gT |uT |2dx + 1

2

∫
Ω

gN |uN |2dx
=1

2

∫
Ω

gT∇T uJT∇udx + 1

2

∫
Ω

gN∇T uJN∇udx

⎫⎪⎬
⎪⎭

(2.2.5)

where JT = TTT , JN = NNT .
Equation (2.2.5) can be rewritten as

min

{
E (u) =

1

2

∫
Ω

∇T uJ∇udx

}
, (2.2.6)

where J = gT JT + gNJN , JT = TTT , JN = NNT .
The energy functionalwhich realizes nonlinear anisotropic

diffusion is defined as

min

{
E (u)= 1

2

∫
Ω

gT
∣∣uT ∣∣dx+ 1

2

∫
Ω

gN
∣∣uN

∣∣dx
}

. (2.2.7)

Minimizing the functional (2.2.5) by steepest descent is
as follows:

⎧⎨
⎩

∂u
∂t = ∇ · (J∇u)

u(x, 0) = f (x)
(J∇u) · n = 0

x ∈ Ω, t > 0
x ∈ Ω ∪ ∂Ω, t = 0
x ∈ Ω ∪ ∂Ω, t = 0

. (2.2.8)

Minimizing the functional (2.2.7) by steepest descent is
as follows:

⎧⎨
⎩

∂u
∂t = ∇ · (A(u)∇u)

u(x, 0) = f (x)
∇u · n = 0

x ∈ Ω, t > 0
x ∈ Ω ∪ ∂Ω, t = 0
x ∈ ∂Ω, t ≥ 0

, (2.2.9)

where A(u) = gT
TTT

|UT | + gN
NNT

|UN | .
IfR = [N T]T representsmorphological transformmatrix

and g = diag(gN gT ) represents diffusion function matrix.
(2.2.8) and (2.2.9) can be rewritten as

⎧⎪⎪⎨
⎪⎪⎩
min

{
E (u) =

∫
Ω

|gR∇u|2
}

min

{
E (u) =

∫
Ω

|gR∇u|
} . (2.2.10)
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The corresponding gradient descent equations are

⎧⎪⎪⎨
⎪⎪⎩

∂u

∂t
= ∇ ·

(
RT gT gR∇u

)

∂u

∂t
= ∇ ·

(
RT gT gR∇u

|gR∇u|
) . (2.2.11)

The relation between eigenvectors in double-orientational
estimation and single directional estimation [15] is

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

T=
[
cosθ
sinθ

]

N=
[−sinθ
cosθ

] , (2.2.12)

where θ = 1
2 arctan

2J12
J11−J22

.
The choice of corresponding eigenvalues sets as gT and gN

which depend on the desired goal of filter is used to represent
image structure.

gT and gN can be estimated directly from the degraded
images, such as homogeneous region, edge and corner point.
It is worth noting that many corners are contained within
edges. Several design methods commonly used in the litera-
tures are introduced here.

In [18], eigenvalues of diffusion tensor are defined as

b = (1, b2(x)), (2.2.13)

with

b2(x) =
λ1(x) − λ2(x)

λ1(x) + λ2(x) + ε
, (2.2.14)

where ε > 0, λ1 and λ2 are eigenvalues of structure tensor.
There are other approaches like weight function to design

gT and gN . One of them can be defined as follows:

{
gT = o1(x, y)c1 + o2(x, y)γ1

gN = o1(x, y)c2 + o2(x, y)γ2
, (2.2.15)

where c1 and c2 are two directional characteristic weights to
smooth region, γ1 and γ2 are two directional characteristic
weights to edge region. o1(x, y) is decreasing function of
|∇u| and o2(x, y) is increasing function of |∇u|.

For most directional images, the above selections for gT
and gN can achieve the similar effects. The classical design
in (2.1.7) is used in the following part due to its simple and
efficient characters.

2.3 Discretization

Before proceeding, some notations are introduced briefly. Let
Ω → R

M×N n!
r !(n−r)! represents two-dimensional gray image

spaceRwith sizeM×N . First-order forward differences are,
respectively,

∂+
x ui, j =

{
ui+1, j − ui, j if 1 ≤ i ≤ M, 1 ≤ j ≤ N
u1, j − ui, j if i = M, 1 ≤ j ≤ N

.

∂+
y ui, j =

{
ui, j+1 − ui, j if 1 ≤ i ≤ M, 1 ≤ j ≤ N
ui,1 − ui, j if 1 ≤ i ≤ M, j = N

,

(2.3.1)

First-order backward differences are, respectively, as fol-
lows:

∂−
x ui, j =

{
ui, j − ui−1, j if 1 < i ≤ M, 1 ≤ j ≤ N
ui, j − uM, j if i = 1, 1 ≤ j ≤ N

.

∂−
y ui, j =

{
ui, j − ui, j−1 if 1 ≤ i ≤ M, 1 ≤ j ≤ N
ui, j − ui,N if 1 ≤ i ≤ M, j = 1

,

(2.3.2)

The boundary conditions are essential in the process of
solving Euler–Lagrange equations. The periodic boundary
conditions are used in the FFT algorithm for solving process
of subsequent models. The gradient, Laplacian, and diver-
gence are discretized as follows:

∇u =
[

∂+
x u

∂+
y u

]
,

∇ · ∇z =
(
∂−
x ∂+

x + ∂−
y ∂+

y

)
z,

∇(∇ · n) =
[

∂−
x ∂+

x n1 + ∂−
x ∂+

y n2

∂−
y ∂+

x n1 + ∂−
y ∂+

y n2

]
.

(2.3.3)

For discrete frequencies, i ∈ [1, M] and j ∈ [1, N ] are
the discrete time domain indicators, r ∈ [0, M − 1] and s ∈
[0, N − 1] are the discrete frequency domain indexes. For
fi, j ∈ R

M×N , F is obtained, shifting operators S1±, S2±
are introduced as follows:

F(S1
± fi, j ) = e±√−1ziF( fi, j ), zi = 2π

N
s

F(S2
± fi, j ) = e±√−1z jF( fi, j ), z j = 2π

N
r
, (2.3.4)

where e±√−1zi = cos zi ± √−1 sin zi and e±√−1z j =
cos z j ± √−1 sin z j .

FFT is used to solve high-order Euler equations by upper
transformation to get algebraic equations. Then, optimized
variables are obtained by inverse DFT. �(·) is used to repre-
sent the real part of a complex number in variable result.

3 The ProposedModels

In this section, it is the first attempt to established novel
anisotropic variationmodels based on directional Hessian for
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image denoising. Then, fast ADMMwith restart is employed
to design an iterative scheme to solve the energy equation.
In addition, gradient descent method, soft threshold formula,
FFT and other composite numerical approximation methods
are also introduced in this section.

3.1 DOTVModel

Enlightened by DTVmodel, first-order anisotropic variation
which named double-orientational TV (DOTV)model is pro-
posed.

min

⎧⎪⎨
⎪⎩

E1(u) = γT

∫
Ω

gT
∣∣uT ∣∣dx + γN

∫
Ω

gN
∣∣uN

∣∣dx
+ 1

2

∫
Ω

( f − u)2dx,

⎫⎪⎬
⎪⎭

s.t . uT = T · ∇u, uN = N · ∇u.

