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Abstract
Image registration under small displacements is the keystone of several image analysis tasks such as optical flow estima-
tion, stereoscopic imaging, or full-field displacement estimation in photomechanics. A popular approach consists in locally
modeling the displacement field between two images by a parametric transformation and performing least-squares estimation
afterward. This procedure is known as “digital image correlation” in several domains as in photomechanics. The present
article is part of this approach. First, the estimated displacement is shown to be impaired by biases related to the interpolation
scheme needed to reach subpixel accuracy, the image gradient distribution, as well as the difference between the hypothesized
parametric transformation and the true displacement. A quantitative estimation of the difference between the estimated value
and the actual one is of importance in application domains such as stereoscopy or photomechanics, which have metrological
concerns. Second, we question the extent to which these biases could be eliminated or reduced. We also present numerical
assessments of our predictive formula in the context of photomechanics. Software codes are freely available to reproduce
our results. Although this paper is focused on a particular application field, namely photomechanics, it is relevant to various
scientific areas concerned by image registration.

Keywords Image registration · Digital image correlation · Fattening effect · Savitzky–Golay filtering · Experimental
mechanics · Stereo-imaging · Optical flow

1 Introduction

Two images I and I ′ of a scene being given, image regis-
tration consists in estimating a bidimensional displacement
field φ which permits to map pixels from one image to the
corresponding pixels in the other image. Assuming that cor-
responding pixels have the same intensity, for any pixel x,
the following relation thus holds: I(x) = I ′(x + φ(x)).
When small displacements are sought (typically below one
pixel), the displacement field is often estimated locally by
imposing the preceding relation over corresponding sub-
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sets of the domains of I and I ′. While image registration
is the very first step of many image analysis tasks, the
case of small amplitude displacements is of particular inter-
est in optical flow estimation [11,12], disparity estimation
in stereoscopic imaging [9,31,33,34], or extensometry in
experimental mechanics [20,43], to mention some represen-
tative examples. Although we will focus our presentation
on displacement estimation in photomechanics, which is
a branch of experimental solid mechanics dedicated to
full-field measurements from images, many aspects of the
problem discussed in this paper are of general interest. How-
ever, in this latest application domain, no occlusions are
present, in contrast to stereoscopic imaging or optical flow
estimation.

1.1 Problem Statement

In photomechanics, digital image correlation (DIC) [20,43]
is of prime interest to measure displacement fields on the
surface or in the bulk of materials subjected to thermo-
mechanical loads. The term DIC equally refers to methods
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which are based on cross-correlation (CC), on sumof squared
differences (SSD), or on normalized CC or SSD as well [27].
DIC methods are based on two images I and I ′ of the sur-
face of the specimen taken before and after deformation,
respectively. The specimen shall be marked beforehand with
a contrasted random pattern, called a speckle pattern, as
shown in Sect. 3. The aim is to retrieve the displacement
field u such that for any x, I(x) = I ′(x+u(x)). Strain fields
are then deduced by differentiation. These fields are used
to observe various phenomena, which occur on the surface
of deformed specimens, and which are revealed by displace-
ment or strain heterogeneities. They can eventually be used to
identify parameters governing constitutive equations, which
are then used to design structural components [19]. It is there-
fore of prime importance to retrieve displacement and strain
maps affected by the lowest possible measurement errors,
so that the resulting identified parameters are themselves as
reliable as possible. The displacement field usually features
values well-below one pixel. The so-called local subset-
based DIC consists in registering I ′ on I by optimizing some
criterion as the above-mentioned CC or SSD over subsets of
the image domains. These criteria being equivalent under
mild assumptions [27], we focus on the sum of squared dif-
ferences (SSD), which is also used in block matching for
stereoscopic imaging [31]. Since I and I ′ are known only
at integer pixel coordinates and since subpixel accuracy of u
is sought, interpolation is required. In order to estimate the
displacement u at a pixel x, the following SSD, defined over
a subset Ωx of the image of the specimen surface centered
at x, is minimized with respect to a displacement φx defined
over Ωx:

∑

xi ∈Ωx

(I (xi ) − Ĩ ′ (xi + φx (xi )
))2

(1)

Here, Ĩ ′ denotes a continuous interpolation of I ′ (I ′ being
sampled at integer coordinates), and Ωx is a set of M pixels
(x1, . . . , xM ). Minimization is performed with respect to a
displacement field φx expected to approximate the actual
unknown displacement u over Ωx. We do not consider a
weighted SSD criterion, but the formulas in the remainder of
the paper would easily adapt.

An estimation φ(x) of the displacement field over the
whole specimen surface is eventually obtained by taking,
at any pixel x, the value of φx at the center of the subset Ωx.

Displacement estimation is an ill-posed problem because
of under-determination. Indeed, at each pixel, a bidimen-
sional displacement must be retrieved. Moreover, infor-
mation is lost from the component of the displacement
orthogonal to the image gradient. This is the so-called
aperture problem [11,12]. Consequently, in experimental
mechanics (and in general applications as well [7]), the dis-
placement φx is usually sought as the linear combination

of N shape (or basis) functions (φ j )1≤ j≤N , such that the
parameters (λ j )1≤ j≤N minimize

SSD (λ1, . . . , λN )

=
∑

xi ∈Ωx

(
I (xi ) − Ĩ ′

(
xi + ∑N

j=1 λ jφ j (xi )
))2

(2)

It may be noted that classic ways to deal with the aperture
problem are either to consider a constant displacement φx

over Ωx and a first-order Taylor expansion of the preceding
equation, giving fast approaches à la Lucas-Kanade [25], or
to consider global smoothing with regularization constraints,
giving approaches à la Horn-Schunck [21]. In experimental
mechanics, it is often preferred to numericallyminimize SSD
because an accurate estimation of φ is required and setting
the hyperparameter involved by regularization is not an easy
task, which rules out such approaches.

From now on, we assume that Λ = (λ1, . . . , λN )T mini-
mizes the expression of SSD given by Equation 2, and φx =∑N

j=1 λ jφ j denotes the corresponding local displacement
field. For example, as recalled in [5], zero-order shape func-
tions are such that N = 2 and φ1(x) = (1 0)T , φ2(x) =
(0 1)T , giving a constant φx overΩx. First-order shape func-
tions are such that N = 6 and functions φ3(x) = (x 0)T ,
φ4(x) = (0 x)T , φ5(x) = (y 0)T , φ6(x) = (0 y)T are
added to φ1 and φ2. Second-order shape functions are such
that N = 12 and embed the following additional functions:
φ7(x) = (x2, 0)T , φ8(x) = (xy, 0)T , φ9(x) = (y2, 0)T ,
φ10(x) = (0, x2)T , φ11(x) = (0, xy)T , φ12(x) = (0, y2)T .

The origin of the axis is often the center of the subset Ωx,
so that the displacement estimated at x by minimizing the
SSD criterion over Ωx is given by φ(x) = φx(0, 0) =
(λ1, λ2)

T for any order. Moreover, one can see that first-
and second-order shape functions satisfy ∂φx/∂x(0, 0) =
(λ3, λ4)

T and ∂φx/∂ y(0, 0) = (λ5, λ6)
T .

The displacement field is supposed to be smooth enough
so that approximating u by φ makes sense. In particular,
no occlusions (an object hide the part of another object in
stereoscopy) or missing parts (as a mechanical fracture) are
allowed. Displacement is locally invertible if the mapping
from x to x + φ(x) has a non-singular Jacobian matrix,
thanks to the inverse function theorem. In the case of poly-
nomial shape functions, the determinant of this matrix at
the center of the subset is (1 + λ3)(1 + λ6) − λ4λ5 =
1+λ3+λ6+λ3λ6−λ4λ5. Of course, zero-order shape func-
tions (corresponding to simple translations) give invertible
displacement since, in this case, λi = 0 for i ∈ {3, 4, 5, 6}
and the determinant is non-zero. Higher-order shape func-
tions also yield locally invertible displacement fields if the
λi ’s are small with respect to 1, which holds true under the
classic small strain hypothesis in photomechanics.
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1.2 Motivation

The motivation of our work is the observation that, in
photomechanics, displacement fields are often impaired by
spurious small fluctuations. These fluctuations are often
believed, in this community, to be caused by sensor noise,
interpolation bias, or the numerical scheme minimizing the
DIC criterion. Nevertheless, recent works consider the ran-
dom marking on the surface of the specimen [14,24,45], in
addition to the aforementioned causes, the authors of [10]
coining the term pattern-induced bias. From a different per-
spective, it is known that the local parametric estimation
of a displacement field is intrinsically biased, the retrieved
displacement being merely the convolution of the true dis-
placement by a Savitzky–Golay filter [36]. In this latter
approach, specimen marking does not play any role, which
is contradictory with the presence of a pattern-induced bias.
The main motivation of this study is thus to see if this con-
tradiction can be removed.

