
Journal of Mathematical Imaging and Vision (2022) 64:298–320
https://doi.org/10.1007/s10851-022-01067-1

Speckle Reduction in Matrix-Log Domain for Synthetic Aperture Radar
Imaging

Charles-Alban Deledalle1 · Loïc Denis2 · Florence Tupin3

Received: 16 June 2021 / Accepted: 31 December 2021 / Published online: 28 January 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Synthetic aperture radar (SAR) images are widely used for Earth observation to complement optical imaging. By combining
information on the polarization and the phase shift of the radar echos, SAR images offer high sensitivity to the geometry
and materials that compose a scene. This information richness comes with a drawback inherent to all coherent imaging
modalities: a strong signal-dependent noise called “speckle.” This paper addresses the mathematical issues of performing
speckle reduction in a transformed domain: the matrix-log domain. Rather than directly estimating noiseless covariance
matrices, recasting the denoising problem in terms of the matrix-log of the covariance matrices stabilizes noise fluctuations
and makes it possible to apply off-the-shelf denoising algorithms. We refine the method MuLoG by replacing heuristic
procedures with exact expressions and improving the estimation strategy. This corrects a bias of the original method and
should facilitate and encourage the adaptation of general-purpose processing methods to SAR imaging.

Keywords Covariance matrix · Denoising · Synthetic aperture radar · Plug-in ADMM · Estimation · Regularization

1 Introduction

SAR imaging is a key technology in airborne and satel-
lite remote sensing. This active imaging technique based
on time-of-flight measurement and coherent processing (the
so-called aperture synthesis) has a night and day capabil-
ity and can produce images through clouds [36]. Beyond
intensity images,manySARsystemsoffer polarimetric infor-
mation, i.e., they measure how the polarization of the wave is
affected by the back-scattering mechanisms occurring when
the electromagnetic radar wave interacts with the illuminated
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scene. Backscattered radar waves collected from slightly dif-
ferent points of view can be combined, in a process called
interferometry, to perform 3-D reconstructions or to recover
very small displacements. In contrast to conventional optical
imaging, SAR imaging gives access to both the amplitude
and the phase of the backscattered wave. Interferometry
uses this phase information to relate a phase shift observed
between two SAR images to a change in the optical path (i.e.,
the path length traveled by the wave in its round-trip from the
SAR antenna to the scene and back). Figure 1a illustrates the
geometry of SAR imaging. Depending on the nature of the
information available at each pixel, several names are used
to describe SAR images:

– SAR denotes single-channel images: each pixel k con-
tains the complex amplitude vk ∈ C backscattered by
the scene. When no interferometric processing involving
other single-channel SAR images is to be performed, the
phase of vk can be discarded and only the amplitude |vk |
or the intensity |vk |2 is considered;

– PolSAR denotes multi-channel polarimetric images:
each pixel k contains a vector vk = (v1k , v

2
k , v

3
k ) ∈ C

3

of 3 complex amplitudes backscattered by the scene
under different polarizations (horizontally or vertically
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linearly polarized components at emission or reception,
see Fig. 1a);

– InSAR denotes multi-channel interferometric images:
each pixel k contains a vector vk ∈ C

2 formed by the
2 complex amplitudes backscattered by the scene on the
two antenna positions, multi-baseline and tomographic
SAR are extensions of SAR interferometry to more than
two images;

– PolInSAR denotes multi-channel polarimetric and inter-
ferometric images: each pixel k contains a vector of 6
complex amplitudes vk ∈ C

6 and corresponds to the
combination of polarimetric and interferometric infor-
mation.

Polarimetric images are generally displayed in false col-
ors using Pauli polarimetric basis, by combining the complex
amplitudes collected under the different polarimetric config-
urations (the red channel corresponds to 1

2 |v1k − v3k |2, the
green channel to 2|v2k |2 and the blue channel to 1

2 |v1k +v3k |2),
see [36]. Figure 2 shows airborne images of the same area
obtained with each SAR modality (image credit: ONERA).
Different structures are visible in the images: cultivated
fields, roads (appearing as dark lines in SAR images due
to the low reflectivity of such smooth surfaces), trees and
several farm buildings (in the bottom left quarter of the
image). The SAR illumination comes from the left hand side
of the images; shadows are thus visible on the right of all
elevated elements (in particular, trees). A striking peculiar-
ity of SAR images is the strong noise observed in all SAR
modalities. This noise is unavoidable because it originates
from the coherent illumination that is essential to the syn-
thetic aperture processing. The SAR antenna collects at each
time sample several echoes that interfere with each other,
see Fig. 1b, c. The resulting complex amplitude vk ∈ C

D

is distributed, under the well-established speckle model due
to Joseph Goodman [23], as a circular complex Gaussian
distribution:

pV (vk;�k) = 1

πD|�k | exp
(
−v∗

k�
−1
k vk

)
, (1)

where ∗ denotes the conjugate transpose, and the complex-
valued covariancematrix�k carries all the information about
the backscattering process: in SAR imaging (D = 1),�k cor-
responds to the reflectivity at pixel k, in PolSAR �k ∈ C

3×3

characterizes the reflectivity in each polarimetric channel
(diagonal of �k) and the scattering mechanism (matrix �k

can be decomposed into a sum of matrices corresponding to
elementary phenomena such as surface scattering, dihedral
scattering and volume scattering), in InSAR �k ∈ C

2×2 and
diagonal elements correspond to reflectivities while the off-
diagonal elements indicate the phase shift arg(�1,2

k ) from
one antenna to the other (due to the difference in path length)

and the coherence
∣∣�1,2

k

∣∣/
√

�
1,1
k �

2,2
k (i.e., the remaining

correlation between the complex amplitudes v1k and v2k : this
correlation drops when the two images are captured at two
dates that are more separate or when the scene has evolved
between the two acquisitions, e.g., due to vegetation growth).
Since the covariance matrix �k contains all the useful infor-
mation, it has to be estimated from the diffusion vector vk to
characterize the radar properties of the scene at each pixel.
This is classically done by computing the sample covariance
Ck inside a small window centered at pixel k:

Ck = 1

L

∑
�∈Nk

v� v∗
� , (2)

where Nk is the set of pixel indices within the window cen-
tered at pixel k and L = Card(Nk) is the number of pixels
in the window. If the speckle is spatially independent and all
pixels in the window follow a distribution with a common
covariance matrix �k , the samples v� are independent and
identically distributed. When L ≥ D, the sample covariance
matrix is then distributed according to a complexWishart dis-
tribution: Ck ∼ W(�k, L), and its multi-variate probability
density function is given by [22]

pC(Ck;�k, L) = LLD|Ck |L−D

�D(L)|�k |L exp(−L tr(�−1
k Ck)) , (3)

where �D(L) = πD(D−1)/2 ∏D
k=1 �(L − k + 1). In the case

of single-channel SAR images (D = 1), Ck corresponds to
an intensity Ik and �k is the pixel reflectivity Rk . The SAR
intensity is then distributed according to a gamma distribu-
tion:

pI(Ik; Rk, L) = LL I L−1
k

�(L)RL
k

exp(−L Ik/Rk) . (4)

The speckle in SAR intensity images is known to be a mul-
tiplicative noise in the sense that Var[Ik] = R2

k/L , so that
the standard deviation of speckle fluctuations is proportional
to the pixel reflectivity, and the speckle-corrupted intensity
Ik may be modeled using a generative model of the form:
Ik = Rk Sk with Sk a random variable distributed according
to a gamma distributionwith amean equal to 1 and a variance
equal to 1/L . In the multi-variate case (D > 1), the genera-
tive model becomes Ck = �

1/2
k Sk�

1/2
k with Sk ∼ W(I, L),

see [14]. The variance of Ci, j
k (the element of matrix Ck at

row i and column j) is equal to 1
L �

i,i
k �

j, j
k , i.e., the standard

deviation of Ci, j
k is proportional to the geometric mean of

the reflectivities in channels i and j and is thus also signal-
dependent.