(3.1.1)

where uT and uN are scalar products. T and N are orthog-
onal eigenvectors in the structure tensor corresponding to
the maximum and minimum local directional variation. gT
and gN are their associated eigenvalues which need to be
designed. γT , γN are penalty parameters imposed on the reg-
ularize terms, respectively. By introducing three auxiliary
variables w = ∇u, wT = T · w and wN = N · w, (3.1.1)
can be transformed into following the augmented Lagrangian
formulation.

(
u,w, wT , wN

)
= argmin

u,w,wT ,wN

E1

= argmin
u,w,wT ,wN

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γT

∫
Ω

gT
∣∣uT ∣∣dx + γN

∫
Ω

gN
∣∣uN

∣∣dx
+ 1

2

∫
Ω

( f − u)2dx +
∫

Ω

λ · (w − ∇u) dx

+ μ

2

∫
Ω

|w − ∇u|2dx

+
∫

Ω

λT · (wT − T · w) dx
+ μT

2

∫
Ω

(
wT − T · w)2dx

+
∫

Ω

λN · (wN − N · w) dx
+ μN

2

∫
Ω

(
wN − N · w)2dx

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(3.1.2)

where μ, μT , μN are positive penalty parameters, λ, λT ,
λN are Lagrange multipliers. The solution of (3.1.2) can be
decomposed into four sub-problems:

ε1(u) = min
u

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

E(u) = 1

2

∫
Ω

( f − u)2dx

+ μ

2

∫
Ω

∣∣∣∣w − ∇u + λ

μ

∣∣∣∣
2

dx

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (3.1.3)

ε2(w)

= min
w

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

E(w) = μ

2

∫
Ω

∣∣∣∣w − ∇u + λ

μ

∣∣∣∣
2

+ μT

2

∫
Ω

(
wT − T · w + λT

μT

)2

dx

+ μN

2

∫
Ω

(
wN − N · w + λN

μN

)2

dx

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

,
(3.1.4)

ε3(wT )

= min
wT

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

E(wT ) = γT

∫
Ω

gT
∣∣wT

∣∣ dx

+ μT

2

∫
Ω

(
wT − T · w + λT

μT

)2

dx

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,
(3.1.5)

ε4(wN )

= min
wN

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

E(wN ) = γN

∫
Ω

gN
∣∣wN

∣∣ dx

+ μN

2

∫
Ω

(
wN − N · w + λN

μN

)2

dx

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.
(3.1.6)

The corresponding Euler equations of (3.1.3)- (3.1.6) can
be solved by numerical approximation. The iterative solution
process is decomposed into following five sub-processes.

Sub 1: Fixed wk, wk
T , wk

N to calculate uk+1. Euler–
Lagrange equation of (3.1.3) is

uk+1 − f − μ�uk+1 + μ

(
∇ ·
(
wk + λk

μ

))
= 0.

(3.1.7)

(3.1.7) can be efficiently solved by FFT

uk+1
i, j = �

(
F−1

(F(G1i, j )

ε1

))
, (3.1.8)

with G1i, j = fi, j − ∇ · λk
i, j − μ∇ · wk

i, j and ε1 = 1 −
2μ(cos 2πs

N + cos 2πr
M − 2).

Sub 2: Fixed uk+1, wT
k, wN

k to calculate wk+1. Euler–
Lagrange equation of (3.1.4) is
(
μI + μTTT

T + μNNN
T
)

︸ ︷︷ ︸
K

wk+1

= μ

(
∇uk+1 − λk

μ

)
+ μTT

(
wk

T
+ λkT

μT

)
+ μNN

(
wk

N + λkN

μN

)

︸ ︷︷ ︸
Z

.

(3.1.9)

The solution of wk+1 can be achieved as

wk+1 = K−1Z. (3.1.10)
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Sub 3: Fixed uk+1,wk+1, wk
N to calculate wk+1

T . (3.1.5)
can be solved via generalized soft thresholding equation

wk+1
T =max

(∣∣∣∣∣T · wk+1 − λkT

μT

∣∣∣∣∣−
γT

μT
gT , 0

)

×
T · wk+1 − λkT

μT∣∣∣∣T · wk+1 − λkT
μT

∣∣∣∣
, 0

0

|0| .
(3.1.11)

Sub 4: Fixed uk+1,wk+1, wk+1
T to calculate wk+1

N . (3.1.6)
can be solved via generalized soft thresholding equation

wk+1
N =max

(∣∣∣∣∣N · wk+1 − λkN

μN

∣∣∣∣∣−
γN

μN
gN , 0

)

×
N · wk+1 − λkN

μN∣∣∣∣N · wk+1 − λkN
μN

∣∣∣∣
, 0

0

|0| .
(3.1.12)

Sub 5: Update Lagrange multipliers λk+1, λk+1
T , λk+1

N in
(3.1.2).

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λk+1 = λk + μ
(
wk+1 − ∇uk+1

)

λ
k+1

T = λkT + μT

(
wk+1
T − T · wk+1

)

λ
k+1

N = λkN + μN

(
wk+1

N − N · wk+1
) . (3.1.13)

3.2 DOBHModel

Then, high-order anisotropic variation based on the bounded
Hessian named double-orientational bounded Hessian
(DOBH) model is proposed.

min

⎧⎪⎨
⎪⎩

E2 (u) = γt

∫
Ω

gT
∣∣uT T ∣∣ dx + γn

∫
Ω

gN
∣∣uNN

∣∣ dx
+ γ

2

∫
Ω

(u − f )2dx,

⎫⎪⎬
⎪⎭

s.t . vT = uTT = T · (HT) , vN = uNN = N · (HN) ,H = ∇2u.

(3.2.1)

where vT and vN are scalar products. T, N are eigenvectors
and gT , gN are eigenvalues. H represents a matrix-valued
function.

By introducing auxiliary variables H = ∇2u, vT = T ·
(HT) and vN = N · (HN), the constrained optimizational
problem (3.2.1) can be efficiently solved with following the

augmented Lagrangian formulation.

(
u,H, vT , vN

) = argmin
u,H,vT ,vN

E2

= argmin
u,H,vT ,vN

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γt

∫
Ω

gT
∣∣vT ∣∣ dx + γn

∫
Ω

gN
∣∣vN ∣∣ dx

+ γ

2

∫
Ω

(u − f )2dx +
∫

Ω

˘H
(
H − ∇2u

)
dx

+ μH

2

∫
Ω

(
H − ∇2u

)2
dx

+
∫

Ω

λt
(
vT − T · (HT)

)
dx

+ μt

2

∫
Ω

(
vT − T · (HT)

)2
dx

+
∫

Ω

λn
(
vN − N · (HN)

)
dx

+ μn

2

∫
Ω

(
vN − N · (HN)

)2
dx

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(3.2.2)

whereμH ,μt ,μn are positive penalty parameters,λH ,λt ,λn
are Lagrange multipliers. (3.2.2) is changed into following
sub-problems.