1.3 Contributions

The goal of the present paper is to provide a theoretical basis
for these different viewpoints and thus to show that they can
coexist. More precisely, we shall give the relation between
the retrieved Λ (thus, the retrieved displacement φ) and the
actual unknown displacement u over any subset Ωx. By
revisiting papers dealing with disparity estimation in stereo-
imaging [1,9,31,34], we show in Sect. 2 that the estimation
of Λ is mainly the sum of two terms, namely a term depend-
ing on the unknown displacement u and the approximation
induced by the shape functions, and a term caused by the
interpolation error. We propose a characterization of these
terms, which actually depend on the gradient distribution
over the imaged specimen. This unifies the points of view of
stereoscopy (fattening effect) and photomechanics (pattern-
induced bias). In Sect. 3, numerical experiments validate the
theoretical developments and assess their limitations. To limit
the size of the paper, we discuss how sensor noise propagates
from the images to the estimated displacement field in a sep-
arate companion research report [42].

1.4 RelatedWork

Stereoscopy and photomechanics share the same objective,
namely estimating displacement fields very accurately. The
proposed contribution echoes different papers from these
research areas.

First, the proposed approach relies on the calculation pre-
sented in [31] (and, to some extent, in [9]) in the context
of disparity estimation in stereo-imaging. In this research
field, disparity plays the role of the displacement field con-
sidered in the present paper. On the one hand, disparity may

be estimated at any pixel as a constant monodimensional dis-
placement between small patches extracted from the stereo
image pair. Indeed, disparity is collinear with a given direc-
tion, since images are rectified so that the epipolar lines are
parallel to each other. In this context, the authors of [9,31]
give predictive formulas for quantifying the fattening effect,
i.e., the bias in disparity estimation caused by image gradient
distribution. On the other hand, in experimental mechan-
ics, local non-constant displacements are estimated as linear
combinations of shape functions and they are not constrained
to be collinear with a given direction. The main difference
with disparity is that displacement fields are usually smooth
and have tiny fluctuations, the strain components (defined
from the partial derivatives of the displacement) being below
10−2 for many materials and load intensity. Gradient distri-
bution is also likely to affect displacement estimation, giving
pattern-induced bias. A first attempt at characterizing this
bias in photomechanics is available in [24].

In addition to pattern-induced bias or fattening effect, the
interpolation scheme required for registration is certainly a
source of error. It is a common assumption in stereo-imaging
that the input images satisfy Shannon–Nyquist sampling con-
ditions, cf. [9,31,34]. This involves that continuous images
can be perfectly interpolated from the Fourier coefficients
without any interpolation bias. However, it is mentioned
in [29,40] that aliasing, although hardly noticeable to the
naked eye on the raw input images, may strongly affect the
estimated displacement and strain fields in photomechanics.
This motivates the use of bilinear or bicubic interpolation
schemes in this field [43] instead of Fourier interpolation.
The drawback is that Ĩ ′ matches I ′ only at integer pixel coor-
dinates: non-integer pixel coordinates are thus affected by
interpolation error, as numerically illustrated in [6]. Seeing
interpolation as a convolution filter, the authors of [35] have
proposed a characterization of the interpolation-induced bias
giving rise to the famous “S-shape function”. The authors
of [38] reduce the interpolation bias by sampling the sub-
set Ω at non-integer pixels.

As mentioned in the introduction, the most popular
approach in experimental mechanics is certainly to locally
approximate the displacement field by a linear combina-
tion of shape functions, which may in turn undermatch the
true displacement. This is another source of error discussed
in [36], where it is shown that the retrieved displacement field
is the convolution of the true displacement with a Savitzky–
Golay filter characterized by the order of the shape functions
and the size of the subset. This characterization is used in [14]
and [46] to define some metrological parameters, and in [16]
to restore displacement fields through a dedicated deconvo-
lution procedure.
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1.5 Notation and Reminder

In what follows, 〈·, ·〉 and | · | denote the bidimensional
Euclidean product and norm, respectively. The gradient of
any 2D function is denoted by ∇. We identify any vector
with the corresponding column matrix, in boldface letters.
The transpose of any matrix A is denoted by AT .

We denote by O Landau’s “big-O” for a variable tending
to 0. We recall that if f and g are 2D-valued functions, f =
O(|g|) means that for some K > 0, any small enough x
satisfies |f(x)| ≤ K |g(x)|. If f = O(|g|) and A is some two-
column matrix, then Af = O(|g|) and in particular 〈h, f〉 =
O(|g|) for any constant 2-D vector h.

In the remainder of this paper, we will make use of par-
tial derivatives of interpolated 2-D functions. While some
interpolation schemes, such as bilinear interpolation, do not
provide us with derivatives at integer pixel coordinates, it
should be noted that derivatives of the interpolated functions
will be calculated at points like xi + φ(xi ), xi being an inte-
ger pixel coordinate. In most situations, φ(xi ) has a subpixel
value, thus xi +φ(xi ) has a non-integer value and the deriva-
tives are well-defined.

2 Estimating Displacements byMinimizing
SSD

This section gives a closed-form expression of the displace-
ment φ estimated by minimizing the SSD criterion (defined
in Equation 2) as a function of the actual unknown displace-
ment u. The aim is to emphasize the role of systematic errors
caused by image texture and interpolation scheme. Non-
noisy images are considered in this section. Images affected
by signal-dependent noise are investigated in a separate
research report [42].

Since the present section deals with the minimization
problem at a given pixel x and in order to simplify nota-
tions, we do not write the index x to remind that the subset is
centered at a pixel x, and we simply write Ω and φ instead
of Ωx and φx.

2.1 Relation Between Retrieved and Actual
Displacement Fields

The goal here is to express Λ as a function of the images I
and I ′, of the interpolated continuous image Ĩ ′, and of the
unknown displacement field u.

By definition, Λ = (λ1, . . . , λN )T is a stationary point of
the SSD given by Equation 2. For any j ∈ {1, . . . , N }, taking
the derivative with respect to λ j thus gives:

∑

xi ∈Ω

(I (xi ) − Ĩ ′ (xi + φ (xi ))
)

· 〈∇Ĩ ′ (xi + φ(xi )) ,φ j (xi )
〉 = 0 (3)

Let δ be the difference between the unknown displace-
ment field and the retrieved one, such that for any xi ∈ Ω ,
δ(xi ) = u(xi ) − φ(xi ). It quantifies the undermatching of
shape functions mentioned in [36].

First,

I(xi ) − Ĩ ′ (xi + φ(xi )) = (I(xi ) − I ′ (xi + φ(xi ))
)

+ (I ′ (xi + φ(xi ))

−Ĩ ′ (xi + φ(xi ))
)

(4)

By definition of u,

I (xi ) − I ′ (xi + φ(xi )) = I ′ (xi + u(xi ))

−I ′ (xi + φ(xi )) (5)

A first-order Taylor series expansion allows writing:

I (xi ) − I ′ (xi + φ(xi ))

= 〈∇I ′ (xi + u (xi )) , δ (xi )
〉 + O

(
|δ (xi ) |2

)
(6)

Denoting byDI ′ = I ′− Ĩ ′ the interpolation error (equal to 0
at integer coordinates), we conclude from Equation 4 that

I(xi ) − Ĩ ′ (xi + φ(xi )) = 〈∇I ′ (xi + u(xi )) , δ(xi )
〉

+DI ′ (xi + φ(xi )) + O(|δ(xi )|2)
(7)

Second, another Taylor series expansion gives:

∇I ′ (xi + φ(xi )) − ∇I ′ (xi + u(xi ))

= −δ(xi )
T HI ′ (xi + φ (xi )) δ (xi ) + O

(
|δ (xi ) |3

)
(8)

= O
(
|δ (xi ) |2

)
(9)

where HI ′ (xi + φ(xi )) is the Hessian matrix of I ′ at xi +
φ(xi ).

