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Abstract
Groupwise image registration describes the problem of simultaneously aligning a series of more than two images through
individual spatial deformations and it is a common task in the processing of medical image sequences. Variational methods
with data fidelity terms based on robust PCA (RPCA) have proven successful in accounting for structural changes in image
intensity stemming, e.g., from the uptake of a contrast agent in functional imaging. In this article, we investigate the drawbacks
of the most commonly used RPCA data term and derive an improved replacement that employs explicit constraints instead of
penalties. We further present a multilevel scheme with theoretically justified scaling to solve the underlying fully deformable
registration model. Our numerical experiments on synthetic and real-life medical data confirm the advanced adaptability
of RPCA-based data terms and showcase an improved registration accuracy of our algorithm when compared to related
groupwise approaches.

Keywords Groupwise image registration · RPCA · Motion correction · Low-rank/sparse decomposition

1 Introduction

1.1 Groupwise Image Registration

The problem of aligning one image with another image of
the same object is a well-studied problem in image process-
ing and variational methods have proven successful for the
task [25,34]. However, many application scenarios involve
data comprised of more than two images as in the case of
image data gathered over time. This necessitates so-called
groupwisemethods. One example that we are primarily con-
cerned with in this article is medical applications where the
movements of a patient (or those of certain organs) have to
be corrected in image sequences for further analysis.
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Naive pairwise techniques that select one image from the
group as a fixed reference and register all other images to the
reference have been shown to be inconsistent as registration
accuracy frequently depends on the choice of the reference.
They are therefore generally deemed inferior to groupwise
methods [21,24] which allow all images of the group to be
deformed simultaneously and operate only on an implicit
reference.

A variational model for groupwise registration problems
typically reads as follows: Given N images Ti : Rd → R

(with i = 1, . . . , N ), deformations ui : � → R
d over a fixed

image domain � ⊂ R
d are sought that minimize an energy

of the form

inf
u1,...,uN∈U

D(T1 ◦ u1, . . . , TN ◦ uN ) +
N∑

i=1

S(ui ). (1)

Therein,U denotes a suitable set of spatial deformations—
in our application, these will be nonparametric, i.e., fully
deformable. Furthermore, D is a distance measure that quan-
tifies the dissimilarity between the given images and S is a
regularization term that accounts for the ill-posed nature of
the registration problem by measuring solution candidates
and penalizing ill-suited ones.
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A crucial step in solving any image registration problem
is the selection of a suitable dissimilarity measure on pairs
or groups of images. In the past, both generalizations of
established dissimilarity metrics for the classical two image
problem and new concepts have been proposed to measure
the distance between a group of N > 2 images. Examples for
the former case include the variance-measure found in [2,24]
that extends thewell-known sum of squared distances, differ-
ent generalizations of the mutual information from [21,30]
and a multi-image version of the normalized gradient fields
measure in [7].

One concept that is both central to many of the above-
mentioned measures as well as the method proposed in this
work is that of theCasorati matrix. Given a set of N discrete1

images Ti ∈ R
m×n , such a matrix is defined as

MT1,...,TN := [vec(T1)| . . . | vec(TN )] ∈ R
mn×N , (2)

where vec(·) denotes a column-major vectorization.
Themotivation behind definition (2) is, in broad terms, the

fact that the rank of MT1,...,TN quantifies the degree of linear
dependence between the images Ti which can in turn be used
as a groupwise dissimilarity measure. As the rank function
is however highly discontinuous and sensitive to the smallest
of distortions, more sophisticated and adaptive techniques
such as Robust Principal Component Analysis (RPCA) are
usually employed in practice.

1.2 Robust PCA

Robust PCA techniques were originally developed to over-
come the issue of high sensitivity toward sparse outliers that
the classical PCA is known for and that render it unsuited
for image sequence with strong local changes in intensity
over time. Among the different proposed RPCA methods—
see [16] for an extensive comparison—the most widely used
variant is arguably the Principal Component Pursuit (PCP)
from [8,10].

PCP is derived as a convex relaxation of the combinatorial
optimization problem

min
L,E∈Rp×q

rank(L) + ||E ||0 s.t. M = L + E (3)

for given data M ∈ R
p×q—note that the field of application

for RPCA techniques is much larger than image processing
and thatM need not necessarily be comprised of images. The
term ||E ||0 denotes the number of nonzero entries of E .

1 For ease of presentation, the remainder of this article will only be
concerned with discrete images.

Replacing both summands of (3) with their convex hulls
yields

min
L∈Rp×q

||L||∗ + ||M − L||1, (4)

which is convex in L and thus poses a more tractable opti-
mization problem. ||L||∗ is the so-called nuclear norm,
defined as the sum of all singular values of L (see [14]) and

||M − L||1 :=
p∑

i=1

q∑

j=1

|Mi, j − Li, j | (5)

is an �1-type norm. An intuitive connection to (3) is estab-
lished via the relationship

rank(A) = #{σi (A) > 0} (6)

between the singular values σi and the rank of a matrix (see
again [14]). The decomposition of M generated by (4) is
usually referred to as a low-rank and sparse decomposition,
in which L is of low rank and E := M − L is sparse.

PCP has previously been used in the context of group-
wise image registration by [18,19,23,28]. Primarily tackled
therein are datasets for which low-dimensional approxima-
tions using classical PCA-based techniques are ill-suited
due to occlusions, local changes in image intensity, e.g.,
in dynamic contrast enhanced MRI (DCE-MRI), or general
pathologies in medical image data. In all these publica-
tions, the data matrix M for (4) is constructed as a Casorati
matrix (2). The authors of [18,23] however only use low-rank
and sparse decompositions as a preprocessing step and sub-
sequently perform registrations of the generated low-rank
components L with different algorithms. Contrary to that,
[19,28] both use the optimal value of (4) as a metric for the
similarity of a set of given images T1, . . . , TN .

Section 2 of this paper will present an in-depth analy-
sis of PCP as a distance measure. We argue that PCP has
some inherent drawbacks: Perfect alignments of all Ti often
constitute localminimizers of PCP inonly verynarrowneigh-
borhoods while at the same time degenerated deformations
result in comparatively lower energies. To overcome these
issues, we present in this work a modification of PCP that is
free from these issues while still being convex and therefore
easy to optimize.

