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Abstract
This paper addresses a general problem of computing inversion-free maps between continuous and discrete domains that
induce minimal geometric distortions. We will refer to this problem as optimal mapping problem. Finding a good solution
to the optimal mapping problem is a key part in many applications in geometry processing and computer vision, including:
parameterization of surfaces and volumetric domains, shape matching and shape analysis. The first goal of this paper is to
provide a self-contained exposition of the optimal mapping problem and to highlight the interrelationship of various aspects of
the problem. This includes a formal definition of the problem and of the related unitarily invariant geometric measures, which
we call distortions. The second goal is to identify novel properties of distortion measures and to explain how these properties
can be used in practice. Ourmajor contributions are: (i) formalization and juxtaposition of key concepts of the optimalmapping
problem, which so far have not been formalized in a unified manner; (ii) providing a detailed survey of existing methods for
optimal mapping, including exposition of recent optimization algorithms and methods for finding injective mappings between
meshes; (iii) providing novel theoretical findings on practical aspects of geometric distortions, including the multi-resolution
invariance of geometric energies and the characterization of convex distortion measures. In particular, we introduce a new
family of convex distortion measures, and prove that, on meshes, most of the existing distortion energies are non-convex
functions of vertex coordinates.

Keywords Distortion · Non-linear optimization · Inversion-free mapping · Conformal mapping · Surface parameterization ·
Volumetric mapping

1 Introduction

Oneof the central issues in geometry processing and imag-
ing is how to incur minimal distortion to original shape when
deforming it to satisfy certain geometric constraints. This
problem is often solved by optimization of geometric ener-
gies defined in a finite element fashion: the original shape
is encoded by a simplicial complex, its global deformation
is described by a simplicial map on that complex and the
shape distortion is computed as a sum of local distortions
over individual simplices. The goal is to find a simplicial
map that minimizes the shape distortion and induces a con-
sistent orientation of simplices (inversion-free mapping).
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For example, consider a texture mapping problem — a
process in which an RGB image is wrapped around a three
dimensional object. This problem is also referred to as the
surface parameterization or surface flattening. To illustrate,
given a piece of cloth with an image printed on it, we want
to stretch it and fold it around a triangulated surface in R

3

causing as few distortions to the printed image as possible.
The same problem can be generalized from surfaces to vol-
umetric domains. For instance, consider parameterization of
a three dimensional object, obtained by mapping its interior
onto a simple domain, such as a cube or a ball (a canoni-
cal domain). In many fields, including machine learning and
medical imaging, data, sampled on surfaces and volumet-
ric regions, are parameterized and mapped onto a canonical
domain. This way one can standardize geometric data across
different samples.

For example, it is simpler to compare segments of CT
scans by mapping these segments into a common canonical
domain, where changes in geometric features can be detected
more easily (see Fig. 1). Similarly, in machine learning, it is

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10851-021-01038-y&domain=pdf
http://orcid.org/0000-0003-4617-6290


Journal of Mathematical Imaging and Vision (2021) 63:974–1009 975

Fig. 1 Mapping complex 3D objects into the plane and onto canonical
domains to get a simplified representation of these objects. At the top,
we show texture mapping of the brain surface obtained by solving the
distortion minimization problem on the triangle mesh. To get a contin-
uous map, we cut the source domain into a disc-topology surface and
minimize isometric distortion, induced by the texture mapping. In the
middle, we show the mapping of genus-0 triangle mesh onto a sphere
via the linear harmonic method [19]. At the bottom, we extend har-
monic mapping of the surface of the right hemisphere into its volume,
represented by a tetrahedral mesh. The volumetric map is computed by,
first, stretching rays between the origin and boundary vertices accord-
ing to their mutual distances (radial stretching method [78]), and then,
by optimizing isometric distortion over interior tetrahedra. On the right
side, we depict histograms of average singular values (78) (approximate
conformal factors) of maps between simplices

simpler to train a neural network on regular data, such as a
collection of RGB images, than training it on triangulated
surfaces. By using texture mapping, one can map surfaces
into images and therefore, one can generalize neural network
architectures, designed for images, to surfaces (see Fig. 2).

Shapematching is another problem that involves mapping
between triangulated domains with low geometric distor-
tions. If a mapping preserves essential geometric features,
then it can be used to transfer data betweenmultiple domains.
For example, shapematchingmethods can be used to transfer
textures between surfaces, labels between volumetric medi-
cal images and etc.

To summarize, in all these examples, our task is to compute
a “nice” deformation of a compact subset of Euclidean space
that minimizes selected distortion criteria and whose image
satisfies certain geometric constraints.

As can be anticipated, “nice” is not a universal property
but a task related notion, such as visual image distortion
avoidance, map injectivity and etc. In practice, very many
physically motivated distortion criteria can be formulated in
terms of constrained energyminimization problems. Bymin-
imizing distortions, one is able to compute, in reasonable
time, simplicial maps with low energy penalty that satisfy
prescribed geometric constraints. We will refer to this type
of problems as distortion minimization problems.

Most generally the problemcanbe stated as follows.Given
a shape S, find a transformation f of the shape S, in the fam-
ily G, to minimize a distortion measure E , under geometric
constraints that a subset S0 ⊂ S of the shape maps to a given
set S′

0:

f ∗ = argmin
f ∈G

E( f );

s.t. f (S0) = S′
0.

(1)

We refer to a solution f ∗ of problem (1) as an opti-
mal mapping. The resulting problem involves a non-convex

Fig. 2 An example of surface flattening employed for texture repre-
sentation of 3D faces in neural networks. From the left to right: 3D
face dense reconstruction of [39] neural network, Tutte embedding into

a square, Tutte embedding into a convex shape inside a square (used
in the training of [39]) and optimized Tutte embedding, obtained by
minimizing isometric distortion via the projected Newton method
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objective, defined over a highly non-convex domain.1 This
leads to complex non-linear optimization problems forwhich
standard methods are not effective. Consequently, existing
approaches tominimizing distortions are aimed at computing
sufficiently-good minimizers of (1) with limited guaranties
of obtaining a global minimum. Nevertheless, there are
numerous methods for obtaining an approximate solution of
the above problem, where optimization is guided by some
heuristics, or by employing some indirect approaches.

Distortion minimization problem is especially prevalent
in two and three dimensions, where many real world prob-
lems are encountered. This includes applications in: digital
geometry processing and graphics [17,74,83,89,102,113,
121] (Figs. 11, 6c), image processing [18,46] (Fig. 2), com-
puter vision [8,51,55,75] (Figs. 2, 6d), computer-aided
geometric design [32,119] (Fig. 20), physical simulations
[86,116,120] (Fig. 6b) andmedical imaging [12,19,43,78,91]
(Figs. 1, 10 (top)).

Although there exist many approaches to the distortion
minimization problem, methods used in practice lack a rigor-
ousmathematical foundation.Many existingmethods rely on
heuristics built upon empirical observations. Whereas math-
ematical studies, often, dive deeply into an abstract theory
that is far remote from practice.

In this work, we attempt to close the gap between practi-
cal applications and the underlyingmathematics by exploring
distortion minimization problem in depth, suitably formulat-
ing the problemwith a proper balance betweenmathematical
rigor and practical considerations.We analyze computational
aspects of the existing methods and provide novel theoretical
findings on how geometric distortions and methods used for
minimizing these distortions behave in practice.

Our main contributions are:

• We provide a formal definition of the key concepts of the
optimal mapping problem and of the related distortion
measures, which so far have not been formalized in a
unified manner (Sects. 2 and 3).

• We give an extensive overview of the relevant methods
for distortion minimization and inversion-free mappings,
and we analyze important computational aspects of these
methods (Sects. 4-7). In particular, we provide a survey of
recent algorithms for non-linear optimization (Sect. 4.3),
we compare the continuous versus discrete problem of
optimal mapping and explaining the inherent differences
between discrete and continuous maps (Sects. 7).

• We identify properties of the problem that, to the best of
our knowledge, have never before appeared in the liter-
ature: (i) characterization of fundamental properties of
convex distortion measures and introduction of convex

1 See Sect. 8 for the explanation of what we mean by a “highly non-
convex” domain.

geometric distortions using symmetric gauge functions
(Sect. 8); (ii) the multi-resolution invariance of distor-
tion measures (Sect. 9).

The paper is organized as follows. In Sect. 2 we focus on a
continuous formulation, where we define the appropriate set
of domains and transformations between them (Sect. 2.1).
We then proceed to formally introduce local functionals that
enable to quantify locally howmuch a transformation distorts
the shape it operates on (Sect. 2.4). A canonical charac-
terization of distortion measure is given in Sect. 2.5. We
then address the discrete setup in Sect. 3, and formulate
the distortion minimization problem for the discrete case
(Sect. 4). The rest of the paper covers different optimization
schemes (Sect. 4.3), analyzes convexity of the underlying
minimization problem (Sect. 8) and its dependence on mesh
resolution (Sect. 9). Our paper is concluded with an analysis
of certain numerical aspects of the problem (Appendix A).
Furthermore, we provide supplemental material with addi-
tional results, including a discussion of a variational-based
formulation of the optimal mapping problem.

Since a significant part of our paper is dedicated to formal-
ization of well-established concepts, readers who are well
versed in the background and are more interested in novel
results may start reading the paper from Sect. 8.

2 Continuous Problem

We first consider a general formulation of the problem for
continuous, but not necessarily everywhere-differentiable,
maps between Euclidean domains. We are interested in the-
ory that includes non-differentiable maps, since later on,
in discrete formulation of the problem, we will be dealing
with simplicial maps which are the main object of inter-
est in geometric processing. These maps constitute a family
of piecewise linear functions that are non-differentiable on
simplex faces. Formulations for non-differentiable maps,
established in this section, will allow almost seamless tran-
sition between continuous and discrete scenarios. We will
return to this point later in Sect. 7, after we have introduced
the discrete setup. In the next section, we provide a formal
definition of the relevant family of maps, G, and domains
over which these maps operate, then we define measure of
distortion for these maps (Sect. 2.4).

2.1 Domains andMaps

We are concerned with two families of maps: continuous
locally injective maps and smooth locally injective maps of
Euclidean domains. The purpose of this section is to rigor-
ously define these families of maps and outline the relevant
notation that will be used throughout the rest of the paper.
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Given a set S ⊆ R
n , we will denote by int(S) the interior

of the set. For a map of the form

f : S ⊆ R
n → S′ ⊆ R

n,

we will denote by Dom( f ) the domain of f , so Dom( f )
= S ⊆ R

n , and by Img( f ) we will denote the co-domain
(image) of f . Throughout the paper we will call the domain
of map a source and the co-domain a target.

Finally, a compact set S ⊂ R
n is called a proper domain

of Rn if it has non-empty interior, that is, int(S) �= ∅.
Definition 2.1 (Local homeomorphism). Let S be proper
domain of Rn , a continuous map

f : S → S′ ⊂ R
n,

is called a local homeomorphism if almost everywhere in
int(S) there is a neighborhood of r ∈ int(S), called a local
neighborhood of f at r , on which f is a continuous bijec-
tive map. We denote the family of such homeomorphisms
by Hom(Rn). Wherever we will wish to restrict the family
by fixing domain of the maps Dom( f ), or both the domain
and the co-domain Img( f ), we will write Hom(S,Rn) or
Hom(S, S′), accordingly. Thus, f ∈ Hom(S,Rn) implies
that Dom( f ) = S and f ∈ Hom(S, S′) implies that it is also
required that Img( f ) = S′.

Definition 2.2 (Local diffeomorphism). Let S be proper
domain of Rn . A continuous map

f : S → S′ ⊂ R
n,

is called a local diffeomorphism if almost everywhere on
int(S) there is a neighborhood of r ∈ int(S), called a local
neighborhood of f at r , on which f is a smooth bijective
map with smooth inverse. [Note that any local diffeomor-
phism is a local homeomorphism but not visa versa.] We
will denote the family of such diffeomorphism by Diff(Rn).
If we want to restrict the family by fixing the proper domain
S or both the proper domain and the co-domain S′ we will
write Diff(S,Rn) or Diff(S, S′) accordingly. So that for
any f ∈ Diff(S,Rn), we have Dom( f ) = S; and for any
f ∈ Diff(S, S′) ⊆ Diff(S,Rn), we have Img( f ) = S′.

The above definitions are local in nature, and therefore we
do not require that maps in Diff(Rn) are everywhere differ-
entiable.

Definition 2.3 (Local first-order equivalence). Assume that
f , h ∈ Hom(Rn) and r0 ∈ R

n such that f (r0) = h(r0).
We say that f and h are first-order equivalent on r0, f 
 h,
if there is a neighborhood N0 ⊂ Dom( f ) ∩ Dom(h) of r0
such that

‖ f (r) − h(r)‖ = o (‖ r − r0 ‖) ,∀ r ∈ N0.

It is a routine procedure to verify that local first-order equiv-
alence at r0 defines an equivalence relation on Hom(Rn).

As hinted by the above equivalence relation, we will be
interested in only first order approximations of the maps,
thereby we will be able to approximate Hom(Rn) by piece-
wise linear maps in Diff(Rn). The benefit of working with
Diff(Rn), is that we can take advantage of differentiability of
the latter family ofmaps. Singular values of Jacobianswill be
extremely useful when we come to analyze distortion mea-
sures, so much so that we dedicate a separate lemma to recall
two crucial facts about Jacobians of local diffeomorphism
and to fix the relevant notation.

Lemma 2.1 (Singular values of Jacobian). Let f ∈ Diff(Rn).
We denote by d fr the Jacobian of f at r ∈ Dom( f ). Then,
for each r ∈ Dom( f ), d fr is a full rank square matrix
n-by-n and, therefore, all its singular values are positive.
We will denote singular values in the descending order by
σ1(d fr), . . . , σn(d fr).

Proof It follows directly from the definition of Diff(Rn),
since it implies invertibility of each f ∈ Diff(Rn). ��

2.2 Local Canonical Representation of Maps

By considering local properties of maps we provide a unified
treatment of mapping,

f : S ⊆ R
m → S′ ⊆ R

d , (2)

for any dimensions m, d ≥ 2. In particular, as long as S is
locally a manifold of dimension n, we can always transform
(2) into an easier case of dimensions n = m = d, covered in
the previous section.

Indeed, assume that any sufficiently small neighborhood
N0 ⊂ S of r0 is a n-dimensional manifold. Then, by defini-
tion of a diffeomorphism, f embeds n-manifold N0 ⊂ R

m

onto n-manifold f (N0) ⊂ R
d . With appropriate transition

maps φ : Rm → R
n and ψ : Rd → R

n , we therefore have:

˜f (r) � [ψ ◦ f ◦ φ−1](r) , ∀ r ∈ N0 , (3)

where ˜f is of the form

˜f : Rn → R
n .

We will show in Sect. 3.1 that, for triangulated domains, it
is possible to pick φ and ψ so that their composition with f
does not change the amount of distortion that f causes, and
therefore we can locally substitute f by ˜f without affecting
the distortion values. To summarize,we can always transform
f to a function ˜f that locally maps Rn into R

n . We refer to
such map ˜f as a canonical form of a local diffeomorphism
f at r0.
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2.3 CommonTypes of Maps

Here we give examples of different types of maps that min-
imize distortion measures that have intuitive interpretations.
Such maps are well studied and provide a reference point
against which one can bench mark and compare other maps
obtained by a given distortion minimization scheme. Once
we introduce these distortions, we provide the counterpart
list of distortion measures that those maps minimize.

Definition 2.4 (Rigid transformation).Amap f ∈ Diff(Rn)

is called a rigid transformation, or an isometric map of
proper domain S = Dom( f ), if it preserves distances.2 Com-
positions of reflections, translations and rotations are rigid
transformations.

Definition 2.5 (Harmonic maps). A map f ∈ Diff(Rn) is
called harmonic if it is a minimizer of the Dirichlet energy
functional,

∫

S ||d fr ||2d r . Harmonic maps are among the
most studied maps in applied mathematics and functional
analysis.