Consequently,

∇Ĩ ′ (xi + φ(xi )) = ∇I ′ (xi + u(xi ))

+
(
∇Ĩ ′ (xi + φ (xi )) − ∇I ′ (xi + φ(xi ))

)

+ (∇I ′ (xi + φ(xi )) − ∇I ′ (xi + u(xi ))
)

= ∇I ′ (xi + u(xi )) − D∇I ′ (xi + φ(xi ))

+O
(
|δ (xi ) |2

)
(10)

whereD∇I ′ = ∇I ′−∇Ĩ ′ is the gradient interpolation error.
Plugging Equations 7 and 10 into Equation 3 gives:

∑

xi ∈Ω

(〈∇I ′ (xi + u (xi )) , δ (xi )
〉 + DI ′ (xi + φ (xi ))
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+O
(
|δ(xi )|2

))
×

〈
∇I ′ (xi + u (xi )) − D∇I ′ (xi + φ (xi ))

+O
(
|δ (xi ) |2

)
,φ j (xi )

〉
= 0 (11)

For any i ∈ {1, . . . , M} and j ∈ {1, . . . , N }, let Lu
i, j =〈∇I ′ (xi + u(xi )) ,φ j (xi )

〉
, such that Lu is a M × N matrix.

We eventually obtain:

∑

xi ∈Ω

(
Lu

i, j

〈∇I ′(xi + u(xi )), δ(xi )
〉 + Lu

i, jDI ′ (xi + φ(xi ))

+O(|δ(xi )|2) + O (|D∇I ′ (xi + φ(xi )) | · |δ(xi )|
)

+O (|DI ′ (xi + φ(xi )) | · |D∇I ′ (xi + φ(xi )|)
)

+O (|DI ′ (xi + φ(xi )) | · |δ(xi )|
)) = 0 (12)

or in a simpler way:

∑

xi ∈Ω

Lu
i, j

〈∇I ′(xi + u(xi )), δ(xi )
〉

+
∑

xi ∈Ω

Lu
i, jDI ′ (xi + φ(xi ))

+O
(
|δ|2

)
+ O (|DI ′| · |D∇I ′|) + O (|DI ′| · |δ|)

+O (|D∇I ′| · |δ|) = 0 (13)

where O(|f |) denotes ∑
xi ∈Ω(O|f(xi )|).

Since δ(xi ) = u(xi ) − φ(xi ) = u(xi ) − ∑N
k=1 λkφk(xi ),

the preceding equation gives:

∑

xi ∈Ω

Lu
i, j

〈∇I ′(xi + u(xi )),u(xi )
〉 −

∑

xi ∈Ω

Lu
i, j

N∑

k=1

λk Lu
i,k

+
∑

xi ∈Ω

Lu
i, jDI ′ (xi + φ(xi ))

+O(|δ|2) + O (|DI ′| · |D∇I ′|) + O (|DI ′| · |δ|)

+O (|D∇I ′| · |δ|) = 0 (14)

If we denote by G the vector of components Gi =〈∇I ′(xi + u(xi )),u(xi )
〉
for any i ∈ {1, . . . , M}, we obtain

with Equation 14 the following matrix relation:

(
Lu)T LuΛ = (

Lu)T G + (
Lu)T DI ′

+O
(
|δ|2

)
+ O (|DI ′| · |D∇I ′|) + O (|DI ′| · |δ|)

(15)

Matrix (Lu)T Lu is invertible as soon as the columns of
Lu are linearly independent (it is a Gramian matrix), which
holds if the φ j form a valid basis and if the gradient is not
equal to zero over the whole subset Ω . We assume in the
following that these assumptions hold.

We have finally demonstrated the following theorem.

Theorem 1 If Λ minimizes the SSD criterion of Equation 2
registering image I ′ over I, then the following equality
holds:

Λ =
((

Lu)T
Lu

)−1 (
Lu)T G +

((
Lu)T

Lu
)−1 (

Lu)T DI ′

+O
(
|δ|2

)
+ O (|DI ′| · |D∇I ′|) + O (|DI ′| · |δ|)

(16)

where u is the actual displacement field, and for any i ∈
{1, . . . , M} and j ∈ {1, . . . , N }, the following nota-
tions hold: Lu

i, j = 〈∇I ′ (xi + u(xi )) ,φ j (xi )
〉
, Gi =〈∇I ′(xi + u(xi )),u(xi )

〉
, DI ′ = I ′ − Ĩ ′, D∇I ′ = ∇I ′ −

∇Ĩ ′, Ĩ ′ denotes the interpolation of I ′ at non-integer coor-
dinates, and δ = u − φ.

With this presentation, it is not straightforward to see how
the estimation of Λ is affected by a systematic error.

Let us now decompose (for instance, in the least-squares
sense) the unknown, true displacement u over the basis func-
tions (φk). We introduce the N -dimensional vector Λu =
(λu1 , . . . , λ

u
N )T such that u = ∑N

k=1 λuk φk + ε where
ε is the residual in the decomposition of u over the
basis (φk)k∈{1,...,N }. Consequently, for any i ∈ {1, . . . , M},

Gi =
N∑

k=1

λuk
〈∇I ′ (xi + u (xi )) ,φk (xi )

〉

+ 〈∇I ′ (xi + u (xi )) , ε (xi )
〉

(17)

If we denote by E the vector of components Ei =〈∇I ′(xi + u(xi )), ε(xi )
〉
, we obtain G = LuΛ + E. Con-

sequently, Theorem 1 gives the following corollary.

Corollary 1 If Λ minimizes the SSD criterion of Equation 2
registering image I ′ over I, then the following equality
holds:

Λ = Λu +
((

Lu)T Lu
)−1 (

Lu)T E +
((

Lu)T Lu
)−1 (

Lu)T DI′

+O
(
|δ|2

)
+ O (|DI′| · |D∇I′|) + O (|DI′| · |δ|)

(18)

with, in addition to the notations of Theorem 1, Ei =〈∇I ′(xi + u(xi )), ε(xi )
〉

for any i ∈ {1, . . . , M}, where ε

is the component of u out of the basis (φk).

2.2 Discussion

Skipping second-order terms from Theorem 1 gives:

Λ =
((

Lu)T
Lu

)−1 (
Lu)T G +

((
Lu)T

Lu
)−1 (

Lu)T DI ′

(19)
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and from Corollary 1:

Λ = Λu +
((

Lu)T Lu
)−1 (

Lu)T E +
((

Lu)T Lu
)−1 (

Lu)T DI′ (20)

It is easy to see that if interpolation is perfect (DI ′ = 0),
and if the function basis is expressive enough to perfectly
represent the true displacement u (E = 0) or at least if the
degree of the polynomial basis is large enough (E � 0) , then
Λ is equal to the sought Λu.

These assumptions are, however, optimistic. They are dis-
cussed in the remainder of this section.

2.2.1 Interpolation Bias

In Equation 19, the term ((Lu)T Lu)−1(Lu)TDI ′ quantifies
the effect of subpixel interpolation error. Since the under-
lying image I ′ is unknown, it is not possible to bound a
priori this error, except if some additional information is
available. For instance, well-sampled images satisfying the
Shannon–Nyquist condition give no interpolation error when
using Fourier interpolation as in [31,44] and in this case,
DI ′ = 0. As discussed in the introduction, real images from
photomechanical experiments probably do not satisfy these
hypotheses.

It should be noted that most image interpolation schemes
(such as Fourier, bilinear, bicubic, or Lanczos interpolations)
are actually linear, in the sense that any interpolated value
is a weighted mean of image values at integer pixel coordi-
nates [13,23]. For any x ∈ R

2, there exists a rowmatrix P(x)
of size M such that the interpolation of I ′ at x is given by
Ĩ ′(x) = P(x)I ′, whereI ′ momentarily denotes thematrix of
image values reshaped as a column vector. For instance, row-
vector P(x) has four nonzero entries in bilinear interpolation,
sixteen in bicubic or bicubic spline interpolation [13,23],
which are the most popular schemes in photomechanics.

The interpolation bias thus writes:

((
Lu)T

Lu
)−1 (

Lu)T
(I − P(x)) I ′ (21)

It has been derived by another approach in [2] (refin-
ing [30,43]), and experimentally assessed in [3]. It can be
noted that the image gradient is involved in Lu and affects
the interpolation bias. While interpolation error may be
neglected (either by assuming the Shannon–Nyquist con-
dition to be satisfied or by using high-order interpolation
schemes), the next section deals with the so-called “under-
matched subset shape functions” which potentially gives
pattern-induced bias.