1.3 Proposed Approach

Precisely, we propose to use the following groupwise dissim-
ilarity measure:

Dδ-RPCA(T1, . . . , TN ) :=
minL∈Rmn×N ||MT1,...,TN − L||1 s.t. ||L − L̄||∗ ≤ ν. (7)
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Here, MT1,...,TN is again the Casorati matrix (2), L̄ is the
repeated columnwise mean of L and ν ≥ 0 is a suitable
threshold for the nuclear norm. The intuition behind (7) is
to jointly measure the �1-distance between the input images
and their optimal approximations in a low-dimensional linear
subspace centered around the mean of L . Details are given
in Sect. 2.

Our main contributions include the following:

– A novel technique for low-rank and sparse decompo-
sitions that results in a more suitable distance mea-
sure (7) for groupwise registration tasks than previous
approaches.

– A less restrictive uniqueness constraint for groupwise
registration problems (see Sect. 3.2) than the one com-
monly employed in the literature.

– A multilevel strategy with theoretically justified scaling
(see Sect. 4.2) to solve the overall registration model.

1.4 Delimitation from RelatedWork

Major differences between our approach and relatedmethods
for groupwise registration are as follows.

The publications [2,3,15,21,24,30] all propose group-
wise registration algorithms in which the deformation model
is based on B-Splines and therefore handle regularization
implicitly. Contrary to that, our method allows for a flexi-
ble regularization via an adaptively selected regularization
term S in (1). Most closely related to our method in terms
of their distance measures are [15,21] as both penalize the
eigenvalues of the correlation matrix

K := �−1(MT1,...,TN − M̄)	(MT1,...,TN − M̄)�−1

N − 1
(8)

with M̄ as the mean of the Casorati matrix and �−1 as
an (diagonal) correction factor for the empirical standard
deviation. The fact that these eigenvalues correspond to the
squared singular values of the Cholesky factor (MT1,...,TN −
M̄)�−1/

√
N − 1 of K underlines the similarity to (7) as a

rank-minimization approach.
Concerning the two PCP-based registration approaches

[19,28], the former is restricted to affine deformations, while
the latter operates on light-field data, for which a geometric
relationship between input images is known a priori and is
exploited in the registration process.

Another nonparametric approach is presented in [7].
While also based on rank minimization, the authors use
normalized image gradients as feature vectors and define
alignments locally (instead of global alignments and image
intensities as features as in this article). A continuation of
[7] is found in [6], which generalizes the former approach to

different kinds of feature vectors and formulates alignments
globally.

Furthermore and for the sake of avoiding confusion, let
it be mentioned that several optical flow estimation algo-
rithms exist that are based on the idea of low-dimensional
motion fields (instead of low-dimensional motion-corrected
images as in our scenario). Examples can be found in [13,31].
Interestingly, a follow-up study of [13] in [20] found mod-
els with explicit constraints to outperform models with soft
constraints in this context, which is (at a broader level) very
much along the lines of our findings in this article.

Lastly, another interesting approach for motion correc-
tion in DCE-MRI data which is based on Dynamic Mode
Decomposition (DMD) [33] is found in [35]. However, since
the results of this method are generated through the black-
box mechanism of DMD instead of spatial transformations
of the input images, its outputs cannot be retraced analyti-
cally which might be a disqualifying criterion for medical
applications.

1.5 Outline and Contributions

The remainder of this article is organized as follows: In
Sect. 2, we analyze the established PCP-metric and derive
our proposed approach as a replacement. In Sect. 3, differ-
ent regularizers for our model are recapitulated and a new
uniqueness constraint for groupwise image registration algo-
rithms is introduced. In Sect. 4, an account of our solution
strategy via a multilevel scheme with theoretically justified
scaling is given. Numerical experiments on synthetic and
real-life medical data are presented in Sect. 5, including
a quantitative comparison to related approaches. Section 6
gives concluding remarks.

2 RPCA-Based DistanceMeasures

2.1 Analysis of Classical Approach

The classical PCP image distance as it is used in [19,28] is
given by

DPCP(T1, . . . , TN ) := min
L∈Rmn×N

||L||∗ + μ||M − L||1 (9)

with M as a Casorati matrix2. The parameter μ > 0 controls
the weighting between the requirement on the approximation
L to be of low rank and the requirement on the residual E :=
M − L to be sparse.

2 From here on, we omit the explicit notation of the dependence of M
on T1, . . . , TN whenever it is clear from the context.
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Fig. 1 Input frames for the four experiments depicted in Fig. 2. In
order to analyze the behavior of a groupwise dissimilarity measure, its
energy is determined in an experiment in which one frame remains sta-
tionary (here: T1) while the remaining frames (T2, . . . , TN ) are warped

uniformly in a predefined manner. The above images are consecutive
frames from a cardiac MRI sequence and can be regarded as aligned
due to their short temporal offset

In order to assess the general applicability of (9) in
the context of nonparametric groupwise image registra-
tion, we conducted the following experiment: Given N
aligned images T1, . . . , TN ∈ R

m×n , one image, say T1, is
selected as a reference. The remaining images T2, . . . , TN
are then warped uniformly by a series of spatial defor-
mations (u j ) j=−k,...,k ⊂ R

m×n×2, yielding new images
T2 ◦ u j , . . . , TN ◦ u j for every j3. Finally, we analyze the
energy (9) corresponding to

M =
[
vec(T1)| vec(T2 ◦ u j )| . . . | vec(TN ◦ u j )

]
(10)

in dependence of the deformation index j .
Let it briefly be mentioned that this experiment requires

solving (9) for L for every j or, respectively, M from (10).
As (9) is convex in L , this can easily be done using the well-
known PDHG algorithm from [9]. A comparative study with
further details on existing RPCA methods can be found in
[16].

In total, four different deformation sequences (u j ) j were
employed describing firstly a translation, secondly a rotation,
thirdly a scaling and fourthly a shearing—see the first row
of Fig. 2 for a visualization. All deformation sequences are
centered around the center of the image domain �, so that
u0 = 0 corresponds to a perfect alignment in every experi-
ment. As a perfect result, the energy (9) would therefore be
expected to exhibit a global minimum at j = 0.

Our test data was comprised of N = 5 consecutive frames
from a cardiac MRI sequence (see Fig. 1). As suggested by
[8, Theorem 1.1], the weighting parameter for (9) was set
to the provably optimal value of μ = (mn)−1/2 across all
experiments.

The results of the above-described experiment are dis-
played in the second row of Fig. 2. Alongside the actual

3 Note that this somewhat abusive notation refers to an interpolation
of Ti over a regular cell-centered grid that is offset by u j—in practice,
we use linear interpolations as described in [26, Chapter 3.3].