Definition 2.6 (Conformal maps). A map f ∈ Diff(Rn)

is called conformal map of a proper domain S = Dom( f ),
if for each point r ∈ int(S) it scales the space uniformly in
every direction. This can be stated formally as

‖d fr · û1‖2 = ‖d fr · û2‖2 , (4)

where û1, û2 ∈ R
n denote two unit vectors. According to the

above notation, a conformal map f (r) is isometric in S if

∀ r ∈ int(S) : | det d fr | = 1 . (5)

Intuitively, conformal maps are angle-preserving maps.

Definition 2.7 (Equi-volume maps). Property (5) in Defini-
tion 2.6 by itself defines a class of equi-volume transfor-
mations. As the terminology suggests, these maps preserve
volume.

Definition 2.8 (Quasi-conformalmaps).Amap f ∈ Diff(Rn)

is called quasi-conformal if there exist K ∈ [1,∞) such that
for any unit vectors û1, û2 and r ∈ Dom( f ),

1

K
<

‖d fr · û1‖2
‖d fr · û2‖2 < K . (6)

Definition 2.9 (Quasi-isometrymaps).Amap f ∈ Hom(Rn)

is called quasi-isometric if there exist a number C ∈ [1,∞)

such that for each r1, r2 ∈ Dom( f ),

1

C
‖ r1 − r2 ‖ ≤ ‖ f (r1) − f (r2)‖ ≤ C‖ r1 − r2 ‖. (7)

2 We always assume Euclidean metric.

These classes of maps are rich and well studied objects,
whose theoretical understanding is based on various areas
of mathematics and many deep mathematical insights, that
combine topology, algebra and more. Studying these maps
in detail is, of course, beyond the scope of our work. Nev-
ertheless, we will often invoke these definitions, whenever
it will be important to make a distinction that a given opti-
mization method might converge to one type of functions
and not to the another. For example, while, according to
the Riemann mapping theorem, there exist an abundance
of continuous conformal maps in two dimensions, higher
dimensional domains can bemapped only quasi-conformally
[78].Mutual relations between these classes ofmaps are sum-
marized in the diagram below:

Quasi-Conformal ⊃ Conformal

⊃ Isometric

= Conformal ∩ Equi-Volume.

Having provided the set of maps that we are interested in,
and providing examples of themost important types of maps,
we move on to introduce distortions that measure how a map
distorts locally its domain.

2.4 Distortions

Similarly to local definitions of Hom(Rn) and Diff(Rn) we
are interested in local definition of a distortions—the result-
ing framework will be applicable to maps that have irregular
points, such as non-differentiable points, and it will therefore
apply for simplicial maps as well.

Definition 2.10 (Local functional). Adopting the notation of
Sect. 2.1, we define a local functional as a map

D : {( f , r) | f ∈ Hom(Rn), r ∈ Dom( f )} → R . (8)

That is,Dmaps apair ( f , r) ( f ∈ Hom(Rn), r ∈ Dom( f )),
to a real number. For fixed f , D is a map from Dom( f )
to R, and for fixed r ∈ R

n , D is a functional on
{ f ∈ Hom(Rn) | r ∈ Dom( f )}.

A local functional provide us with the basis for the defi-
nition of a distortion:

Definition 2.11 (Distortion). Distortion is a local functional
that satisfies the following properties:

1. Coordinate frame invariance. Distortion measures,
used in geometric processing, are motivated by some
physical quantities and therefore, are expected to be inde-
pendent of a specific orthogonal coordinates selected to
represent the source and target domains. Consequently,
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distortion measures need to be invariant to composi-
tion of f with rigid transformations. In other words, if
f ∈ Hom(S, S′), and R1 is a rigid transformation of
S, while R2 is rigid a transformation of S′ (see Defini-
tion 2.4), then for each y ∈ R1 (S),

D(R2 ◦ f ◦ R−1
1 , y) = D( f , R−1

1 (y)). (9)

2. First-order precision. Assume that f , h ∈ Hom(Rn) are
first-order equivalent on r0 ∈ Dom( f ) ∩ Dom(h) in the
sense of Definition 2.3, then

D( f , r0) = D(h, r0).

The above definitions are based on minimal requirement
that a local functional has to satisfy to define a distortion.
However, it is often desirable to impose additional regularity
conditions on a distortion. Distortion that satisfy all these
additional requirements are called regular.

Definition 2.12 (Regular distortion). A regular distortion D
is a distortion that in addition satisfies:

1. Normalization. Denote by IS an identity map of a set S.
Distortion D( f , r) is called normalized if: (i) D( f , r) ∈
[ζ,∞) for ζ ≥ 0 and any f ∈ Diff(Rn) , r ∈ Dom( f );
(ii) the following conditions are met:

D (IDom( f ), r
) = ζ, ∀ r ∈ Dom( f ) . (10)

In particular, for all rigid transformations R on Dom( f ),

D(R, r) = ζ, ∀ r ∈ Dom( f ) . (11)

Usually, the value of ζ is set to ζ = 0 or ζ = 1.
2. Symmetry under inversions. We denote by f †r0 ∈

Hom(Rn) a local inversion of map f at r0 ∈ Dom( f ), if
there exist a neighborhood N of Dom( f ) at r0, such that:

r = [ f †r0 ◦ f ](r) ,∀ r ∈ N .

We call D symmetric, if for any f ∈ Diff(Rn), r ∈
Dom( f ), and any local inversion f †r of f at r ,

D( f , r) = D
(

f †r , f (r)
)

. (12)

In other words, symmetric distortions do not distinguish
between switching the role of the source and the target,
i.e., they assign the same distortion when deforming the
source into the target or when doing the inverse (i.e.,
deforming the target back into the source). For this rea-
son, symmetric distortions have been used extensively in
many computer graphics applications [49,89,92,95].

3. Bottom barrier property. A sequence of maps f ( j) ∈
Diff(Rn), j = 1, 2, . . ., is called a bottom barrier
sequence at r , if there exist vectors u1, u2 ∈ R

n and a
number Q < ∞ so that, for each j , f ( j) is differentiable
at r and

∥

∥d f ( j)
r u�

1

∥

∥

2 < Q, lim
j→∞

∥

∥d f ( j)
r u�

2

∥

∥

2 = ∞ , (13)

where d f ( j)
r denotes the Jacobian of d f ( j) at r . We say

that D has the bottom barrier property if

lim
j→∞D( f ( j), r) = ∞ ,

for any bottom barrier sequence
{

f ( j)
}∞
j=1 at r .

4. Top barrier property. A sequence f ( j) ∈ Diff(Rn), j =
1, 2, . . . is called a top barrier sequence at r if there exist
vectors u1, u2 ∈ R

n and a number ε > 0 such that, for
each j , f ( j) is differentiable at r and

∥

∥d f ( j)
r u�

1

∥

∥

2 > ε, lim
j→∞

∥

∥d f ( j)
r u�

2

∥

∥

2 = 0 . (14)

We say that D has the top barrier property if

lim
j→∞D( f ( j), r) = ∞

for any top barrier sequence
{

f ( j)
}∞
j=1 at r .

5. Smoothness almost everywhere. Intuitively, we expect
a small discrepancy in D( f , r) when either f or r are
slightly changed. To formalize this intuitive property we
use the weak derivative of D at r

∂ D( f , ·)
∂�

∣

∣

∣

∣

r
� lim sup

ε→0

D( f , r +ε�) − D( f , r)
ε‖�‖ , (15)

and define special derivative of distortion with respect to
deformation f

∂ D(·, r)
∂A

∣

∣

∣

∣

f
� lim sup

ε→0

D( f + εA, r) − D( f , r)
ε‖A‖ , (16)

where A is a linear map in Diff(Rn). Distortion that sat-
isfies these two properties is referred to as smooth almost
everywhere (a.e.), or to as weakly differentiable.

2.5 Canonical Representation of Distortions

With Definition 2.11 in place, we are now in the position to
introduce canonical representations for distortions. Such rep-
resentations constitute a crucial step in analyzing distortions,
as it provides a very convenient way to characterize different
distortions. Moreover, when not written in their canonical
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form, the arguments of distortions are prone to contain extra
degrees of freedom. This might lead to situations where the
same distortion can be represented in multiple inherently dif-
ferent ways, leading to certain difficulties in their processing.
Canonical representation avoids the unnecessary ambiguity
in distortion representations and allows to treat all distortions
in a unified way. To obtain the canonical representations we
rely on basic linear algebra properties of Jacobian d fr of
f ∈ Diff(Rn) at r ∈ Dom( f ), stated in Lemma 2.1. We
characterize the distortion by means of the following funda-
mental theorem [81,89]:

Theorem 2.1 (Canonical representation of distortions). Let
f ∈ Diff(Rn) and r ∈ Dom( f ), then local functional D of
the form (8), is a distortion (according to Definition 2.11) iff
it can be expressed as a function of singular values of the
Jacobian d fr . That is,

D( f , r) = ˜D(σ1(d fr), . . . , σn(d fr)
)

(17)

for a map ˜D : Ln → R, where Ln is the lower half-space of
R
n located below the main diagonal, i.e.,

L
n �

{

r ∈ R
n| r1 ≥ r2 ≥ . . . ≥ rn > 0

}

. (18)

We call such a representation the canonical representation.

Proof Let D be a distortion according to Definition 2.11.
We first show that D( f , r0) is necessarily a function of
the entries of the Jacobian matrix of f at r0. By first
property (9) in Definition 2.11, we can always pick appro-
priate rigid transformations R1 and R2 that rotate and shift
Dom( f ), Img( f ) ⊂ R

n so that both r0 ∈ Dom( f ) and
f (r0) ∈ Img( f ) are moved to the origin. Therefore, without
loss of generality we assume that

r0 = f (r0) = (0, 0, . . . , 0
︸ ︷︷ ︸

n

) .

Second, let N0 be a sufficiently small local neighborhood of
R
n at r0. Let d f0 be the Jacobian of f at 0 and denote by

d f0(r) the linear map

d f0(r) : r �→ (d f0) r, r ∈ N0 .

Since f is by assumption a diffeomorphism on N0, it can be
linearly approximated by the first term in its Taylor series
expansion. Hence, d f0(r) and f are first-order equivalent on
r0, (see Definition 2.3). Therefore, it follows from Defini-
tion 2.11 that

D( f , 0) = D (d f0 , 0) .

Consequently,D( f , 0) is a function of the entries of d f0, the
Jacobian matrix of f at r0. Finally, let d f0 = U�V� be
the SVD of the Jacobian, so that

� = diag
(

σ1(d f0), . . . , σn(d f0)
)

,

where the singular values σ1(d f0), . . . , σn(d f0) are in the
descending order. Then, applying property (9) of Defini-
tion 2.11 with R1 = V , R2 = U� yields

D (d f0(r), 0) = ˜D(σ1(d f0), . . . , σn(d f0)
)

,

for the corresponding function ˜D : Ln → R.
To prove the other direction, note that by definition

the local functional ˜D : L
n → R is operating on

σ1(d fr), . . . , σn(d fr), thus ˜D satisfies the first-order preci-
sion property. Indeed, if two maps are first-order equivalent
on r this implies that they have the same Jacobian on r .
Thus, it remains to show that˜D satisfies the coordinate frame
invariance. The latter follows from the fact that, for rigid
transformations R1 and R2, we have:

σi
(

d(R2 ◦ f ◦ R−1
1 )r

) = σi
(

d fR−1
1 (r)

)

.

The above equality completes the proof. ��
Hereinafter we will drop the distinction between ˜D and

D, and will occasionally write D(σ1(d f ), . . . , σn(d f )
)

,
D(σ1, . . . , σn

)

, or D(�) — they all represent the same
function, defined in (17). Expressing distortion in terms of
singular values of Jacobian establishes a differential defini-
tion of distortions. The advantage of a differential definition
is that it explicitly factors in the first-order precision and
coordinate invariance, leaving out nuisance parameters and
retaining only the essential n degrees of freedom.

Remark 2.1 It is common in geometry processing to rep-
resent distortions by singular values [49]. Theorem 2.1 is
similar to propositions presented in [81,89]. In particular,
Rabinovich et al. [89] have proven a variation of Theorem 2.1
which shows that rotation-invariant geometric measures can
be represented by the signed SVD, namely by using the
decomposition d fr = U �̃V�, where U and V are posi-
tive orthonormal matrices, and �̃ is an arbitrary diagonal
matrix. Unlike this work, our paper uses the unsigned SVD,
leading to a slightly different formulation in which the signs
of det d fr are prescribed by a set of separate orientation con-
straints (for details, see Sect. 5).

On the one hand, due to first order precision only the Jaco-
bian of a map matters. On the other hand, the distortion is
invariant to rigid transformations, so for fixed r ∈ R

n distor-
tions are, in fact, functionals defined over a quotient space of
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linear maps in R
n , with equivalence given by unitary trans-

formations, i.e., two maps

A(r) : r �→ Ar and B(r) : r �→ B r, A, B ∈ R
n×n, r ∈ R

n,

are equivalent if there are unitary matrices R1, R2 ∈ R
n×n

such that A = R2BR�
1 . We denote the above equivalence

by

A(r) ∼ B(r) , (19)

or by A ∼ B, for short. Clearly, ‘∼’ is an equivalence relation
and if

[

d fr
]

∼ is an equivalence class of d fr with respect to
‘∼’, then, according to (9),

D( f , r) = D(h), ∀h ∈ [d fr
]

∼ .

Furthermore, SVD of d fr ,

d fr = Udiag
(

σ1(d fr), . . . , σn(d fr)
)

V�, (20)

suggests a convenient choice of local coordinate bases

U = [u1, . . . , un] and V = [v1, . . . , vn],

so that right-singular vectors (V ) of d fr are used as basis for
the neighborhood of r ∈ Dom( f ) ⊂ R

n ; and left-singular
vectors (U ) are used as a basis of a neighborhood of f (r) ∈
Img( f ) ⊂ R

n in the co-domain.
Before concluding this section, we formulate the fol-

lowing corollary of Theorem 2.1 that vastly simplifies
mathematical characterization of regular distortion:

Corollary 2.1 Let D be a distortion measure such that
D( f , r) ∈ [ζ,∞) for ζ ≥ 0 and any f ∈ Diff(Rn), r ∈
Dom( f ). Then,D is a regular distortion in the sense of Defi-
nition 2.12 iff the canonical representation ofD, as a function
of (σ1, . . . , σn) ∈ L

n, satisfies:

1. Normalization property:

D (1, 1, . . . , 1) = ζ . (21)

2. Symmetry property:

D(σ1, . . . , σn) = D
(

1

σn
, . . . ,

1

σ1

)

. (22)

3. Bottom barrier property: when σ1 > ε > 0,

D(σ1, . . . , σn) → ∞ as σn → 0 . (23)

4. Top barrier property: when σn < Q < ∞,

D(σ1, . . . , σn) → ∞ as σ1 → ∞ . (24)

5. Smoothness almost everywhere: D(σ1, . . . , σn) is a
weakly differentiable map (see (15) and (16)).

Proof If R is a rigid transformation of a proper domain S,
then by Definition 2.11 and Theorem 2.1,

D(R, r) = D(R−1 ◦ R, r) = D(IS, r) = D(1, . . . , 1).

Therefore, conditions (21), (11) and (10) are equivalent nor-
malization properties. The equivalence of properties (22) and
(12) follows from the fact that if σ1, . . . , σn are singular val-
ues of a full rank d fr , then σ−1

n , . . . , σ−1
1 are singular values

of d f †r (and visa versa). The bottom and top barrier properties
of Definition 2.12 are equivalent to (23) and (24), respec-
tively, since multiplying vector by unitary matrix does not
change its 2-norm. ��

Clearly, it is much easier to define regular distortion by
means of canonical representation. In the next section, we
will utilize this representation to introduce a few examples
of distortions that are used in practice.

2.6 Common Distortion Measures

We proceed by providing examples of different types of dis-
tortions that are considered to be useful in practice. It should
be clear from our previous discussions (see proof of Theo-
rem 2.1), that properly normalized distortions D( f , r) are,
in fact, estimates of f ’s rigidity at r; meaning they are a
measure of how ”close” f is to a rigid transformation on
Dom( f ).

Aswehave seen inSect. 2.3, there are fourmajor classes of
“nice” maps: length-preserving, harmonic, angle-preserving
and volume-preserving. Such maps can be related to distor-
tion measures which, in a sense, measure to what extend a
map differs from each of the above classes.