The ubiquity of speckle noise in SAR images, the multi-
plicative nature of the fluctuations and heavy-tailed behavior
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(a)

(b)

(c)

Fig. 1 A short introduction to the physics of SAR imaging and to the speckle phenomenon
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(c.1) (c.2) (c.3)
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(d.1) (d.2) (d.3) (d.4)

(d.5) (d.6) (d.7) (d.8)

Fig. 2 Synthetic aperture radar imaging offers rich information of a
scene but suffers from speckle. The combination of images acquired
with slightly different incidence angles (InSAR) or various polarization
states (PolSAR) leads to a D-dimensional complex-valued vector per
pixel. Reduction of the speckle fluctuations requires appropriate statis-
tical modeling. This paper is devoted to the mathematical analysis of
a generic approach for speckle reduction based on matrix-log decom-

positions. The images shown were obtained with the X-band airborne
imaging system SETHI of the French aerospace lab ONERA [2] (after
our pre-processing to achieve a trade-off between sidelobe attenuation
and speckle decorrelation, the pixel size is ≈ 70cm × 70cm, and the
area shown is ≈ 300m × 370m). The Gaussian denoiser used in the
despeckling algorithm is BM3D [10]
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of Wishart distribution have fueled numerous developments
of specific image processing methods to reduce speckle.
The vast majority of these works considered single-channel
SAR images, and adapted techniques based on pixel selec-
tion (based on range selection with Lee’s σ -filter [30],
window selection [32] or region growing [47]), variational
techniques (total variation minimization [1,19,44], curvelets
[20]), patch-based methods derived from the non-local
means [7,15–17,38], or more recently deep-learning based
methods (using supervised [8], semi-supervised [12] or self-
supervised [34] learning strategies). The adaptationof a novel
image denoising technique to the specificities of SAR imag-
ing is a thorough process that includes replacing steps to
account for the statistics of speckle and the nature of SAR
imageswheremany bright structures reach intensities several
orders of magnitude larger than the surrounding area. This
slows down the transfer of successful denoising techniques to
the field of SAR imaging. In order to circumvent this adap-
tation process, we recently proposed a generic framework
[14], named MuLoG, derived from the general “plug-and-
play ADMM” strategy [6,48] which is related to a wider
family of approaches using denoisers to regularize inverse
problems [40]. When an image restoration problem is stated
in the form of a variational problem and then solved using
the alternating directionsmethod ofmultipliers (ADMM, see
for example [3]), or proximal-splitting techniques [9], one
step of the algorithm that improves the fidelity to the prior
model corresponds to the denoising of an image corrupted
by additive white Gaussian noise. The key idea of “plug-and-
play ADMM” is then to replace this step by an off-the-shelf
Gaussian denoiser.

The flexibility of MuLoG with respect to various SAR
modalities (see the despeckling results obtainedwithMuLoG
in Fig. 2) and its ability to benefit from the latest devel-
opments in additive Gaussian denoising makes the method
very useful for SAR applications (e.g., multi-temporal fil-
tering [53], deformation analysis [21], height retrieval [52]
or despeckling using pre-trained neural networks [13]). The
original MuLoG algorithm in [14] is based on approxima-
tions that can lead, however, to estimation biases. This paper
starts with a brief summary of MuLoG framework in Sect. 2.
We then performa rigorous analysis of the optimization prob-
lem involved and establish the exact closed-form expression
for the first and second directional derivatives of the matrix
exponential mapping. We discuss the important problem of
initialization and regularization of the covariance matrices,
in particular in the rank-deficient case L < D. We introduce
several modifications and show that they suppress the bias of
the original method. Beyond their use in MuLoG’s generic
framework, these mathematical developments can benefit
other variational methods for the restoration or segmentation
of multi-channel SAR images, as well as hybridmethods that
combine deep learning and an explicit statistical model of

speckle by algorithm unrolling [35]. For easier reproducibil-
ity, the source code of the algorithms described in this paper
is made available at https://www.charles-deledalle.fr/pages/
mulog.php under an open source license.

2 An Overview of MuLoG Framework

In order to give a self-contained presentation of our develop-
ments, we recall in this section the principle of MuLoG, as
first introduced in [14]. MuLoG’s approach to multi-channel
SAR despeckling is built around two key ideas:

– a nonlinear transform that decomposes the field of D×D
noisy covariancematrices {Ck}k=1..n into D2 real-valued
images with n-pixels; this transform approximately sta-
bilizes speckle fluctuations and decorrelates the channels
so that each can be denoised independently;

– implicit regularization using a plug-and-play ADMM
iterative scheme where the proximal operator associated
to the prior term is replaced by an off-the-shelf Gaussian
denoiser.

The nonlinear transform is defined in three steps: (i) a
matrix-log is applied tomap each speckled covariancematrix
Ck to a Hermitian matrix with approximately stabilized vari-
ance; (ii) the real and imaginary parts of these Hermitian
matrices are separated, forming D2 real-valued channels; (iii)
an affine transform, identical for all pixel locations k, whitens
these channels. The noisy covariance matrix Ck ∈ C

D×D is
then re-parameterized by yk ∈ R

D2
, and similarly the covari-

ance matrix of interest �k is defined through the real-valued
vector xk ∈ R

D2
:

Ck = e�( yk ) and �k = e�(xk ) (5)

where the exponential corresponds to a matrix-exponential
and the affine invertible mapping �: RD2 → C

D×D can be
decomposed as �(x) = K(W�x + b), with K : RD2 →
C

D×D the linear operator that transforms a vector of D2 reals
into a D × D Hermitian matrix:

K

⎛
⎜⎝

α1

...

αD2

⎞
⎟⎠=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1 αD+1+ jαD+2√
2

. . .
αD2−1+ jαD2

√
2

αD+1− jαD+2√
2

α2

...
. . .

...

αD2−1− jαD2

√
2

. . . αD

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(6)
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W ∈ R
D2×D2

a (whitening) unitary matrix, � ∈ R
D2×D2

a diagonal positive definite matrix (used to weight each
channel) and b ∈ R

D2
a real vector (for centering). To

compute the real-valued decomposition x of a covariance
matrix �, the inverse transform can be applied: x =
�−1W−1(K−1(log(�)) − b). A principal component anal-
ysis is used to compute matrix W and vector b:

bi = 1

n

n∑
k=1

αi
k , (7)

with αi
k = K−1(log(Ck)), the i-th real-value extracted from

the log-transformed covariance C̃k = log(Ck), and the
columns ofmatrixW are unit-norm eigenvectors of theGram
matrix:

1

n

n∑
k=1

(αi
k − bi )(α

j
k − b j ) . (8)

The i-th diagonal element of� corresponds to the noise stan-
dard deviation of the i-th channel estimated via the median
absolute deviation (MAD) estimator.

Figure 3 illustrates the channels obtained with the trans-
form �−1. Fluctuations due to the speckle noise have a
variance that is approximately stabilized in the channels of
y. Due to the whitening with matrix W , most of the infor-
mation is captured by the first channels (associated with the
largest eigenvalues) and the signal-to-noise ratio decreases
with the channel number. In the last channels, some denois-
ing artifacts canbenoticed (e.g., bottom right imageof Fig.3).
These artifacts have a negligible impact because of the small
contribution of the channel to the recomposed image.

The neg-log-likelihood of the re-parameterized covari-
ance matrix can be derived from the Wishart distribution
given in Eq. (3):

− log pY ( yk |xk) = L tr
[
�(xk) + e−�(xk )e�( yk )

] + Cst,
(9)

where xk and yk are the D2-dimensional real-valued vec-
tors corresponding, respectively, to the re-parameterization
of the noiseless and noisy covariance matrices, while Cst is
a constant independent of xk .

MuLoG is detailed in Algorithm 1. In practice, a fixed
number of steps are generally used to stop the main loop
(typically 6 steps provide a good trade-off between computa-
tional cost and restoration quality). Parameter β is increased
within the loop, line 11, to ensure the convergence (we use
the adaptive update rule given in Eq. (15) of paper [6] which
consists of increasing β whenever the norm of the primal and
dual residuals decreases too slowly between two successive

Fig. 3 Illustration of the matrix-log decomposition of a polarimetric
SAR image into 9 real-valued channels (airborne image from ONERA-
SETHI, see the caption of Fig. 2)
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steps). Convergence of plug-in ADMM schemes has been
studied in several works, e.g.,

[6,25,43,45], under various assumptions on the denoiser
(non-expansiveness, boundedness), the data fidelity (convex-
ity) or the evolution of parameter β. In our case, the data
fidelity is non-convex and the convergence comes from the
continuity of the gradient, which implies that the gradient is
Lipschitz on any compact subset and that the conditions in
[6] are fulfilled provided that the denoiser is bounded. Adap-
tations of the loss function or normalization procedures have
beenproposed for denoisers based ondeepneural networks in
[43,45] to ensure that the denoiser is firmly non-expansive,
which also ensures convergence [6]. Several steps playing
an important role in MuLoG algorithm are revisited in this
paper:

– the minimization technique to compute, at each pixel k,
the D2-dimensional vector x̂k line 10: this paper develops
in Sect. 3 a new algorithm based on exact derivatives to
improve this crucial step;

– the initial estimate used for x̂k , line 4, computed from
the matrices {C(init)

k }k=1...,n defined line 1: an adequate
initialization speeds up the convergence as discussed in
Sect. 4.1;

– the regularization of the noisy covariance matrices, set
line 2, that impacts the minimization problem line 10:
regularization strategies can avoid badly behaved cost
functions that are hard to minimize but can also lead to
estimation biases, see Sect. 4.2;

– the choice of the denoiser used line 8: as illustrated in the
discussion (Sect. 6), each denoiser suffers from specific
artifacts.