2.2.2 Undermatched Shape Functions and Pattern-Induced
Bias

In Equation 19, the term ((Lu)T Lu)−1(Lu)TG links Λ with
the gradient of I ′ and the actual displacement u. Let us recall
that, for any i ∈ {1, . . . , M} and j ∈ {1, . . . , N },

Lu
i, j = 〈∇I ′ (xi + u (xi )) ,φ j (xi )

〉
(22)

Gi = 〈∇I ′ (xi + u (xi )) ,u(xi )
〉
. (23)

and

Ei = 〈∇I ′ (xi + u (xi )) , ε (xi )
〉
. (24)

We can see that we find again the well-known aperture prob-
lem: only the displacement component collinear with the
image gradient plays a role in Gi . Moreover, Theorem 1
(Corollary 1, respectively) shows that each component (the
error on each component, respectively) of Λ is a weighted
mean ofGi (of the undermatching error E, respectively), the
weights being proportional to the squared components of the
gradient along the shape functions (here, ((Lu)T Lu)−1 acts
as a normalization).

For didactic purposes, we explicit the relation in a sim-
ple, yet realistic case, where displacements is sought as a
pure translation along the x-direction. This situation cor-
responds to disparity estimation in stereo-imaging with
rectified images. We have u(xi ) = (u(xi ) 0)T , N = 1 and
φ1(x) = (1 0)T . In this case, Lu = (I ′

x (xi + u(xi )))1≤i≤M

is a column-vector, and:

((
Lu)T

Lu
)−1

(Lu)TG =
∑M

i=1

(I ′
x (xi + u(xi ))

)2
u(xi )

∑M
i=1

(I ′
x (xi + u(xi ))

)2

(25)

where I ′
x denotes the partial derivative of I ′ along direction

x .
In this case, the term related to the interpolation error

simplifies into:

((
Lu)T

Lu
)−1 (

Lu)T DI ′ =
∑M

i=1 I ′
x (xi + u (xi )) DI ′ (xi )

∑M
i=1

(I ′
x (xi + u (xi ))

)2

(26)

When u = (u, 0) is a constant displacement, Equa-
tion 25 simplifies to u. This observation is consistent with
Corollary 1 since in this case, the displacement is per-
fectly represented by the basis function φ1 as, for any x,
u(x) = u φ1(x).

It should be noted that Equation 25 is exactly the rela-
tion given in [1,31]. When the sought displacement is not
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constant overΩ , it is a weighted mean of the actual displace-
ment, the weights being the squared image derivatives. This
justifies the well-known fattening effect in stereo-imaging
(also called adhesion effect in [9]): points lying in the neigh-
borhood of edges have a disparity essentially governed by
the edge points, which have large gradient values. Fatten-
ing effects can be seen for example in [31,34]: foreground
objects (which have a larger disparity than the background)
appear fatter than they are because background pixels near
their edges inherit their disparity.

In experimental mechanics the relevant formula is given
byTheorem1.The estimated displacement field given byΛ is
biased since it is a weighted sum of the actual displacement
at the pixels belonging to the subset, the weights increas-
ing with the squared gradient at the pixels (more precisely,
with the squared component of the gradient collinear with
the shape functions). In particular, the displacement returned
at the center of the considered subset is essentially the aver-
age of the actual displacement taken at high-gradient points,
even if the actual displacement is different at the consid-
ered point. Although this corresponds to the intuition, we
are not aware of earlier papers giving a rigorous description
of the phenomenon in the context of experimental mechan-
ics. As a consequence, we keep on calling this phenomenon
“pattern-induced bias” after [10], since the expression “fat-
tening effect” does not seem to be adequate in experimental
mechanics, nothing really becoming “fatter”.

Note that the relation between Λ andG in Theorem 1 can
be seen as a generalized convolution, with a spatially varying
kernel.

2.3 From Pattern-Induced Bias to Savitzky–Golay
Filtering

The authors of [36] claim that the estimated displacement
is simply the convolution product between the true dis-
placement and the Savitzky–Golay (SG) kernel (a low-pass
filter [26,32]), causing the so-called matching bias [14]. The
SG filter only depends on the degree of the polynomial shape
functions and on the size of the considered subset Ω [32]. In
particular, it does not depend on the gradient of the underly-
ing image. Moreover, the discussion of Sect. 2.2.2 concludes
that the relation between the estimated displacement and the
true one can be seen as a convolution with a spatially varying
kernel. The claim of [36], backed by results from [14] or [16],
therefore seems to contradict Theorem 1 and pattern-induced
bias discussed in the preceding section. In the remainder of
this section, we explain how these two viewpoints can be
accomodated.

2.3.1 The Case of Stationary Random Patterns

To establish the relationwith the SGfilter, the ground hypoth-
esis of [36] is that, with our notations, φ minimizes

∑

xi ∈Ωx

|u (xi ) − φ (xi )|2 (27)

over a subset Ωx centered at pixel x, for any x. Let us write
for a while the x- and y-components of φ as:

φx (x) =
∑

0≤i+ j≤d

αi, j x i y j (28)

φy(x) =
∑

0≤i+ j≤d

βi, j x i y j (29)

where d is themaximum degree of the shape functions. Thus,
λ1 = α0,0, λ2 = β0,0, λ3 = α1,0, λ4 = β1,0, λ5 = α0,1,
λ6 = β0,1, etc.

With Jx = (1, x, . . . , xd , y, . . . , yxd−1, y2, . . . , y2xd−2,

. . . , yd)T ,α = (α0,0, α1,0, . . . , αd,0, α1,0, . . . , α1,d−1, α2,0,

. . . , α2,d−2, . . . , αd,0)
T , andβ = (β0,0, β1,0, . . . , βd,0, β1,0,

. . . , β1,d−1, β2,0, . . . , β2,d−2, . . . , βd,0)
T , Equation27writes:

∑

xi

(
u1 (xi ) − J T

xi
α
)2 +

(
u2 (xi ) − J T

xi
β
)2

(30)

Consequently, minimizing Equation 27 with respect to α

and β amounts to solving the normal equations J T α = u1

and J T β = u2 wherematrix J collects all columnvectors Jx.
In other words, α = (J J T )−1 Ju1 and β = (J J T )−1 Ju2.
Since the displacement estimated over the subset Ω is sim-
ply (λ1, λ2) = (α0,0, β0,0), each component of the retrieved
displacement is the convolution of the components of u by
a Savitzky–Golay [32] filter of order equal to the degree
of the shape functions and of support given by the dimen-
sions of Ω . With first- and second-degree shape functions,
the partial derivatives of the displacement field being given
by (λ3, λ4, λ5, λ6), they are also given by SG filters, as
explained in [26,32].

The justification that the sought φ minimizes Equation 27
is only based on heuristic arguments in [36]. We shall see
that the very specific nature of the speckle patterns used in
experimental mechanics permits to justify this claim.

Since I(xi ) = I ′ (xi + u(xi )), if we neglect interpolation
error and identify Ĩ ′ with I ′, we obtain the following first-
order approximation as in Equation 6:

I (xi ) − Ĩ ′ (xi + φ (xi ))

= 〈∇I ′ (xi + u (xi )) ,u (xi ) − φ (xi )
〉

(31)

Provided this first-order approximation holds (for instance
because an initial guess of the solution is available), mini-
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mizing the SSD criterion thus amounts to minimizing:

∑

xi ∈Ω

g2
i cos

2 (θi ) |u (xi ) − φ (xi )|2 (32)

with gi the norm of∇I ′(xi +u(xi )) and θi the angle between
∇I ′(xi +u(xi )) and the error u(xi )−φ(xi ). As can be seen,
this is not Equation 27. It can be noted that the component
of u − φ orthogonal to the gradient of I ′ does not play any
role, which is consistent with the preceding discussion about
the aperture problem. This was also mentioned in [24].

As explained in the introduction, specimens tested in
experimental mechanics are marked with random speckle
patterns which can be modeled as stationary textures. We
can thus safely assume that the gradient norms (gi )xi ∈Ω

are indentically distributed random variables, as well as the
angles (θi )xi ∈Ω , and that at each pixel xi , gi and θi are inde-
pendent. Nevertheless, these random variables are spatially
correlated. A common assumption is that spatial correla-
tion vanishes with the distance between pixels as in natural
images [37].