Definition 2.13 (Harmonic distortion). The following mea-
sure, called Harmonic distortion or Dirichlet energy [45], is
closely related to harmonic maps; it measures by how much
a given map f ∈ Diff(Rn) stretches a small neighborhood
of r ∈ Dom( f ) and is defined by

DDirichlet( f , r) � ‖d fr‖2Fro =
n
∑

i=1

σ 2
i , (25)

where ‖ · ‖Fro is the Frobenius norm. This distortion, is also
sometimes referred to as smoothness energy. It is widely
employed in construction of harmonic surface parameteriza-
tions [49]. Although there exist a few approaches that employ
harmonic distortions for computing volumetric mappings
[65,114], most of the methods based on Dirichlet energy are
focused on planes and two dimensional surfaces embedded
in R3.
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Definition 2.14 (Conformal distortions). A f ∈ Diff(Rn) is
conformal at r ∈ Dom( f ) iff

σi (d fr) = σ j (d fr), for 1 ≤ i, j ≤ n .

Therefore, conformal distortions quantify how much singu-
lar values deviate one from the other. Most commonly, this
deviation is measured by:

• The MI PS2D distortion [45] defined on Diff(R2) as

MIPS2D( f , r) � σ1

σ2
+ σ2

σ1
= σ 2

1 + σ 2
2

σ1σ2
. (26)

MIPS2D distortion is referred to as “most isometric
parameterizations”. Despite the terminology, this distor-
tion only estimates the deviation of σ1 from σ2, and thus
is a metric of conformal distortion (see the related dis-
cussion in Sect. 7).
The distortion was extensively employed in early geo-
metric processing applications, since for the discrete
setup it yields convex optimization in a single vertex of
a simplicial complex if all other vertices in complex are
kept fixed. (We will return to this point in Sect. 8 after
we introduce discrete setup.)

• MIPS2D can be extended to n-dimensions as n-times the
ratio between arithmetic and geometric means of squared
singular values, yielding the MI PSnD distortion [37,
81]:

MIPSnD � σ 2
1 + · · · + σ 2

n

(σ1 · · · σn)2/n = trace
(

(d fr)�d fr
)

|det (d fr)|2/n
, (27)

which, according to (25), has the following relation to
the Dirichlet energy

MIPSnD( f , r) = DDirichlet( f , r)
∣

∣det(d fr)2/n
∣

∣

. (28)

• Condition number distortion, also called linear dilata-
tion, is a simple and natural measure for assessing the
conformality of a linear function as a ratio of its max-
imal and minimal singular values. Thus, it induces the
following distortion of a smooth deformation

Dconf( f , r) � σ1

σn
. (29)

Condition number (29) is extensively employed in var-
ious studies on geometric optimization [3,35,55,66,89,
102]. In particular, convexification algorithms (e.g., the
algorithm of [55], listed in Sect. 4.3) use the condi-
tion number for estimating conformal distortion, since
Dconf(σ1, . . . σn) is a quasi-convex function of singular
values.

• Quasi-conformal (qc) dilatation is another geometric
measure, employed in the classical theory of quasi-
conformal maps for estimating the maximal confor-
mal distortion induced by homeomorphic deformations.
Originally, this quantity was defined by means of an
abstract measure over curve families, called modulus
[110]. The density of the qc-dilatation can by expressed
by

DK ( f , r) � max

{

σ1 · · · σn−1

σ n−1
n

︸ ︷︷ ︸

KI

,
σ n−1
1

σ2 · · · σn
︸ ︷︷ ︸

KO

}

, (30)

where KI and KO are the inner and the outer qc-
dilatations. These quantities can be interpreted as volume
ratio between a small ellipsoid, obtained by mapping an
infinitesimal sphere under f , and its inscribed and cir-
cumscribed spheres.
Quasi-conformal dilatations are often employed in math-
ematical analysis of quasi-conformal maps; notably they
are useful for estimation of geometry-dependent bounds
of conformal distortions [15,79,110].

Definition 2.15 (Volume distortions). If f ∈ Hom(Rn) is
equi-volume map in the vicinity of r , then

| det(d fr)| = σ1σ2 · · · σn = 1 .

Hence, for estimation of the volume distortion (or the area
distortion in two dimensions) we employ the following mea-
sure [29,81]:

Dvol( f , r) � max
{

| det(d fr)| , | det(d fr)|−1
}

, (31)

where | det(d fr)| and | det(d fr)|−1 can be interpreted as
assessments of the dilatation and of the compression of a
local volume, accordingly. However, (31) and other volume-
based measures do not satisfy the barrier properties (23) and
(24) and therefore, can lead to non-desirable results during
optimizations. For instance, the value ofDvol( f , r) canbe the
same for regular and nearly collapsed simplices. As a result,
iterative descent algorithms for minimizing Dvol( f , r) can
produce degenerate3 simplices, leading to adverse numeri-
cal issues. Thus, measures of volume are most often used in
a combination with other distortions for improving numeri-
cal stability of optimization process (for an example of such
measure see (36)).

Not surprising, the minimization of Dvol is linked to the
problems of finding volume-preserving mapping and to the
closely related problem of the optimal mass transportation

3 We explain the notion of degenerate and inverted simplices in Sect. 3.
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[71,96,124]. We will return to these problems at the end of
Sect. 4.3.

Definition 2.16 (Isometric distortions). Isometric distortions
are direct measures of the rigidity. Since singular values of
an isometry all equal 1, these distortions assess the deviation
of (σ1, . . . , σn) from the vector

(

1, . . . , 1
)

.

• Arguably, the most popular measure of isometric dis-
tortion, employed in geometry processing application, is
symmetric Dirichlet energy [17,74,89,102,103,121]

DSD( f , r) �
n
∑

i=1

(

σ 2
i + σ−2

i

)

= ‖d fr‖2Fro + ‖d f −1
r ‖2Fro

= DDirichlet ( f , r) + DDirichlet

(

f †r , r
)

.

(32)

Symmetric Dirichlet energy is a regular distortion (Defi-
nition 2.12, Corollary 2.1), and thus it contains the barrier
term that prevents simplex inversions in iterative opti-
mization algorithms (we will discuss this property in
Sect. 5).

• As-rigid-as-possible-distortion (ARAP) is another pop-
ular isometric distortion, employed in computer graphics
for surface parameterization and shape deformation [90]

DARAP( f , r) �
n
∑

i=1

(σi − 1)2 . (33)

Unlike symmetric Dirichlet energy, ARAP is a non-
symmetric and non-barrier distortion, and thus cannot
guarantee inversion-free mapping for standard algo-
rithms in distortion minimization. For this reason, ARAP
energy is often modified, by adding an inversion barrier
term4 that prevents simplex inversions

B( f , r) �
{

∞ det(d fr) ≤ 0,

0 else ,
(34)

or ARAP energy is substituted by its symmetric variant
[102]

DSARAP( f , r) �
(

σ1 − 1
)2 + (σ−1

n − 1)2 . (35)

• Fu et al. [37] have introduced the family of advanced
MIPS distortions (APIMS) as variants of MIPS dis-
tortions (26) and (27), modified for assessing isometric

4 By distortions with barrier terms we refer to measures D( f , r) +
B( f , r), whereD is a first-order distortion and B is defined by (34). As
explained in Sect. 8, measures D+B extend the essential properties of
Definition 2.11 to the domain R ∪ {∞}.

Fig. 3 Distribution of distortion obtained in the flattenings of the face
model from Fig. 2. Mesh colors encode the following distortions (from
the top to the bottom): (32), (29) and (25)

distortions. AMIPS includes, among others, the follow-
ing type of distortions:

DnD
AMIPS( f , r) � exp (MIPSnD( f , r) + 0.5 · Dvol( f , r)) .

(36)

Because of the exponent, the distortion DAMIPS grows
faster on barrier sequences than other isometric distor-
tions. Thismakes (36) an attractivemeasure for assessing
geometric distortions in applications that are particularly
sensitive to deformations with ill-conditioned Jacobians.
For instance, DAMIPS is employed in recent methods
for generating tetrahedral meshes to avoid poorly-shaped
simplices [50,52].

• In the classical geometric analysis, the rigidity is often
measured by the, so-called, Quasi-isometric (qi) dilata-
tion, which gives rise to a symmetric distortion that is
closely related to the notation of qi-mappings, introduced
in Definition 2.9, 5

Diso( f , r) � max{σ1 , σ−1
n } . (37)

This measure is used in both theoretical studies [15]
and in practice [56,80,95], where it is often normalized
according to the relative sizes of the source and target
domains.

Fig. 3 illustrates a few distortion measures obtained
by mapping a triangulated surface onto different planar
domains.

5 If f is differentiable qi-mapping in neighborhood N of r , then
Diso( f , r) is the infimum over numbers C that satisfy (7) in N .
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Fig. 4 Wecompute surface parameterization byminimizing the follow-
ing measures (from the top to the bottom): isometric distortion DSD,
(32); conformal distortion Dconf, (29); the linear combination of the
two distortions Dλ = (1− λ)Dconf +λDSD, for λ = 10−3. We cut the
brain hemisphere surface along the selected edges (highlighted in green)
intomesheswith disc-like topology, and then initialize the problemwith
Tutte embedding. Fixedboundaryparameterizations are visualized from
the left to the right, as follows: we show the ‘outer’ and the ‘inner’ sides
of textured surfaces, and target meshes, obtained after 30 iterations of
BCQN solver.MinimizingDSD yields high angle distortions around the
cut, whereas minimizing Dconf causes very strong shrinking of edges
on the outer side of the hemisphere. At the same time, constrained
parameterization with Dλ attains both low conformal and low isomet-
ric distortions. Thus, compared with other two measures, minimizing
Dλ causes less visual artifacts in texture mapping

Before we complete this section, we would like to note
that a new regular distortion can be derived by applying sim-
ple arithmetic operations on existing regular distortions. In
particular, it is easy to show that if D1 and D2 are regular,
then

Dλ = λD1 +(1 − λ)D2 , λ ∈ [0, 1] , (38)

and exp(Dλ) are also regular. Distortions Dλ and exp(Dλ)

generated this way can be quite useful: they can be used to
mitigate drawbacks of the original distortions and to craft a
new distortion for application-specific tasks. For example, it
could be too restrictive to compute “as-length-preserving-
as-possible” maps in cases that involve deformations of
shapes with complex geometry and under hard positional
constraints.As illustrated byFig. 4, instead ofminimizing the
standard isometric distortion, it might be better to minimize
a more flexible combination of regular distortions, defined
according to (38). Likewise, if D is regular, then exp(D) is
also regular, but has a ‘stronger’ barrier term than D. Thus,
minimizers of exp(D) are less likely to yield simplicial maps

with ill-conditioned Jacobians, so that using exp(D) instead
of D can lead to more stable numerical computations [37].

This concludes our exposition of geometric distortions.
In Sect. 8 we will return to distortion measures and discuss
methods for designing convex distortions.

3 Discrete Problem

We now use concepts introduced in Sect. 2 to reformulate
the distortionminimization problem in amore practical form,
that will serve us in the rest of the paper.

We assume that triangulated domains, considered in
our paper, are manifold meshes, represented by simplicial
complices, and that mappings between these domains are
piecewise affine functions, represented by simplicial maps.
That is, in 2D and 3D, by “simplicial complices” we refer to
triangular and tetrahedral meshes, and by “simplicial maps”
we refer to piecewise affine transformations of meshes.

Although our assumption implies that simplicial maps
are continuous functions, we refer to the simplicial map-
ping problem as to a “discrete problem” because a simplicial
complex can be represented by a finite number of entries
that encode vertex positions and describe how vertices are
connected to form the complex simplices.

Let V be a vertex set and let S be a consistently oriented
simplex set of these vertices. Denote by M = (S,V, y) a
simplicial complex ofV andS embedded inRm in such away
that y ∈ R

m|V |×1 is the column stack of vertex coordinates
in R

m . Further, denote by dim(M) = n that all simplices in
S are n-dimensional.6 Denote by conv(s) the closed convex
hull of simplex s ∈ S , embedded in R

m according to the
coordinates specified in y (source coordinates).

We assume that interiors of conv(s) are disjoint for differ-
ent simplices and we define

conv(M) �
⋃

s∈S
conv(s) .

A simplicial map f of M is then a piecewise affine function

f : conv(M) �→ R
d , (39)

where n ≤ d and by the “piecewise affine” wemeans that the
restriction fs � f |conv(s) is an affine map for each simplex
s.

We assume that any simplex s ∈ S can be represented as
a (n + 1)-tuple (v1 . . . , vn+1) of vertrices that constitute s,
where the order of vertices reflects the simplex orientation;
we write v j ∈ s to denote that simplex s is built on these

6 For example, dim(M) = 2 if S are triangles and dim(M) = 3 if S
are tetrahedra.
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Fig. 5 Illustrating equivalent representations of simplicial maps. We
choose a map f of the triangle mesh M and show (from left to right):
piecewise affine representation f = f [x], defined according to (40);
a discrete representation of f as a function fV = f |V that maps

complex vertices V to R
d ; a combinatorial representation of f as a

correspondence map between simplices of the source and target sim-
plicial complices, M and M’

vertices. We denote by yv , v ∈ V , the column stack of coor-
dinates of v, taken from y, and by PL(M, d) we refer to the
set of all simplicial maps from conv(M) to R

d , defined by
(39).

Note that, depending on the context, we use both the
combinatorial and geometric representations of simplicial
mappings — all these representations are equivalent in our
case. For example, an affine mapping fs of a simplex s =
(v1, . . . , vn+1) can be unambiguously defined by specifying
images of each vertex vi under fs . Generally speaking, we
can represent a simplicial map f of a manifold mesh in the
following equivalent ways:

1. Simplicial map f can be identified with a list of its affine
components

{

fs |s ∈ S }, where fs are affine maps of
individual simplices that coincide on common faces of
simplices.

2. Simplicial map f can be represented as a functional of
the target vertex coordinates x. That is, f = f [x], where
x ∈ R

d|V |×1 is a column stack of the vertex coordi-
nates in the target domain and f [x] is a piecewise affine
function that satisfies the following equations7:

f [x]( y j ) = x j , j = 1, ..., |V | . (40)

We denote the affine component of f [x] on simplex s ∈ S
by

fs[x] �
(

f [x])s .

3. Simplicial map f can be associated with a function
fV : V → R

d that maps complex vertices to their tar-
get coordinates, i.e., fV (v) = xv , v ∈ V .

4. Consider the image of f as a (target) simplicial complex
M’ = (S ′,V ′, x), i.e., M’ is the simplicial complex of

7 We identify vertices with the indices, 1, . . . , |V |, and use square
brackets in (40) to indicate that simplicial map f is a function of x,
while round brackets denote the evaluation of simplicial map f = f [x]
at a given point in Rm .

simplices S, vertices V and vertex coordinates x obtained
by mapping source coordinates yv, v ∈ V to R

d by f .
Then, f can be identified with the correspondence map
between the source and the target simplicial complices
M and M’. Namely, f can be represented as the mapping
between the corresponding source and target vertices, or
f can be associated with the mapping between the corre-
sponding source and target simplices.

Fig. 5 illustrates the above equivalent representations of a
simplicial map on a triangular mesh, embedded in R3.

3.1 Canonical Representation of Simplicial Maps

Since Jacobian of a local-diffeomorphism f ∈ Diff(Rn) is a
non-degenerate matrix, our underlying assumption was that,
in the continuous case, source and target domains have the
same dimensions.

However, when considering simplicialmaps (39), the sim-
plex dimension n and the dimension d of the target domain
are not necessary equal.