3 Improved Computation of the
Data-Fidelity Proximal Operator

Line 10 of Algorithm 1 involves solving n independent D2-
dimensional minimization problems of an objective function
of the form

F(x) = β

2
‖x − u‖2 + L tr(�(x) + e�( y)e−�(x)) . (10)

This corresponds to computing the data-fidelity proximal
operator [9]:

proxdata(u) = arg min
x

β

2
‖x − u‖2 − log pY ( y|x)

︸ ︷︷ ︸
F(x)

, (11)

where x, y and u are vectors in R
D2
. We recall that y cor-

responds to the noisy log-channels defined in Eq. (5) and

Algorithm 1: MuLoG algorithm
input : a bidimensional field of speckle-corrupted

covariance matrices C
input : a denoiser function fσ : R

n → R
n to remove

additive white Gaussian noise with standard
deviation σ in n-pixels single-channel images

output: a bidimensional field of estimated covariance
matrices �̂

initialization:

1 estimate {C(init)
k }k=1..n (initial estimation)

↪→ Algorithm 4

2 estimate {C(reg)
k }k=1..n (enforces PSD matrices)

↪→ Algorithm 5

3 compute b and W (Eqs.(7) and (8))

4
{
x̂k ← �−1

(
logC(init)

k

)}
k=1..n (initial estimation)

5
{
yk ← �−1

(
logC(reg)

k

)}
k=1..n (noisy channels)

6
{
dk ← 0D2

}
k=1..n (initial scaled multipliers)

7 β ← 1 + 2
L (initial value)

repeat

8
{
ẑi ← fβ−1/2(x̂ i − d̂i )

}
i=1..D2 (denoise channels)

9 d̂ ← d̂ + ẑ − x̂ (update multipliers)

10
{
x̂k ←
argmin

xk

β
2 ||xk − ẑk − d̂k ||2 − log pY ( yk |xk)

}
k=1..n

(data-fidelity prox)

↪→ Algorithm 3

11 update β

until convergence;

12
{
�̂k ← e�(x̂k )

}
k=1..n (final estimation)

shown in the first column of Fig. 3, while u = ẑk + d̂k in line
10 of Algorithm 1. Efficient minimization methods require
the computation of the gradient g = ∇F(x) of F at x.

As shown in [14] and recalled in Appendix A for the sake
of completeness, this gradient is given by

g = β(x − z) + L�

(
IdD − ∂e�

∂�

∣∣∣∣
∗

−�(x)

[e�( y)]
)

, (12)

where the linear operator � is defined by

�(·) = �W∗K∗(·) (13)

and ∂e�

∂�

∣∣∣
∗
−�(x)

[e�( y)] is the adjoint of the directional deriva-
tive of the matrix exponential in the direction e�( y) taken at

123



Journal of Mathematical Imaging and Vision (2022) 64:298–320 305

−�(x). We recall that the directional derivative of a differ-
entiable function f at X in the direction A is defined as

∂ f (X)

∂X

∣∣∣∣
X

[A] = lim
ε→0

1

ε
( f (X + εA) − f (X)) . (14)

The directional derivative is a linear mapping with respect to
the direction A. The computation of the gradient thus requires
computing the adjoint of such linear mapping for the matrix
exponential.

In the original derivation of MuLoG algorithm [14], we
used an integral expression for the adjoint of the directional
derivative of the matrix exponential

∂e�

∂�

∣∣∣∣
∗

�

[A] =
∫ 1

0
eu� Ae(1−u)�du (15)

to derive an approximation based on a Riemann sum:

∂e�

∂�

∣∣∣∣
∗

�

[A] ≈ 1

Q

Q∑
q=1

euq� Ae(1−uq )� (16)

where uq = (q − 1/2)/Q. In practice, we were using only
Q = 1 rectangle to get a fast-enough approximation. In the
next paragraph, we derive a closed-form expression of the
gradient to avoid this approximation, and then, we obtain the
closed-form expression of second-order directional deriva-
tive of F in order to obtain an improvedminimizationmethod
for the computation of proxdata in Eq. (11).

3.1 Closed-Form Expression of the Gradient

We leverage studies from [5,18,31] regarding the derivatives
of matrix spectral functions. As shown in “Appendix B,”
these leads to a closed-form expression for this directional
derivative of the matrix exponential as described in the next
proposition.

Proposition 1 Let � be a D × D Hermitian matrix with
distinct eigenvalues. Let � = E diag(�)E∗ be its eigen-
decomposition where E is a unitary matrix of eigenvectors
and � = (λ1, . . . , λD) the vector of corresponding eigen-
values. Then, for any D × D Hermitian matrix A, denoting
Ā = E∗AE, we have

∂e�

∂�

∣∣∣∣
�

[A] = E
[
G � Ā

]
E∗ (17)

where � is the element-wise (a.k.a, Hadamar) product, and,
for all 1 ≤ i, j ≤ D, we have defined

Gi, j =
{

eλi −eλ j

λi−λ j
if i �= j,

eλi otherwise.
(18)

Algorithm 2: Exact evaluation of the gradient ∇F

input : a vector x ∈ R
D2

input : a vector y ∈ R
D2

input : a vector u ∈ R
D2

input : the affine map � : x �→ K(W�x + b)
output: the gradient g of F(x) defined in (10)

1 compute the eigenvalue decomposition:
−�(x) = E diag(�)E∗

2 compute G (Eq.(18))

3 {Gi, j ← Proj(Gi, j )}i, j=1..D2

(projection on [eλ j , eλi ])
4 A ← e�( y)

5 Ā ← E∗AE
6 g ← β(x − u) + L�(IdD − E[G � Ā]E∗)

Note that Proposition 1 assumes the eigenvalues of � to be
distinct. In practice, we observe instabilities when λi and λ j

are close to each other. To solve this numerical issue, we use
that, for λi > λ j ,

eλ j ≤ eλi − eλ j

λi − λ j
≤ eλi (19)

since exp is convex and increasing. Then, whenever an off-
diagonal element Gi, j is out of this constraint we project
its value onto the feasible range1 [eλ j , eλi ]. Equation (19)

shows that limλ j→λi
eλi −eλ j

λi−λ j
= eλi . In the case of duplicate

eigenvalues, we use the continuous expansion obtained by
replacing the condition i �= j with λi �= λ j . We checked
numerically that this continuous expansion is working for
matrices with repeated eigenvalues.

Proposition 1 gives us an exact closed-form formula for
the directional derivative. The next corollary shows that this
formula is also valid for its adjoint (see proof in “Appendix
C”).

Corollary 1 Let � be a Hermitian matrix with distinct
eigenvalues. The Jacobian of the matrix exponential is a self-
adjoint operator

∂e�

∂�

∣∣∣∣
∗

�

= ∂e�

∂�

∣∣∣∣
�

. (20)

Based on the closed-form expressions provided by Proposi-
tion 1 and Corollary 1, we define Algorithm 2 for an exact
evaluation of the gradient of F .

1 The projection is applied as follows: Gi, j ← eλi if Gi, j /∈ [eλ j , eλi ]
and |Gi, j − eλi | < |Gi, j − eλ j |, or Gi, j ← eλ j if Gi, j /∈ [eλ j , eλi ]
and |Gi, j − eλi | > |Gi, j − eλ j |
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3.2 A Refined Quasi-Newton Scheme

The computation of the proximal operator requires the min-
imization of function F(x). This can be performed using
quasi-Newton iterations:

x ← x − Ĥ
−1

g (21)

where Ĥ is an approximation of the Hessian H of F at x,
i.e., the real symmetric matrix defined by

H = ∂2F(x)

∂x2
= ∂

∂x
∇xF(x) . (22)

While in [14] a heuristic was used to define a diagonal
approximation to the matrix H , we consider here the follow-
ing approximation:

Ĥ = γ IdD2 with γ = d∗Hd and d = g
||g|| (23)

where γ corresponds to the exact second derivative of F at
x in the direction d of the gradient g.