DPCP-energies, their respective decompositions into the two
summands ||L∗||∗ andμ||M−L∗||1 are shownaswell (where
L∗ denotes the minimizer of (9) with respect to the variable
L).

Figure 2 indicates twomajor shortcoming of DPCP that are
unfavorable for the purposes of image registration. Firstly,
the point u0 = 0 of perfect alignment only marks a local
minimizer of DPCP in a very narrow neighborhood of u0 in
the translation experiment. In the scaling experiment, u0 even
constitutes a global maximizer. Secondly, both the left or the
right endpoints of each energy plot, i.e., themost degenerated
of all evaluated deformations u j , represent globalminimizers
in every experiment except for the rotation.

This is especially problematic in case of translations, since
constant translations are also not penalized by any regularizer
based on derivatives. In practice, this problem is known to
lead to trivial solutions in which all images are shifted out of
the image domain. As a result, we consider DPCP unsuitable
as a distance metric for general nonparametric registration
tasks.

2.2 ProposedModified Measure

Based on the above observations, we propose a new distance
metric that modifies DPCP in two aspects. As a first step, the
|| · ||∗-penalty term in (9) is replaced by a hard constraint to
the set {|| · ||∗ ≤ ν} for some suitable threshold ν ≥ 0.

As a second step, we propose not to constrain the nuclear
norm of L itself, but to consider that of the centered variable
L − L̄ in its stead. To this end, let L̄ := (

∑N
i=1

li
N ) · 11×N ∈

R
mn×N denote the matrix, in which every column is given

by the arithmetic mean of the columns li of L .
In the following, we will use the compact notation

Dδ-RPCA(T1, . . . , TN ) :=
minL∈Rmn×N ||M − L||1 + δ{||·||∗≤ν}(L − L̄) (11)
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Fig. 2 Experiments on the distance measures DPCP and Dδ-RPCA. The
classical DPCP energies (second row) exhibit only very narrow minima
at the position u0 = 0 of perfect alignment. Even worse so, global
minimizers for all experiments except the rotation are found at the left
or right endpoint of each curve and therefore correspond to degener-

ated transformations such as a translation out of the image domain.
The proposed modification Dδ-RPCA (third row) resolves these issues:
u0 = 0 constitutes a global minimizer across all experiments. Further-
more, degenerated deformations generally result in high energies and
are therefore not favored by this measure

for our proposed dissimilaritymeasure (7), whichwe term
δ-RPCA. Therein, we use the convention of denoting the
constraint of a variable x onto a set S via an indicator func-
tion δS(x) that evaluates to 0 for x ∈ S and +∞ for x /∈ S
as is common in convex analysis [32].

The first modification is based on the observation that all
energy curves of the ||·||∗-term in Fig. 2 exhibit at least a local
maximum at u0 and therefore counteract the local minima of
the || · ||1-term in the joint DPCP-energy. Remodeling the
low-rank requirement on L as a hard constraint resolves this
issue by removing the nuclear norm from the energy as a
summand.

The second modification of centering L further acts to
model the low-rank requirement appropriately: As a short
example, consider the nuclear norm of the two matrices

A1 = a · (1, 0, . . . , 0) ∈ R
p×q , (12)

A2 = a · 11×q ∈ R
p×q (13)

for some a ∈ R
p \ {0}. While both matrices are obviously of

rank one, a short derivation shows that one has

||A1||∗ = ||a||2 <
√
q||a||2 = ||A2||∗ (14)

for all q > 1. In terms of the registration model, this means
that a smaller nuclear norm for the uncentered variable L
can be achieved by shifting all deformable images out of
the image domain—thereby replacing them with the bound-
ary value of zero—than by aligning them inside the image
domain.

The continuation of the above example shows that this sit-
uation, which is highly undesirable for the purpose of image
registration, is reversedwhendealingwith centeredvariables.
These are given by

A1 − Ā1 = a · (1 − q−1,−q−1, . . . ,−q−1), (15)

A2 − Ā2 = 0, (16)
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respectively, and in fact, the equivalent of relation (14) now
reads

||A2 − Ā2||∗ = 0 <

√
1 − q−1||a||2 = ||A1 − Ā1||∗. (17)

As a consequence, (11) does not favor shifting the
deformable images out of the image domain and is there-
fore more suited for image registration purposes.

Crucially, Dδ-RPCA is still convex in the variable L , since
{|| · ||∗ ≤ ν} constitutes the level set of a convex function and
is therefore convex [32, Theorem 4.6].

Repeating the above experiments for Dδ-RPCA with the
empirical choice4 of ν = 0.9||M − M̄||∗ for every M from
(10) yields the energies displayed in the third row of Fig. 2. In
contrast to DPCP, the modified metric Dδ-RPCA exhibits the
desired global minimizers at u0 = 0 across all experiments.
Additionally, the global maximizer of each curve is found
toward its left or right endpoint and consequently results from
a degenerated deformation. While it should be mentioned
that the global minimizers of Dδ-RPCA at u0 are still con-
fined to restricted convex neighborhoods in the translation
and scaling experiments, this did not cause issues in practi-
cal registration tasks. We ascribe this to the facts that these
regions are sufficiently wide and that, more importantly, the
distance measure is accompanied by regularizer and unique-
ness constraint terms (see Sect. 3) in our registration model
which counteract the undesired drift process during optimiza-
tion. In conclusion, the modifications that set Dδ-RPCA apart
from DPCP succeed in tackling themost crucial shortcomings
of the classical approach.

Apart from the interpretation of Dδ-RPCA as a modified
version of DPCP, it can also be interpreted in the following
sense. First consider the case ν = 0. This implies L = L̄ ,
which in turn implies constant columns l1 = . . . = lN of
L . Using this fact, one can solve (11) analytically for L by
recalling that �1-distance minimization problems of the type

argminx∈R
K∑

i=1

|x − yi | (18)

are solved by the median of (y1, . . . , yK ) [4, p. 433]. As
a consequence, the constant columns of L in the problem
above are given by the pointwise median of T1, . . . , TN and
Dδ-RPCA represents the residual of an �1-distance between
the input images and that median.

In the case of ν > 0, Dδ-RPCA can more generally
be interpreted as the joint �1-distance between the images
T1, . . . , TN and their individual (optimal) approximations
l1, . . . , lN in a low-dimensional linear subspace centered
around l̄ := ∑N

i=1
li
N .