Let Xi = g2
i cos

2(θi ) |u(xi ) − φ(xi )|2 for any 1 ≤ i ≤
M . The classic law of large numbers does not hold here
because of spatial correlations. However, generalizations
such as Bernstein’s weak law of large numbers [8, Ex. 254
p. 67] still hold. Assuming that the variance of the Xi is
bounded, i.e., there exists c > 0 such that Var(Xi ) ≤ c, and
assuming also that spatial correlations vanish with distance,
i.e., Cov(Xi , X j ) → 0 when |xi − x j | → +∞, we obtain1:

Var

(
M∑

i=1

Xi

)
=

M∑

i=1

Var (Xi )

+2
M∑

i=1

∑

j∈[1,M]\Vi

Cov
(
Xi , X j

)

+2
M∑

i=1

∑

j∈[1,M]∩Vi

Cov
(
Xi , X j

)
(33)

where for any ε > 0, Vi is the set of indices j such that for
any i and j ∈ Vi , Cov(Xi , X j ) ≤ ε. Here, B\A denotes the
relative complement of a set Awith respect to B. Let Ni be the
cardinality ofN\Vi which is afinite set sinceCov(Xi , X j ) →
0 when |xi − x j | → +∞, and N = maxi Ni .

Since for any i, j , Cov(Xi , X j ) ≤ c byCauchy–Schwartz
inequality, the following upper bound holds:

Var

(
M∑

i=1

Xi

)
≤ Mc + 2M Nc + 2M2ε (34)

1 The proposed calculation is adapted from https://math.
stackexchange.com/questions/245327/.

Thus,

Var

(
1

M

M∑

i=1

Xi

)
≤ c/M + 2Nc/M + 2ε (35)

Chebyshev’s inequality implies that the random variable
1
M

∑M
i=1 Xi − 1

M

∑M
i=1 E(Xi ) tends to 0 in probability as

M → +∞.
In other words, this justifies that minimizing Equation 32

amounts to minimizing

M∑

i=1

E (Xi ) = E(g2)E
(
cos2(θ)

) ∑

xi ∈Ω

|u (xi ) − φ (xi )|2

(36)

as soon as the size M of the domain Ω is “large enough.”
Equation 35 states that for a given M , the approximation is as
tight as the bound c on the variance is small, or as the spatial
correlation of the image gradients quickly vanishes, giving a
small N .

2.3.2 Toward an Optimum Pattern with Respect to
Pattern-Induced Bias?

The result of the preceding section can be interpreted as fol-
lows: minimizing Equation 32 to estimate φ is similar to
minimizing Equation 27, provided that the size M of the sub-
set Ω is large enough. From Equation 35, this is all the more
valid as the speckle pattern is fine (giving quickly vanishing
spatial correlations, thus a small N for a given ε) and as the
variance of the Xi is small (giving a small c). Since Var(Xi )

is proportional to Var(g2
i cos

2(θi )) = E(g4
i )E(cos4(θi )) −

E2(g2
i )E2(cos2(θi )) = 3E(g4

i )/8 − E2(g2
i )/4 (assuming

that the θi are uniformly distributed in the interval (0, 2π),
which is sound with an isotropic speckle pattern, we indeed
obtain E(cos2(θ)) = 1/2 and E(cos4(θ)) = 3/8). As a con-
sequence,

Var
(

g2
i cos

2 (θi )
)

= 3Var
(

g2
i

)
/8 + E2

(
g2

i

)
/8 (37)

A fine pattern minimizing this quantity should have lower
pattern-induced bias. One can see that a concentrated gra-
dient distribution with a low gradient average value is of
interest. However, such a speckle pattern is still to be
designed.

2.3.3 Link with a Fattening-Free Criterion in Stereoscopic
Imaging

Disparity in stereo-imaging being a 1-Ddisplacement, θi = 0
in Equation 32 and gi = Ĩ ′

x (xi + u(xi )) where Ĩ ′
x denotes

the partial derivative of Ĩ ′ along the epipolar line.
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This motivates the authors of [1] to estimate φ by mini-
mizing the following weighted SSD criterion, denoted S̃SD
in what follows:

∑

xi ∈Ωx

(I (xi ) − Ĩ ′ (xi + φ(x))
)2

max
(|Ĩ ′

x (xi + u (xi )) |2, κ) (38)

where κ > 0 avoids divisions by zero.
In stereo-imaging, φ is sought as a constant displacement.

The solution of S̃SD minimizes
∑

i |u(xi ) − φ|2 and does
not depend on the image gradient. It is shown in [1] that esti-
mating φ by minimizing S̃SD at any pixel gives an estimated
displacement at x which is the mean of the u(xi ) over Ωx.
Interestingly, this is consistent with the preceding section,
since a zero-order Savitzky–Golay filter is a simple moving
average with a kernel constant over its domain.

3 Numerical Assessment

The goal of this section is to provide the reader with illus-
trative didactic experiments, and to assess the validity of the
predictive formulas given by Theorem 1 and Corollary 1.
We also discuss to what extent PIB can be eliminated or
decreased. In the proposed numerical assessments, the real
displacement fields are known, and we are able to compare
the estimated displacement to this ground truth. It should
be noted that the numerical scheme actually used to mini-
mize the SSD criterion over the subsets (Equation 2) (see,
e.g., [28]) is not important here. Nevertheless, the stopping
criterionmust be set carefully so that the stationarity assump-
tion, which is the ground of Sect. 2, is valid. In practice, we
use the Broyden–Fletcher–Goldfarb–Shanno (BFGS) quasi-
Newton method with a cubic line search implemented in
Matlab’s fminunc function.

Since the predictive formulas are based on the ideal, con-
tinuous images I and I ′ whose derivatives are required, we
shall first consider in Sect. 3.1 images and deformation fields
expressed as simple closed-form expressions. We also assess
the effect of gray-level quantization. Nevertheless, the true
derivatives of quantized images are, of course, unknown. Sec-
tion 3.2 dealswith synthetic speckle imageswhichmimic real
images used in experimental solid mechanics.

The numerical experiments proposed in this section can
be reproduced with datasets andMatlab codes available at
the following URL:
https://members.loria.fr/FSur/software/PIB/ The interested
reader can also easily modify the parameters and datasets for
further investigations.

20 40 60 80 100 120 140 160 180 200
x

5
10
15

y

Fig. 1 Synthetic image in deformed state defined by Eq. 40 (image in
reference state defined by Eq. 39 is not discernible to the naked eye)

3.1 Image Pairs Given by a Closed-Form Expression

In this section, we make use of images defined by closed-
form expressions in order to assess the proposed formulas in
a controlled experimental setting.

3.1.1 Displacement Estimation

We define the image I of the reference state and the image I ′
of the deformed state at any pixel of coordinates (x, y) as sine
waves by the following equations:

I(x, y) = 2b−1
(
1 + γ sin

(
2π (x + u(x))1.5 /p1.5

))
(39)

I ′(x, y) = 2b−1
(
1 + γ sin

(
2πx1.5/p1.5

))
(40)

where (x, y) spans a 200 × 15 pixel domain, b = 8 (so that
the gray level of both images spans an 8-bit range), γ = 0.9
is the contrast, p = 50 pixels governs the varying period
of the sine wave, and u(x) is the ground-truth displacement
field, supposed to be restricted along the x-axis See Fig. 1.
Note that in this section, images are not quantized over b bits.

We seek for a constant displacement field (φ, 0) on each
subset Ωx of size 15 × 15 pixels2 distributed along the x-
axis. The size of the subset is chosen in accordance with
the characteristic scale of the modulated sine wave giving
images I and I ′. Such a constant displacement corresponds
to zero-order shape functions. We therefore calculate at any
abscissa x the quantity φ(x) = (φ(x), 0) minimizing the
SSD criterion:

∑

xi ∈Ωx

(I (xi ) − Ĩ ′ (xi + φ(x))
)2

. (41)

The numerical assessment in the present section dealswith
a 1-D displacement along the x-axis in an imagewhich varies
only along the x-axis. The gradient is thus always collinear
with the displacement. Consequently, the aperture problem
manifests itself only because of vanishing image gradients;
there is no loss of information orthogonally to the gradient
as in the general 2-D case.