ε1(u) = min
u

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

E(u) = γ

2

∫
Ω

(u − f )2dx

+ μH

2

∫
Ω

(
H − ∇2u + λH

μH

)2

dx

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (3.2.3)

ε2(H)

= min
H

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

E(H) = μH

2

∫
Ω

(
H − ∇2u + λH

μH

)2

dx

+ μt

2

∫
Ω

(
vT − T · (HT) + λt

μt

)2

dx

+ μn

2

∫
Ω

(
vN − N · (HN) + λn

μn

)2

dx

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

,
(3.2.4)

ε3(vT )

= min
vT

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

E(vT ) = γt

∫
Ω

gT
∣∣vT ∣∣ dx

+ μt

2

∫
Ω

(
vT − T · (HT) + λt

μt

)2

dx

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,
(3.2.5)

ε4(vN )

= min
vN

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

E(vN ) = γn

∫
Ω

gN
∣∣vN ∣∣ dx

+ μn

2

∫
Ω

(
vN − N · (HN) + λn

μn

)2

dx

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.
(3.2.6)

The iterative solving process is decomposed into follow-
ing five sub-processes.
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Sub1:FixedHk , vkT , vkN to calculateuk+1. Euler–Lagrange
equation of (3.2.3) is

γ
(
uk+1 − f

)
+ μH

(
∇2uk+1 − Hk − λH

k

μH

)

+ 1

μH
(uk+1 − uk) = 0.

(3.2.7)

By introducing auxiliary vector variable

Fk =
(
Fk
1

Fk
2

)
= Hk + λk

H

μH
=

⎛
⎝Hk

1 + λkH1
μH

Hk
2 + λkH2

μH

Hk
3 + λkH3

μH
Hk

4 + λkH4
μH

⎞
⎠ ,

(3.2.7) can be transformed into following iterative formula-
tion

γ
(
uk+1 − f

)
+ μH

⎛
⎜⎝∇ ·

(
∇uk+1

x1 + Fk
1

)

∇ ·
(
∇uk+1

x2 + Fk
2

)
⎞
⎟⎠

+
1

μH
(uk+1 − uk) = 0.

(3.2.8)

(3.2.8) can be rewritten as

γ
(
uk+1 − f

)+ μH�2u + ∇ ·
(∇ · Fk

1

∇ · Fk
2

)
+ 1

μH
(uk+1 − uk) = 0.

(3.2.9)

(3.2.9) can be efficiently solved by FFT

uk+1
i, j = �

(
F−1

(F(G2i, j )

ε2

))
, (3.2.10)

with G2i, j = γ fi, j − μH∇ ·
(∇ · Fk

1i,j

∇ · Fk
2i,j

)
+ μHu and ε2 =

γ + 4μH (cos 2πs
N + cos 2πr

M − 2)2 + μH .
Sub 2: Fixed uk+1, vkT , vkN to calculate Hk+1. By intro-

ducing variables Gk
H = ∇2uk+1 − λkH

μH
, Gk

T = vkT + λkt
μt
,

Gk
N = vkN + λkn

μn
, the Euler–Lagrange equation of (3.2.4) is

μH

(
Hk+1 − GH

k
)

+ μt

(
T ·
(
Hk+1T

)
− Gk

T

)( T1TT

T2TT

)

+ μn

(
N ·
(
Hk+1N

)
− Gk

N

)( N1NT

N2NT

)
= 0.

(3.2.11)

with

Hk+1 − Gk
H =

(
Hk+1
1 − Gk

H1
Hk+1
2 − Gk

H2

Hk+1
3 − Gk

H3
Hk+1
4 − Gk

H4

)
,

(
T ·
(
Hk+1T

)
− Gk

T

)( T1TT

T2TT

)

= (T 2
1 H

k+1
1 + T1T2H

k+1
3 + T1T2H

k+1
2

+ T 2
2 H

k+1
4 − Gk

T )

(
T 2
1 T1T2

T1T2 T 2
2

)
,

(
N ·
(
Hk+1N

)
− Gk

N

)( N1NT

N2NT

)

= (N 2
1 H

k+1
1 + N1N2H

k+1
3 + N1N2H

k+1
2

+ N 2
2 H

k+1
4 − Gk

N )

(
N 2
1 N1N2

N1N2 N 2
2

)
.

(3.2.12)

Substitute (3.2.12) into (3.2.11), then Hk+1 can be
obtained.

Sub 3: Fixed uk+1, Hk+1, vkN to calculate vk+1
T . (3.2.5)

can be solved via generalized soft thresholding equation

vk+1
T =max

(∣∣∣∣T ·
(
Hk+1T

)
− λkt

μt

∣∣∣∣− γt
gT
μt

, 0

)

×
T · (Hk+1T

)− λkt
μt∣∣∣T · (Hk+1T

)− λkt
μt

∣∣∣ .
(3.2.13)

Sub 4: Fixed uk+1, Hk+1, vk+1
T to calculate vk+1

N . (3.2.6)
can be solved via generalized soft thresholding equation

vk+1
N =max

(∣∣∣∣N ·
(
Hk+1N

)
− λkn

μN

∣∣∣∣− γn
gN
μn

, 0

)

×
N · (Hk+1N

)− λkn
μn∣∣∣N · (Hk+1N

)− λkn
μn

∣∣∣ .
(3.2.14)

Sub 5: Update Lagrange multipliers λk+1
H , λk+1

t , λk+1
n in

(3.2.2)
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λk+1
t = λkt + μt

(
vk+1
T − T ·

(
Hk+1T

))

λk+1
n = λkn + μn

(
vk+1
N − N ·

(
Hk+1N

))

λk+1
H = λk

H + μH

(
Hk+1 − ∇2uk+1

) . (3.2.15)

3.3 DOTGVModel

Inspired by TGV model, higher derivative of this result
obtained by first-order anisotropic variation is intended to
estimate orientations. A novel high-order anisotropic varia-
tion named double-orientational total generalized variation
(DOTGV) model is proposed.

min

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

E3(u) = 1

2

∫
Ω

(u − f )2dx + γw

∫
Ω

gT |PT − T · ∇u| dx
+ γv

∫
Ω

gN |PN − N · ∇u| dx
+ γs

∫
Ω

gT |T · ∇PT | dx + γq

∫
Ω

gN
∣∣N · ∇PN

∣∣ dx .

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.3.1)
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where γw, γv , γs , γq are penalty parameters. By introducing
auxiliary variables w = PT − T · ∇u, v = PN − N · ∇u,
s = T · ∇PT and q = N · ∇PN , constrained optimization
problem (3.3.1) can be efficiently solved with following the
augmented Lagrangian formulation.

(u, w, v, s, q, PT , PN ) = argmin
u,w,v,s,q,PT ,PN

E3

= argmin
u,w,v,s,q,PT ,PN

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2

∫
Ω

(u − f )2dx + γw

∫
Ω

gT |w| dx

+ γv

∫
Ω

gN |v| dx

+ γs

∫
Ω

gT |s| dx + γq

∫
Ω

gN |q| dx

+ μw

2

∫
Ω

(
w − PT + T · ∇u + λw

μw

)2

dx

+ μv

2

∫
Ω

(
v − PN + N · ∇u + λv

μv

)2

dx

+ μs

2

∫
Ω

(
s − T · ∇PT + λs

μs

)2

dx

+ μq

2

∫
Ω

(
q − N · ∇PN + λq

μq

)2

dx

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(3.3.2)

where μw, μv , μs , μq are positive penalty parameters, λw,
λv , λs , λq are Lagrange multipliers. (3.3.2) is changed into
following sub-problems.