4 A more detailed discussion of how to select the parameter ν in prac-
tical applications will be given in Sect. 4.1.

Thanks to the additional adaptability granted by its decom-
position properties, we deem (11) especially suited for image
sequences with intricate features such as temporal repe-
tition or changes in image intensity. While conventional
approaches based on matching predefined image features
like intensity or edges might not be able to account for such
characteristics, these can very well be captured by suitable
low-rank and sparse components. Our experiments on com-
plex medical image data in Sect. 5 aim at highlighting these
capabilities.

3 Regularization

3.1 Choice of Regularizer

For our numerical experiments in Sect. 5, we employ two
different types of regularizers S to accompany the data term
Dδ-RPCA in the overall registration model (1). As these are
standard concepts in variational image processing, we refrain
to short recapitulations.

Firstly, we consider a Total Variation (TV) regularization
as given by

TV(υ) :=
∫

�

d|Dυ| (19)

for continuous vector fields υ in the space BV (�,Rd) of
functions of bounded variation. For all details, we refer to
[1].

In our practical experiments, we employ a straightforward
discretization of (19) via finite forward differences. That is,
given a discrete deformation u ∈ R

m×n×2 defined over a
rectangular (m × n)-grid5 with grid widths h1, h2 > 0, we
approximate (19) by

TVh(u) := h1h2‖∇h vec(u)‖2,1, (20)

where∇h implements the afore-mentioned finite differences
and ‖y‖2,1 := ∑m

i=1
∑n

j=1 ‖yi, j‖2 is a sum over the numer-
ical gradients at every grid point.

While TV regularization is known to favor piecewise con-
stant deformations, smooth solutions—as they are oftenmore
plausible in medical applications—can be obtained by using
different concepts such as curvature regularization [12]. In
the continuous setting, this is defined as

CURV(υ) := 1

2

d∑

c=1

∫

�

(	υc)
2 dx (21)

for υ ∈ C2(�,Rd). Using a point- and channelwise five-
point stencil discretization of the two-dimensional Laplacian

5 We consider the case d = 2.
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that is denoted by	h , a discretization of (21) can be phrased
compactly as

CURVh(u) := h1h2
2

‖	h vec(u)‖22 (22)

where u ∈ R
m×n×2 is as above.

3.2 Uniqueness Constraint

As our model does not make use of an explicit reference
image that all other images are aligned to, we need to employ
an additional constraint on the displacements (uk)k in order
to ensure the uniqueness of a solution.

This can be seen from the simple example in which
T1, . . . , TN display uniform objects, e.g., white rectangles,
before a black background. Now consider the case of a per-
fect alignment

T1(u
1) = . . . = TN (uN ) (23)

of these rectangles inside the image domain �. If all defor-
mations uk are uniformly modified by a sufficiently small
translation t ∈ R

2, such that the new deformations ûk still
align all rectangles inside the common domain6, then the
new deformations (ûk)k=1,...,N constitute a solution equal to
(uk)k=1,...,N both in terms of Dδ-RPCA and in terms of any
derivative-based regularizer S.

For the regularizer S, this is explained by the simple fact
that any derivative of a deformation field is invariant under a
constant translation.

The invariance for Dδ-RPCA is due to the equivalence of
an offset by t and a simple reordering of the pixels between
Tk(uk) and Tk(ûk) (due to the zero boundary condition).
Clearly, the �1-term in (11) is invariant to any reordering and
the same is true for the nuclear norm constraint, since a con-
sistent reordering of all Tk(uk) results in a row permutation
of the Casorati matrix

M = [vec(T1 ◦ u1)| . . . | vec(TN ◦ uN )]. (24)

As a short derivation shows, a row permutation does not
affect the singular values of a matrix: Let A ∈ R

p×q be an
arbitrary matrix and let P ∈ {0, 1}p×p be a permutation.
If a singular value decomposition (SVD) of A is given by
A = U�V	, then PA = (PU )�V	 constitutes a valid
SVD of PA due to PU still being orthogonal, i.e.,

(PU )	(PU ) = U	P	PU = U	U = I . (25)

6 To be more precise, that means ûki, j,c := uki, j,c + tc for all i =
1, . . . ,m, j = 1, . . . , n, c = 1, 2 and k = 1, . . . , N .

Thus, the singular values on the diagonal of � stay unaf-
fected and so does the nuclear norm ||PA||∗ = ||A||∗.

In order to eliminate this remaining degree of freedom
from our model, we impose an additional constraint on the
deformations (uk)k which enforce the mean (or equivalently
the sum) over all deformations and grid points to be zero in
each coordinate direction:

1

(Nmn)

N∑

k=1

m∑

i=1

n∑

j=1

uki, j,c
!= 0 ∀c ∈ {1, 2}. (26)

Note that [15,21,24,30] constrain their deformations in a
related manner by demanding the mean of all deformations
to be zero at every grid point as introduced by [3]. The dif-
ference however is, that (26) only imposes one constraint
per dimension instead of one constraint per grid point and
dimension. As a result, (26) restricts the space of feasible
solutions much less severely while still ensuring uniqueness.

4 Implementation and Optimization

In this section, we present an optimization scheme for our
groupwise registration model that is related to the works in
[19,36].

First, we combine all components derived in the previous
sections into a complete registration model

min
(uk )k ,L

h1h2‖[vec(T1 ◦ u1)| . . . | vec(TN ◦ uN )] − L‖1

+ δ{‖·‖∗≤ν}(L − L̄) + μ

N∑

k=1

S(uk)

+
2∑

c=1

δ{〈1,·〉=0}((u1·,·,c, . . . , uN·,·,c)),

(27)

in which μ > 0 controls the regularization strength.
Note that we also factored in a weighting of the �1-term

by the size of the grid cells h1h2 in order to account for
a consistent scaling of the different terms in the multilevel
scheme that will be the subject of Sect. 4.2.

4.1 Linearized Subproblems

As our goal is to apply convex optimization methods to (27),
one needs to deal with the nonlinearity of the expressions
Tk ◦uk that leads to a non-convexity of the overall model. As
in [19,28,29,36], an iterative linearization of the deformed
images is used to overcome this issue. Note that while a one-
time linear approximation would be possible in theory, the
strong locality of such an approximation becomes prohibiting
when larger deformations are required to align the images.
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In the following, we assume all variables to be in vector
format (including the values of all Tk) and for brevity’s sake
omit the explicit notation of reshaping operations like vec(·).
A linearization of Tk can then be expressed as

Tk(u
k) ≈ Tk(ũ

k) + ∇Tk(ũ
k)	 · (uk − ũk) (28)

for a suitable point ũk . This enables one to approximate the
�1-term in (27) by

N∑

k=1

‖Tk(ũk) + ∇Tk(ũ
k)	 · (uk − ũk) − lk‖1. (29)

Using vectorized variables further allows one to rewrite
the centering of L as a linear operation K L with

K =
(
IN×N − 1N×N

N

)
⊗ Imn×mn ∈ R

mnN×mnN . (30)

Therein, ⊗ denotes the Kronecker product of matrices.
Since solving (27) through iterative (re-)linearization

amounts to solving a series of subproblems, we propose to
treat it as a process, in which the threshold ν is successively
decreased to one final threshold value.