For this reason, when practical approaches to (1) are con-
sidered, one should be aware of certain differences between
the problem with equal dimensions, m = n = d, and more
general scenarios. Following these considerations, we define
the source and target codimensions

codim(M) � m − dim(M); (41)

codim(M’) � d − dim(M’) . (42)

and, based on these definitions, we consider the following
three major scenarios:

codim(M) = 0, codim(M’) = 0; (43)

codim(M) > 0, codim(M’) = 0; (44)

codim(M) ≥ 0, codim(M’) > 0 . (45)

To treat scenarios (43)-(45) in a unified manner, we con-
sider a local presentation of simplicial map (see Fig. 6). This
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Fig. 6 Showing examples of different types of simplicial mapping and
illustrating how distortions under these maps are measured for each
simplex. Scenario (43) of mapping between simplicial complices with
zero codimensions in 2D and 3D are depicted in (a) and (b), respec-

tively. An example of scenario (44) is illustrated in (c), where we show
a surface flattening and the resulting texture mapping. The most gen-
eral scenario (45) is illustrated in (d) by showing a map between two
triangle meshes, embedded in R3 (surface matching problem)

representation removes the extra degrees of freedom, pre-
sented in (44) and (45), and it enables a smooth transition
between the discrete and continuous settings, presented in
Sect. 2. In particular, if codimensions of simplicial complices
in (41) and (42) are non-zero, then we define the distor-
tion energy of a simplicial map f = f [x] by considering
“an equivalent map” between n-dimensional simplicial com-
plices in Rn . For obtaining an equivalent canonical map, we
project f ’s components onto the n-dimensional subspace,
without distorting shapes of the source and target simplices.

Assume that f is a simplicialmap, defined in (39), and that
n ≤ d, n ≤ m. Denote by s′ the target simplex of s ∈ S under
f and let φs and ψs be rigid transformations of Rm and R

n

that map conv(s) and conv(s′) into hyperplanesRn ×{0}m−n

andRn ×{0}d−n , respectively. To simplify our notations, we
assume w.l.o.g. that these hyperplanes are equal to R

n . If D
is a first order distortion of deformations Diff(Rn), then, we
define

D( fs) � D ([˜fs]∼, r
)

, s ∈ S, r ∈ conv(s) ,

where [·]∼ is an equivalence class of deformations in R
n ,

defined by (19), and ˜fs is the transition map

˜fs � ψs ◦ fs ◦ φ−1
s . (46)

As illustrated in Fig. 6d, map ˜fs satisfies the following dia-
gram:

conv(s) ⊂ R
m conv(s′) ⊂ R

d

R
n

R
n

fs

φs ψs
˜fs

.

We refer to (46) as to the (local) canonical representation
of a simplicial map f = f [x]. We use canonical representa-
tion of f to define distortion energy of D,

ED ( f [x]) �
∑

s∈S
w(s)D([˜fs]∼) , (47)

where w(s) are simplex weights, most frequently chosen
to be the simplex volume Vol(s). We always compute dis-
tortions of canonical representations of simplicial maps.
Obviously, substituting components of a map f ∈ PL(M, d)

with its canonical representations does not change distortion
values.

Noteworthy is the fact that the energy of (47) can be
equivalently represented by other expressions, e.g., using a
vertex-based weighted sum of distortion densities [24,81].
However, vertex weights and other related representations
are rarely used in practical applications. In this paper, we
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Fig. 7 An example of GD optimization of isometric distortion induced
by mapping of a 2-dimensional simplicial complex from R

2 (left) to
R
3 (right). We initialize the problem by mapping the source mesh onto

a sphere (target) and execute the GD optimization without using posi-
tional constraints on vertex coordinates

follow a more common definition (47) which is based on
the linear finite element formulation. By using these formu-
lations in the discrete case, we can employ a more general
optimization framework.

4 Minimizing Distortions of Simplicial Maps

Although we have provided a unified method for comput-
ing distortion energies in scenarios (43)-(45), these scenarios
require a different treatment for minimizing distortions.

To illustrate fundamental differences between distortion
optimization techniques, employed in scenarios (43) and
(45), consider a gradient descent (GD) optimization of a dis-
tortion energy (47). If codim(M’) = 0, then the GD update
of target vertices, x ← � x − �t∇xE , is well defined, since
the displacement vector�x and the target simplicial complex
M’ belong to the same n-dimension plane, Rn = R

d .
In contrast to the case codim(M’) = 0, if codim(M’) >

0, then there is a certain ambiguity in the GD optimization
of x, since it should be specified whether the target vertex
coordinates x j , j = 1, . . . , |V |, are free tomove inRd (free-
form deformations), or x j are constrained to be contained in
a given n-dimensional submanifold T n ⊂ R

d .
In practice, scenario (45) with free-form deformations is

rarely processed by optimizing directly distortions on M.
This is because distortion energy (47) by itself cannot control
the shape of a target domain, since, in this case, there are extra
degrees of freedom to rotate separately simplex images inRd

without changing distortions. See Fig. 7 for an example of
those adverse effects that appear in a free-form deformation
of a triangular mesh.

For instance, computing optimal mapping between two
triangular meshes, embedded in R

3, is a problem of type
(45) in which x is constrained to be contained in a given 2-
manifold. This problem has various applications in computer

vision and imaging. In particular, the existing approaches to
that problem are employed for such tasks as shape matching
and surface registration. Often, shape matching algorithms
combine both distortionminimizationmethods [6,31,93] and
other geometry processing techniques such as: computations
of geodesic distances [97], functional maps [30,84] and etc.

If codim(M’) > 0, then a practical approach to minimiz-
ing distortions on M, with unconstrained coordinates x ∈
R
d|V |×1, is to consider simplicial maps of d-dimensional

complex D containing the original n-dimensional complex
M. Then, a solution of problem (1) on D is an optimal sim-
plicial map

f ∗
D : conv(D) → R

d ,

of type (43) or (44), and the restriction of f ∗
D to conv(M)

induces a low distortion simplicial map f ∗
M of the complex

M (see the illustration in Fig. 8). In particular, if v ∈ V is
contained in a d-dimensional simplex c of D, then the image
f ∗
M(v) can be computed by using barycentric coordinates of

v in c.
Next, we discuss how to compute Jacobian matrices of

simplicial maps by using barycentric coordinates and other
related quantities. Note that, unless stated otherwise, we fur-
ther assume that codim(M’) = 0, i.e., d = n.

4.1 Jacobian Computation

On the one hand, the problem of minimizing (47), in all prac-
tical situations, is stated in terms of vector x and a simplicial
complex M. On the other hand, the energy, through distor-
tion density, depends on the Jacobians d fs , s ∈ S . Therefore,
from a practical viewpoint, it is important to develop concise
analytical expression for

d fs : Rn|V | → R
n×n,
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Fig. 8 Anoptimalmapping of a volumetric domain D (left) that induces
a low distortion mapping of a surface mesh M (right), contained inside
the volume. The volumetric mapping fD was computed by minimizing
isometric distortion over a tetrahedral mesh. The triangulated surface
M was represented as a volumetric texture inside D. Then, vertices of
M were mapped by fD according to their barycentric coordinates

in terms of the known quantities8 x and S. First, we consider
one-dimensional maps PL(M, 1). This space has a natural
basis of Lagrange basis functions {hv ∈ PL(M, 1) : v ∈ V},
also called hat functions, where each hv satisfies the follow-
ing system

hv( yu) = δvu, v, u ∈ V, (48)
∑

v∈s
hv(r) = 1, s ∈ S, r ∈ conv(s) . (49)

Representing simplicial map f [x] ∈ PL(M, n) with respect
to basis functions hv yields

fs(r) =
n+1
∑

j=1

hv j (r)xv j , s ∈ S, r ∈ conv(s) . (50)

The close form solution of (49) and (48) has a simple geomet-
ric interpretation in R2 and R3. Let s = (v1, . . . , vn+1) ∈ S,
r ∈ conv(s) and denote by μ j the face of s located opposite
to vertex v j , and let η j be a vector normal toμ j whose length
equals ‖η j‖ = Area(μ j ) (see Figs. 9 and 10 ). Then, we can
express n basis functions as

hv j (r) = (r − yvn+1
) · η j

nVol(s)
, j = 1, . . . , n , (51)

and, for attaining a convex combination in (49), the last basis
function is set to

hvn+1(r) � 1 − (hv1(r) + · · · + hvn (r)
)

.

In fact,
(

hv1(r), . . . , hvn+1(r)
)

are barycentric coordinates
of point r in s. These coordinates are widely employed in
geometric computer vision for interpolating discrete quanti-
ties, sampled at vertices. By differentiating (50) with respect

8 Here we use the shorthand notation R
n|V | = R

n|V |×1.

Fig. 9 Illustration of a hat function (51), defined over a 2D simplicial
complex, embedded in R3

to r , we obtain the Jacobian d fs

d fs =
n+1
∑

j=1

∂hv j

∂ r
xv j . (52)

Gradients ∂hv/∂ r are constant for each v ∈ s ∈ S because
hv|conv(s) are affine functions, by the definition. Hence, d fs is
constant in r ∈ conv(s) and the correspondence between the
target coordinates and Jacobian of fs forms a linear operator
R
n|V | → R

n×n , denoted by

∂s(x) � d fs[x] , s ∈ S .

The details of these computations are presented in
Appendix A.

4.2 Problem Formulation

We are now in the position to provide a formal definition of
the discrete problem, based on definitions of simplicial maps
and evaluations of their Jacobians. Let M = (S,V, y) be a
simplicial complex, we then consider the following problem
of optimizing distortions in the discrete settings:

f ∗ = argmin
f ∈PL(M,n)

E( f ) ; (53)

s. t. det(d fs) > 0, ∀s ∈ S ; (54)

fV (ai ) = x0ai , i = 1, . . . , k , (55)

where (53) is the optimization problem of distortion energy,
defined according to (47); (54) is the orientation constraints
on maps PL(M, n) and (55) are discrete positional con-
straints defined on a set of vertices (anchor points) a1, . . . , ak
which coordinates are fixed to given positions x0a1, . . . , x

0
ak .

It is more convenient to represent simplicial maps by (40)
and to formulate constraints via a system of linear equations
because it reduces (53), defined over PL(M, n), to a more
simple optimization problem in Rn|V |:

x∗ = argmin
x∈Rn|V |

E( f [x]) ; (56)
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f

Fig. 10 Examples of simplicial mapping from R
3 to R

2 (bottom) and
from R

3 to R
3 (top). The latter example demonstrates a volumetric

parameterization of the segment of a CT scan (hippocampal region)
[78]. Highlighted simplices illustrate a piecewise affine construction,
introduced in (51)

s. t. det(d fs[x]) > 0, ∀s ∈ S ; (57)

Ax = b, A ∈ R
k×n|V | , (58)

where (58) is the generalization of (55) to linear positional
constraints and the objective energy is the real function E =
E(x) : Rn|V | �→ R.

We proceed to review various methods for solving the
distortion energy equation (56).

4.3 Distortion Optimization Methods

In practice, solutions of (56) are orientation-preservingmaps
of triangular and tetrahedralmeshes, embedded inR2 andR3.
Various iterative algorithms and other related techniques are
used for constructing optimal deformations of triangular and
tetrahedral meshes via minimization of geometric energies.

The relevant methods can be qualitatively divided into
the four major categories: (i) linear methods which, in gen-
eral, are the earliest and fastest methods; (ii) convexification
methods; (iii) non-linear optimization techniques; (iv) indi-
rect approaches, intended for a limited subset of objective
energies with a well studied structure.

Linear methods. These methods compute simplicial
maps by solving a linear system

Lx = b , (59)

where the coordinates xv for each vertex v ∈ V are expressed
by a weighted average of its neighbors. The matrix L is
often considered as a discrete approximation of the Laplace-
Beltrami operator. Consequently, solutions of (59), called
discrete harmonic maps, are minimizers of a piecewise
Dirichlet energy.

Among others, the most common weighting schemes,
employed in (59) for triangular meshes, are uniform, cotan-
gent weights and weights derived from the mean-value
coordinates [34]. Whenever these weights satisfy Luv > 0
for any neighboring vertices u �= v, and coordinates of
boundary vertices in b form a convex polygon, then solv-
ing (59) yields an injective mapping f [x] of a source mesh
into the plane [33].9 Furthermore, certain methods for injec-
tive harmonic mapping can be extended from target planar
domains to more general domains on surfaces [2,4,5].

If L is a cotangent weighted Laplacian matrix and x is
the solution of (59) with respect to L , then x�Lx is the dis-
crete Dirichlet energy induced by (25). Moreover, according
to [34], a simplicial map f [x], x = L−1b, attains conformal-
ity if the density of the energy of DDirichlet, per a unit area,
reaches its global minimum.

Levy et al. [72] simplify the non-linearMIPS optimization
by introducing a linear approach for computing least-square
conformalmaps.More recent studyof [10] unifiesmajor least
squares geometry processing techniques into a framework of
shape projection operators. The recent study of [20] com-
putes conformal parameterization bypartitioning surface into
smaller subdomains and computing linear conformal flatten-
ing of each subdomain.

Although shape operators and the related linear techniques
have a low computational cost, these methods are limited in
their application to a narrow set of geometric measures and
support only certain positional constraints. This is in contrast
to resent studies in non-linear optimization and convexifi-
cation methods, aimed at minimizing arbitrary distortions
expressed by Jacobian singular values.

Convexification methods. In general, these are iterative
techniques that approximate problems similar to (53) by
a sequence of nested convex problems, for which convex
optimization tools can be applied. These include: projecting
simplicial mappings onto the space of Bounded Distortion
(BD) maps of triangular [66] and tetrahedral [3] meshes;
Large Scale Bounded Distortion (LBD) maps [56]; control-
ling singular values via Semi-Definite Programming (SDP)
[55].

The space of K -bounded distortion mappings is defined
as the set of simplicial maps f ∈ PL(M, n) satisfying the
inversion-free constraints (54) and such that the conformal
distortion (29) of linear components of each f is bounded by
a given number K > 1,

Dconf(d fs) ≤ K , ∀s ∈ S .

The method of [66] for bounded distortion mapping of trian-
gular meshes is based on

9 See [33] for additional constraints on the mesh connectivity.
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representation of affine transformations using complex
numbers and on the following formula for singular values
of 2 × 2 Jacobian matrices d fs :

σ1(d fs) = |αs | + |βs |; (60)

σ2(d fs) = ∣∣|αs | − |βs |
∣

∣ , (61)

where αs, βs ∈ C are complex representations of the similar-
ity and anti-similarity components of d fs , s ∈ S . As shown
in [66], the maximal convex subset of K -bounded distortion
mappings in 2D can be characterized by a system of sim-
ple inequalities, expressed in terms of K , |αs | and |βs |, for
s ∈ S.

The subsequent work of [3] extends this strategy to tetra-
hedral meshes, by solving a quadratic problem of projecting
a given simplicial map onto the BD space. This projection
technique can be further improved by employing KKT lin-
ear systems for a more efficient formulation of optimization
constraints [56].

Convexificationmethods can incorporate non-locally injec-
tive initializations. In particular, the BD and LBD methods
are aimed primary at repairing non-positively oriented maps
and restrain their distortions within a finite range, whereas
SDP, and other related interior point solvers, are considered
to be not sensitive to the quality of an initial map.

Similarly to other optimization techniques, convexifica-
tion methods express objective measures in terms of the
Jacobian singular values. However, unlike more general
optimization algorithms, such as gradient descent or quasi-
Newton solvers, convex optimization tools, employed in
convexification methods, impose much tougher constraints
on the optimization process.

Next, we discuss a more generic optimization approaches,
referred as to methods in non-linear geometric optimization.
While convexification solvers employ convex approxima-
tion both for the objective function E( f ) and for the space
of objective variables f ∈ PL(M, n), non-linear methods
approximate energy (47), alone, and thereby these methods
can be applied in more general scenarios.

Non-linear geometric optimization. A typical non-linear
geometric solver updates the mapping f [xi ] at the i th itera-
tion as follows

xi+1 = xi + �t i di
(∇xE, Hxi

)

, (62)

where di is the field of the descending direction computed
as a function of the distortion gradient ∇xE = ∇xE(xi ) and
the Hessian Hxi . Here we considered iterative solvers that

begin with an initialization f 0 = f [x0] and recompute (62)
for each iteration10 i .

The exact amount of �t i by which xi is modified along
the descent fields is computed, in general, by inexact line
search; e.g., using the Armijo back-tracking method.

Based on methods of computing descent direction, geo-
metric solvers are divided into the first and second order
techniques.

The gradient descent (GD) is the basic first order method
in which vertex coordinates are updated along the negative
gradient direction, i.e.,

d = −∇xE .