As proved in Appendix D, this second-order derivative is
given by:

γ = β + L

〈
�∗(d),

∂2e�

∂�2

∣∣∣∣−�(x)

[e�( y),�∗(d)]
〉

, (24)

where �∗(·) = K(W� ·) is the adjoint of linear operator
� and for any matrices X and Y , the matrix dot product is
defined as 〈X, Y 〉 = tr(X∗Y). This choice for approximat-
ing the Hessian leads to a quasi-Newton step that is exact
when restricted to the direction of the gradient. As F has
some regions of non-convexity, we consider in practice half
the absolute value of the scalar product in (24) in order to
avoid some local minima and ensure that quasi-Newton fol-
lows a descent direction. Note that, like with the original
formulation ofMuLoG,we recover the exactNewtonmethod
in the mono-channel case (D = 1).

The computation of γ thus requires computing the second-
order directional derivative of the matrix exponential. We
recall that the second-order directional derivative of a func-
tion f : CD×D → C

D×D at X in the directions A and B is
the D × D complex matrix defined as

∂2 f (X)

∂X2 [A, B] (25)

= lim
ε→0

1

4ε2
[
f (X + εA + εB) − f (X − εA + εB)

− f (X + εA − εB) + f (X − εA − εB)
]
.

Algorithm 3: Iterative method to compute proxdata

input : a noisy vector y ∈ R
D2

input : a vector u ∈ R
D2

input : the affine map � : x �→ K(W�x + b)
input : the linear map � : α �→ �W∗K∗α
output: the approximate minimizer of F(x)

1 x ← β
β+1u + 1

β+1 y (initialization)

repeat
2 g ←Algorithm 2(x, y, u,�) (gradient)

3 d ← g/||g|| (gradient direction)

4 B̄ ← E∗�∗(d)E
5 compute F( Ā, B̄) (Eq.(27))

6 γ ← β + L|〈B̄, F( Ā, B̄)
〉| (inverse step size)

7 x ← x − 1
2γ g (quasi-Newton step)

until convergence;

The closed-form expression for the second-order directional
derivative of the matrix exponential is given in the following
Proposition (see proof in “Appendix E”):

Proposition 2 Let � be a D × D Hermitian matrix with
distinct eigenvalues. Let � = E diag(�)E∗ be its eigen-
decomposition where E is a unitary matrix of eigenvectors
and� = (λ1, . . . , λD) the vector of corresponding eigenval-
ues. For any D × D Hermitian matrices A and B, denoting
Ā = E∗AE and B̄ = E∗BE, we have

∂2e�

∂�2

[
A, B

] = E[F( Ā, B̄)]E∗ (26)

where, for all 1 ≤ i, j ≤ D, we have

F( Ā, B̄)i, j =
D∑

k=1

φi, j,k( Āik B̄
∗
jk + B̄ik Ā jk

∗
) (27)

with φi, j,k =

⎧⎪⎨
⎪⎩

Gik−G jk
λi−λ j

if i �= j ,

Gi i−Gik
λi−λk

if i = j and k �= i ,
Gi i
2 if i = j = k .

(28)

As in Proposition 1, Proposition 2 assumes the eigenvalues
to be distinct. We checked on numerical simulations that
the result is still valid for Hermitian matrices with duplicate
eigenvalues by simply defining Gi j in Proposition 1 using
the condition λi �= λ j instead of i �= j .

Algorithm3details the quasi-Newtonoptimization scheme
to solve the minimization problem (11). The algorithm starts
with an initial value for x, line 1, obtained by approximating
the data likelihood with a Gaussian (i.e., Wiener).
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(a) (b)

(c) (d)

Fig. 4 Top row: evolutionwith respect to the quasi-Newton iterations of
a the loss function F(x), b the square norm of its gradient g = ∇F(x).
Bottom row: numerical validation of the closed-form expressions for
the first-order c and second-order d directional derivatives γ : values

obtained with the closed-form expressions are drawn with solid lines;
finite-differences derivatives are shown with dashed lines that superim-
pose closely. Curves are drawn with different colors for each of the first
six iterations of the Plug-and-Play ADMM

3.3 Numerical Validation

In order to validate the correctness of the derived closed-form
expressions of the gradient and the directional second deriva-

tive, we leverage that for g = ∇F(x) and γ = d∗ ∂2F(x)

∂x2
d,

the following two identities regarding the first and second
directional derivatives hold true

〈g, u〉 = lim
ε→0

F(x + εu) − F(x)

ε
, ∀u ∈ R

D2
, (29)

and

γ = lim
ε→0

F(x + εd) − 2F(x) + F(x − εd)

ε2
. (30)

During the iterations of the proposed quasi-Newton scheme,
we evaluate the left-hand sides of these equalities by running
Algorithm 2 and 3 to compute g and γ . Independently, we

evaluate the right-hand sides of these equalities by finite dif-
ference with a small nonzero value of ε. The direction u was
chosen as a fixed white standardized normal vector.

Figure 4 shows the evolution of these four quantities
during the iterations of the proposed quasi-Newton scheme
for an arbitrary choice of the image y, initializations and
constant L and β. In addition, the evolution of F(x) and
||g||22 = ||∇F(x)||22 are also provided.On the onehand,we can
notice that the proposed first and second directional deriva-
tives are very close to the ones estimated by finite differences,
which shows the validity of our formula. On the other hand,
the objective F(x) is decreasing and its gradient converges
to 0, showing that the obtained stationary point is likely
to be a local minimum. Furthermore, one can notice that
the second directional derivative varies less than 20% show-
ing that the loss F is nearly quadratic in the vicinity of its
minimizers.
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4 Initialization and Regularization of
Rank-Deficient Matrix Fields

Multi-channel SAR images with n pixels are provided in
the form of a bidimensional field of either n diffusion vec-
tors vk ∈ C

D (single-look data) or n covariance matrices
Ck ∈ C

D×D (multi-look data), see Figure 1. The statistical
distribution of speckle is defined with respect to full-rank
covariance matrices �k . The initial guess for this matrix
must be positive-definite, which requires an adapted strategy.
We discuss different strategies for this initialization in Para-
graph 4.1. Then, we describe in Paragraph 4.2 how the noisy
covariance matrices Ck can be regularized so that the neg-
log-likelihood is better behaved. We show that, in contrast to
the original MuLoG method [14], different regularizations
should beused for the initializationof the covariancematrices
(line 1 of Algorithm 1) and for the computation of the noisy
covariance matrices used to define the data-fidelity proximal
operator (line 2 of Algorithm 1).

4.1 Initialization

For the sake of completeness, we recall in this paragraph
the regularization approach used in the original MuLoG
approach, that we still use for the initialization of MuLoG.
Under the assumption that the radar properties of the scene
vary slowly with the spatial location, a spatial averaging can
be used to estimate a first guess of the covariance matrix

�k
def= E[vkv∗

k ]. At pixel k, the so-called radar coherence
between channels i and j of the D-channels SAR image is
defined by ρk,i, j = |[�k]i, j |/

√[�k]i,i [�k] j, j , i.e., the cor-
relation coefficient between the two channels. This coherence
is notably over-estimated by the sample covariance estima-
tor when L is small, see [46]. In the extreme case of L = 1,
Ck = vkv

∗
k and the coherence equals 1, see Fig. 5. Some

amount of smoothing is necessary to obtain more meaning-
ful coherence values and to guarantee that the covariance
matrix C(init)

k be positive definite. The coherence is estimated
by weighted averaging with Gaussian weights:

ρ̂k,i, j =
∣∣∑

� wk,�[C�]i, j
∣∣

√(∑
� wk,�[C�]i,i

)(∑
� wk,�[C�] j, j

) , (31)

where the weights wk,� are defined, based on the spatial dis-
tance between pixels k and �, using a Gaussian kernel with
spatial variance τ/2π . Spatial parameter τ is chosen in order
to achieve a trade-off between bias reduction and resolution
loss. Figure 5 shows coherence images ρ̂ of a single-look
interferometric pair (L = 1 and D = 2) for different val-
ues of τ . We use the empirical rule τ = D/min(L, D) to
increase the filtering strengthwith the dimensionality of SAR
images and reduce it for multi-look images.