Assuming a predefined number niter of linearization steps
and denoting the final threshold by ν, we therefore employ a
finite series of thresholds

ν1 > ν2 > . . . > νniter = ν (31)

for the iterative solution of the individual subproblems.
As a strategy to select these parameters, we propose a

simple scheme in which these thresholds are successively
decreased by a constant factor α ∈ (0, 1). Using the nuclear
norm of the centered input images as a baseline, one obtains

νt := αt‖M − M̄‖∗ for t = 1, . . . , niter (32)

with M as the input image Casorati matrix (2) and M̄ as its
repeated columnwise mean.

Regarding the practical choice of the involved parameters,
we foundvalues ofα ∈ (0.9, 0.95) towork reasonablywell in
all of our experiments. Note, however, that since α is directly

related to ν via niter in (32), it has to be chosen in conjunc-
tion with niter. In practice, we recommend using parameters
tuples (α, niter) that yield values of αniter ∈ (0.1, 0.4),
depending on the degree of disturbance present in the image
sequence.

At last, we solve the linearized—and therefore now
convex—subproblems using the aforementioned Primal-
Dual Hybrid Gradient (PDHG) method [9, Alg. 1]. In short,
we assign all terms of the linearized version of (27) except
for the uniqueness constraints to the expression F(Ax) in the
primal problem formulation

infx∈Rp F(Ax) + G(x). (33)

Obviously, this leaves the remaining uniqueness con-
straints for G. The primal variables x are comprised of all
deformations (uk)k as well as the low-rank components L
and the linear operator A ∈ R

q×p captures all relevant lin-
ear transformations of these variables, i.e., the linearization
in (29), the centering of the low-rank components L by (30)
and the differential operator corresponding to the chosen reg-
ularizer S.

Clearly, both F and G fulfill the usual requirements of
convexity, lower-semicontinuity and properness, so that the
saddle point formulation

infx∈Rp supy∈Rq 〈Ax, y〉 + G(x) − F∗(y) (34)

of (33) can be solved using the PDHG algorithm. For all
required proximal operators, we refer to [27] as an extensive
reference.

4.2 Multilevel Scheme and Parameter Scaling

As is common in image registration, we couple the scheme
derived in the previous subsectionwith amultilevel approach,
also known as coarse-to-fine strategy. This serves the two
purposes of lowering the computational effort of our solution
strategy and of avoiding unwanted local minimizers.

An image pyramid of nlev resolution stages serves as input
to our multilevel scheme in which images are downsam-
pled by a factor of 2 in each dimension between consecutive
stages7.

7 For simplicity, we assume 2(nlev−1) | m and 2(nlev−1) | n.

123



202 Journal of Mathematical Imaging and Vision (2022) 64:194–211

The inverse operation, i.e., the prolongation that all pri-
mal variables x are subject to, is implemented as depicted in
Fig. 3. As proposed in [36], the dual variables y are simply
reinitialized with 0 for every new stage. Note that while more
sophisticated prolongation strategies for the primal variables
exist (see, e.g., [26, Chpt. 9.4]), this approach simplifies the
subsequent analysis and we found it to perform well in prac-
tice.

In order to guarantee a consistent scaling of both the �1-
term and the regularizer S in (27), we adapt the gridwidths h1
and h2 in between stages.

Moreover, we require a scaling of the thresholds νt
from (32) since the low-rank variable L changes in reso-
lution as well. To this end, we need to derive by what factor
the nuclear norm of a Casorati matrix M changes when it is
prolongated to the next higher resolution. In accordance with
Fig. 3, we can express the prolongation of M ∈ R

mn×N as

P

⎡

⎢⎢⎣

M
M
M
M

⎤

⎥⎥⎦ ∈ R
4mn×N (35)

Fig. 3 Prolongation scheme. Variable values for the index (i, j) in the
low-resolution coordinate system (left) are propagated to the variables
indexed by (2i − 1, 2 j − 1), (2i − 1, 2 j), (2i, 2 j − 1), (2i, 2 j) in the
high-resolution system (right)

where P ∈ R
4mn×4mn is a suitable permutation.

As the singular values of a matrix are invariant under row-
permutations (see Eq. (25)), one can restrict the analysis of
the singular values of (35) to the simple case P = I . Let
an economic SVD of M now be given by M = U�V	 with
U ∈ R

mn×N and �, V ∈ R
N×N [14, Chpt. 2.5]. Then, it

holds

⎡

⎢⎢⎣

M
M
M
M

⎤

⎥⎥⎦

︸ ︷︷ ︸
=:M̂

=

⎡

⎢⎢⎣

U
U
U
U

⎤

⎥⎥⎦

︸ ︷︷ ︸
=:Û

�V	. (36)

Equation (36) does not constitute a valid (economic) SVD
of M̂ however, since the columns of Û are no longer normal-
ized: Rather, one has

(Û	Û )i, j =
{
4, i = j,

0, otherwise.
(37)

In order to regain a valid SVD, a factor of 2 has to be
redistributed from Û to �, i.e.,

M̂ = (Û/2)(2�)V	. (38)

This implies ||M̂||∗ = 2||M ||∗ which in turn implies that
the sought factor is given by 2. Note that this result can easily
be generalized to the case of d-dimensional images, where
that factor is then given 2(d/2).

The overallmultilevel strategy is shown inAlg. 1. Therein,
we assume grid widths h1 = h2 = 1 at maximum resolution.
Further assumed is a partition of the number of relinearization
steps niter from Sect. 4.1 among the different stages j , i.e.,
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Fig. 4 (Top row) Exemplary images from the synthetic dataset
described in Sect. 5.1. The elliptic object describes a semicircular
motion and alternates in texture between two patterns in between
images. The frame and rectangle objects remain stationary through-
out the sequence. (Bottom row) Motion correction of the above frames
using the proposed method. The axis ticks indicate the respective posi-

tion of the ellipse’s center within each image. It can be seen easily,
that nearly all motion was corrected successfully without disturbing the
ellipses’ stripe patterns. Note also that no artificial motion was intro-
duced to the frame or rectangle objects thanks to a TV regularizer that
allows for piecewise constant deformations

niter =
nlev∑

j=1

n j
iter. (39)

Clearly, it is advisable to begin with a sufficient number
of iterations n1iter at the lowest resolution in order to obtain a
rough initial alignment and to perform only a small number
of refinement steps n j

iter at each following stage j .