The 1-D displacement considered here is the case of inter-
est of stereoscopy. It is possible to also implement the S̃SD
criterion of [1], recalled in Sect. 2.3.3 above.We set the value
of κ to achieve the best trade-off between reducing the fat-
tening effect and numerical stability, see Sect. 3.2.5.
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Fig. 2 For displacement a) (constant displacement of 0.2 pixel): 1)
closed-form expression (first column), 2) bilinear interpolation (second
column), and 3) bicubic interpolation (third column). In each of these
three cases, the first row depicts, superimposed on the same graph: the
ground truth u, the displacement φ(x) estimated from SSD, the dis-
placement φ̃(x) estimated from S̃SD, the displacement predicted by

Theorem 1, and Savitzky–Golay filtering of u. In each of the three
cases, the second row depicts, superimposed on the same graph: the
differences (bias estimations) between u on the one hand, and dis-
placement retrieved with SSD, predicted displacement, displacement
retrieved with S̃SD, output of the SG filter on the other hand

In the SSD and S̃SD criteria, Ĩ ′ denotes a continuous
image. Since we use images given by closed-form expres-
sions, image values at non-integer pixels are available. Real
experiments require, however, to interpolate images. In this
illustrative experiment, we consider three possibilities: 1)
using Equation 40 which allows avoiding any interpolation
scheme (in this case we also use the closed-form expression
of the gradient in the quasi-Newton scheme), 2) using bilinear
interpolation, or 3) using bicubic interpolation.

We also consider two displacement fields: a) a constant
u(x) = 0.2 pixel, b) a low-frequency sine wave u(x) =
0.2 sin(2πx/q)where q = 90 pixels.We also discuss in [42]
the case of a high-frequency sine wave (not shown here). In
all cases, the largest displacement value is 0.2 pixel.

Figures 2 and 3 show various plots. Each of these figures
permits discussing displacement fields on the top and biases
(systematic errors) on the bottom, as a function of the inter-
polation scheme (from left to right: closed-form expression,
bilinear interpolation, and bicubic interpolation). Concern-
ing the displacement, we plot the ground truth u (thin green
line), the displacementφ(x) retrieved byminimizing theSSD
criterion (blue), the displacement φ̃(x) retrieved from the
modified criterion S̃SD defined in Equation 38 (red), the pre-

dicted displacement (cf. Theorem 1, yellow) and the filtering
of the ground-truth displacement by the Savitzky–Golay fil-
ter of order 0 and frame length 15 (purple). Concerning the
biases, we plot the differences between the ground truth dis-
placement on the one hand, and the retrieved displacement
with SSD, the predicted displacement, the retrieved displace-
ment with S̃SD, and the output of the SG filter on the other
hand.

Concerning the constant displacement a) in Fig. 2, since it
can be represented with zero-order shape functions, the error
ε (thus E) in Corollary 1 is null: no marking bias should
be noticed. With the closed-form expression of image I ′
(case 1), the interpolation error DI ′ is also null. It can be
seen, indeed, that all curves are superimposed in this case.
With bilinear interpolation (case 2), Theorem 1 predicts an
error term caused by the interpolation error. We can see that
the retrieved displacement fits well the prediction, the blue
and yellow curves being superimposed. We can also see that
correcting themarking bias (which is, here, non-existent) sig-
nificantly amplifies the interpolation error, giving the erratic
red curve. When looking closely at the curves showing
the biases, we can notice a small difference between the
retrieved bias and the predicted bias, which could probably
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Fig. 3 For displacement b) (sinewave of amplitude 0.2 pixel and period
90 pixels): 1) closed-form expression (first column), 2) bilinear inter-
polation (second column), and 3) bicubic interpolation (third column).
In each of these three cases, the first row depicts, superimposed on the
same graph: the ground truth u, the displacement φ(x) estimated from
SSD, the displacement φ̃(x) estimated from S̃SD, the displacement pre-

dicted by Theorem 1, and Savitzky–Golay filtering of u. In each of the
three cases, the second row depicts, superimposed on the same graph:
the differences (bias estimations) between u on the one hand, and dis-
placement retrieved with SSD, predicted displacement, displacement
retrieved with S̃SD, output of the SG filter on the other hand

be explained by higher-order error terms than the first-order
terms of the present calculation. With bicubic interpolation
(case 3), the interpolation error is very small, all the curves
being close to each other. With the constant displacement
considered here, we can see that interpolation still causes
a very small drift in the estimation, giving the increasing
bias. Correcting the marking bias with S̃SD does not give an
erratic red curve but a few spurious estimations can be seen.
Interpolation errors seem to be amplified.

Concerning the low-frequency sine displacement b) in
Fig. 3, it cannot be represented by zero-order shape functions,
thus marking bias should affect the retrieved displacement,
the error termE being non-null in Theorem 1.We can see that
with closed-form expression (case 1), thus no interpolation
error, the retrieved displacement fits perfectly the prediction,
the blue and yellow curves being superimposed. Themarking
bias causes departures from the ground truth displacement,
whose amplitude is governed by the gradient of the underly-
ing image, giving a rather chaotic bias curve. The marking
bias is perfectly removedwith the S̃SD criterion: the retrieved
displacement indeed fits the output of the SG filter, as pre-
dicted by the theory. With bilinear interpolation (case 2),
an additional interpolation error is predicted by Theorem 1,

although it is difficult to see a difference between the blue
and yellow curves. The retrieved displacement globally fits
the prediction.With bicubic interpolation (case 3), the curves
are close to case 1. When using the S̃SD criterion, we can
see that cases 1 and 3 fit well the predicted Savitzky–Golay
filtering (green and red curves are superimposed), but as for
displacement a), bilinear interpolation error (case 2) is ampli-
fied, giving an erratic red curve.

3.1.2 Effect of Quantization

In the preceding section, image intensity is not quantized.We
now perform experiments with quantized images in order
to illustrate its impact on the predictive formulas. Bicubic
interpolation is used in order to minimize interpolation bias,
as illustrated earlier. We perform the same experiment as the
one described in Fig. 3.

Figure 4 shows the result of displacement estimation by
minimizing SSD and S̃SD. The former estimation should
match the predicted one, and the latter should match the
output of SG filter. We can see that the proposed predic-
tive formulas are quite accurate as soon as quantization is
performed over 10 bits (the yellow and blue curves are super-
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Fig. 4 Effect of gray-level quantization. From left to right: 8-bit images, 10-bit images, 12-bit images, 14-bit images. First row: displacements.
Second row: biases (difference between the predicted or retrieved displacements and the ground truth displacement)

imposed), and that retrieving the output of the SG filter
with S̃SD requires to quantize image intensity over 12 bits
(so that red and purple curves are superimposed).

3.2 Speckle Patterns: Assessing the Prediction for
Pattern-Induced Bias

The previous section shows numerical assessments with
smooth images and simple ground-truth displacement fields.
The present section presents numerical assessments based on
speckle pattern images corresponding to typical usage cases
in experimental mechanics. BSpeckleRender software2 [41]
is used to render synthetic speckle images of size 500× 100
pixels: one image corresponds to a reference state and
another one corresponds to a deformed state. Speckles are
designed to mimic real patterns such as the ones that can
be seen in [22,38,39] for instance. The displacement field
u = (ux , uy) is given by the following closed formula:

{
ux = 0

uy = 0.5 cos
(
2π y−50

5+45x/500

) (42)

The speckle pattern is deformed along the y-direction, the
prescribed displacement being a sine wave along the x-
direction of maximum amplitude of 0.5 pixel, whose period
ranges from 5 pixels (x = 0) to 50 pixels (x = 500). Such
a deformation field is relevant in order to highlight the fre-
quency response of the SG filter, see [10,16–18] for instance.

2 We use BSpeckleRender_b which renders speckle images with pat-
terns of intensity at pixel x varying as exp(−4|x−x0|2/R2)with a center
x0 given by a Poisson point process and a random radius R, instead of
random black disks over a white background, so that the image gradient
is a smooth function.Matlab software code is available at the follow-
ing URL: https://members.loria.fr/FSur/software/BSpeckleRender/.

A 12-bit quantization is used, following the prescription
of Sect. 3.1.2. Note that these images are smaller than in
assessment datasets used in some recent works [14,15,17,18]
because of the time needed to render 12-bit images, and in
order to facilitate the reading of the graphs. Because of the
discrete nature of the rendered speckle images, interpola-
tion is also required. Bicubic interpolation is used, following
Sect. 3.1.1. Consequently, estimation error is likely to be only
caused by the ((Lu)T Lu)−1(Lu)TE term in Corollary 1.