It is easy to implement GD for any SVD-based distortion D
because the only steps needed for GD update are: the com-
putation of ∇xE and the line search step. Moreover, for each
v ∈ V the gradient component (∇xE)v depends only on
the neighboring vertices of v. [See details on gradient com-
putation in Appendix A.2.] Therefore, it is easy to apply
GD, locally, to minimize energy (47) over a small subset of
simplices. Local GD methods, in which only a fraction of
vertices are updated at each iteration, are called block gra-
dient descent (BGD). Due to a simple implementation and
robustness, GD and BGD algorithms are widely employed
in geometry processing; these methods were popular in early
applications [45] and they also are used in recent studies for
inducing locally injective simplicial mappings [37,81,83].
Although GD works well over small blocks of vertices, it
converges slowly when applied to the coordinates of all ver-
tices in (62).

To speed up distortion optimization, one should employ
more general first order solvers in which d is the solution of
a sparse linear system

˜Hxi d = −∇xE(xi ), (63)

where ˜H is the Hessian of a quadratic approximation of the
original energy E in the vicinity of xi (quadratic proxy):

˜E(x) = E(xi ) +
(

x − xi
)T ∇xE(xi )

+1

2

(

x − xi
)T
˜Hxi

(

x − xi
)

. (64)

For example, in Sobolev gradient descent (SGD), and in
the closely-related Accelerated Quadratic Proxy (AQP) [57],
˜H is a cotangent-weighed mesh Laplacian L , computed
over source coordinates y. These methods are designed for
minimizing isometric distortions. Further, the method of

10 It is often clear, from the context, at what iteration vertex coordinates
and descent fields are computed. Thereby, to make our presentation
more simple, we often drop the superscript indices, used in (62).
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Fig. 11 Isometric parameterization of a Hilbert fitting curve (source
mesh) with different optimization methods. The surface is flattened by
minimizing symmetric Dirichlet energy (32), initializing the process by

the Tutte embedding of the source mesh into a disc. We depict param-
eterization results, obtained at different iterations, and show the final
texture mapping at the right side

Scalable Locally Injective Mappings (SLIM) [89] extends
SGD approach to general distortions by setting ˜H to be
a reweighed Laplacian. In the isometry-aware precondition
method [17] (AKVF), ˜H is a quadratic form of the Killing
energy of vector fields, defined over triangle meshes.

Similarly, second order methods compute ˜H as a func-
tion of both ∇E and ∇2E . Note that ˜H should be a positive
semidefinitematrix to guarantee that d, computed in (63), is a
descent direction of E(x). Therefore, second order methods
cannot employ the original Hessian ˜H = ∇2E because, in
most cases, energy E is non-convex in x (seeSect. 8). Instead,
second order methods use second order derivatives of E(x)

to approximate the Hessian. For example, ˜H = diag
(∇2

xE
)

in Jacobi gradient descent [117]; ∇2E is projected into a
positive semidefinite cone [63,69,108] in projected Newton
methods (PN). In 2D, a positive semidefinite approximation
of ∇2E can be computed by using complex analysis [26,42]
or via the Composite Majorization (CM) method [102], in
which ˜H is derived from the analytic expression of singular
values of matrices in R

2×2 (60) and (61).
Quasi-Newton methods lay in between first and second

order solvers. Similarly to second order solvers, quasi-
Newton methods are based on a Newton update step. How-
ever, instead of directly computing second order derivatives,
quasi-Newton methods use gradients and vertex positions
from previous iterations to iteratively update approximate
Hessians, ˜H = ˜H

(∇Ei ,∇Ei−1, . . . , xi , xi−1, . . .
)

. Due to
their robustness and relatively low computational cost, these
methods are widely employed in geometry processing and

imaging. For example, Smith et al. [103] had adopted the
classical L-BGFS algorithm for computing globally bijective
parameterization. This method is enhanced in the sequel by
the Blended Cured Quasi-Newton (BCQN) [121] strategy of
a gradual blending between AQP [57] and L-BFGS. BCQN
solver benefits both from the super-linear convergence of L-
BFGS in the vicinity of a local minimum and from the rapid
progress of AQP at the first iterations.

In Fig. 11,wedemonstrate a number of non-linear geomet-
ric solvers, employed for parameterization of a triangulated
surface. As shown by the figure, iterations of second order
methods result in a more rapid progress. However, comput-
ing descent direction is more costly in second order solvers,
since the Hessian approximation in these methods involves
computations of both thefirst and secondorder energyderiva-
tives.

Indirect approaches. So far, distortion optimization
methods, presented in this section, have the following com-
mon property: these approaches compute optimal simplicial
maps in which the measure of map optimality is a functions
of the vertex coordinates x. However, in many applications,
simplicialmaps are represented implicitly. For example, sim-
plicial maps can be represented implicitly as a solution of
some equation, as a realization of a discrete metric and etc.
In these cases, the final optimal map is reconstructed from
its implicit presentation and the measure of the map’s opti-
mality is a property of the implicit form, used to define the
map. We refer to methods, based on implicit representations,
as to indirect approaches.
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Although presenting all indirect approaches is beyond the
scope of this paper, we list some indirect methods that are
closely related to the distortion minimization problem. Some
of these methods are discussed in more details in Sect. 7.

For example, discrete quasi-conformal maps can be con-
structed on triangulated surfaces by solving equations of
Beltrami coefficients [19,122]. A discrete approximation
of conformal maps can be computed in a metric domain,
e.g., discrete Ricci flow obtains a user-specified distribu-
tion of Gaussian curvatures at vertices and it achieves the
targeted metric conformal to the original metric. Some indi-
rect approaches represent triangulated surfaces by curvature
values or by unit normals, defined on vertices. These meth-
ods compute implicit representations of optimal maps by
modifying these values on vertices, e.g., by performing the
conformal curvature flow [23], or by computing the unit nor-
mal flow [125].

Another important class of indirect approaches presents
discrete methods for computing Optimal Mass Transporta-
tion (OMT). In general, methods in OMT seek to find
a volume/area-preserving map between two spaces that
minimizes a specific transportation cost. There are multi-
ple equivalent ways to define such problems on meshes,
including the classical Monge-Kantorovich formulation, the
Wasserstein metric formulation and the Brenier formulation
for OMT in the semi-discrete case (see the survey of [101]).
Although transportation cost functions can be formulated
in a different manner than distortion measures, there exist
many interrelated methods for OMT and distortion mini-
mization. For example, [124] introduced an algorithm for
area-preserving flattening of triangle meshes. First, the algo-
rithm is initialized with conformal map f 0, it thenminimizes
area distortions by solving an OMT problem in which con-
formal factors of f 0 define the transportation cost. Likewise,
OMTand conformalmappings are used inmany shape analy-
sis applications for comparingmultiple objects and detecting
geometric change in an object. For instance, the dissimilar-
ity measure of two meshes M and M ′ with disc topology
(or two genus-zero meshes) can be defined as the minimal
transportation cost induced over mappings {( f ′)−1 ◦ g ◦ f },
where f and f ′ are conformal parameterizations of M and
M ′ into a disc (sphere), and g is a Möbius transformation
[12,71].

Worth mentioning, minimizing variants of volume dis-
tortions yields a more general class of density-equalizing
maps. Instead of preserving the volume, density-equalizing
maps preserve a given volume density. Such variants of
volume-preserving maps are used in classical tasks of data
visualization [28,41]. For instance, Choi and Rycroft [24]
introduced a method for density-equalizing mapping of
triangularmeshes. Themethod operates by flattening simply-
connected meshes in a way that inflates or shrinks the target
mesh triangles according to the specified area densities. This

method starts with curvature-based flattening of the mesh
boundary, then it uses a diffusion-based algorithm to mini-
mize area densities over vertices.

4.4 Acceleration Techniques

There is a number of techniques aimed at accelerating
existing algorithms for distortion minimization. For exam-
ple, Accelerated Quadratic Proxy [57] (AQP) employs a
Nesterov-like acceleration to boost the vertex update step
(62). First, AQP computes xi+1 according to (62), and then
it sets x to be an affine combination of xi+1 and the tar-
get coordinates obtained at the previous iteration. That is,
x = (1 + t) xi+1 − t xi , for a small t ∈ (0, 1).

Instead of using the source mesh as a reference, Pro-
gressive Parametrization (PP) [74] defines an intermediate
(progressive) mesh that induces low isometric distortion and
that is as-close-as-possible to the given source domain. PP
accelerates non-linear solvers by iteratively generating pro-
gressive meshes and by decomposing source-to-target map
into intermediate mappings with bounded singular values.

AndersonAcceleration (AA) [85,86,123] is another approach
to speeding up optimization, based on a well-established
technique for fixed-point solvers. Methods of AA are
designed for alternating local-global optimization, such as
[10,13,73]. A local-global algorithm alternates between the
two steps: (i) the local step, in which energy E is minimized
with respect to auxiliary variables, while the target coordi-
nates x are fixed; (ii) the global step, inwhich E is minimized
with respect to x. The key idea ofAA is to speed up the global
step by modifying auxiliary variables, obtained at the local
step. For example, AA can be used to improve existing meth-
ods for BD mapping [98].

Another class of popular acceleration techniques is based
on hierarchical mappings between meshes of decreasing res-
olution. For example, ABF++ algorithm [100] of conformal
flattening performs a sequence of edge collapse operations
for decimating the original mesh M. This method computes
a low resolution parameterization f ′ of decimated mesh M ′,
and then it derives f ′ for the original mesh by applying a
series of vertex split operations. In certain scenarios, opti-
mization (56) can be initialized directly with a solution ( f ′)∗
of the same problem, computed in a low resolution. As shown
in [82,83], ( f ′)∗ can be transformed to an inversion-free ini-
tialization of M by, first, mapping M into a disc, and then
deforming that disc into the shape of Img

(

( f ′)∗
)

.

5 Distortion Optimization Constraints

This section is dedicated to a detailed analysis of the opti-
mization constraints (58) and (57). We also discuss existing
methods for locally and globally injective mapping, and
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relate these methods to orientation constraints and to dis-
tortion minimization under fixed boundary constraints.

5.1 Positional Constraints

Positional constraints (58) constitutes an integral part of
the linear methods. Moreover, computing unconstrained har-
monic maps, in most linear methods, such as [109] or [38],
yields a trivial solution that contracts the entire target domain
into a single point.

In contrast to linear techniques, convexification and non-
linear optimization methods can be used without positional
constraints. For example, surface parameterization with a
free boundary can be computed as a solution of (56) without
positional constraints (Figs. 11 and 2 (right)).

Positional constraints (58) can be integrated into first and
second order non-linear solvers via the constrained mini-
mization of the quadratic proxy (64). In particular, if ˜Hx is
the Hessian approximation at x, then the constrained descent
direction is computed via the following KKT system:

(

˜Hx A�
A 0

)(

d
λ

)

=
(−∇Ex

b

)

, (65)

where (A, b) are linear constraints (58) and λ is a KKT mul-
tiplier vector.

It is very common to solve (53) withDirichlet constraints,
that is, with constraints (58), reduced to a set of fixed anchors,
xai = x0ai , ai ∈ Vfixed ⊂ V (see Fig. 18). In this scenario,
system (65) is reduced to solving descent direction equation
(63) over the set of free vertices V \Vfixed. Particularly, in
gradient based methods, such as GD and BGD, the Dirichlet
constraints can be implemented by modifying only free ver-
tices, while constrained vertices are fixed at their prescribed
positions.

5.2 Orientation Constraints

Unlike the positional constraints, orientation constraints are
non-linear and thus cannot be processed directly by (65). For
satisfying (57), one should be able to either repair inverted
simplices, or to start with an inversion-free map and preserve
its positive orientation along the entire optimization.

In general, the process of repairing an inverted simplex
s by (62), has to collapse s before unfolding it to a positive
orientation in the target domain. However, most popular dis-
tortion energies are regular distortions that satisfy the barrier
properties from Definition 2.12. These distortions explode
on degenerate target simplices,11 and thus, optimization of
these distortions prevents orientation flips, keeping elements

11 A n-dimensional simplex is degenerate if its n-volume is zero.

at their initial orientation. For a non-regular distortionD, ori-
entation flips can be prevented by adding a barrier term (34)
to D.

As a result, the vast majority of existing geometric opti-
mization algorithms, process orientation constraints, implic-
itly, by requiring, first, a positively-oriented initialization
f 0 = f [x0] and, then, preserving initial simplex orienta-
tion at each subsequent iteration.

The strategies, proposed to keep f satisfying (57), include:
designing distortions with flip barriers [37,103] (i.e., using
regular distortion or adding a barrier term), inversion-aware
line search [103], the barrier-aware line search filtering [121],
employment of scaffold meshes [53,69] and their variants
[107]. In addition to these methods, one can employ ray-
tracing algorithms [81,103] to prevent target simplices from
being inverted during the line search stage. In certain cases,
an inversion-free initialization x0 of (56) can be computed
by linearmethods. For example, unconstrained parameteriza-
tion of triangle meshes with disc-topology can be initialized
by mapping the source mesh into convex planar domain
via the classical Tutte embedding [109] or by using linear
conformal maps [38]. Although these maps attain a posi-
tive orientation, det d f 0s > 0, and low conformal distortions,
they produce highly distorted elements with respect to other
measures, such as isometric distortions. Computing feasi-
ble initialization f 0 in more general scenarios is much more
challenging. To the best of our knowledge, there is no robust
solution of providing an inversion-free initialization for prob-
lem (56) in a general scenario.

In a view of the above limitations, a number of strate-
gies have been proposed for generalizing existing methods
of injective mappings. In particular, a number of approaches
have been proposed to extend Tutte’s embedding to non-
convex domains.

The method of [119] starts with uniformly weighted
Laplacian and iterativelymodifies it using cotangentweights,
computed with respect to the solution of (59) on the previ-
ous step. This approach can be considered as hybrid linear
algorithm, aimed at repairing inverted triangles by means of
minimizing the deviation between the target unsigned area

Area
∣

∣ f
∣

∣ �
∑

s∈S

∣

∣Area
(

fs(s)
)∣

∣

and target signed area

Area( f ) �
∑

s∈S
Area

(

fs(s)
)

,

where Area
(

fs(s)
)

denotes the signed area of the image of
simplex s under the affine map fs .

Assume that we seek to find an orientation-preserving
map under a properly set boundary constraints, i.e., under
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the Dirichlet constraints (55), f 0V (ai ) = x0ai , where ai are
indices of boundary vertices and f 0V is an inversion-freemap.
In such a case, the method of [119] can be simplified to yield
the following minimization

argmin
x

Area
∣

∣ f [x]∣∣. (66)

Problem (66) is applicable both to triangular and tetrahedral
meshes. Clearly, in the latter case, Area

∣

∣ f [x]∣∣ denotes the
total unsigned volume of target tetrahedrons under f . If
x∗ is a global minimizer of (66), then Area | f ∗|, induced by
f ∗ = f [x∗], equals to the area (volume) contained in the
mesh boundary ∂x∗. In such a case, det d fs[x∗] ≥ 0 for all
s ∈ S, since, as illustrated by the inset, any inverted simplex s
with non-zero volume, either intersects its positively oriented
neighbors (inner flips), or the target shape of s goes beyond
themesh boundary (outer flips). In both scenarios, Area | f ∗|
exceedsArea

(

∂x∗), contradicting the global optimally of x∗.
However, a simplicial map f ∗ can produce collapsed sim-
plices and still be a global minimizer of the total unsigned
volume.This limitation and the related issue of vanishing gra-
dients ∇x Area | f | are overcome in the recent work of [27]
by lifting simplices into the higher dimensional space R2n .
The sum of unsigned areas of lifted simplices is called the
Total LiftedContent (TLC).As proved by [27],minimizers of
TLC satisfy constraints (57) and thus induce injective map-
pings of triangular and tetrahedral meshes into domains with
non-overlapping boundaries (see Sect. 5.3). Nevertheless,
similar to algorithms in harmonic mappings, TLC requires
a proper fixation of all boundary vertices. Minimizing TLC
with more general positional constraints, such as fixations of
a small number of anchor points (Fig. 6a), can cause inver-
sions and undesirable shrinking of mesh elements. Hence,
in such tasks as shape deformation and parameterization
with non-fixed boundaries, one should use other approaches
to computing inversion-free initializations. Those include a
number of linear and non-linear methods, presented below.