ε1(u)

= min
u

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E(u) = 1

2

∫
Ω

(u − f )2dx

+
μw

2

∫
Ω

(
wk − Pk

T + T · ∇u + λk
w

μw

)2

dx

+ μv

2

∫
Ω

(
vk − Pk

N + N · ∇u + λk
v

μv

)2

dx

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,
(3.3.3)

ε2(w)

= min
w

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

E(w) = γw

∫
Ω

gT |w| dx + μw

2∫
Ω

(
w − PT + T · ∇u + λw

μw

)2

dx

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,
(3.3.4)

ε3(v)

= min
v

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

E(v) = γv

∫
Ω

gN |v| dx

+ μv

2

∫
Ω

(
v − PN + N · ∇u + λv

μv

)2

dx

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,
(3.3.5)

ε4(s)

= min
s

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

E(ws) = γs

∫
Ω

gT |s| dx

+ μs

2

∫
Ω

(
s − T · ∇PT + λs

μs

)2

dx

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,
(3.3.6)

ε4(q)

= min
q

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

E(q) = γq

∫
Ω

gN |q| dx

+ μq

2

∫
Ω

(
q − N · ∇PN + λq

μq

)2

dx

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,
(3.3.7)

ε5(PT )

= min
PT

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

E(PT )

= μw

2

∫
Ω

(
w − PT + T · ∇u + λw

μw

)2

dx

+ μs

2

∫
Ω

(
s − T · ∇PT + λs

μs

)2

dx

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

,
(3.3.8)

ε6(PN )

= min
PN

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

E(PN ) = μv

2

∫
Ω

(
v − PN + N · ∇u + λv

μv

)2

dx

+ μq

2

∫
Ω

(
q − N · ∇PN + λq

μq

)2

dx

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.
(3.3.9)

The iterative solving process is decomposed into follow-
ing eight sub-processes.

Sub 1: Fixed wk, vk, sk, qk, Pk
T , Pk

N to calculate uk+1.
Euler–Lagrange equation of (3.3.3) is

μw∇ ·

⎛
⎜⎜⎜⎜⎝
T1

(
wk − Pk

T + λk
w

μw

)

T2

(
wk − Pk

T + λk
w

μw

)

⎞
⎟⎟⎟⎟⎠+ μv∇ ·

⎛
⎜⎜⎜⎜⎝

N1

(
vk − Pk

N + λk
v

μv

)

N2

(
vk − Pk

N + λk
v

μv

)

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
Gu

+
(
uk+1 − f

)
+ (μwT · T + μvN · N) �uk+1 = 0.

(3.3.10)

(3.3.10) can be efficiently solved by FFT

uk+1
i, j = �

(
F−1

(F(G3i, j )

ε3

))
, (3.3.11)

with G3i, j = γ fi, j − Gu and

ε3 = 1 − 2 (μwT · T + μvN · N)

(
cos

2πs

N
+ cos

2πr

M
− 2

)
.

Sub 2: Fixed uk+1, vk, sk, qk, Pk
T , Pk

N to calculate wk+1.
(3.3.4) can be solved via generalized soft thresholding equa-
tion

wk+1 =max

(∣∣∣∣∣Pk
T + T · ∇uk+1 − γwλk

w

μw

∣∣∣∣∣−
gT
μw

, 0

)

×
Pk
T + T · ∇uk+1 − λk

w

μw∣∣∣Pk
T + T · ∇uk+1 − λk

w

μw

∣∣∣ , 0
0

|0| .
(3.3.12)
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Sub 3: Fixed uk+1, wk+1, sk, qk, PT k, PN k to calculate
vk+1. (3.3.5) can be solved via generalized soft thresholding
equation

vk+1 =max

(∣∣∣∣∣Pk
N + N · ∇uk+1 − λk

v

μv

∣∣∣∣∣−
γvgN
μv

, 0

)

× Pk
N + N · ∇uk+1 − λk

v

μv∣∣∣Pk
N + N · ∇uk+1 − λk

v

μv

∣∣∣ , 0
0

|0| .
(3.3.13)

Sub 4: Fixed uk+1, wk+1, vk+1, qk, Pk
T , Pk

N to calculate
sk+1. (3.3.6) can be solved via generalized soft thresholding
equation

sk+1 =max

(∣∣∣∣∣T · ∇Pk
T − λk

s

μs

∣∣∣∣∣−
γs gT
μs

, 0

)

× T · ∇Pk
T − λks

μs∣∣∣T · ∇Pk
T − λks

μs

∣∣∣
, 0

0

|0| .
(3.3.14)

Sub 5: Fixed uk+1, wk+1, vk+1, sk+1, Pk
T , Pk

N to calculate
qk+1. (3.3.7) can be solved via generalized soft thresholding
equation

qk+1 =max

(∣∣∣∣∣N · ∇Pk
N + λk

q

μq

∣∣∣∣∣−
γq gN
μq

, 0

)

×
N · ∇Pk

N + λkq
μq∣∣∣∣N · ∇Pk

N + λkq
μq

∣∣∣∣
, 0

0

|0| .
(3.3.15)

Sub 6: Fixed uk+1, wk+1, vk+1, sk+1, qk+1, Pk
N to calcu-

late Pk+1
T . Euler–Lagrange equation of (3.3.8) is

−μw

(
wk+1 + T · ∇uk+1 + λkw

μw

)
+ μs∇ ·

⎛
⎜⎜⎜⎝
T1

(
sk+1 + λks

μs

)

T2

(
sk+1 + λks

μs

)

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
GPT

+μwPk+1
T − μsT · T�Pk+1

T = 0.

(3.3.16)

(3.3.16) can be efficiently solved by FFT

PT
k+1
i, j = R

(
F−1

(
F(G4i, j )

ε4

))
, (3.3.17)

with G4i, j = −μsGPT i, j and ε4 = 1 − 2μs
(
T 2
1 + T 2

2

)
(cos 2πs

N + cos 2πr
M − 2).

Sub 7: Fixed uk+1, wk+1, vk+1, sk+1, qk+1, Pk+1
T to cal-

culate Pk+1
N . Euler–Lagrange equation of (3.3.9) is

−μv

(
vk+1 + N · ∇uk+1 + λkv

μv

)
+ μq∇ ·

⎛
⎜⎜⎜⎜⎝
T1

(
qk+1 + λkq

μq

)

T2

(
qk+1 + λkq

μq

)

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
GPN

+ μvP
k+1
N − μqN · N�Pk+1

N = 0.

(3.3.18)

(3.3.18) can be efficiently solved by FFT

PN
k+1
i, j = �

(
F−1

(F(G5i, j )

ε5

))
, (3.3.19)

with G5i, j = −μsGPN i, j and

ε5 = 1 − 2μq

(
N 2
1 + N 2

2

)
(cos

2πs

N
+ cos

2πr

M
− 2).