5 Numerical Experiments

5.1 Synthetic Data: Textured Ellipse

As a first experiment, we employ a synthetic dataset to illus-
trate the ability of ourmodel to simultaneously correctmotion
and to generate low-dimensional embeddings of the corre-
sponding output data.

The sequence is comprised of a total of 10 frames that
display the semicircular motion of an elliptic object before
a uniform background where other stationary objects are
present as well. Crucially, the ellipse’s texture alternates
between vertical and horizontal stripes for all oddly and all
evenly indexed frames, respectively. This means that, assum-
ing a perfect motion correction of the ellipse, the output
images would be expected to be embedded in a subspace

of dimension two. Exemplary frames from this sequence are
displayed in the top row of Fig. 4.

As befits the motion present in this sequence, we employ
a TV regularization by (20) with homogenous Dirichlet
boundary conditions for the differential operator. Further
parameters for Alg. 1 are chosen as

– α = 0.9, μ = 0.2,
– nlev = 3 with n1iter = 16 and n j

iter = 2 for j = 2, 3.

Results of the motion correction are shown in the bottom
row of Fig. 4. Clearly, the proposed algorithm is capable of
correcting motion near perfectly in this simple example.

Regarding the low-rank components generated alongside
the actual motion correction, we point to Fig. 5. Note that
the low-rank approximations can be regarded as equal to the
actual outputs Ti ◦ ui for this synthetic dataset since it is (by
nature) void of any intensity distortions. Figure 5 shows that
a two-dimensional representation of the motion-corrected
output sequence is in fact generated by our method. This
is formed from the mean of L and the leading left singular
vector of the mean-adjusted low-rank components L − L̄ .

5.2 Medical Data I: Cardiac MRI

As a more challenging task, we test the applicability of our
model on real-world medical data. Concretely, we consider
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Fig. 5 (Left) Development of the singular values of L − L̄ over the
course of the multilevel scheme from Alg. 1 (scaling of the singular
values adjusted as discussed in Sect. 4.2). As the scheme progresses,
the influence of the leading singular value σ1 (solid red line) on the
nuclear norm (dashed blue line) increases. This corresponds to a van-
ishing of motion artifacts from the low-rank components L . Note that
these can be regarded as equal to the output images Ti ◦ ui (see Fig. 4)
since the dataset is synthetic in nature and therefore free from irregular
intensity distortions. (Right) Low-dimensional embedding of the out-

put images. As expected, a two-dimensional basis representation of the
output sequence is generated by our method. This is formed from the
mean of L and the leading (left) singular vector of L− L̄ (corresponding
to the red line in the left-hand figure). As is intuitive, frames with hori-
zontal stripe patterns are reconstructed by adding the two basis vectors
and frames with vertical stripes are reconstructed by subtracting them.
The influence of all remaining singular vectors is negligible due to the
small magnitude of their singular values in the left-hand figure

a MRI sequence of a beating heart in the so-called two-
chamber view that displays the left atrium and ventricle.
Seven repetitions of the heart cyclewith blood flow in and out
of the two chambers as well as breathing-induced motions
of several structures like the thorax, the diaphragm and the
heart itself are seen in this sequence.

Note that while different repetitions of the same phase of
the heart cycle exhibit visual similarities, the turbulent nature
of the blood flow leads to irregular object appearances which
make it an interesting test case for our method.

In order to reduce the enormous magnitude of the dataset,
we confine the registration task to one frame per each rep-
etition of the following phases of the heart cycle: systole,
diastolic relaxation and diastolic filling. This makes for 21
frames to register in total. See the left-hand side of Fig. 6 for
exemplary frames from this dataset.

Parameters for this experiment remained the same as in
the previous section except for

– α = 0.95, μ = 10,

where we now use a curvature regularizer (22) with
homogenous Neumann boundary conditions.

The difference images before and after registration in the
right-hand side of Fig. 6 show that misalignments due to the
patients’ breathing motion are in fact successfully corrected
by our method.

Before we present a comparative analysis of the reg-
istration accuracy against related groupwise registration

algorithms in Sect. 5.2.1, we investigate the effect of the low-
rank and sparse decomposition on this dataset. To this end,
we present exemplary sparse components Ti ◦ ui − li gener-
ated by our method in Fig. 7. These describe, as expected,
those parts of the output sequence that are too irregular to be
explained by a low-dimensional basis. In the present dataset,
these are the visual details of the blood flow. Moreover, the
images in Fig. 7 show these components to be in fact sparse
as derivations from zero are locally restricted throughout.

5.2.1 Comparative Analysis

In order to rank the registration accuracy of our method, we
compare its results to the following registration techniques
for image stacks:

1. The classical PCP image distance DPCP from (9) whose
problematic aspects were discussed in Sect. 2. Neverthe-
less, this approach presents an interesting benchmark for
the modifications introduced in this article.
To make for a fair comparison, we exchange only the
data term of (27) by DPCP and keep all other parts of
the registrationmodel (and its implementation) the same.
Moreover, the weighting parameter for DPCP is chosen
as suggested in [8].

2. The simple variance-based dissimilarity measure

DVAR(T1, . . . , TN ) := 1

2

N∑

i=1

‖Ti − T̄ ‖22 (40)
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Fig. 6 (Left) Exemplary frames from the cardiac MRI dataset overlaid
with the corresponding deformation fields generated by ourmethod. Per
heart cycle and phase, one frame is chosen as part of the registration
task. (Right) Difference images per phase between the selected frames
of the first and seventh heart cycle before and after registration. While

these difference images present only a selective account of the overall
motion correction quality, it is still apparent that misalignments, i.e.,
the “motion shadows” found in the diaphragm, thorax, heart apex and
artery regions of the initial difference images, are largely absent in the
output images

Fig. 7 Sparse components ei := Ti ◦ ui − li generated by our algo-
rithm for the cardiac MRI dataset (with li as the i-th column of L).
The displayed images correspond to the frames shown in Fig. 6. It is

visually clear that the sparse components first and foremost capture the
irregularities of the blood flow, i.e., that part of the output sequence that
cannot be explained in a low-dimensional subspace

with T̄ := 1
N

∑N
i=1 Ti as it is used in [2,24]. Just as

with DPCP, this data term can be integrated easily into our
proposed registration model (27) and multilevel strategy
without adjusting any of other part of the model.