Sawhney and Crane [94] have proposed a boundary First
Flattering (BFF) as a linear method for conformal flatten-
ing of triangular meshes that supports direct manipulation of
lengths or angles of boundary edges. Although theoretically
BFF is guaranteed to produce inversion-free flattening only
onto convex domains, in practice it is capable of producing
positively oriented maps onto simple non-convex domains.

If the algorithm, used to initialize (56), fails to produce an
inversion-free map, then the existing inverted simplices can
be repaired via a limited number of convexification methods,
such as BD [3,66] and LBD [56]. These methods project
a given map f onto the nearest positively-oriented simpli-
cialmapwith bounded conformal distortions. However, there
are no guaranties to keep constraints (55) under these pro-
jections. Setting a suitable lower bound K of conformal
distortion is another common drawback of algorithms in BD
mapping. For instance, the K -bounded distortion space can
be empty if the value of K is too low. Likewise, setting K
too high may increase significantly the number of required
projections. As shown in [98], some of the above issues of
BD mapping can be resolved by an iterative modification
of the bound K and by employing local-global acceleration
techniques for geometric optimization [86].

In certain cases, optimization of non-barrier distortion
measures can be initialized with orientation-reversing maps.
For instance, Weber et al. [115] proposed an non-linear
minimization of the Least Square Beltrami (LSB) energy
for inducing extremal quasi-conformal mapping of trian-
gle meshes. This algorithm can be initialized with foldovers
because LSB energy is finite on collapsed and inverted trian-
gles. Since this method is based on the Teichmüller spaces
of conformal equivalence classes of surfaces [54], it cannot
be extended from triangular to tetrahedral meshes. For the
same reason, there is no good analogy of LSB energy for
non-conformal distortion measures.

If D is a general barrier-type distortion, then one of the
practical ways to allow orientation-reversing initialization of
(56) is to remove barrier terms of D on inverted simplices
[83]. Fig. 12 shows an example of how this modification
impacts the isometric distortion (32).

Simplex assembling is another approach for enforcing a
consistent orientation in problem initialized with non-locally
injective maps. In simplex assembling methods [36,87],
meshes are disassembled into topologically disconnected
subsets. Self-intersections of simplices are repaired, first, by
minimizing inversion penalties in each component. Then,
the obtained connected components are stitched together via
carefully designed matching constraints.

A recent study of [83] introduces and Adaptive Block
Coordinate optimization (ABCD) for minimizing SVD-
based energies and computing inversion-free maps in R

2

and R
3. ABCD is a non-linear geometric solver, based on

alternating optimization of different geometric measures and
on adaptive partitioning of vertices into blocks. Although
this method has no theoretical guaranties to converge to an
optimal solution, it can recover from a highly distorted ini-
tializations with a large fraction of inverted simplices (Fig. 1
bottom).

Finally, we present a brief discussion on the relation
between injective and positively-oriented simplicial maps.
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Fig. 12 Example that illustrates how inversions of triangles impact the
values of barrier and non-barrier isometric distortions. At the top, we
plot the two distortion energies on logarithmic scale as the source vertex
is moved horizontally from the center to the right. The blue curve shows
the values of the isometric barrier distortion defined by (32), and the
red curve depicts the non-barrier version of (32) constructed according
to [83]. The color of positively oriented triangles encodes the amount
of isometric distortion. The inverted triangles are colored in yellow

5.3 Injectivity Constraints

There are two types of injective (one-to-one) simplicial
maps: a globally injective and locally injective maps.
Although there is close relation between one-to-one maps
and orientation-preserving maps, these properties of simpli-
cial maps are not equivalent.

A map f ∈ PL(M, n) is locally injective if it maps
neighboring simplices without self-intersections. That is, f
is locally one-to-one if, for any two simplices s1 �= s2 that
share common vertices, we have

int
(

conv(s′
1)
) ∩ int

(

conv(s′
2)
) = ∅ , (67)

where s′
1, s

′
2 are the corresponding target simplices under

f and int(B) denotes the interior of a set B. Obviously,
map f is globally injective if it is locally one-to-one and
conv(s′

1)∩conv(s′
2) = ∅ for anydisjoint simplices s1, s2 ∈ S.

Satisfying (57) for a map f , alone, does not guarantee that
f is locally injective. For example, if v is a vertex of a planar

f

c

b

a

Fig. 13 A positively-oriented simplicial map f that is not one-to-
one. We highlight areas where the mapping is non-locally injective (b)
and non-globally injective (c). The non-locally injective configuration
causes high isometric distortions and artifacts in the texture mapping
(a)

triangular mesh, then triangles around v can be twisted into a
loop with an angle greater than 2π (see the inset). Therefore,
even if the optimization begins with a globally injective map
and preserves its orientation, it can produce simplicial maps
that are non one-to-one, both on the local and global scales
(see Fig. 13).

Nevertheless, there is a limited number of algorithms for
inducing globally injective maps with low distortion on tri-
angular and tetrahedral meshes [53,81,103]. These methods
start with a globally injective map f 0 and iteratively min-
imize distortions in such a way that, at each iteration i ,
orientation of the map f i is kept positive and there are no
intersections between boundary simplices under f i . This
strategy guarantees a global bijection according to the next
theorem [3,66,67]:

Theorem 5.1 A positively oriented simplicial map f :
conv(M) → S′ ⊂ R

n is globally injective if the restric-
tion of f to the boundary, f |∂ conv(M) : ∂ conv(M) → ∂S′,
is globally bijective map.

6 MeshModification Techniques

In some cases, the initial triangulation M of a shape S can be
modified to attain a better solution of the optimal mapping
problemon S. As shown in the next two subsections, a proper
modification ofmeshes often leads tomore robust algorithms
for surface parameterization and inter-surface mapping.

6.1 Parameterization and Inter-Surface Mapping

Mesh modifications allow parameterization algorithms to
deal with more restrictive positional constraints. For exam-
ple, algorithms of [61,99] compute bijective constrained
parameterizations of surfaces by adding Steiner vertices [88]
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to the original mesh and triangulating the region between a
given target domain and its boundary rectangle.

In certain applications, users might only be interested in
the overall shapes of the source and target domains, rather
than in finding the exact locations of each mesh element. In
this case, by allowingmesh refinements, linearmaps (59) can
be extended tomore general locally injectivemaps ofmeshes
onto non-convex domains. One example of such approach is
the parameterization algorithm of [118] that starts with a
given source mesh and a coarse triangulation of the target
polygon. First, this method computes Tutte embeddings f
and f ′ of the source mesh M and target mesh M ′ onto an
intermediate convex domain, then it constructs the map f◦
of M onto M ′, as the composition

f◦ = ( f ′)−1 ◦ f . (68)

Finally, meshes M and M ′ are gradually refined as long as
the obtained composition f◦ remains a non-locally injective
mapping.

In geometry processing, intermediate convex domains and
map compositions are used in various applications, includ-
ing shape matching tasks. In particular, many algorithms for
bijective mapping between two surfaces (inter-surface map-
ping) start by flattening source and target meshes into planar
discs and then matching these discs to find the bijection.
For example, methods of [6,7,93] initialize a shape matching
problem with f 0 = f◦, computed according to (68), then

these methods use different non-linear solvers to reduce iso-
metric distortion of the inter-surface map, while positional
constraints (58) are used to match between given landmark
points. Likewise, meshmodifications are often used in inter-
surface mapping algorithms to induce injective maps and to
handle meshes with different connectivities [6,60,92].

Fig. 14 illustrates some of the above approaches to
locally injective parameterization and inter-surface mapping
between triangle meshes.

6.2 Global Parameterization

Many of existing techniques for locally injective mapping
are limited to domains with a simple topology. Therefore, to
achieve desirable results, it is often necessary to modify a
given triangulation and to simplify mesh topology.

In this subsection, we present a brief introduction to the
global parameterization – a problemof flatteningmeshes of a
non-disc topology. This problem is closely related to linearly
constrained methods for distortion minimization and locally
injective mappings.

Note that most of the mapping algorithms presented so far
are topology-preserving methods. Therefore, these methods
canbe appliedonly forflattening surfaces that are homeomor-
phic to a planar disc. Howevermost of the real world surfaces
are not homeomorphic to a disc, and therefore parameteri-
zation of such surfaces requires additional tools of global
parameterization.

Fig. 14 Top: Injective maps f and f ′ of meshes M = (S,V) and
M ′ = (S ′,V ′) onto a common planar domain D. Their composition
f◦ = ( f ′)−1 ◦ f yields a locally injective mapping between the two
meshes. Bottom: Refining the source mesh to repair inversions induced
by f◦. We assume that M ′ is a planar mesh and demonstrate how
the algorithm of [118] maps the selected area before and after mesh

refinements. Showing from the left to the right: a positively oriented
source triangle s ∈ S; the location of the triangle f (s) and its neigh-
bors mapped by f ′ in D; the negatively oriented target triangle f◦(s)
(marked in yellow). If s is cut across the the dashed line, then s is split
into new source triangles s1 and s2 which are mapped by f◦ onto new
positively oriented target triangles, shown on the right

123



Journal of Mathematical Imaging and Vision (2021) 63:974–1009 997

Fig. 15 Unconstrained global parameterization (left) versus a seamless
parameterization under rotation constraints (69), for ρuv = 1, (right)

Assume that M = (S,V) is a triangulation of a non-disc
topology surface. Typically, a global parameterization of M
consists of the two primary steps: (i) cutting M into a disc-
topology mesh MD; (ii) flattening of MD = (SD,VD) under
constrained positions of vertices that were duplicated during
the first step.

There is a strong correlation between the geometry of the
mesh cut and the quality of the obtained global parameteri-
zation. For example, consider parameterization of a well-cut
brain surface, depicted by Fig. 1 (top), and parameterization
of a similar poorly cut surface, shown in Fig. 4. Clearly, flat-
tening of a poorly cut mesh leads to increased distortions.

In order to attain a global parameterization with low dis-
tortions, some methods for cutting meshes into a disc are
based on the joint minimization of geometrical energies and
quality measures of the cut [69,87,104]. Other methods for
mesh cutting are based on discrete exterior calculus [77] and
on constructions of guided vector fields [14,16]. For more
details about mesh cutting algorithms readers are referred to:
[25,44,76,77].

Clearly, the second step of parameterizing MD is a spe-
cial case of the problem of optimal mapping from R

3 to R2.
In particular, the most common constraints, employed in the
second stage of global parameterization, are rotation con-
straints aimed at aligning textures along the cut edges (seam
edges). If v, u ∈ V are neighboring vertices of a seam edge
and v′, u′ ∈ VD \V are their duplicates, obtained during the
mesh cut, then typical rotation constraints for these vertices
are expressed as the following complex equation:

xu − xv = ei πρuv/2
(

xu′ − xv′
)

, ρuv ∈ {0, 1, 2, 3} . (69)

If a global parameterization f [x] ∈ PL(MD, 2) satisfies
constraints (69) for any pairs of duplicated edges (u, v) and
(u′, v′) of MD, then f is called a seamless parameterization
(see Fig. 15).

Note that rotation constraints are compatible with most
distortion minimization techniques presented in Sect. 4.3.
Therefore, seamless parameterization methods can employ

the tools from the previous sections for distortion mini-
mization and locally injective mapping. For instance, [9,44]
employ a modified Tutte embedding for initialization and the
BD method [66] for ensuring a locally injective parameter-
ization of MD. Likewise, final stages of global parameteri-
zations [25] and [44] minimize the isometric distortion (32)
via SLIM and PN solvers, respectively.

A more elaborate discussion of surface parameterization
is beyond the scope of this paper. We refer readers to [49] for
a survey of classical methods in global parameterization, and
to [9,25,44,77,126] for the overview of more recent global
parameterization methods.

7 Continuous versus Discrete Mapping

We have developed theory that works for both continuous
and discrete maps, nevertheless there are some important
differences between the continuous and discrete cases.

Roughly speaking, the continuous version of problem (1)
is more general and admits a larger set of solutions com-
pared to its discrete counterpart; certain types of distortion
minimizers can only be realized over continuous domains,
but not over discrete ones. Here we explain this inherent dif-
ference between the two settings for minimizing conformal
distortions (see Definition 2.14). Global minimizers of con-
formal distortions are closely related to the so-called extremal
quasi-conformal maps [115]. Recall that a map is conformal
if it stretches the space equally in all directions (see Defi-
nition 2.6), i.e., for a simplicial map f , this means that for
all s ∈ S singular values σi (d fs) are equal. In other words,
f is conformal if, for each s, linear components of d fs are
uniform scaling transformations, i.e.,

∃ θ : S → R s.t. ∀s ∈ S : [d fs]∼ =
[

eθ(s) In×n

]

∼ , (70)

where ∼ if the equivalence relationship from (19).
In the continuous settings, there is a fundamental differ-

ence between the plane and higher dimensions. According to
Riemman mapping theorem, any pair of simply-connected
domains in the plane can be mapped conformally. In con-
trast, Liouville’s theorem [59] states that conformal maps in
dimensions n ≥ 3 are restricted to the limited set of Möbi-
ous transformations, consisting of the compositions of rigid
transformations, uniform scaling and inversions on a sphere.

The notion of continuous conformal maps is also well
studied in Riemannian settings, where the conformality is
formulated for both Riemannian metrics and for mapping
between Riemmanian manifolds according to the following
definitions:

Definition 7.1 (Riemannian conformal metric) Two Rie-
mannian metrics g1 and g2 of a manifold M are called
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Fig. 16 From left to right a properly connected simplicial complex,
a not properly connected simplicial complex and its image under a
conformal simplicial map. Note that Theorem 7.1 does not apply to a
path-connected mesh M if M is not properly connected

conformally equivalent if

∃ θ : M → R s. t. g1 = eθg2 . (71)

Definition 7.2 (Riemannian conformal map) A diffeomor-
phism f : (M, g) → (N , h) between two Riemannian
manifolds is called conformal if the pulled back metric f ∗h,
induced by f onM, is conformally equivalent to g.

The function eθ in (71) and (70) is called a conformal
factor. In both the discrete and continuous settings, confor-
mal factors can be interpreted as uniform scaling of source
domain caused by a map.

According to the above definitions, each conformal map
f can be associated with its conformal factor, defined over
the source domain. This view leads to the interpretation of
the conformal mapping as a transformation that preserves
shape of spheres, which gives an alternative definition of a
conformal map.

In the continuous scenario, spheres can be infinitesimally
small, leading to a high degree of freedom in setting confor-
mal factors. However, in the case of triangulated domains,
conformal factors are set per simplex and so that the con-
formal factors coincide on common faces of neighboring
simplices. Thus, once θ(s0) is set on a simplex s0, it automat-
ically predefines θ on all simplices sk that are face-to-face
connected to s0. By the face-to-face connection, we mean
that there is a path of simplices s0, s1, . . . , sk such that each
pair {s j−1, s j } shares a common face. We call M = (S,V) a
properly connected complex if all of its simplices are face-to-
face connected (see Fig. 16 for the illustration). A conformal
map f of a properly connected mesh can be specified, up
to a rigid motions of target simplices, by defining a single
linear component d fs0 . This restriction of simplicial maps is
formalized below.

Theorem 7.1 Let f : conv(M) → R
d be a simplicial map-

pingof n-dimensional properly connected simplicial complex
M = (S,V, y), embedded in R

m, m ≥ n and d ≥ n. If f
is conformal, then, for each s ∈ S, fs is a composition of a
rigid transformation from R

m to R
d and the same uniform

scaling of Rd .

Proof Pick the conformal factor e0 = eθ(s0) on some simplex
s0. Then, eθ(s) = e0 for all the neighbors s of s0, since oth-
erwise M is not properly embedded. Furthermore, the latter
equality holds for any s ∈ S, since M is connected. Conse-
quently, (46) and (70) imply

∀s ∈ S : ˜fs = ψs ◦ fs ◦ φ−1
s , (72)

[

d ˜fs
]

∼ = [

diag (e0, . . . , e0)
]

∼ , (73)

whereψs and φs are transition maps, set per simplex accord-
ing to (46). Assume w.l.o.g. that φs and ˜fs are linear
transformations, then

fs = ψ−1
s ◦ diag (e0, . . . , e0) ◦ φs (74)

= ψ−1
s ◦ φs ◦ diag (e0, . . . , e0) , (75)

where (ψ−1
s ◦ φs), s ∈ S, are rigid transformations and

diag (e0, . . . , e0) is the uniform scaling, as stated by the the-
orem. ��

Consequently, in contrast with the continuous scenario,
discrete conformal maps constitute a very restricted family
of maps, regardless of whether the maps are defined in the
plane or in higher dimension.