Sub8:UpdateLagrangemultipliersλk+1
w ,λk+1

v ,λk+1
s ,λk+1

q
in (3.3.2)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

λk+1
w = λkw + μw

(
wk+1 − Pk+1

T + T · ∇uk+1
)

λk+1
v = λkv + μv

(
vk+1 − Pk+1

N + N · ∇uk+1
)

λk+1
s = λks + μs

(
sk+1 − T · ∇Pk+1

T

)

λk+1
q = λkq + μq

(
qk+1 − N · ∇Pk+1

N

)
. (3.3.20)

3.4 DOTBHModel

In the end, the regularizer combines anisotropic TV and
bounded Hessian which called double-orientational TV and
bounded Hessian (DOTBH) model is proposed.

min E4 (u) = min
{
E1 (u) + E2 (u)

}

= min

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

γT

∫
Ω

gT |uT |dx + γN

∫
Ω

gN
∣∣uN

∣∣dx
+ γt

∫
Ω

gT
∣∣uTT ∣∣ dx + γn

∫
Ω

gN
∣∣uNN

∣∣ dx
+ γ

2

∫
Ω

( f − u)2dx

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

s.t . uT = T · ∇u, uN = N · ∇u,

vT = uTT = T · (HT) , vN = uNN = N · (HN) .

(3.4.1)

The constrained optimization problem (3.4.1) can be effi-
ciently solved with following the augmented Lagrangian
formulation.
(
u,w, wT , wN ,H, vT , vN

)
= argmin

u,w,wT ,wNH,vT ,vN

E4 = argmin
u,w,wT ,wN

E1 + argmin
u,H,vT ,vN

E2.

(3.4.2)
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Iterative evaluation of auxiliary variables w, wT , wN ,
H, vT , vN , λT , λN ,, λt , λn can refer to theDOTVandDOBH
corresponding to (3.3.1) and (3.2.15). Euler–Lagrange equa-
tion of (3.4.3) to calculate is

γ
(
uk+1 − f

)
+ μH�2u − μ�uk+1 + ∇ ·

(∇ · Fk
1

∇ · Fk
2

)

+μ

(
∇ ·
(
wk + λk

μ

))
+

1

μH
(uk+1 − uk) = 0,

(3.4.3)

with Fk =
(
Fk
1

Fk
2

)
= Hk + ˘kH

μH
(3.4.3) can be efficiently

solved by FFT

ui, j
k+1 = �

(
F−1

(F(G6i, j )

ε6

))
, (3.4.4)

with

G6i, j =γ fi, j − μH∇ ·
(∇ · Fk

1i,j

∇ · Fk
2i,j

)
+ μHu − ∇ · λk

i, j

− μ∇ · wk
i, j ,

and

ε6 =γ + 4μH (cos
2πs

N
+ cos

2πr

M
− 2)2 + μH

− 2μ(cos
2πs

N
+ cos

2πr

M
− 2).

3.5 Accelerating the Algorithm

In order tomonotonically decrease cost function, FISTA [45],
TWIST [46], Fast ADMM [47] can be adapted to accelerate
convergence. In this section, the algorithm of Fast ADMM
with restart [47] is introduced as follows. The accelerated
method of Fast ADMM is a simple ADMMwith a predictor-
corrector-type acceleration step. Fast ADMM with restart
algorithm enforce stability by a restart rule. A simple restart
rule is introduced to ensure the convergence of general objec-
tive and monotonous decrease of function value. The weakly
convex problem is settled by introducing a step-skipping pro-
cess to selectively accelerate certain iterative applications.

The overall implementation of fast ADMM with restart
algorithm is applied to the proposed models. The restart rule
relies on a combined residual which measures both the origi-
nal and double errors.d denotes the accelerated rules satisfied
the judgment condition ck < ηck−1 withη ∈ (0, 1). e denotes
the restarted rules. During the acceleration, accelerated rules
and restarted rules should be done as follows:

dk+1 = dk+1 + αk − 1

αk+1 (dk+1 − dk), (3.5.1)

with αk+1 = 1+
√
1+4(αk)

2

2 , where α1 = 1,
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

αk+1 = 1

ek + 1 = ek

ck+1 = ck+1

η

. (3.5.2)

Accelerated process for DOTV is as follows:

ck+1
1 =μ

∥∥∥wk+1 − wk
∥∥∥2 + μT

∥∥∥wk+1
T − wk

T

∥∥∥2

+ μN

∥∥∥wk+1
N − wk

N

∥∥∥2 + μ−1
∥∥∥˘k+1 − ˘k

∥∥∥2

+ μ−1
T

∥∥∥λk+1
T − λkT

∥∥∥2 + μ−1
N

∥∥∥λk+1
N − λkN

∥∥∥2,
(3.5.3)

d1 = (w, wT , wN ,λ, λT , λN ), (3.5.4)

e1 = (w, wT , wN ,λ, λT , λN ). (3.5.5)

Accelerated process for DOBH is as follows:

ck+1
2 =μH

∥∥∥Hk+1 − Hk
∥∥∥2 + μt

∥∥∥vk+1
T − vT

k
∥∥∥2

+ μn

∥∥∥vk+1
N − vkN

∥∥∥2 + μ−1
H

∥∥∥λk+1
H − λk

H

∥∥∥2

+ μ−1
t

∥∥∥λk+1
t − λkt

∥∥∥2 + μ−1
n

∥∥∥λk+1
n − λkn

∥∥∥2,
(3.5.6)

d2 = (H, vT , vN ,λH , λt , λn), (3.5.7)

e2 = (H, vT , vN ,λH , λt , λn). (3.5.8)

Accelerated process for DOTGV is as follows:

ck+1
3 =μw

∥∥∥wk+1 − wk
∥∥∥2 + μv

∥∥∥vk+1 − vk
∥∥∥2

+ μs

∥∥∥sk+1 − sk
∥∥∥2 + μq

∥∥∥qk+1 − qk
∥∥∥2

+ μ−1
w

∥∥∥λk+1
w − λkw

∥∥∥2 + μ−1
v

∥∥∥λk+1
v − λkv

∥∥∥2

+ μ−1
s

∥∥∥λk+1
s − λks

∥∥∥2 + μ−1
q

∥∥∥λk+1
q − λkq

∥∥∥2,

(3.5.9)

d3 = (w, v, s, q, λw, λv, λs, λq), (3.5.10)

e3 = (w, v, s, q, λw, λv, λs, λq). (3.5.11)

Accelerated process for DOTBH is as follows:

ck+1
4 =μH

∥∥∥Hk+1 − Hk
∥∥∥2 + μt

∥∥∥vk+1
T − vkT

∥∥∥2

+ μn

∥∥∥vk+1
N − vkN

∥∥∥2 + μ−1
H

∥∥∥˘k+1
H − ˘kH

∥∥∥2

+ μ−1
t

∥∥∥λk+1
t − λkt

∥∥∥2 + μ−1
n

∥∥∥λk+1
n − λkn

∥∥∥2

+ μ

∥∥∥wk+1 − wk
∥∥∥2 + μT

∥∥∥wk+1
T − wk

T

∥∥∥2

+ μN

∥∥∥wk+1
N − wk

N

∥∥∥2 + μ−1
∥∥∥λk+1 − λk

∥∥∥2

+ μ−1
T

∥∥∥λk+1
T − λkT

∥∥∥2 + μ−1
N

∥∥∥λk+1
N − λkN

∥∥∥2,

(3.5.12)
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Table 1 Fast ADMM with restart for proposed models