Figure 5 shows two speckle images and the imposed
(ground truth) displacement field. Images (before and after
deformation) with the large speckle pattern are discussed
in Sect. 3.2.2. Section 3.2.3 concerns images with the fine
speckle pattern. The goal here is to compare the displacement
field retrievedwith SSDminimization to its counterpart given
by the predictive formula for the pattern-induced bias (PIB).
For didactic purpose, several values are tested for both the
subset size and the order of the shape functions. In the remain-
der of this section, we show the displacement maps (in each
direction) retrieved bySSDminimization, themaps predicted
by Theorem 1, the ground-truth (GT) displacement, and the
output of the Savitzky–Golay filtering of the GT displace-
ment. We also show a cross-section plot of the displacement
field along its middle-line y = 50 where GT displacement
is constant, either null along the x-direction, or equal to 0.5
pixel along the y-direction.

3.2.1 Influence of the Subset Size

Figure 6 shows the evolution of the difference between
the retrieved displacement and the output of the Savistzky–
Golay filter as a function of the subset size, for zero-order
shape functions used in stereoscopy. The results (not shown)
for first-order shape functions are similar. The fine speckle
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Fig. 5 Two speckle images
(size: 500 × 100 pixels) and
y-component uy of the
prescribed displacement field.
There is no displacement along
the x-direction (ux = 0). The
first image shows the large
speckle pattern discussed in
Sect. 3.2.2, and the second one
the fine speckle pattern of
Sect. 3.2.3
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Fig. 6 Fine speckle, zero-order shape functions. From left to right:
7×7, 19×19, 31×31, and 43×43 subsetΩ . On the top, displacement
following x-axis; on the bottom, displacement following y-axis (differ-

ence between retrieved displacement field and output of SG filter, and
cross section along the line y = 50)
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Fig. 7 Large speckle, 7×7 subsetΩ and zero-order shape functions. Displacement along x- (left) and y-axis (right), and corresponding cross-section
plots

pattern images are used here. As discussed in the fol-
lowing sections, the predictive formulas for the retrieved
displacement are quite accurate. These figures illustrate the
convergence of the retrieved displacement toward the output
of the SGfilter, as predicted in Sect. 2.3. It also illustrates that
PIB shows a large amplitude over areas where the gradient of
the displacement has a large value (here, on the left of the uy

displacement field). We can also see that large subsets give
very smooth displacement fields, the corresponding low-pass

SG filter having the same support as the subset (see [14,36]).
Such large subsets are not used in practice. Small subsets
are required to avoid a large Savitzky–Golay smoothing, but
they also give a potentially large PIB.

3.2.2 Large Speckle Pattern

Figure 7 shows the results for a subset Ω of size 7 × 7
and zero-order shape functions (that is, a constant displace-
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Fig. 8 Large speckle, 13×13 subsetΩ and first-order shape functions.
The cross-section plots show, from left to right and top to bottom, λ1,
λ3, λ5, λ2, λ4, λ6, such that the x-component of the displacement over

a subset (giving fields shown on the upper left) is λ1 + λ3x + λ5y and
the y-component (on the upper right) is λ2 + λ4x + λ6y

123



792 Journal of Mathematical Imaging and Vision (2021) 63:777–806

retrieved with SSD

50 100 150 200 250 300 350 400 450

20

40

60

80 -0.2

-0.1

0

0.1

0.2

predicted

50 100 150 200 250 300 350 400 450

20

40

60

80 -0.2

-0.1

0

0.1

0.2

output of SG filter

50 100 150 200 250 300 350 400 450

20

40

60

80 -0.2

-0.1

0

0.1

0.2

GT displacement

50 100 150 200 250 300 350 400 450

20

40

60

80 -0.2

-0.1

0

0.1

0.2

retrieved with SSD

50 100 150 200 250 300 350 400 450

20

40

60

80
-0.5

0

0.5

predicted

50 100 150 200 250 300 350 400 450

20

40

60

80
-0.5

0

0.5

output of SG filter

50 100 150 200 250 300 350 400 450

20

40

60

80
-0.5

0

0.5

GT displacement

50 100 150 200 250 300 350 400 450

20

40

60

80
-0.5

0

0.5

Fig. 9 Large speckle, 19 × 19 subset Ω and second-order shape functions. Displacement along x- (left) and y-axis (right)

ment is estimated over each subset). We can see that the
seemingly random fluctuations in the retrieved displacement
fields are actually caused by PIB (thus not by sensor noise)
and are well-predicted by our formulas. In particular, the
cross-section plots of the displacement maps confirm that the
seemingly randomfluctuations of the estimated displacement
along the SG filtering of the GT displacement are caused by
PIB, the retrieved and predicted curves being superimposed.
Interestingly, despite the null GT displacement along the x-
direction, the x-component of the retrieved displacement is
still affected by PIB. We can see that the amplitude of the
PIB is quite large compared to the true displacement. It can
be noticed that PIB is large where displacement gradient is
large (that is, on the left-hand side of the displacement field).
Since the retrieved displacement is a weighted mean of the
true displacement in the considered subset, PIB is indeed
likely to be larger if the displacement strongly varies within
the subset.

Figure 8 shows results for 13× 13 subsets and first-order
shape functions. It turns out that higher-order shape functions
require larger subsets, since numerical issues affect smaller
subsets (not shown here). With first-order shape functions,
Λ has six components. The first two components correspond
to the displacement φ(x) at the center of the subset Ωx and
can thus be compared to the convolution of the true displace-
ment with SG filter. The four other components correspond

to partial derivatives of the displacement field. They also
correspond to the output of (other) SG filters, as recalled in
Sect. 2.3.3 In all cases, we can see fluctuations of the esti-
mated displacement around the output of the SG filter, these
fluctuations being due to PIB. Because of the transfer func-
tion of the SG filter, the retrieved displacement field vanishes
for certain values. It has even a wrong sign, as discussed in
detail in [14]. It is quite surprising that the PIB give such
large spurious measurements.

Figures 9 and 10 show results for 19 × 19 subsets and
second-order shape functions. Even if second-order shape
functions are rarely used in commercial DIC software pro-
grams for experimental mechanics, it can be seen that
predictive formulas are still valid in this case.

3.2.3 Fine Speckle Pattern

Figures 11, 12, 13, 14 show the results of the same experi-
ments as in the preceding section, but with the fine speckle
pattern. Although such a pattern makes it difficult to reliably
estimate the image gradients, we can see that PIB is still accu-

3 It should be noted that these four components are the derivatives of
the local displacement field φx estimated over Ωx. In photomechanics,
the derivatives of the displacement field, which are related to strain
components, are rather computed from the derivatives of the global
displacement φ.
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Fig. 10 Large speckle, 19× 19 subset Ω and second-order shape functions. From left to right and top to bottom: λ1, λ3, λ5, λ7, λ9, λ11 concerning
x-displacement, and λ2, λ4, λ6, λ8, λ10, λ12 concerning y-displacement

rately predicted. With the same shape functions and subset
sizes, we can see that the fine speckle pattern gives a PIB
with a smaller amplitude, as discussed in Sect. 2.3.

3.2.4 A Remark on Checkerboard Patterns

While random speckle patterns have a huge popularity in
photomechanics, very recent papers show that checkerboard
patterns give less random noise in the retrieved displace-
ment, see [4,18]. The reason is that the average gradient norm
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Fig. 11 Fine speckle, 7 × 7 subset Ω and 0-order shape functions. Displacement maps along x- (left) and y-axis (right), and cross-section plots

within a subset has larger values thanwith any typical random
speckle patterns. Figure 15 shows a checkerboard pattern of
pitch equal to 6 (that is, it is made of juxtaposed black and
white squares of width 3 pixels). Such a pattern has been used
in the experimental assessment of [15,18]. In these papers,
less spurious fluctuations have been observed in the displace-
ment with checkerboard than with random speckle.

This is confirmed by Figs. 16 and 17 which show esti-
mation of the Λ parameters with checkerboards patterns,
with the same settings as in Figs. 7, 8 with large speckle
and 11, 12 with fine speckle. While predictive formulas are
not fully satisfied here, the curves being not perfectly super-
imposed, it can be noted that the amplitude of the spurious
fluctuations is much smaller than with speckle patterns. The
amplitude of the high-frequency spurious displacement on
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Fig. 12 Fine speckle, 13 × 13 subset Ω and first-order shape functions. Displacement maps along x- (left) and y-axis (right). Cross-section plots,
from left to right and top to bottom: λ1, λ3, λ5, λ2, λ4, λ6
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Fig. 13 Fine speckle, 19 × 19 subset Ω and second-order shape functions. Displacement maps along x- (left) and y-axis (right)

the x-component of the displacement is less than 5 10−3, an
order of magnitude smaller than with speckles. This high-
frequency phenomenon is caused by aliasing; it cannot be
seenwith large checkerboard pitches (not shownhere).More-
over, with such a fine pattern, the numerical estimation of the
gradient needed in the predictive formulas is certainly not
consistent. While spurious fluctuations cannot be seen, con-
trary to the fluctuations caused by random speckle patterns,
the PIB still plays a role, giving displacement fields which
do not fit the output of the SG filter, as can be seen in the
cross-section plots in Figs. 16 and 17 . The difference caused
by PIB reaches, however, values smaller than with random
speckle patterns.