From the conformal geometry viewpoint, patterns of
spheres are more convenient structures than simplicial com-
plices because spheres are the basic invariants of conformal
maps. In particular, if a surface is divided into a pattern
of circles, then a continuous conformal map on that surface
can be discretized by specifying aMöbius transformation per
each circle. This approach, known as a circle parkingmetric,
is used to allow more flexibility in the underlying conformal
structure of discrete mappings.

In the plane, Möbius transformation are conformal maps
that transform circles into circles. 12 These transformations
preserve the so-called four point cross-ratio

CR(r1, r2, r3, r4) � (r3 − r1)(r4 − r2)
(r3 − r2)(r4 − r1)

, (76)

defined for complex numbers r1, r2, r3, r4 ∈ C. In par-
ticular, (76) implies that a unique Möbius transformations
f (r) : C → C can be defined using the cross-ratio equation,

CR(r, r1, r2, r3) = CR
(

f (r), f (r1), f (r2), f (r3)
)

, (77)

that specifies the given correspondence between source
points r j and target points f (r j ), for j = 1, 2, 3. This prop-
erty is used in various applications for planar deformations
and shape analysis. For example, Möbius transformations

12 Here we consider the generalized notation according to which lines
are circles with infinite radius.
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between critical points of the average geodesic distance
are used in [58] for a global symmetry analysis of sur-
faces. Lipman et al. [68] extend (77) to an analytic formula
for computing extremal quasi-conformal mappings between
quadruplets.

The circle parking approach and the related preserva-
tion of the cross-ratio leads to the “piecewise Möbius
paradigm” for discrete conformal mapping. According to
this paradigm, conformal maps are approximated by As-
Möbius-As-Possible (AMAP) transformations of adjacent
triangles. This leads to two alternative definitions of dis-
crete conformality. According to the first definition a map
f of a triangle mesh is conformal if it preserves intersect-
ing angles of triangle circumcircles [62]; whereas according
to the second definition f is conformal if it preserves the
absolute values of cross-ratios (76), computed per each pair
of adjacent triangles [105]. Notably, the cross-ratio defi-
nition of the conformality can be extended, with certain
limitations, to maps f : R

3 → R
3 by representing 3D

coordinates via imaginary quaternions Img(H) (see [22]) and
by considering a quaternionic cross-ratio [111,112], i.e., the
quantity CR(r1, . . . , r4) defined according to (76) for points
r1, . . . , r4 ∈ Img(H).

Conformalmaps of circle patterns can be encodedby spec-
ifying edge-based conformal factors on triangular meshes.
In this case, map f is a conformal map if it scales uni-
formly half-edges sharing the same vertex (see illustration
in Fig. 17). This metric approach is employed in computa-
tions of conformal maps based on Ricci flow and solutions
of the Beltrami equation [19,122].

Although circle parking metric naturally extends to non-
Euclidean geometries, conformal factors of this metric are
defined implicitly via the length of simplicial complex edges
or radii of circumscribed circles. Therefore, unlike the finite
element formulation, in the circle parking metric, conformal
maps are constructed in two separate steps: first, conformal
factors are computed, then the obtained metric is embedded
into the target space. The embedding step can be be formu-
lated as optimization problem (1) with respect to isometric
distortion; it brings our discussion back to indirect meth-
ods and other distortion optimization approaches, covered in
Sect. 4.3.

While simplicial conformal maps are prescribed by set-
ting a single conformal factor, a general map f ∈ PL(M, n)

is characterized by its singular values σ1(d fs), . . . , σn(d fs),
computed over a subset of simplices in S. However, if sim-
plicial map f possesses a low conformal distortion, then,
in practical terms, f can be described by a set of approxi-
mate conformal factors. In particular, if f ∈ PL(M, n) is
a quasi-conformal map, approximating a continuous confor-
mal map fcont, then f induces a low conformal distortion,
so that its components fs, s ∈ S, are close to be similarity
transformations. In this case, conformal factors of fcont can

Fig. 17 A circle packing metric illustrated for an approximate confor-
mal parameterization, computed by the BFF method [94]. According
to Theorem 7.1, the obtained parameterization f is a quasi-conformal
mapping. Therefore, some planar circles are mapped by f −1 into
ellipses

be approximated by computing average singular values of f
on simplices s ∈ S:

DCF(d fs) �
(

σ1(d fs) + · · · + σn(d fs)
)

/n. (78)

As shown by Fig. 1, a histogram of distortions (78) can be
employed as a map descriptor or as a shape signature for a
collection of 3D objects, mapped onto a common domain
[8].

8 Convex Analysis of Distortions

The main challenge in optimal mapping of a mesh M =
(S,V) steams from the fact that, in most cases, objective
measure E(x) and a set of feasible target coordinates,

X f (M, n) �
{

x ∈ R
n|V || ∀s ∈ S : det d fs[x] > 0

}

, (79)

are both non-convex. Therefore, to obtain a convex approx-
imation of the problem one need to modify both the energy
E and the set X f . Usually, finding a convex subset of X f

requires to remove a significant part of the feasible set, as
the shape of X f is very irregular. Despite the highly-non
convex structure of (79), certain geometric measures can
be realized by simple distortion energies that are convex in
x ∈ R

n|V |, over the entire set of target coordinates. If E(x)

is a convex distortion energy and convi (X f ) ⊂ X f is a con-
vex subset of (79) constructed at iteration i , then optimizing
E(x) in convi (X f ) avoids the need for the energy approxi-
mation step (64). Therefore, minimizing a convex distortion
leads to better convergence than minimizing a similar non-
convex energy. In particular, in a convex scenario, the exact
Hessian of E(x) can be used in (63) and (64) for Newton
optimization. Furthermore, in certain problems, such as har-
monic mapping into a planar disc or minimization of TLC,
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2 3

Fig. 18 Examples of convex distortion energies, introduced in Sect. 8.
From the left to right are depicted: source tetrahedral mesh with fixed
position of endpoint vertices (anchors) and resulting minimization of
Dirichlet energy (25) and of symmetric gauge distortions induced by L2

and L3 norms, respectively. All optimization problems are initialized
by the identity map and the solutions are obtained via BCQN solver
[121]

orientation requirements (57) can be substituted by setting
proper boundary constraints. In such cases, computing a
local minimizer of (56) under constraints (58) is guaran-
teed to achieve the global minimum of a convex measure
E(x).

For example,we can penalize ‘stretching’ of theEuclidean
space by convex distortion measures, including the Dirichlet
energy (25) and some of its variants [72]. To the best of our
knowledge, there is no larger family of SVD-based distor-
tions that are proven to be convex in x and that are also used
in practical applications.

In view of the above considerations, the first goal of this
section is to introduce a new family of convex distortions.
Our second goal is to introduce a convex analysis of distor-
tions and to identify necessary and sufficient conditions for
distortion measures to be convex functions. This gives us cri-
teria by which we can formally prove that the vast majority
of existing distortion energies are non-convex in x.

We begin by expanding analysis of the relevant mapping
spaces. Due to the determinant constraints (57), the space
X f (M, n) constitutes an open and non-convex subset of
R
n|V |.Moreover, even the smaller set of non-degenerate sim-

plicial maps

Diff(M, n) �
{

f ∈ PL(M, n)| det d fs �= 0, s ∈ S }

and its continuous counterpart Diff(Rn) are both highly non-
convex. Here by “highly non-convex” we mean that, at
any point, any large-enough subspace containing this point
is non-convex. Indeed, maps in the resulting space can be
identified with their Jacobians. Thus, the set of non-singular
matrices J ∈ GL(R, n), characterizes the family of non-
degenerate maps by prescribing the Jacobian at each point,
or over each simplex. The set GL(R, n) is not closed under
addition, and the radius of themaximal convex subset around
J of GL(R, n), is σn(J ), i.e., the smallest singular value of
J . Consequently, for a given f ∈ Diff(Rn), the diameter of a

maximal convex-subset of f is a function of the chosen norm
on Diff(Rn) and the smallest singular value σn(d fr), r ∈ S
(in the discrete case, σn = σn(d fs), s ∈ S).

Due to the non-convex structure of the mapping spaces,
most of the exiting methods for solving (56) are based on
iterative optimization algorithms — each iteration of these
algorithms modifies target coordinates in a small convex
neighborhood of xi ∈ convi

(

X f (M, n)
)

, where results are
guaranteed to satisfy (54). As pointed out in Sect. 4.3, there
are many methods for building subsets convi (X f ), including
representations of BD spaces by cones and polytopes, com-
putations of line search intervals for non-linear solvers, and
more. Since it is impractical to analyze distortion convexity
for every possible choice of the subset convi (X f ), we do not
restrict our analysis to a specific convexification of the map-
ping space. Thus, we treat distortion energies as functions of
x ∈ R

n|V |.
One the one hand, this approach allow a more straight-

forward analysis of distortions. On the other hand, having no
restrictions on target coordinates x can produce points where
the linear map d fs[x] has zero singular values. To overcome
this limitation, we assume that all the distortions measures,
considered in this section, are normalized and extensible to
Ln , the closure of Ln in R

n . That is, we consider normal-
ized distortions D(σ ) that can be extended to the function
D : Ln → [0,∞], as follow:

D(σ ) �

⎧

⎨

⎩

D(σ ) σ ∈ L
n

lim
σ ′→σ

D(σ ′) σ ∈ ∂Ln .
(80)

If the limit of D exists in (80) for every σ ∈ ∂Ln , then
D is called an extended distortion of D. It is easy to show
that extended distortions satisfy the essential properties of
Definition 2.11, for differentiable maps f ∈ C1(Rn). If D
is the extended distortion of D, then E = ED(x), defined
according to (47), is the extension of the energy ED(x) from
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{x ∈ R
n|V || f [x] ∈ Diff(M, n)} to the arbitrary target coor-

dinates x ∈ R
n|V |.

Since E and D can be infinite, we use the epigraph def-
inition of the function convexity. That is, E(x) is a convex
function of x if its epigraph, denoted by epi E , is a convex
subset of Rn|V | (see the example at the bottom of Fig. 19).
We use the same notion of the convexity for D with respect
to arguments J ∈ R

n×n and σ ∈ Ln . Likewise, we say that
D(J ) andD(σ ) are convex ifD is well-defined convex func-
tion of J ∈ R

n×n and of σ ∈ Ln , respectively.
As shown by (52), there is a linear transformation that

identifies Jacobians d fs with the target coordinates x. We
can, thus, detect which distortion measures are convex with
respect to x by analyzing the convexity of distortions as if
they are functions defined over n × n Jacobian matrices.
Hence we extend existing convex measures by introducing a
new family of distortions and proving that elements of this
family are convex functions in the Jacobian.

Due to the triangle inequality, any matrix norm ‖J‖, J ∈
R
n×n is a convex function of J ∈ R

n×n . Consequently, dis-
tortion D is a convex measure in J ∈ R

n×n , if there is a
matrix norm ‖ · ‖ such that D(J ) = ‖J‖ for each J . These
observations are formalized by the following lemma:

Lemma 8.1 Let ‖ · ‖ be a matrix norm in R
n×n and define

D : GL(R, n) → R, D(J ) � ‖J‖. (81)

If ‖ · ‖ is a unitary invariant norm, that is,

‖RJ‖ = ‖J R‖ = ‖J‖, ∀J , R ∈ R
n×n, | det R| = 1 , (82)

then, D is a first-order distortion and D(J ) is convex in J ∈
R
n×n.

Proof The proof is immediate: due to the norm convexity
and norm continuity, D(J ) = ‖J‖ is a convex function of
matrices;D satisfies first order precision (Definition 2.11) by
its definition, and (9) is met by our assumption on the unitary
invariance of ‖ · ‖. ��

Lemma8.1 implies that eachunitary invariantmatrix norm
‖ · ‖ defines, via (81), a convex distortion densityD( f , r) =
‖d fr‖. Indeed, if ‖ · ‖ is unitary invariant, then SVD of J ∈
R
n×n implies that ‖J‖ can be expressed as a function of J ’s

singular values

‖J‖ = g
(

σ1(A), . . . , σn(A)
)

, (83)

and, therefore, the restriction of g to GL(R, n) is a distortion
measure, according to Theorem 2.1.

According to matrix analysis, a function g that satisfies
(81) with a unitary invariant norm ‖ · ‖ is called a symmetric
gauge function. There is a number of equivalent ways to

define symmetric gauge functions. We adopt the following
definition [47]:

Definition 8.1 A function g : R
n → (−∞,∞] is called

absolutely permutation-symmetric if for any r ∈ R
n and

permutation P of Rn

g(| r |) = g(r) = g(P r) .

An absolutely permutation-symmetric function g is called a
symmetric gauge function if there exist a vector norm ‖ · ‖
such that, for any r ∈ R

n , g(r) = ‖ r ‖.
In particular, all unitary invariant norms are characterized

by symmetric gauge function via the following theorem [47,
pp. 438-439]:

Theorem 8.1 A matrix norm ‖J‖, J ∈ R
n×n is unitary

invariant norm iff there is a symmetric gauge function g,
such that ‖J‖ = g

(

σ1(J ), . . . , σn(J )
)

.

Consequently, according to Theorem 8.1 and Lemma 8.1,
the following distortion measures are convex functions of
Jacobian matrices:

{Dg : J �→ g
(

σ1(J ), . . . , σn(J )
)∣

∣g − symmetric gauge
}

.

(84)

We refer to the set (84) as to the symmetric gauge distor-
tions. This subset includes the following well known unitary
invariant norms [48, pp. 465-466]:

• L p-norms:

DL p (σ ) � ‖σ‖p = (σ p
1 + · · · + σ

p
n
)1/p

, 1 ≤ p < ∞ .

• The spectral norm:

Dspec(d fr) � ‖d fr‖2 = σ1(d fr) .

• Ky Fan k-norms:

D[k](σ ) � σ1 + · · · + σk, k = 1, 2, . . . , n .

Obviously, we can extend (84) to a larger family of convex
distortions, by applying basic operations that preserve the
convexity, such as raising Dg into a positive power, or using
a convex combination (38) of symmetric gauge distortions.

As we have previously mentioned, if distortion D is con-
vex with respect to Jacobian matrix, then, in the discrete
case, D ( fs[x]), s ∈ S, is convex as a function of target
vertex coordinates. Therefore, energies (47) of symmetric
gauge distortions (84) and of their variants are convex in x.
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Fig. 19 Illustration of the convex analysis of Theorem8.2 in 2D.Right:
Target triangles induced by the interpolated coordinates x(t), computed
according to (85). Triangles are colored in the same way as in Fig. 12.
Left:We plot energies EDARAP (x(t)) and log

(

EDSD (x(t))
)

as functions
of t , where DARAP and DSD are the distortion measures (33) and (32).
At the bottom-left, we highlight the epigraph of symmetric Dirichlet
energy, shown on a logarithmic scale

In Fig. 18, we illustrate volumetric mappings that minimize
symmetric gauge distortions.

In a certain way, symmetric gauge distortions are gen-
eralizations of the Dirichlet energy (25) that assesses the
degree to which R

n is stretched under f . However, these
distortions could not be used for estimating other geometric
measures such as length constructions, angle deviations and
more. Notably, as shown by the next theorem, convex dis-
tortions cannot be used to assess some of the fundamental
geometric measures:

Theorem 8.2 Distortion energy ED(x) is neither convex nor
concave in x if D is well-defined extension of distortion D
and any of the following statements is true:

1. D is an isometric distortion;
2. D is a conformal distortion;
3. D is a (unsigned) volume distortion;
4. D is a normalized barrier distortion, i.e., D(σ ) holds the

normalization, the bottom and top barrier properties of
Corollary 2.1.

By the isometric, conformal or volume distortion we mean
that J ∈ GL(R, n) is a global minimum of D(J ) iff the
linear map J is isometric, conformal or (unsigned) volume-
preserving map, respectively.