(a) (b)

(c) (d)

Fig. 5 Estimation of the interferometric coherence by local Gaussian
filtering, for different filtering strengths τ . In the absence of spatial fil-
tering, the coherence is equal to 1 everywhere. All images are displayed
using the same gray-level scale with a zero coherence displayed in black
and a unit coherence displayed in white. The area shown corresponds
to the images of Fig. 2

The estimated coherence values ρ̂k,i, j are then used to
define a first estimate Ĉk of the covariance matrix at pixel k:

[Ĉk]i, j = ρ̂k,i, j

√[Ck]i,i [Ck] j, j∣∣[Ck]i, j
∣∣ [Ck]i, j . (32)

Note that on-diagonal entries are unchanged: ∀i, [Ĉk]i,i =
[Ck]i,i , while the magnitude of off-diagonal entries becomes
equal to ρ̂k,i, j and the phase of off-diagonal entries is pre-
served. In practice, the coherence ρ̂k,i, j is smaller than 1
for all values of τ larger than 0. In order to guarantee that
the covariance matrix Ĉk actually is positive definite, off-
diagonal entries can additionally be shrunk toward 0 by a
small factor (by multiplication by a factor .99 for example).
The filtering step applied in equations (31) and (32) largely
improves the conditioning of covariance matrix Ĉk , which
helps performing the principal component analysis required
to define transform � (by producing a more stable analysis).

In contrast to intensity data for which E{[Ck]i j } = [�k]i j
for all channels i and j , the average of log-transformed data
is known to suffer from a systematic bias [49] that can be
quantified on diagonal elements, for all 1 ≤ k ≤ D, by

E[logCkk] − log�kk = ψ(L) − log L , (33)

where ψ is the di-gamma function. MuLoG does not esti-
mate log� by averaging, but by iterating the lines 8 to 11
in Algorithm 1. The sequence of these iterations leads to an
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Algorithm 4: Initial estimation of the covariances
input : a bidimensional field of speckle-corrupted

covariance matrices C
output: the initial guess C(init)

(to be used line 1 of Algorithm 1)

1 τ ← D/min(L, D) (filtering strength)

2 C(filt) ← Gaussian_filter(C, τ/2π)

(filter with a Gaussian kernel of variance τ/2π )

3

{
ρ̂k,i, j ←

∣∣∣[C(filt)
� ]i, j

∣∣∣√
[C(filt)

� ]i,i [C(filt)
� ] j, j

}

k=1..n, i, j=1..D
(estimate coherences)

4

{
[Ĉk]i, j ← ρ̂k,i, j

√[Ck ]i,i [Ck ] j, j
|[Ck ]i, j | [Ck]i, j

}

k=1..n, i, j=1..D
(impose the estimated coherences)

5
{
C(init)
k ← exp(log L − ψ(L))Ĉk

}
k=1..n

(pre-compensate bias)

unbiased estimate. However, at the first iteration, the Gaus-
sian denoiser function fσ is applied to the initial guess C(init)

k .
This denoiser performs an averaging of the values in homo-
geneous areas. Convergence to the final values is faster if the
bias is pre-compensated in the initial guess C(init), as done
in line 5 of Algorithm 4.

4.2 Regularization

The previous paragraph described the strategy to build an
initial guess C(init)

k of the covariance matrix at pixel k. This
guess serves as a starting point for the iterative estimation
procedure conducted by Algorithm 4. Line 2 of Algorithm
4, a regularized version C(reg)

k of the covariance matrix is
defined to compute vector y (line 5) and then used to define
the data-fidelity proximal operator (line 10).Although a rank-
deficient matrix Ck such as vkv

∗
k could possibly be used to

define the proximal operator (by replacing exp(�( y)) by this
rank-deficient matrix in the definition of F(x) in equation
(10)), rank-deficient or ill-conditioned covariance matrices
lead to cost functions F(x) that are harder to minimize. On
the other hand, we show in the sequel that the spatial smooth-
ing strategy used in Algorithm 4 to build our initial guess
C(init)
k should not be used to compute C(reg)

k (as done in the
original algorithm MuLoG [14]) since this may lead to sig-
nificant biases.

In order to control the condition number of the covari-
ance matrices C(reg)

k , we adjust the eigenvalues by apply-
ing an affine map that rescales the eigenvalues from the
range [λmin, λmax] to the range [λmax/c̄, λmax], with c̄ =
min(c, λmax/λmin). This transformation ensures that the

Algorithm 5: Regularization of covariance matrices

input : a covariance matrix Ck ∈ C
D×D

input : a condition number c
output: a regularized matrix C(reg)

k ∈ C
D×D

1 compute the eigenvalue decomposition:
Ck = E diag(�)E∗

2 λmin ← min(�) (smallest eigenvalue)

3 λmax ← max(�) (largest eigenvalue)

4 c̄ ← min(c, λmax/λmin) (targeted condition number)

5 {λk ← λk−λmin
λmax−λmin

λmax(1 − 1/c̄) + λmax/c̄}k=1..D

(affine mapping of the eigenvalues)

6 C(reg)
k ← E diag(�)E∗

(recomposition with the modified eigenvalues)

resulting covariance matrix has a condition number at most
equal to c. Moreover, the largest eigenvalue λmax is left
unchanged and the ordering of the eigenvalues is preserved
by this strictly increasing mapping (provided that c > 1). It
seems that this latter property is beneficial to limit the bias
introduced by the covariance regularization scheme. If the
condition number is larger than the actual condition number
of Ck , the affine map corresponds to the identity map. The
computation of the regularized covariance matrices is sum-
marized in Algorithm 5. We use in the following the value
c = 103.

5 Numerical Experiments

5.1 Simulated Data

In a first experiment, we compare the impact of the mod-
ifications introduced in Sects. 3 and 4 with respect to the
original MuLoG algorithm in [14] on a simulated PolSAR
image generated from optical satellite images by building at
each pixel index k the following covariance matrix

�k = 1

4

⎛
⎝

(Gk + Rk)
2 0 (G2

k − R2
k )(1 + j)

0 4B2
k 0

(G2
k − R2

k )(1 − j) 0 (Gk − Rk)
2

⎞
⎠ ,

(34)

where Rk ,Gk and Bk are the red–green–blue (RGB) channels
of the optical image, and the polarimetric channels of the
covariance matrix are organized in the following order HH ,
HV and VV . This way the optical image coincides with the
RGB representation of� when represented by fake colors in
the Pauli basis, as described page 3. Thismodel considers that
channel HV is decorrelated from channels HH andVV, while
channels HH and VV have a correlation of 1/

√
2 ≈ 0.71.

Given such a ground-truth image�, we next simulated noisy
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(a) (b) (c)

Fig. 6 Comparisons of the original MuLoG algorithm [14] and the
modified version introduced in this paper, for different values of L . (a)
Noisy image C and its noise component Z = �−1/2C�−1/2 simulated
from the 2003 SPOT Satellite image of Bratislava. (b-c) Estimates �̂

and the corresponding residuals Ẑ = �̂
−1/2

C�̂
−1/2

(method noise) for

the original and modified versions of MuLoG. The residuals Ẑ should
ideally be as close as possible to the actual noise component Z, we
report both the restoration PSNR (−10 log10 ‖�̂ − �‖22) and the resid-
uals PSNR (−10 log10 ‖Ẑ − Z‖22) for each estimator. The ground truth
is not displayed but is extremely close to C when L = 100 (last row)

versions C with L looks by random sampling, at each pixel
index k,

Ck = �
1/2
k Zk�

1/2
k with Zk = 1

L

L∑
l=1

(v
(l)
k )(v

(l)
k )∗ , (35)

where �
1/2
k denotes the Hermitian square root of �

1/2
k , and

v
(l)
k are independent complex random vectors with real and

imaginary parts drawn according to a Gaussian white noise
with standard deviation 1/

√
2. By construction, this gives

Zk ∼ W(IdD, L) and Ck ∼ W(�, L).

5.2 Evaluation with Simulations

Using the procedure described in the previous paragraph,
we simulated a PolSAR data � from a 2003 SPOT Satel-
lite image of Bratislava (Slovakia) 2. We suggest performing
first a visual comparison of the estimated �̂, respectively,
obtained by the original version of MuLoG and by the mod-
ified version introduced in this paper, on noisy versions C

2 Provided byCNES under Creative CommonsAttribution-ShareAlike
3.0 Unported license. See: https://commons.wikimedia.org/wiki/File:
Bratislava_SPOT_1027.jpg.
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Fig. 7 Evolution of the symmetric KL divergence between the ground
truth � and the estimated residuals �̂ obtained with the original or
the modified version of MuLoG. The divergence is computed on the
simulated PolSAR data obtained from the 2003 SPOT Satellite image
of Bratislava shown on Fig. 6, for various number of looks L

obtained for five different numbers of looks: L = 1, 2, 3, 10
and 100. In addition, in order to get more insight into the
behavior of each estimator, we display the residuals (aka,

method noise [4]), defined by Ẑ = �̂
−1/2

C�̂
−1/2

where

�̂
−1/2

is the inverse of the Hermitian square root �̂
1/2

.
Should the estimation be perfect, �̂ would exactly be equal to
�, and Ẑwould perfectlymatch thewhite speckle component
Z: the residuals would be signal-independent. Comparing
Ẑ to Z is thus an efficient way to assess the bias/variance
trade-off achieved by the estimator. Areas of Ẑ that appear
less noisy than Z indicate an under-smoothing. If Ẑ contains
structures not present in Z, this indicates an over-smoothing.
Wherever Ẑ has a different color than Z, this is a sign of bias.