Algorithm 1. Fast ADMM with restart for DOTV model

Step 1: Initialization: Set (wT , wN ,w, λT , λN ,λ, c1) = 0, (γT , γN , μ, μT , μN , α, η, i teration) > 0

Step 2: repeat

Step 3: Compute coefficient T,N, gT , gN according to (2.1.4), (2.1.5) and (2.1.8)

Step 4: Compute coefficient u,w, wT , wN for solving sub-problems according to (3.1.7)-(3.1.12)

Step 5: Update Lagrange multiplier λ, λT , λN according to (3.1.13)

Step 6: Accelerated process:

If ck+1
1 < ηck1 then compute accelerated rules (3.5.1) with d1, else compute restart rules (3.5.2) with e1.

Step 7: until convergence of u

Step 8: return u

Step 9: end function

Algorithm 2. Fast ADMM with restart for DOBH model

Step 1: Initialization: Set (vT , vN ,H, λt , λn,λH , c2) = 0,(γt , γn, γ, μH , μt , μn, α, η, i teration) > 0

Step 2: repeat

Step 3: Compute coefficient T,N, gT , gN according to (2.1.4), (2.1.5) and (2.1.8)

Step 4: Compute coefficient u, vT , vN ,H for solving sub-problems according to (3.2.7)-(3.2.14)

Step 5: Update Lagrange multiplier λH , λt , λn according to (3.2.15)

Step 6: Accelerated process:

If ck+1
2 < ηck2 then compute accelerated rules (3.5.1) with d2, else compute restart rules (3.5.2) with e2.

Step 7: until convergence of u

Step 8: return u

Step 9: end function

Algorithm 3. Fast ADMM with restart for DOTGV model

Step 1: Initialization: Set (w, v, s, q, λw, λv, λs , λq , c3) = 0,(γw, γv, γs , γq , μw,μv, μs , μq , α, η, i teration) > 0

Step 2: repeat

Step 3: Compute coefficient T,N, gT , gN according to (2.1.4), (2.1.5) and (2.1.8)

Step 4: Compute coefficient u, w, v, s, q, PT , PN for solving sub-problems according to (3.3.10)-(3.3.19)

Step 5: Update Lagrange multiplier λt , λn, λs , λq according to (3.3.20)

Step 6: Accelerated process:

If ck+1
3 < ηck3 then compute accelerated rules (3.5.1) with d3, else compute restart rules (3.5.2) with e3.

Step 7: until convergence of u

Step 8: return u

Step 9: end function

Algorithm 4. Fast ADMM with restart for DOTBH model

Step 1: Initialization: Set (wT , wN ,w, λT , λN ,λ, vT , vN ,H, λt , λn,λH , c4) = 0,(γT , γN , μ, μT , μN , γt , γn, γ, μH , μt , μn, α, η, i teration) > 0

Step 2: repeat

Step 3: Compute coefficient T,N, gT , gN according to (2.1.4), (2.1.5) and (2.1.8)

Step 4: Compute coefficient u, wT , wN ,w, vT , vN ,H for solving sub-problems according to (3.1.7)-(3.2.14)

Step 5: Update Lagrange multiplier λH , λt , λn,λ, λT , λN according to (3.1.13) and (3.2.15)

Step 6: Accelerated process:

If ck+1
4 < ηck4 then compute accelerated rules (3.5.1) with d4, else compute restart rules (3.5.2) with e4.

Step 7: until convergence of u

Step 8: return u

Step 9: end function
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d4 = (H, vT , vN ,λH , λt , λn,w, wT , wN ,λ, λT , λN ), (3.5.13)

e4 = (H, vT , vN ,λH , λt , λn,w, wT , wN ,λ, λT , λN ). (3.5.14)

In each iteration of the algorithm, combined residual ck+1

is computed first. If ck+1 < ηck then compute the accelerated
rules (3.5.1) with dk+1, otherwise compute the restart rules
(3.5.2) with ek+1.

In the proposed models, the stopping criteria are defined
as

∣∣Ek + 1 − Ek
∣∣

Ek
< threshold, (3.5.15)

where Ek + 1 and Ek are the energy values of the current step
and preceding step. The value of threshold for following
experiments is 10 - 6 in all cases.

The solving processes for the proposed methods are sum-
marized in Table 1.

4 Numerical Experiments

In this section, the qualitative and quantitative comparison of
proposed methods is studied, respectively. The performance
of our anisotropic variation models is demonstrated for the
applications of image denoising. All experiments are per-

(a) Geometry (b) Lena (c)

(d) Parrot (e) (f)Vegetables

Fig. 1 Testing images and noisy images used in the numerical implementations. (a), (b) are corrupted by 10% Gaussian noise, (c)–(f) are corrupted
by 15% Gaussian noise

(a) TV (b) Hessian (c) TGV (d) EADTV (e) ATV

(f) DOTV (g) DOBH (h) DOTGV (i) DOTBH

Fig. 2 Denoised images of geometry with 10% Gaussian noise
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(a) TV (b) Hessian (c) TGV (d) EADTV (e) ATV

(f) DOTV (g) DOBH (h) DOTGV (i) DOTBH

Fig. 3 Residual images of denoised results in Fig. 2

(a) Location of the
signal

(b) TV (c) Hessian (d) TGV (e) EADTV

ATV (g)(f) DOTV (h) DOBH (i) DOTGV (j) DOTBH

Fig. 4 Location of the signal and plots of middle slices of the denoised images in Fig. 2

formed using Matlab 2018a on a Windows 10 PC with an
Intel(R) Core (TM) i5-8500T at 2.1 GHz and 8 GB RAM.

Some remarks on the choice of tuning parameters are
given before our numerical results are presented. Gaussian
kernels with standard deviations σ , ρ are associated with
noise scale, the bigger the noise, the larger the value should
be. We set σ = 0.5, ρ = 4, which commonly bring for
excellent restorational results. The parameters used inDOTV
model are γT = γN = 25, μT = μN = μ = 1. The param-
eters used in DOBH model are γt = γn = 1, γ = 0.5,
μH = 1, μt = 10, μn = 0.1. The parameters used in
DOTGV model are γ = γw = γs = 1, γv = 25, γq = 10,

μw = 0.1, μv = μq = 5, μs = 1. The parameters used in
DOTV model refer to DOTV and DOBH models.