Proof We provide a constructive proof for an arbitrary
isometric distortion D. Fig. 19 illustrates our proof for
two-dimensional distortions, defined by (33) and (32). For

non-isometric measures, repeat the same proof with a con-
formal or volume distortion D.

Consider the complexof a single simplexM = ({s},V, y
)

,
embedded in Rn , and the following target coordinates:

x(t) = (1 − t) y + t y, t ∈ R , (85)

where y denotes the reflection of y in the plane {0} ×R
n−1.

Observe the value of E( f (t)) = Vol(s)D( f (t)) induced by
simplicial map f (t) = f [x(t)]. According to our assump-
tion, the identity map f (0) and the reflection f (1) equal to
the global minimum E

∗
of an isometric distortion energy E ,

and E( f (t)) = E(x(t)) > E
∗
for any t /∈ {0, 1} because for

any such t the map f (t) is non-isometric (also non-conformal

and non-volume-preserving). Denote by E
[t0,t1] the follow-

ing segment of a line:

E
[t0,t1] = {(1 − t)E

(

x(t0)
)+ t E

(

x(t1)
)|t ∈ [0, 1]} . (86)

Then, the segment E
[0,1]

is located below the epigraph

epi E
(

f [x]), while the segment E
[−1,2]

resides above the
points E

(

x(t)
)

, t = 0, 1. This immediately implies that E is
non-convex and non-concave in x ∈ R

n|V |.
Similar proof applies to a normalized barrier distortion:

thus we conclude that for

τ = inf
{

t ∈ (0.5, 1]|E(x(t)) = E
∗}

,

E
[1−τ,τ ]

is located below epi E and τ > 0.5, whereas, for

a large enough T ∈ (1,∞), the segment E
[1−T ,T ]

is placed
above points E

(

x(1−τ)
)

and E
(

x(τ )
)

. ��
Our next task is to provide a simple, yet general, criterion

for the convexity of extended distortions. This criterion is
based on the following property of unitary invariant matrix
functions [11,64]:

Proposition 8.1 Suppose that g : Rn → (−∞,∞] is contin-
uous and absolutely permutation-symmetric function. Then,
the function g(σ (J )) of matrices J ∈ R

n×n is convex iff g is
convex.

This proposition implies the following theorem:

Theorem 8.3 Assume that D is the extended distortion of a
continuous distortionmeasureD and denote by q↓ the vector
of components of q ∈ R

n, sorted in descending order. Then,
D(J ) is convex in J ∈ R

n×n iff D(|q|↓) is convex in q ∈ R
n.

Furthermore, if D(|q|↓) is convex in q, then the distortion
energy ED is convex in x.

Proof Define the following vector function:

g(q) = D(|q|↓) .
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Clearly, g is continuous and absolutely permutation-
symmetric function and D(J ) = g

(

σ(J )
)

. Therefore, the
first statement of the theorem is proved by applying Propo-
sition 8.1 for the function g. The second statement is true
because, for any simplicial complex (S,V) and any simplex
s ∈ S, x �→ d fs[x] is a linear map from R

n|V | to Rn×n . ��

According to Theorems 8.2 and 8.3, symmetric gauge
distortions and their variants are the only convex distortion
measures introduced so far in our paper. Noteworthy, some
distortions D(σ ) could not be extended to the set of non-
negative singular values and therefore our convex analysis is
not applicable to these distortions. In particular, distortions
(26), (27) and (29) contain singular value ratios and thereby
are not extensible to Ln . Although these distortions are non-
convex in a general case, some of them are proven to be
convex when restricted to small subsets of X f . For example,
if f [x] is inversion-free flattening of a triangle mesh and
xv is a target coordinates of a single vertex v ∈ V , then
EMIPS2D(xv) is convex in the interior of the one-ring of f (v)

[45].
Finally, to complete our discussion on the convexity, we

would like to notice that certain non-convex energies E(x)

become convex when considered as functions of other mesh
parameters. For instance, the symmetricDirichlet energy (32)
is convex with respect to edge length squares (ELS). This
property of ELS-based energies is employed in a number of
recent studies on shape interpolations [1] and surface param-
eterization in a metric domain [21].

9 Multi-Resolution Invariance of Distortions

Our approach to optimizing geometric distortions is built
upon a piecewise linear approximation of the real-world con-
tinuous deformations. However, there exist infinitely many
tessellations of the same proper domain S, leading to an
infinite number of possibilities for representing continuous
deformations of S. Thus, one should formally prove that
problem (53) is well defined in the sense that “equivalent”
simplicial complices induce equivalent simplicial maps and
equivalent minimizers of these maps. First, to formulate the
concept of equivalent simplicial complices, we define the
following notion of simplex refinement:

Definition 9.1 Let S, C and V, U be two simplex sets and
two vertex sets, respectively, and let S = (S,V, �S) and
C = (C, U , �C) be two n-dimensional simplicial complices
of these sets, such that their interiors are locally embedded
intoRm ,m ≥ n, by functions �S : V → R

m and �C : U →
R
m . For s ∈ S , denote by �S(s) and Vol(�S(s)) the convex

hull of vertices {�S(v)|v ∈ s} and the n-dimensional volume
of the convex hull, respectively. By �C(c) and Vol(�C(c))

we refer to the same notations, defined for a simplex c ∈ C
and for the function �C . We call C a refinement of S if

∑

c∈C
|Vol (�C(c))| =

∑

s∈S
|Vol (�S(s))| , (87)

and for each s ∈ S there exists a finite set of simplices
c1, . . . , ck ∈ C, such that

�C(c1) ∪ �C(c2) · · · ∪ �C(ck) = �S(s) . (88)

Next, we extend the notion of the refinement to simplicial
maps as follows:

Definition 9.2 Let g and f be simplicial maps defined over
simplicial complices C = (C,U , �C) and S = (S,V, �S),
respectively (see the inset). We call g a refinement of f if C
is a refinement of S and if

gc (�C(u)) = fs (�C(u)) , (89)

for any u ∈ c ∈ C and any s ∈ S containing vertices of c.

We use Definition 9.2 to formulate the multi-resolution
property of distortion measures in the following theorem:

Theorem 9.1 Let D(σ ) : Ln → R be a distortion measure
and C = (C,U , �C) be a refinement of S = (S,V, �S).
Assume that simplicial map f of C is a refinement of simpli-
cial map g of S, then

ED( f ) = ED(g) ,

where ED is the distortion energy (47) of f and g, computed
with respect toD and volumeweightsw(s) = Vol

(

conv(s)
)

.

Theorem 9.1 follows from the two facts: (i) piecewise
affine approximation of a piecewise affine map f is the same
map f ; (ii) refinements preserve the total simplex volume.
The formal proof of Theorem 9.1 is presented below:

Proof of Theorem 9.1 Each simplex s ∈ S can be decom-
posed into simplices c1, ..., ck ∈ C, such that these simplices
satisfy (88) and

k
∑

i=1

Vol (�C(ci )) = Vol (�S(s)) . (90)
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Fig. 20 Using subdivision schemes to refine the initial parameterization
of the triangular mesh (top left). We use the following schemes: linear
subdivision, which is an example of simplicial map refinement; Loop
subdivision scheme; triangulated Catmull-Clark scheme, i.e., Catmull-
Clark scheme in which polygons are triangulated at each iteration. We

plot distortions (26), (29) and (33) as functions of a number of subdivi-
sion iterations (bottom right). Note that we subdivide target and source
domains by the same scheme to keep the right correspondence between
their simplices

Equality (90) follows from (87) and from our underlying
assumption that embedded simplices are consistently ori-
ented. Since g is a refinement of f , for each c = ck ,
these mappings satisfy n + 1 equations (89) with vertices
u1, ..., un+1 ∈ c. The resultant system of n + 1 equations
defines, via (50), an unique equivalence class of affine map-
pings from R

m to R
d . Consequently, [̃gc]∼ = [˜fs]∼, since

these classes contain n-rank affine maps that hold the same
n + 1 linear equations. Thus, by the definition of distortion
measures

D(dgc) = D(gc) = D( fs) = D(d fs) . (91)

According to (90), the proof is completed by taking a
weighted sum of the left-handed and right-handed sides of
(91), over all simplices s ∈ S . ��

Broadly speaking, subsequent refinements of a simplicial
map f form a series of map representations in increas-
ing resolutions, i.e., f is represented with respect to an
increasing number of simplices with diminishing sizes. In
this context, Theorem 9.1 establishes an important prop-
erty of a multi-resolution invariance of volume-weighted

distortion energies. In order to formulate a more gen-
eral multi-resolution invariance, we define an equivalence
between simplicial complices and simplicial mappings:

Definition 9.3 Two simplicial complices C1 = (C1,U1, �1)

and C2 = (C2,U2, �2) are equivalent if both are refinements
of some simplicial complex S = (S,V, �). Similarly, sim-
plicial maps f1 and f2 of C1 and C2 are called equivalent if
they are refinements of some simplicial map g of S.

Theorem9.1 leads to the following immediate conclusion:

Proposition 9.1 The values of volume-weighted distortion
energies ED( f ) and ED(g) are equal for two equivalent
simplicial maps f and g.

Practically, 3D models are often represented by a coarse
templatemesh, equippedwith an iterative procedure formesh
refining. This procedure is often called a subdivision scheme.
Numerous subdivision schemes for polygonal meshes have
been developed in geometric modeling for obtaining an effi-
cient multi-resolution representations of models.

Among many others, modeling of subdivision surfaces
includes tessellation schemes, also called linear subdivision
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schemes of triangularmeshes. These schemes produce equiv-
alent simplicial complices that induce equivalent simplicial
maps. For instance, in surface mapping tasks, each triangle τ

of a triangulated surface can be subdivided into four smaller
triangles through the edge midpoints of τ . A recent study of
[81] noticed that, in these scenarios, geometric distortions are
preserved during the transition betweenmultiple resolutions.
Theorem 9.1 and Proposition 9.1 generalize and prove for-
mally these finding for arbitrary linear subdivision schemes,
delineated over n-dimensional simplicial complices. Unfor-
tunately, we cannot employ Theorem 9.1 for more general
subdivisionmethods (non-linear), such as Loop [70] or trian-
gulatedCatmull-Clark schemes [106] (Fig. 20),where shapes
of subdivided surfaces differ from the shape of the origi-
nal surface. Nevertheless, as shown in Fig. 20, subdividing
maps between triangular meshes, via non-linear schemes,
either decreases values of distortion measures, or preserves
these values in a narrow range within their original values.
The qualitative explanation for this phenomena is addressed
below.

Common subdivision schemes are designed for attaining
smooth surfaces with a high triangulation quality. Usually,
mesh triangles become nearly regular after a number of
subdivision steps. This, in turn, leads to low conformal distor-
tions, due to the almost-identical shapes of obtained source
and target triangles. In particular, if each affine component
of a simplicial map f is a similarity transformation, then
σ1(d fs) = σ2(d fs) = · · · = σn(d fs) for all s ∈ S . There-
fore, in this case, conformal distortions (26) (27), (29) and
(30) attain their global minimum.

Isometry-based distortions are bounded by the ratio of
relative sizes of source and target domains. If these sizes
are the same, then, similarly to the conformal case, a subdi-
vision process is capable of decreasing isometric distortions
because it produces the same number of the source and target
simplices at each iteration. Otherwise, isometric distortions
should approach some lower bound. This bound depends on
the scaling factors and total number of simplices, presented
in the lowest resolution.

Clearly, using subdivision schemes for minimizing distor-
tions is not a practical approach because subdivision process
leads to an exponential growth in the number of simplices.

Nevertheless, according to the above property of simplex
subdivisions, one can first minimize distortion for simplicial
mapping of a coarse triangulation and then subdivide source
and target domains for obtaining a low distortion map in a
higher resolution without degrading the results. Moreover,
as shown by Fig. 20, values of most common distortions are
significantly reduced after few iterations of triangle subdivi-
sions.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s10851-021-01038-
y.
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Appendix A Computational Aspects

We are now in the position to deliver some detail on the
implementation.We explicitlywrite down in full matrix form
the main expressions that arise in Sect. 4.

Appendix A.1 Jacobian of Simplicial Map

First, assume a general scenario (45) in which dimensionsm
and d of the embedding spaces may differ from the simplex
dimension.

Let (v1, . . . , vn+1) be a oriented n-simplex s ∈ S. To sim-
plify our notations, we denote by vi an element of the vertex
set (vertex index) and by vi we denote the source coordinates
of that vertex. That is, if y is the source coordinate vector,
then vi � yvi

∈ R
m . In particular, by vi j we denote the j-th

coordinate of the point yvi
. We employ similar notations for

the target coordinates x, i.e., fs(vi ) = fs(vi ) = xvi , and
f (vi ) j denotes the j-th coordinate of the point xvi ∈ R

d .
Assuming that vertex coordinates are column vector, one

can then represent simplex s as a matrix Ms ∈ R
m×(n+1)

Ms �

⎛

⎜

⎜

⎜

⎜

⎝

v11 v21 · · · v(n+1)1
v12 v22 · · · v(n+1)2
...

... · · · ...

v1m v2m
... v(n+1)m

⎞

⎟

⎟

⎟

⎟

⎠

,

where the order of vertices (columns) reflects simplex orien-
tation. Then, the image of s under fs is represented by

Ms′ �

⎛

⎜

⎜

⎜

⎝

fs(v1)1 fs(v2)1 · · · fs(vn+1)1
fs(v1)2 fs(v2)2 · · · fs(vn+1)2

...
... · · · ...

fs(v1)d fs(v2)d · · · fs(vn+1)d

⎞

⎟

⎟

⎟

⎠

. (92)

Using hat functions (48), the expression for the map
becomes

fs(r) = Ms′hs(r), r ∈ conv(s),

where

hs(r) �
[

hv1(r) hv2(r) · · · hvn+1(r)
]� ∈ R

(n+1)×1 . (93)
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Let ∇hvi be the gradient of hvi , computed with respect to
r ∈ conv(s), then ∇hvi is constant in conv(s) and according
to (51)

dhvi = − η j

nVol(s)
∈ R

m×1 ,

where ηi is a normal vector defined in (51). Consequently,
the Jacobian matrix of hs(r), denoted by dhs , is given by

dhs = [dhv1(v) dhv2(v) · · · dhvn+1(v)
]� ∈ R

(n+1)×m ,(94)

and the Jacobian of fs is

d fs = Ms′ dhs, d fs ∈ R
d×m . (95)

Note that rank
(

d fs
) ≤ n. Therefore,d fs has atmostn non-

zero singular values σ1(d fs), . . . , σn(d fs). These singular
values can be used for computing n-dimensional distortions
of d fs . Equivalently, we can repeat the above computations
for the canonical representation ˜fs of the map for obtaining
the canonical form of the Jacobian, d ˜fs ∈ R

n×n . Jacobian
d fs and its canonical form have the same n singular values,

σ1(d ˜fs) = σ1(d fs), . . . , σn(d ˜fs) = σn(d fs) ,

so thatD ( ˜fs
) = D (σ1(d fs), . . . , σn(d fs)

)

for any distortion
D.

Appendix A.2 Distortion Energy Gradient

Assume the scenario (43) of equal dimensions, m = n = d.
Denote by J ∈ R

n×n the Jacobian matrix d fs of a simplicial
map f on a simplex s, and denote byUdiag(σ )V� the SVD
of J . According to [89] and [40] the derivation of a distortion
D, computed with respect to J , is given by

∇J D(J ) = Udiag
(∇σ D(σ )

)

V� . (96)

If Ms′ ∈ R
n×(n+1) is the matrix (92) of target coordinates

of s, then the derivation of ED with respect to Ms′ can be
written as:

∇Ms′ ED(Ms′) = Vol(s)dh∇Js D(Js) ∈ R
(n+1)×n , (97)

where Js denotes the Jacobian d fs[x] and dh is defined
according to (94). The gradient ∇Ex(x) ∈ R

n|V | of E is
computed with respect to the column vector x by laying ele-
ments of (97) into their positions in the column vector,

∇M ′
s
E(M ′

s) �→ ∇Ex(M
′
s) ∈ R

n|V | ,

and then ∇Ex(M ′
s) are summed for every simplex s ∈ S .

Note that (96) is also valid for the signed SVD represen-
tation of distortion measures, mentioned in Remark 2.1. See
the supplemental material for a more general computation of
∇xE .
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