Results are provided in Fig. 6. The estimated images �̂

obtained with the original version of MuLoG and the modi-
fied version introduced in this paper are visually very close.
As expected, the quality of the restored images improveswith
the number of looks along with the signal-to-noise ratio in
the speckle-corrupted images. The residuals Ẑ clearly indi-
cate a bias with the original version of MuLoG. This bias is
smaller with respect to the speckle variancewhen the number
of looks L is lower. This is reflected by thePSNRvalues given
in Fig. 6: the difference between the original and the modi-
fied versions of MuLoG is more pronounced for large values
of L . When the number of looks L is larger, the speckle fluc-
tuations are smaller and the PSNR of the speckled image is
higher (see Fig. 6a). Unsurprisingly, the PSNRof the restored
images gradually increases with the PSNR of the speckled
image for both versions of MuLoG (see Fig. 6b, c). Com-
puting the PSNR of the residuals Ẑ of the original MuLoG
algorithm shows that the residuals are affected by an error
that is increasingly large with respect to the level of fluctu-
ations of the residuals, due to the presence of a bias. The
modified MuLoG algorithm introduced in this paper, on the
other hand, leads to residuals closer and closer to the true
residuals when L increases.

(a)

(b) (c)

(d) (e)

Fig. 8 Despeckling performance comparison of the original algorithm
MuLoG and the modified version introduced in this paper. AIRSAR
polarimetric image of San-Francisco, USA (©NASA): a The original
image; b, c the despeckling results; d–e the residuals

The residuals Ẑ obtained with the modified MuLoG algo-
rithm are comparable to the true residuals Z: no geometrical
structure from the image is noticeable in the residuals, which
indicates that contrasted features where not removed from
the image by the despeckling processing. The levels of fluc-
tuations in Ẑ and Z seem similar. In order to perform a
more quantitative comparison of the residuals, we report in
Fig. 7 the symmetrical Kullback–Leibler divergence (KLD)
between the distribution of the residuals � and �̂ for differ-
ent numbers of looks ranging from L = 1 to 100. The KLD,
averaged over the pixel index k, between the distributions
W(�k; L) and W(�̂k; L) is defined by

SDW (�̂k‖�k) = L tr(�k�̂
−1
k + �−1

k �̂k) − 2LD . (36)

A KLD of 0 indicates a perfect match, while a larger value
indicates a discrepancy. The divergence increases with the
number of looks, which is expected because the KLD is a
measure of divergence relative to the signal-to-noise ratio:
the larger the signal-to-noise ratio, the more conserving is
the KLD. We observe that for all values of L , the modified
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(a)

(b) (c)

(d) (e)

Fig. 9 Despeckling performance comparison of the original algorithm
MuLoG and the modified version introduced in this paper. PISAR
polarimetric image of Tsukuba, Japan (©JAXA): a The original image;
b, c the despeckling results; d, e the residuals

version of MuLoG leads to residuals closer to the theoret-
ical distribution of speckle residuals. This is in agreement
with the behavior observed on Fig. 6 where the bias is seen
to become prominent for large numbers of looks with the
original version of MuLoG.

We checked by comparing the average running time on
several images that the modifications introduced in this
paper do not slow down MuLoG: a slight speedup was even
observed in our experiments.

5.3 Evaluation with Real Data

Figures 8, 9 and 11 compare the restoration performance of
the original MuLoG algorithm and of the modified version
introduced in this paper on PolSAR images from 3 differ-
ent sensors (AIRSAR from NASA, PISAR from JAXA and
SETHI from ONERA). The equivalent numbers of looks,
estimated by maximum likelihood, are, respectively, equal
to 2.7, 1.7 and 1 for each image. From the 1 look image of
SETHI, we build a 4 looks image by spatial averaging and

Fig. 10 Evolution of the mean computation time (in seconds) with
respect to the number of pixels n of a PolSAR image (D = 3) obtained,
respectively, by MuLoG v1 and MuLoG v2 when embedding BM3D

downsampling by a factor 2 in the horizontal and vertical
directions.

As previously observed on simulated data, while the
results of the two versions of the algorithm are similar when
the number of looks is small, a bias is visible in the residu-
als with the original MuLoG algorithm for larger equivalent
numbers of looks.

5.4 Computation Time Analysis

Figure 10 compares the computation time as a function of
the number of pixels of the original MuLoG algorithm and
the modified version introduced in this paper (the denoising
step is performed for both algorithms by BM3D). Com-
putation times were averaged over 20 executions for both
algorithms. Each algorithm runs the same fixed number of
ADMM iterations and quasi-Newton iterations. As expected,
the computation time grows linearly with the number of pix-
els. Despite the refined computations of the first-order and
second-order derivatives introduced in this paper, the com-
putation time per iteration is not increased: there is even a
slight acceleration of the method (Fig. 11).

6 Discussion

MuLoG is a generic framework that offers the possibility of a
straightforward application of denoisers developed for addi-
tivewhiteGaussian noise (i.e., optical imaging). It suppresses
the need for a time-consuming adaptation of these algorithms
to the specifics of SAR imagery. Beyond a much faster trans-
fer of state-of-the-art denoising methods, it makes it easier
to run several denoisers in parallel and compare the restored
images obtained by each. Figure 12 illustrates such restora-
tion results obtained with 6 different denoising techniques.
The patch-based despeckling method NL-SAR [17] is also
applied to serve as a reference computed without using the
MuLoG framework. The images producedwithMuLoGhave
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(a) (b)

(c)

(d)

Fig. 12 Many different Gaussian denoisers can be used in conjunc-
tion with MuLoG. A speckled polarimetric image (a) is restored with
MuLoG and conventional Gaussian denoisers (b) (total variation mini-
mization [42], the block-matching collaborative 3D filtering algorithm
BM3D [10], the dual domain image denoising method DDID [28]) or

more recent learning-based techniques (d) (a fast algorithm based on a
model of image patches as a mixture of Gaussians FEPLL [37]; and two
deep neural networks: DnCNN [50] and IRNCNN [51]). The restored
image obtainedwith the patch-based despecklingmethodNL-SAR [17]
is shown as a reference (restoration not based on MuLoG)

a quality that is on-par with NL-SAR, with some denoising
algorithms better at restoring textures, others at smoothing
homogeneous areas or at preserving the continuity of the
roads (dark linear structures). Method-specific artifacts can
be identified in the results: the total-variation denoiser [42]
suppresses oscillating patterns and creates artificial edges in
smoothly varying regions; BM3D [10], based on wavelets
transforms, is very good at restoring oscillating patterns but it
may also produce oscillating artifacts in some low signal-to-
noise ratio areas; DDID [28] creates oscillating artifacts and
some ripples around edges; FEPLL [37] tends to suppress
low signal-to-noise ratio oscillating patterns; DnCNN [50]
produces smooth images with some point-like artifacts and
a suppression of the low signal-to-noise ratio oscillating pat-
terns; IRNCNN [51] better restores some of the oscillating
patterns but introduces many artifacts in the form of fake-
edges in homogeneous areas. We believe that the possibility
to include deep learning techniques with MuLoG is partic-
ularly useful to multi-dimensional SAR imaging for which
the supervised training of dedicated networks is very diffi-
cult to achieve due to the lack of ground-truth data and the
dimensionality of the patterns (spatial patterns that extend in
the D2 real-valued dimensions of the covariance matrices).

One may wonder to what extent Gaussian denoisers
developed to remove white Gaussian noise also behave satis-
fyingly to handle the non-Gaussian fluctuations that appear
throughout the iterations in MuLoG’s transformed domain.