The test images and noisy images are shown in Fig. 1. The
merits of proposed models are demonstrated through com-
parison with classic isotropic models including TV [4], BH
[6], TGV [7] models, anisotropic models including EADTV
[15], ATV [22], TDV [18] models and non-local denoising
approach such as BM3D [25] model. All the models are
objectively compared by peak signal-to-noise ratio (PSNR)
and structure similarity index map (SSIM). Meanwhile, the
preserving properties of structure features are compared sub-
jectively.
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Fig. 5 The restored images and the close-up region of Lena with 10% Gaussian noise

Fig. 6 The denoised images and close-up region of Butterfly with 15% Gaussian noise
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Fig. 7 Denoised images and close-up regions of Parrot with 15% Gaussian noise

Fig. 8 Contour of denoised image for all the models of Butterfly with 15% Gaussian noise in Fig. 6

The piecewise constant image of geometry contains differ-
ent geometric shapes. The noisy image with 10% Gaussian
noise and denoised images that processed the models includ-
ing TV, BH, TGV, EADTV, ATV and proposed models are
listed in Fig. 2. Figure 3 presents residual images obtained
by different models. The waywe get residuals is f −u+100.

A column of signals of denoised images are expressed where
the red line is located in Fig. 4(a). In Figure. 4(b)-(j), the blue
slice is extracted from the original image and the red slice is
extracted from the denoised image.

It can be seen from the experimental results that all meth-
ods can be used for denoising and restoration. In general,
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Fig. 9 Contour of denoised image for proposed models of Parrot with 10% and 15% Gaussian noise

Table 2 Comparison of some
objective quantities of images
with 10% Gaussian noise

Model Geometry Lena Butterfly Parrot

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

TV 27.9027 0.8405 27.2496 0.6832 27.1026 0.8846 27.5584 0.7927

Hessian 27.0467 0.8046 27.4272 0.7930 26.2998 0.8501 27.3852 0.7796

TGV 28.0342 0.8508 27.6229 0.7703 28.0209 0.8605 28.5907 0.7970

EADTV 28.0328 0.8885 27.6735 0.7942 28.0841 0.8693 28.7672 0.8312

ATV 28.8471 0.8930 28.3824 0.8074 28.3087 0.8864 28.5210 0.8564

DOTV 29.6827 0.8968 29.0300 0.9015 28.4893 0.8764 28.9277 0.8620

DOBH 28.8086 0.8596 28.6673 0.8227 27.9200 0.8552 27.8088 0.8065

DOTGV 30.0639 0.9038 29.3861 0.8961 29.0201 0.8862 29.6366 0.8998

DOTBH 31.5212 0.9286 29.7229 0.9082 29.4134 0.9096 30.0868 0.9037

Table 3 Comparison of some
objective quantities of images
with 15% Gaussian noise

Model Geometry Lena Butterfly Parrot

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

TV 27.0747 0.7544 25.1558 0.6221 25.0755 0.7024 26.7665 0.7252

Hessian 26.1976 0.7032 26.0945 0.7001 25.1601 0.7241 25.8986 0.6624

TGV 27.5523 0.8179 26.5565 0.7413 25.3638 0.7490 26.6039 0.7668

EADTV 27.6976 0.8329 26.7516 0.7767 26.0245 0.7527 26.8086 0.7971

ATV 28.6704 0.8630 27.1436 0.8039 26.0394 0.8096 27.1174 0.8025

DOTV 28.7496 0.8558 27.3157 0.8045 26.4973 0.8064 27.2606 0.8190

DOBH 27.4853 0.8273 26.9397 0.7802 26.0122 0.7865 26.6709 0.7735

DOTGV 28.9485 0.8654 27.3094 0.8153 27.0056 0.8288 27.8050 0.8524

DOTBH 29.1244 0.9036 28.2344 0.8776 27.3009 0.8599 28.0028 0.8605
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Fig. 10 Hot map of values of PSNR

Table 4 Comparison of CPU time and total iterations of different mod-
els on ADMM and Fast ADMM with restart

Model ADMM Fast ADMM with restart

CPU Total CPU Total
time(s) iterations time(s) iterations

DOTV 1.038061 35 0.780828 25

DOBH 0.677413 20 0.472239 10

DOTGV 0.843897 20 0.648775 15

DOTBH 1.032970 30 0.772573 15

anisotropic models can give a more pleasant visual result
and better preserve edges than isotropic models. The con-
tours produced by TV and TGV models are more realistic
than BHmodel. As a better result, EADTV and DOTVmod-
els achieve similar results.ATVmodel is adept in suppressing
big noise and keeping edges sharp especially for straight
edges. For anisotropic higher-order models, it can be seen
that edge preservation ability of DOBH model is better than
BH model. But both of them are still not able to provided
ideal performance. DOTBH and DOTGVmodels do the bet-
ter than others in edge preservation. In addition, DOTBH
model performs slightly better than DOTGV model in pre-
serving the details while removing noise. It can be seen
from the slice plots that all the models deal the denoised
images with different degree of structure preservation. The
denoised image curves of anisotropic models are closer to

origin image. Figure 4 shows that DOTV and DOBHmodels
have less geometry loss than TV and BH models, DOTBH
and DOTGV models do the better than others in geometry
preserving.

For the images which are not piecewise constant, five
benchmark images are tested come from Set12 (Roth-
Black2009)which are Lena, Butterfly, Parrot, Vegetables and
Starfish. In those images showed in Fig. 1, Lena consists
of smoothing and detailed regions, Butterfly and Vegeta-
bles include many approximated cartoon regions, Parrot
and Starfish contain more texture components. Further, test
images are corrupted by 10% and 15% Gaussian noise,
respectively. Experiment results are compared with classical
isotropic models and first-order anisotropic models first. In
order to give a visual impression on the contrast between
different models, results for these three images including
Lena, Butterfly and Parrot are depicted, respectively. A part
of denoised images and the close-up regions of them are
shown in Figs. 5, 6 and 7. In order to show the edge preserve
ability of different methods, contour of restored images for
all the models of Butterfly corrupted by 15% Gaussian noise

Table 5 Comparison of PSNR of Starfish with 15% Gaussian noise

NLTV DOTV
PSNR PSNR

Vegetables 26.4041 26.3572

Fig. 11 Denoised images and
close-up region of Starfish with
15% Gaussian noise
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is presented in Fig. 8. The contour of restored images for pro-
posedmodels of parrot corrupted by 10% and15% Gaussian
noise is presented in Fig. 9. In order to show contour lines
intuitively, three different colors are used to sign the values
of different lines as yellow, cyan and purple, respectively.
The values of the labeled colors are counted by Matlab tool-
box for various images and methods. Table 2 and Table 3
contain two evaluation metrics for quantitative comparison
of different methods on the clean image with 10% and 15%
Gaussian noise added. Figure 10 presents hot maps of the
value of PSNR with four images denoised in all experimen-
tal methods.

It can be seen that all of the methods can restore images in
a different range of noise level. The anisotropic models such
as DOTGV and DOTBH successfully preserve details while
removing most noise with only scatter tiny noise spots left.
BH model is weak in restoring sharp edges and smoothing
flat areas, and DOBH model is superior to it. It is worth not-
ing that the staircase effect of TV model derives false edges
and this problem is avoided by anisotropic first-order models
such as EADTV and DOTV models. According to Table 2
and Table 3, these methods can be quantitatively arranged
in descending order as BH < TV < TGV < DOBH <

EADTV ≈ ATV ≈ DOTV < DOTGV < DOTBH. For
Lena with 15% Gaussian noise added, the performance of
acceleration algorithmwith process of convergence is shown
in Table 4. It can be proved that acceleration method is effec-
tive for proposed models.