This experiment illustrates that a periodic and fine pattern
such as a checkerboard gives a smaller difference with the
output of the SG filter than the classic speckle patterns.

3.2.5 Toward a PIB-Free SSD Criterion?

This section discusses the extent to which it is possible to get
rid of PIB, after Blanchet et al.’s approach [1]. We can see
from Sect. 2.3.3 that if φ minimizes the following GT-S̃SD

criterion:

∑

xi ∈Ωx

1

max
(
g2

i cos
2 (θi ) , κ

)
(I (xi ) − Ĩ ′ (xi + φ(x))

)2

(43)

(with the notations of Sect. 2.3.3), then it is also the least-
squares estimate of u over Ω . In this section, κ = 10−2 for
the large speckle pattern, and κ = 10−4 for the fine one.

Figure 18 shows the representative of results obtainedwith
the large speckle pattern. We can see that the displacement
retrieved with this criterion is much less impaired by the
spurious fluctuations caused by PIB. Here, it is possible to
estimate g2

i cos
2(θi ) since the GT displacement is known.

However, Fig. 19 shows that this approach is much less effi-
cient with the fine speckle pattern. The reason is that the
GT-S̃SD criterion requires an estimation of the gradient gi

andof the angle θi , which is less accuratewith thefine speckle
than with the smooth softly-varying speckle pattern. For the
same reason, similar results are obtained with the checker-
board pattern discussed in Sect. 3.2.4.

We now discuss two approaches to PIB-free estimation
which do not require the knowledge of the true displace-
ment u. In the present experiment, u is actually a 1-D
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Fig. 14 Fine speckle, 19× 19 subset Ω and second-order shape functions. From left to right and top to bottom: λ1, λ3, λ5, λ7, λ9, λ11 concerning
x-displacement, and λ2, λ4, λ6, λ8, λ10, λ12 concerning y-displacement

displacement along the x-axis. It is thus possible to use
Blanchet et al.’s approach to fattening-free block matching,
and estimate φ over Ωx by minimizing (again with Mat-
lab’s fminunc function) the following 1D-S̃SD criterion:

∑

xi ∈Ωx

(I (xi ) − Ĩ ′ (xi + φ(x))
)2

max
(|Ĩ ′

x (xi + φ(x)) |2, κ) (44)

where Ĩ ′
x denotes the partial derivative along x of the inter-

polated image I ′, an initial guess of φ being given by the
classic SSD criterion.

The result is shown in Figs. 20 and 21 (to be compared
to Figs. 18 and 19 ). PIB significantly decreases: 1D-S̃SD
gives a displacement that roughly follows the output of the
SG filter.
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Fig. 15 Checkerboard pattern

Nevertheless, realistic displacements in experimentalmechan-
ics are bidimensional. We also introduce and test the follow-
ing 2D-S̃SD criterion:

∑

xi ∈Ωx

(I (xi ) − Ĩ ′ (xi + φ(x))
)2

max
(|∇Ĩ ′ (xi + φ(x)) |2, κ) (45)

Figure 22 is representative of results generally obtained: this
approach onlymarginally allows us to decrease PIB, contrary
to the case of 1D-S̃SD.A slight decreasing of the amplitude of
PIB can be noticed. As noted earlier in the 1-D case, displace-
ment information is lost only at points where the derivative
of the image vanishes. On the contrary, in the 2-D case the
aperture problemsmanifests itself at any pixel since the com-
ponent of the displacement orthogonal to the gradient always
vanishes. This probably leads here to an incomplete correc-
tion of the criterion.

4 Conclusion and Open Questions

This paper discusses several bias sources in image registra-
tion with local parametric estimation via a sum of squared
differences criterion, with a focus on photomechanics. A pre-
dictive formula is proposed in Theorem 1 for biases caused
by interpolation and undermatched shape functions. These
sources of errors all depend on the gradient distribution in
the underlying images. In particular, the pattern-induced bias
(PIB), known as fattening effect in stereoscopic imaging,
is caused by the gradient distribution and by the difference
between the true displacement field and its local approxi-
mation by shape functions. In addition to these biases, the
retrieved displacement is affected by spatially correlated ran-
dom fluctuations caused by sensor noise propagation. This
point is discussed in [42].

Several results from the literature are extended or pre-
sented in a unifying way. In Sect. 2.3, we have also com-
pleted the contribution of [36] by establishing a rigorous
link between the estimated displacement and the true dis-
placement through the Savitzky–Golay (SG) filter, whose
parameters depends on the order of the shape functions and
on the size of the analysis subset. The link holds because of
the very random nature of speckle images.

A numerical assessment of the predictive formulas is
discussed as well. First, we have noticed that bicubic interpo-

lation gives biaseswell belowPIB in amplitude, in contrast to
bilinear interpolation. Second, it is shown that PIBmayhave a
large amplitude, either if zero-order (used in stereo-imaging)
or first- and second-order (used in DIC for experimental
mechanics applications) shape functions are used. This bias
term gives fluctuations around the output of the SG filter of
the true displacement. It is striking to note that these fluctua-
tions may have an amplitude of twice the true displacement.
As mentioned in Sect. 2.3, the effect of PIB is equivalent
to a spatially varying convolution. A fine understanding of
this question would permit to go beyond the deconvolution
procedure that is proposed in [16] in order to reduce the mea-
surement bias.

In experimental mechanics applications, defining a mark-
ing pattern which is optimal with respect to relevant metro-
logical criteria still remains an open question. Some guide-
lines are given in Sect. 3.2.5. In addition, first results
discussed in [18] show that checkerboards give a smaller
measurement bias than classic speckle patterns used in DIC,
and suggest that checkerboards indeed give lower PIB than
random speckle patterns. This was numerically verified and
illustrated in Sect. 3.2.4.

Besides, the set of shape functions used to parameterize
the local displacement also plays a role: we have shown that
PIB involves the scalar product of the image gradient and the
difference between the true and the retrieved displacements.
It could be of interest to select shape functions minimizing
PIB, by improving statistical criteria such as the ones dis-
cussed in [7].

Concerning modifications of the sum of squared differ-
ences criterion permitting to get rid of pattern-induced bias,
we have verified that the approach proposed by Blanchet
et al. [1] is an effective method for 1-D displacements met
in stereo-imaging. Our numerical experiments show that
it is also a valid approach with higher-order shape func-
tions than the constant local displacement considered in [1].
We have shown that the resulting fattening-free estimation
approximates the output of a SG filter, which generalizes [1].
However, the case of 2-D displacements is much more com-
plicated because of the aperture problem, which discards
displacement information at any pixel. A PIB-free estima-
tion is still to be designed in this case.
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Fig. 16 Checkerboard, 7 × 7 subset Ω and 0-order shape functions. Displacement maps along x- (left) and y-axis (right), and cross-section plots
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Fig. 18 Large speckle, 19 × 19 subset Ω , zero-order shape functions, and displacement estimation (along x- on the left and y-axis on the right)
with the GT-S̃SD criterion
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Fig. 19 Fine speckle, 19× 19 subset Ω , zero-order shape functions, and displacement estimation (along x- on the left and y-axis on the right) with
the GT-S̃SD criterion
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Fig. 20 Large speckle, 19 × 19 subset Ω , zero-order shape functions, and displacement estimation (along x-axis) with the 1D-S̃SD criterion. To
be compared to Fig. 18
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Fig. 21 Fine speckle, 19 × 19 subset Ω , first-order shape functions, and displacement estimation (along x-axis) with the 1D-S̃SD criterion. To be
compared to Fig. 19
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Fig. 22 Large speckle, 19 × 19 subset Ω , zero-order shape functions, and displacement estimation (along x- on the left and y-axis on the right)
with the 2D-S̃SD criterion
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