A possible explanation of the success of the plug-in ADMM
approach, illustrated in Fig. 12 with several denoisers includ-
ing deep neural networks trained specifically for Gaussian
noise, is that throughout the iterations a trade-off between
data fidelity and regularity is found by repeatedly apply-
ing the Gaussian denoiser to project onto the manifold of
smooth images. This interpretation indicates that the Gaus-
sian denoiser plays a role somewhat different to its original
role. Given the specific nature of both the non-Gaussian fluc-
tuations that appear throughout MuLoG’s iterations and the
specificity of SAR scenes, learning dedicated denoisers (for
example in the form of deep neural networks) is a natural way
to further improve the despeckling algorithm. Since the dis-
tribution of fluctuations varies from one iteration to the next,
specific denoisers should be used at each iteration: this corre-
sponds to the “algorithm unrolling” approach [35] discussed
below with other possible extensions of our work. In the
channels shown in Fig. 3, one can observe linear structures,
edges and textures that are also common to natural images.
It is therefore not unreasonable to think that a denoiser suit-
able to denoise natural images can also be applied to the
log-transformed channels. Figure 12 supports this: very dif-
ferent Gaussian denoisers can be applied within the MuLoG
framework and provide decent restoration results. By using
a denoiser specific to the content of SAR scenes, the restora-
tion performance can be slightly improved, but a recent study
[13] has shown that, for the restoration of intensity SAR
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 11 Despeckling performance comparison of the original algorithm
MuLoG and the modified version introduced in this paper. SETHI
polarimetric image of Nîmes area, France (©ONERA): first column,
single-look image; second column, 4-looks image. a, b The original
images; c–f the despeckling results; g–j the residuals

images with MuLoG, a deep neural network trained on nat-
ural images behaves almost as well as the same network
trained specifically on SAR images. While single-channel
speckle-free SAR images can be obtained by averaging long
time-series of images and subsequently used for the super-
vised training of despeckling networks, this approach is
hardly feasible in SAR polarimetry or interferometry due to
the lack of data. Progress in self-supervised training strate-
gies for remote sensing data restoration is needed to enable
the learning of more specific networks [11,39].

This paper introduced severalmodifications to theMuLoG
algorithm [14] based on the closed-form derivation of first
and second-order derivatives of data-fidelity proximal oper-
ator. These mathematical developments can benefit other
algorithms beyond MuLoG. Since the introduction of the
plug-in-ADMM strategy in [48], there have been numerous
works which considered extensions to proximal algorithms
[33], half quadratic splitting [51] or formulations to include
a Gaussian denoiser as an implicit regularizer [41]. The
application of these approaches to multi-channel SAR data
requires the evaluation of the data-fidelity proximal operator
described in Sect. 3 or at least the evaluation of the gradi-
ent of the data-fidelity term (Algorithm 2). Another rapidly
growing body of works considers the end-to-end training of
unrolled algorithms, where deep neural networks are trained
to remove noise and artifacts while gradient descent terms
derived from thedata-fidelity termare interlacedbetween two
applications of neural networks [35]. The computation of the
exact gradient by Algorithm 2 is then essential to apply these
techniques to multi-channel SAR images. Finally, several
recent works [24,26,27,29] consider Monte Carlo Markov
chains to sample images according to a posterior distribu-
tion. These approaches combine a gradient step according to
the data-fidelity term, a regularization step computed with
a black-box denoiser (similarly to the ”regularization by
denoising” (RED) approach [41]), and a randomperturbation
(Langevin dynamics). The exact gradient of the data-fidelity
term given in Algorithm 2 is once again necessary for the
application to SAR imaging.
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under project R-S19/OT-0003-086.

A Gradient of the Objective F

The gradient of (10) is given by:

g = β(x − z) + L�

(
IdD − ∂e�

∂�

∣∣∣∣
∗

−�(x)

[e�( y)]
)

(12)
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Proof (Proof of eq. (12)) Applying the chain rule to eq. (10)
leads to the following decomposition

g = ∇x

[
β

2
‖x − z‖2 + L tr(�(x) + e�( y)e−�(x))

]
(37)

= β(x − z) + L
∂�(x)

∂x

∣∣∣∣
∗

x

(
∇X tr X

∣∣∣∣
�(x)

− ∂eX

∂X

∣∣∣∣
∗

−�(x)

∂e�( y)X
∂X

∣∣∣∣∣
∗

e−�(x)

∇X tr X

∣∣∣∣
e�( y)e−�(x)

)
.

(38)

Using that for any matrix A and B

∂AX
∂X

∣∣∣∣
∗

e−�(x)

[B] = BA∗ , (39)

∂�(x)

∂x

∣∣∣∣
∗

x
[B] = �(B) , (40)

∇X tr X

∣∣∣∣
e�( y)e−�(x)

= IdD . (41)

concludes the proof. ��

B Proof of Proposition 1

Proposition 1 Let � be a D × D Hermitian matrix with
distinct eigenvalues. Let � = E diag(�)E∗ be its eigen-
decomposition where E is a unitary matrix of eigenvectors
and � = (λ1, . . . , λD) the vector of corresponding eigen-
values. Then, for any D × D Hermitian matrix A, denoting
Ā = E∗AE, we have

∂e�

∂�

∣∣∣∣
�

[A] = E
[
G � Ā

]
E∗ (17)

where � is the element-wise (a.k.a, Hadamar) product, and,
for all 1 ≤ i, j ≤ D, we have defined

Gi, j =
{

eλi −eλ j

λi−λ j
if i �= j ,

eλi otherwise .
(18)

Proof Let us start by recalling the following Lemma whose
proof can be found in [5,18,31]. ��
Lemma 1 Let � be an Hermitian matrix with distinct eigen-
values. Let � = E diag(�)E∗ be its eigendecomposition
where E is a unitary matrix of eigenvectors and � =
(λ1, . . . , λD) the vector of corresponding eigenvalues. We
have for a Hermitian matrix A

∂�

∂�
[A] = diag( Ā) and

∂E
∂�

[A] = E
(
J � Ā

)
(42)

where Ā = E∗AE and J is the skew-symmetric matrix

J i j =
{

1
λ j−λi

if i �= j ,

0 otherwise .
(43)

Recall that exp� = E diag(e�)E∗. From Lemma 1, by
applying chain rule, we have

∂e�

∂�
[A] = E

(
J � Ā

)
diag(e�)E∗ (44)

+ E diag(e�)
(
J � Ā

)∗
E∗ (45)

+ E diag(e�) diag( Ā)E∗ . (46)

We have for i �= j

[(
J � Ā

)
diag(e�) + diag(e�)

(
J � Ā

)∗]
i j

(47)

=J i j Āi j e
λ j + eλi J j i Ā j i = J i j Āi j e

λ j − eλi J i j Āi j (48)

=J i j Āi j (e
λ j − eλi ) = Āi jGi j = [G � Ā]i j . (49)

For i = j , since J i i = 0, we conclude the proof.

C Proof of Corollary 1

Corollary 1 Let � be a Hermitian matrix with distinct
eigenvalues. The Jacobian of the matrix exponential is a self-
adjoint operator

∂e�

∂�

∣∣∣∣
∗

�

= ∂e�

∂�

∣∣∣∣
�

. (20)

Proof We need to prove that for any two D × D Hermitian
matrices A and B, we have

〈
∂e�

∂�
[A], B

〉
=

〈
A,

∂e�

∂�
[B]

〉
(50)

for the matrix dot product 〈X, Y 〉 = tr[XY∗]. According to
Proposition 1, this amounts to show

tr(E[G � (E∗AE)]E∗B∗) = tr(E[G � (E∗BE)]E∗A∗)
(51)

where E and G are defined from � as in Proposition 1.
Denoting Ā = E∗AE and B̄ = E∗BE, this can be recast
as

tr((G � Ā)B̄
∗
) = tr((G � B̄) Ā

∗
) (52)
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Expanding the left hand side allows us to conclude the proof
as follows

tr((G � Ā)B̄
∗
) =

D∑
k=1

D∑
l=1

(G � Ā)kl(B̄
∗
)lk (53)

=
D∑

k=1

D∑
l=1

Gkl Ākl B̄kl (54)

=
D∑

k=1

D∑
l=1

Gkl B̄kl( Ā)∗lk (55)

= tr((G � B̄) Ā
∗
) . (56)

��

DHessian of the Objective F

The second-order derivative used in the approximation of the
Hessian given in (23) takes the form:

γ = β + L

〈
�∗(d),

∂2e�

∂�2

∣∣∣∣−�(x)

[e�( y),�∗(d)]
〉

. (24)

Proof (Proof of eq. (24)) Applying the chain rule to eq. (12)
leads to

H = ∂

∂x

[
β(x − z) + L�

(
IdD − ∂e�

∂�

∣∣∣∣
∗

−�(x)

[e�( y)]
)]

(57)

= βIdD − L�

(
∂

∂x

(
∂e�

∂�

∣∣∣∣
∗

−�(x)