The directional information of directional Hessian is
suited to shape preservation, while non-local operators can
describe the characteristics of texture image features. Repre-
sented by the comparison of first-order regularizers, perfor-
mance of directional Hessian can be evaluated by the results
of DOTV and NLTV model [48]. The experimental results
are presented in Fig. 11 and Table 5. It can be seen that two
models are effective for texture preservation and obtain simi-
lar results after denoising process. The difference may prove
that small textures in NLTV model handled slightly better,
and DOTV model has a better edge denoising effect.

In the following comparison, DOTGV and DOTBHmod-
els which performed best in the previous experiments are
compared with TDV and BM3D models. Only second-order
directional regularizers are taken into consideration here so
that the combination of first-order and second-order regu-
larization in the experimental TDV model is adopted. Even
a better result might be got in TDV model with a higher
derivative order, but such efforts are expected to be too much
computing ability consuming. Contours of denoised images
for all the models of Vegetables and Starfish corrupted by
15% Gaussian noise are presented in Fig. 12. Table 6 shows
the PSNR of the results. It can be concluded that all four
models successfully completed the task of image restoration.
DOTBH model is a competitor of the non-local denoising

approach ofBM3Dmodel. For partial texture regions, BM3D
may deal better with them. The results obtained by DOTGV
and TDV models are similar.

Finally, the performance of proposed anisotropic vari-
ation models is evaluated on restoration of color textured
images. The edge may be blurred due to the inconsistent dif-
fusion intensity at the edge of each layer in color images.
The difficulty in maintaining image recovery quality lies
in description of texture components and coupling between
layers in different colors. Non-local multi-channel total vari-
ation (M-NLTV) model [48] performs well in texture image
restoration. Excellent coupling effects are achieved between
layers based on the extension of multi-channel total varia-
tion (MTV) regularizer. Let u(x) = (u(1)(x); ...; u(m)(x)) :
Ω → R

m be an m-channel image. It is natural to generalize
(4.1) to multichannel images as follows:

MTV (u) =
∫

Ω

√∥∥∇u(1)
∥∥2 + · · · + ∥∥∇u(m0)

∥∥2dx . (4.1)

Therefore, same coupling scheme is adopted to design
multi-channel denoising models based on proposed models
mentioned above called M-DOTV model, M-DOBH model,
M-DOTGV model, M-DOTBH model.

Five standard testing images in Berkeley segmentation
database (BSDS500) presented in Fig. 13 are used to evaluate
the proposed models. In order to compare the texture, edge
and smoothness preserving, Fig. 14 shows denoised images
of Zebra and close-up regions with 15% Gaussian noise.
Table 7 gives PSNRvalues for the results of images denoising
in Fig. 13.

As the denoised results shown in Fig. 14, there are no
obvious blurred edges between layers as all models adopt
the same coupling design. Due to the complex texture fea-
tures of image local parts, some image details processed by
TV and TGV models are missing. For first-order anisotropic
models, M-NLTV model has a slight advantage in feature
preservation of local small texture regions, while DOTV
model can achieve approximate results in local large-scale
texture image feature preservation. By comparing all mod-
els, M-DOTGV and M-DOTBH models achieve best image
restorational qualities as the texture feature can be better pre-
served. Especially, it can be obvious displayed in large texture
regions. Table 7 further proves that proposed models achieve
perfect performance for the directional and textural color
images in large database.

5 Conclusion

Based on the consideration of shape preservation, three high-
order anisotropic variational models are introduced. The
applications of the models in image denoising are proved.
Discretization processes based on the discrete finite differ-
ence scheme and numerical realization of fast ADMM with
restart algorithm to solve the equations are given. In the last
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Fig. 12 Denoised images and
close-up region of Vegetables
and Starfish with 15% Gaussian
noise

Table 6 Comparison of PSNR
of Vegetables and Starfish with
15% Gaussian noise

BM3D TDV DOTGB DOTBG
PSNR PSNR PSNR PSNR

Vegetables 27.1089 26.9023 26.9146 27.1015

Starfish 27.5467 27.4177 27.2171 27.4275

Fig. 13 The ground truth images from Berkeley segmentation database
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Fig. 14 The denoised images and close-up region of Zebra with 15% Gaussian noise

Table 7 Comparison of PSNR
of images in Fig. 13 and Fig. 14
with 15% Gaussian noise

M-TV M-TGV M-NLTV M-DOTV M-DOBH M-DOTGB M-DOTBG
PSNR PSNR PSNR PSNR PSNR PSNR PSNR

Zebra 25.7701 26.4791 27.1089 27.0087 26.0701 27.5109 27.8305

Grassland 25.1848 26.8826 27.1077 26.7980 25.7088 27.2023 27.3002

Building 26.2829 26.8929 27.4512 27.2419 26.6096 27.6378 27.9177

Corn 25.7992 26.6679 27.1321 27.0131 25.9986 27.4996 27.6867

Desert 25.5088 26.4623 27.3309 27.3990 26.4280 27.9089 28.1061

section, through the comparative experiments, characteristics
of proposed models are summarized as follows.

Thedirectional informationof directionalHessian involved
in the restorational process is particularly suitable to shape
preservation in the presence of heavy noise. Compared with
other direction estimational methods, double-orientational
neighborhoods in bivariate based on structural tensor are
appropriated to oriented patternswhich occlude to each other.
The relative orientation of connected nodes changes less
appearance and other characteristics. It may be easier tomark

the edges in terms of its orientations. A well-orientational
estimation approachhas been applied in proposed anisotropic
regularizers which makes directionality particularly useful.
The proposed models which benefit from the orientational
estimation are adept at processing large-scale texture image
restoration. In addition, they possess certain capabilities for
processing small damaged areas.

TGVmodel has the best denoising effect for the processed
image of isotropic models mentioned before. The result
shows the proposed first-order anisotropic model DOTV can
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achieve similar image recovery effect and better edges preser-
vation. High-order anisotropic models such as DOTGV and
DOTBH can improve the quality of the resulting image to get
a smoother boundary. DOTBHmodel performs a little better
than DOTGV model in geometry preserving. The combina-
tion of first-order and second-order regularization of TDV
model has the same effect with DOTGV model. However,
they rely on massive number of parameters which is far more
than expected. In light of this, it is believed that BM3D has
more advantages in terms of parameters and handles most
cases well.

The proposed models can achieve better performance on
texture images. Texture preservation performance of direc-
tional Hessian can be evaluated by the compare results of
DOTV and NLTV models which applied first-order direc-
tional regularizer. In addition, the proposed models still
perform well in color images of large dataset such as Berke-
ley segmentation database. The coupling design effectively
avoids the blurring between the color layers. Texture feature
can be better preserved by directional estimation; especially,
it can be displayed in large-scale texture regions.

In future work, estimation for double orientations from
directional Hessian in signals of arbitrary signal dimension-
ality is intended to study and the proposed methods are
extended to dealwith optical flow, registration and other chal-
lenges.
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