3. The more sophisticated PCA-based measure DPCA2

from [21] which is defined as

DPCA2(T1, . . . , TN ) :=
N∑

i=1

iλi (K ) (41)

withλi (K ) as the i-th largest eigenvalue of the correlation
matrix K from (8). For this measure, a public implemen-
tation is available in the elastix-toolbox [22]. Note
however that, as stated in Sect. 1.4, this implementation
is parametric and therefore does not use explicit regular-
ization.

4. A pairwise registration approach using a discretized ver-
sion of the intensity-invariant normalized gradient fields
measure
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DNGF(R, T ) := 1

2

∫

�

1 −
〈 ∇R

‖∇R‖η

,
∇T

‖∇T ‖η

〉2
dx (42)

with ‖z‖η := √‖z‖2 + η2 (see [17] for details). Like
all other presented approaches that make use of explicit
regularization, we combine (42) with a curvature regu-
larizer (21).
Since any pairwise registration method for image stacks
T1, . . . , TN requires a fixed reference R = Tr for some
r ∈ 1, . . . , N , we employ the simple strategy of selecting
that image as the reference R that exhibits the smallest
accumulated SSD-distance to all other images, respec-
tively.
Experiments for this approachwere conducted in the pub-
licly available Matlab library FAIR [26] and using the
provided spline-based image interpolationmodel (cf. [26,
Sec. 3.4]).

We quantify registration accuracy through the use of land-
marks. Specifically,we annotate 22 corresponding landmarks
in eachof the 21 input frames of the cardiacMRIdataset—see
Fig. 8 for their positioning on one representative frame. Then,
we measure per specified landmark the mean Euclidean dis-
tance of each warped representative of that landmark from
its average warped position. That is, if yki ∈ R

2 is the posi-
tion of the k-th landmark in the i-th input frame and ỹki is
the position that yki is warped to by a specified registration
algorithm, we compute

1

N

N∑

i=1

‖ỹki − ȳk‖2 with ȳk := 1

N

N∑

i=1

ỹki (43)

as a measure for the accuracy with which that algorithm was
able to register the k-th landmark.

The intuition behind (43) is that the position of each
landmark should ideally be fixed across all frames after reg-
istration. This means that smaller values for (43) indicate
better accuracy.

Parameters for the competing approaches were chosen as
follows:

For the DPCA2-measure, we increased the elastix-
parameters recommended by the authors of [21] to Parame-
ters for the

– 3 resolution stages (recommended: 2),
– 2.000 iterations per stage (rec.: 1.000),
– 25.000 random coordinates per stage (rec.: 2.048)

to ensure that the method is granted sufficient computa-
tional capacity to produce accurate solutions.

For the pairwise approach using DNGF, we employed an
edge parameter of η = 25 as well as a regularization strength
of μ = 10.

Lastly, the regularization strengths for the DPCP-based and
the DVAR-based algorithms were chosen as μ = 0.1 and
μ = 10, respectively.

The results of all methods are displayed in the right-hand
side of Fig. 8 in which the proposed δ-RPCA approach out-
performs its competitors for the majority of the selected
landmarks. While DPCA2, DPCP and even the pairwise
approach using DNGF are occasionally close to Dδ-RPCA in
terms of registration accuracy, the variance approach based
on (40) is inferior many times over.

Moreover and for the sake of completeness, an exemplary
visual comparison of warped mages generated by the differ-
ent methods is presented in Fig. 9.

5.3 Medical Data II: Renal DCE-MRI

To further showcase the versatility of our algorithm, we
consider a second real-world medical dataset with breath-
ing motion to be corrected. This dataset was acquired using
dynamic contrast-enhanced MRI (DCE-MRI) and shows the
contrast agent uptake in a human kidney. In total, we con-
sider a sequence of 16 consecutive frames to register in this
experiment. Exemplary frames are shown in the top row of
Fig. 10.

As the contrast agent uptake in the kidney region causes
structural changes in image intensity, simple registration
methods based on the principle of matching intensities (or
the corresponding edges) are ill-suited for this dataset.

Using the parameters

– α = 0.95, μ = 20,
– nlev = 4 with n1iter = 16, n j

iter = 2 for j = 2, . . . , 4

for Alg. 1 as well as a curvature regularization (22) with
homogenous Dirichlet boundary conditions, our approach
was able to perform a successful motion correction as dis-
played in the bottom row of Fig. 10.

Moreover, we carried out the same comparative analysis
as in Sect. 5.2.1 for this dataset. Parameters for the DPCA2-
measure were kept the same as previous while parameters
for the variance-approachwere adapted from those employed
for Dδ-RPCA. However, wewere not able to identify a regular-
ization strengthμ that resulted in acceptable performance for
the latter approach which is why we adhered to the choice of
μ = 20. Regularization strengths for the DPCP method and
the pairwise DNGF-based algorithm were chosen as μ = 0.1
and μ = 10, respectively.

See Fig. 11 for a visualization of the results.
As in the previous dataset, we found our registration strat-

egy to perform well against the competing approaches in
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Fig. 8 (Left) Selected landmarks in the cardiac MRI dataset. (Right)
Comparison of landmark registration accuracy as measured by (43)
(smaller values indicate better accuracy, especially note the logarithmic
scaling of the y-axis). The competing approaches are the one pro-
posed in this work (blue line), the elastix-implementation of DPCA2
(red), the variance-based approach (40) (green), the pairwise method
based on DNGF (orange) and the classicalRPCA implementation termed

DPCP (purple). For comparison, the accuracy of the unregistered land-
marks is shown as well (gray line). The landmarks’ numbering on the
horizontal axis corresponds to the one displayed on the left. Clearly,
our approach outperforms the competing methods on most landmarks
most of the time. Despite being based on the classical (instead of
robust) PCA, DPCA2 performs surprisingly well—the rather simplis-
tic variance-measure on the other hand performs worst of the five

Fig. 9 Visual comparison of registration results of the competingmeth-
ods/distance measures Dδ-RPCA, DPCP, DPCA2, DVAR and DNGF. Per
considered phase of the heart cycle, the warped output frames of the
first heart cycle in the cine are displayed along the figure’s rows (cf. also

Fig. 6). Note that while differences in registration accuracy (as they are
considered in Fig. 8) are hard to distinguish upon visual examination,
the challenge that the registration task poses to simple and arguably
underdeveloped approaches like DVAR becomes apparent
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Fig. 10 (Top row) Exemplary input frames from the renal DCE-MRI
dataset. The horizontal lines are aligned to different structures in the
first input frame (marked by crosses) and indicate the misalignments of
these structures across time. Especially note the intensity changes in the

kidney region—these are due to contrast agent uptake and make out the
intricacy of this registration task. (Bottom row)Registered output frames
generated by our method. As the horizontal lines show, misalignments
caused by breathing motion are successfully resolved

terms of accuracy. Especially striking is the gain in accuracy
over the classical DPCP measure which failed to produce a
viablemotion correction for any regularization strengthμwe
employed via grid search. Note that this comparison serves
as an ablation study and provides justification for the modi-
fications introduced by Dδ-RPCA.