[e�( y)]
)

[ · ]
)

(58)

= βIdD − L�

(
∂2e�

∂�2

∣∣∣∣−�(x)

[
e�( y),

∂ − �(x)

∂x
[ · ]

])

(59)

= βIdD + L�

(
∂2e�

∂�2

∣∣∣∣−�(x)

[
e�( y),�∗[ · ]

])
. (60)

If follows that

Hd = βd + L�

(
∂2e�

∂�2

∣∣∣∣−�(x)

[
e�( y),�∗[d]

])
(61)

and thus, as ||d||2 = 1, it follows that

d∗Hd = β + Ld∗�
(

∂2e�

∂�2

∣∣∣∣−�(x)

[
e�( y),�∗[d]

])
(62)

= β + L

〈
d, �

(
∂2e�

∂�2

∣∣∣∣−�(x)

[
e�( y),�∗[d]

])〉
(63)

= β + L

〈
�∗[d], ∂2e�

∂�2

∣∣∣∣−�(x)

[
e�( y),�∗[d]

]〉
(64)

which concludes the proof. ��

E Proof of Proposition 2

Proposition 2 Let � be a D × D Hermitian matrix with
distinct eigenvalues. Let � = E diag(�)E∗ be its eigen-
decomposition where E is a unitary matrix of eigenvectors
and� = (λ1, . . . , λD) the vector of corresponding eigenval-
ues. For any D × D Hermitian matrices A and B, denoting
Ā = E∗AE and B̄ = E∗BE, we have

∂2e�

∂�2

[
A, B

] = E[F( Ā, B̄)]E∗ (26)

where, for all 1 ≤ i, j ≤ D, we have

F( Ā, B̄)i, j =
D∑

k=1

φi, j,k( Āik B̄
∗
jk + B̄ik Ā

∗
jk) (27)

with φi, j,k =

⎧⎪⎨
⎪⎩

Gik−G jk
λi−λ j

if i �= j ,

Gi i−Gik
λi−λk

if i = j and k �= i ,
Gi i
2 if i = j = k .

(28)

Proof (Proof of Proposition 2)The seconddirectional deriva-
tive can be defined from the adjoint of the directional
derivative as

∂2e�

∂�2 [A, B] = ∂

∂�

(
∂e�

∂�

∣∣∣∣
∗

�

[A]

)
[B] . (65)

By virtue of Corollary 1, we have ∂e�

∂�

∣∣∣
∗
�

= ∂e�

∂�

∣∣∣
�
, and then

from Proposition 1 it follows that

∂2e�

∂�2 [A, B] = ∂

∂�

(
E[G � Ā]E∗)

[B] . (66)

In order to apply the chain rule on E[G � Ā]E∗, let us first
rewrite J and G in Lemma 1 and Proposition 1 as

J = (1D1∗
D − IdD) � (IdD + 1D�∗ − �1∗

D) (67)

G = diag(e�) − (e�1∗
D − 1De�∗

) � J (68)

where 1D is a D dimensional column vector of ones, �
denotes the element-wise division and e�∗

must be under-
stood as the row vector (e�)∗. From Lemma 1, we have for
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a Hermitian matrix B

∂

∂�
diag

(
e�

)
[B] = diag(e�) � B̄ (69)

∂

∂�

(
e�1∗

D − 1De�∗)
[B] (70)

= diag(e�) diag(B̄)1∗
D − 1D diag(B̄)∗ diag(e�)

∂

∂�

(
IdD+�1∗

D−1D�∗)
[B]=diag(B̄)1∗

D−1D diag(B̄)∗

(71)

where B̄ = E∗BE. By application of the chain rule, we get

∂ J
∂�

[B] = −(diag(B̄)1∗
D − 1D diag(B̄)∗) � J � J (72)

∂G
∂�

[B] = diag(e�) � B̄ (73)

− [
diag(e�) diag(B̄)1∗

D − 1D diag(B̄)∗ diag(e�)

− G � (
diag(B̄)1∗

D − 1D diag(B̄)∗
) ] � J

where we used that
(
e�1∗

D − 1De�∗) � J = −G � J . Let
A be a Hermitian matrix and Ā = E∗AE, by Lemma 1, we
have

∂ Ā
∂�

[B] = Ā
(
J � B̄

) − (
J � B̄

)
Ā . (74)

We are now equipped to apply the chain rule to E[G� Ā]E∗
in the direction B, which leads us to

∂2e�

∂�2 [A, B] = E[F( Ā, B̄)]E∗ (75)

with F( Ā, B̄) = F1 + F2 + F3 (76)

and F1 = (
J � B̄

) (
G � Ā

) − (
G � Ā

) (
J � B̄

)
(77)

F2 = G � [
Ā

(
J � B̄

) − (
J � B̄

)
Ā

]
(78)

F3 = ∂G
∂�

[B] � Ā . (79)

We have for all 1 ≤ i ≤ D and 1 ≤ j ≤ D

[F1]i j =
D∑

k=1

J jkGik Āik B̄
∗
jk + J ikG jk B̄ik Ā

∗
jk (80)

and [F2]i j = −Gi j

D∑
k=1

J jk Āik B̄
∗
jk + J ik B̄ik Ā

∗
jk . (81)

Hence, we get

[F1 + F2]i j =
D∑

k=1

J jk(Gik − Gi j ) Āik B̄
∗
jk (82)

+
D∑

k=1

J ik(G jk − Gi j )B̄ik Ā
∗
jk .

• Assume i �= j . We have

[F3]i j = −[Gi i B̄i i − G j j B̄ j j

− Gi j (B̄i i − B̄ j j )]J i j Āi j (83)

= J i j (G j j − Gi j )B̄ j j Āi j

−J i j (Gi i − Gi j ) Āi j B̄i i . (84)

For k �= i and k �= j , we have

J ik(G jk − Gi j ) − J i j (G jk − Gik) (85)

= eλ j − eλk

(λ j − λk)(λk − λi )
− eλi − eλ j

(λi − λ j )(λk − λi )
(86)

− eλ j − eλk

(λ j − λk)(λ j − λi )
+ eλi − eλk

(λi − λk)(λ j − λi )

= (λi − λ j )(eλ j − eλk ) − (λ j − λk)(eλi − eλ j )

(λi − λ j )(λ j − λk)(λk − λi )
(87)

+ (λk − λi )(eλ j − eλk ) + (λ j − λk)(eλi − eλk )

(λi − λ j )(λ j − λk)(λk − λi )

= eλi (λk − λ j + λ j − λk)

(λi − λ j )(λ j − λk)(λk − λi )
(88)

+ eλ j (λi − λ j + λ j − λk + λk − λi )

(λi − λ j )(λ j − λk)(λk − λi )

+ eλk (λ j − λi + λi − λk + λk − λ j )

(λi − λ j )(λ j − λk)(λk − λi )

= 0. (89)

Similarly, we have J jk(Gik − Gi j ) = J i j (G jk − Gik).
Hence, we get the following

[F1 + F2]i j =
∑

k �=i,k �= j

J i j (G jk − Gik)( Āik B̄
∗
jk + B̄ik Ā

∗
jk)

− J i j (Gi i − Gi j ) Āi i B̄
∗
j i

+ J i j (G j j − Gi j )B̄i j Ā
∗
j j . (90)

It follows that

[F1 + F2 + F3]i j (91)

=
∑

k �=i,k �= j

J i j (G jk − Gik)( Āik B̄
∗
jk + B̄ik Ā

∗
jk)

+ J i j (G j i − Gi i )( Āi i B̄
∗
j i + B̄i i Ā

∗
j i )

+ J i j (G j j − Gi j )( Āi j B̄
∗
j j + B̄i j Ā

∗
j j )

=
D∑

k=1

J i j (G jk − Gik)︸ ︷︷ ︸
φi, j,k

( Āik B̄
∗
jk + B̄ik Ā

∗
jk) . (92)

• Now assume that i = j . We have [F3]i i = Gi i Āi i B̄i i . It
follows that

[F1 + F2 + F3]i i (93)
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=
D∑

k=1

J ik(Gik − Gi i )( Āik B̄
∗
ik + B̄ik Ā

∗
ik) (94)

+ Gi i Āi i B̄i i (95)

=
∑
k �=i

J ik(Gik − Gi i )︸ ︷︷ ︸
φi,i,k

( Āik B̄
∗
ik + B̄ik Ā

∗
ik) (96)

+ 1

2
Gi i

︸ ︷︷ ︸
φi,i,i

( Āi i B̄
∗
i i + B̄i i Ā

∗
i i )

which concludes the proof. ��
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