While the performance of DPCA2 was only mildly inferior
to that of Dδ-RPCA, the results generated by DVAR are largely
unusable. We attribute this failure of DVAR to its lack of
adaptability to the variations in image intensity caused by
the contrast agent.

Most noteworthy however is the accuracy of the pairwise
registration strategy using DNGF which is overall on a par
with that of the successful groupwise approaches DPCA2 and
Dδ-RPCA. While the choice of the reference image is a debat-
able question when registering image stacks using pairwise
techniques—leading to biased registration results in a worst
case scenario—, our experiments show that they are able to
produce accurate registration results and should not be dis-
carded generally.

Lastly, we mention the fact that the landmarks along the
spine were not successfully registered by any of the three
methods as Fig. 11 shows. This is due to the sliding motion
between the spine and the surrounding organs which cannot
be represented aptly by smooth deformations such as those
assumed by the curvature regularizer or implicit B-Spline
regularization. For practical purposes, we deem this a minor
shortcoming since the region of interest for renal DCE-MRI
data is inside the kidneys and a suitable registration result

is available for this region. If one was however interested in
deformations that capture this sliding behavior accurately, a
spatially dependent regularization as in [11] could be con-
ceived and integrated into the model.

5.4 A Note on Computational Cost

Let us briefly analyze the computational cost of the proposed
registration algorithm on a fixed resolution level of Alg. 1.
As we require the evaluation of the proximal operators of all
individual terms in (27) to perform a PDHG iteration, it is
useful to categorize them with respect to computational cost
and parallelizability.

Both the proximal operators corresponding to the �1-term
and the discussed regularizers S are separable with respect
to the image grid points and have an overall linear cost in the
number of grid points mn and images N (cf. [27]).

While it cannot be evaluated in a decoupled manner, the
proximal operator corresponding to the uniqueness constraint
resolves to two simple projections onto a linear subspace
of dimension one and can be evaluated with linear cost in
(mnN ) as well.

The bottleneck in computational cost however is given
by the proximal operator corresponding to the nuclear norm
constraint as it requires the computation of a singular value
decomposition of a (mn) × N matrix in each iteration.
Assuming mn > N , the cost of a single SVD is given by
O(mnN 2) [14] and is therefore quadratic in the number of
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Fig. 11 Comparative analysis of landmark registration accuracy for
the renal DCE-MRI dataset. (Left) Landmark positions and number-
ing. (Right) Landmark registration accuracy measured in terms of (43)
(y-axis scaling is again logarithmic). The proposed approach (blue) pro-
duces the most accurate results for many of the landmarks numbered
1–16. Largely on a par is the pairwise strategy using normalized gra-
dient fields (orange) while DPCA2 (red) is in close succession. For the
variance-based method (40, green) and the classical RPCA approach
using (9, purple), we were not able to identify parameters that resulted

in acceptable performance. Note also that the landmarks numbered 17–
22 exhibit more motion after registration (for all five methods) than
without registration (gray). This is due to the fact that these landmarks
are positioned along the patients’ spine and that all algorithms assume
a smooth deformation model which is not compatible with the sliding
motion between the spine and the surrounding organs. However, as the
spine is usually not part of the region of interest for renal DCE-MRI
data, we deem this a minor issue for practical applications

images N . Moreover, the SVD algorithm does not allow for a
pointwise separation of the computation, i.e., parallelization.

In terms of memory usage, the PDHG scheme employed
in Alg. 1 operates on 3Nmn primal and 4Nmn dual floating
point variables for a fixed spatial resolution m × n.

Regarding the application scenario presented in this arti-
cle, i.e., medical image processing, the fact should be noted
that temporal image data is usually acquired in three instead
of two spatial dimensions. Experiments in 3D+t data would
therefore increase the computational and memory cost by
another linear factor corresponding to the number of sam-
pling points along that third dimension. As the runtimes
reported below indicate, an application of the proposed
method to 3D+t data of medium or high resolution as well
as close-to-real-time data processing is out of reach at the
current time.

Our practical runtimes ranged around ∼ 38min. for the
synthetic data fromSect. 5.1 (with an input resolution ofm =
n = 200), ∼ 80min. for the cardiac MRI data from Sect. 5.2
(m = n = 220) and ∼ 93min. for the renal DCE-MRI data
from Sect. 5.3 (m = n = 256) on a 64Bit Linux system
with an Intel Core i7-4770 CPU and 8GB of RAM. Our
implementation in Matlab is publicly available at https://
github.com/roland1993/d_RPCA.

6 Concluding Remarks

In this work, we have investigated a novel dissimilarity mea-
sure for groupwise image registration based on low-rank
and sparse decompositions. The proposed term aims at cor-
recting the major drawbacks of the RPCA-image distance
from [19,28] as discussed in Sect. 2.

Our numerical experiments confirm the adaptibility of this
approach when registering image sequences with intricate
features such as structural and/or recurring changes in object
appearance.Our experiments on real-lifemedical data further
confirm the advantage of sophisticated distance measures
such as ours over simple ones like the variance-measure (40).
Moreover, we have shown a notable lead of our approach
when compared to the already highly engineered DPCA2-
measure from [21] or the often-employed DPCP-measure.

A multilevel approach with theoretically justified scaling
serves as a solution strategy to our model. Apart from tweak-
ing our optimization algorithm, further possible avenues of
research could include the combination of our data-term
with more sophisticated regularizers like the total general-
ized variation [5] (as used, e.g., in [19]), the replacement of
the rather simple linear interpolation model in our imple-
mentation by a spline-based model8 or the application of our

8 To this end, it might be worthwhile to investigate, to which degree
the accuracy of the DPCA2 experiments in elastix and the pairwise
DNGF experiments in FAIR in Sect. 5 benefitted from their advanced
interpolation models.
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explicitly constrained decomposition approach to other tasks
than image registration.
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