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Abstract
Processes such as growth and atrophy cause changes through time that can be visible in a series of medical images, following
the hypothesis that form follows function. As was hypothesised by D’Arcy Thompson more than 100 years ago, models of the
changes inherent in these actions can aid understanding of the processes at work. We consider how image registration using
finite-dimensional planar Lie groups (in contrast to general diffeomorphisms) can be used in this process. The deformations
identified can be described as points in the Lie algebra, thus enabling processes such as evolutionary change, growth, and
deformation from disease, to be described in a linear space. The choice of appropriate Lie group becomes a modelling choice
and can be selected using model selection; Occam’s razor suggests that groups with the smallest number of parameters (which
Thompson referred to as ‘simple transformations’) are to be preferred. We demonstrate our method on an example from
Thompson of the cannon-bones of three hoofed mammals and a set of outline curves of the development of the human skull,
with promising results.

Keywords Growth and form · Image registration · Lie groups

1 Introduction

Natural scientists classify organisms by their appearance and
structure, known as form. The form of an organism is a
characteristic of it that remains unchanged during the sim-
ilarity transformations of translation, rotation, and scaling
[8]. It is argued that ‘form follows function’, which suggests
that by studying the form, it may be possible to infer the
causes that underlie the variations of an organism over vari-
ous timescales, such as growth, disease or evolution. These
variations are measured and quantified, which may help us
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to discover processes of biological phenomena that are not
identifiable from casual observation [3].

The first attempt to quantitatively study form was pub-
lished by D’Arcy Thompson, most notably in his landmark
book ‘On Growth and Form’ [24], the first edition of which
was published over 100 years ago. In that book, Thomp-
son deformed grids on which images were drawn by using
‘simple’ (i.e. low dimensional, often global) warps in order
to make the appearance of different species match. In fact,
many of the deformations that Thompson used appear to be
affine, or what he calls ‘isogonal’ (i.e. Möbius), and thus are
examples of planar Lie groups.

In biology and medicine, the change in the appearance of
an organism or structure exhibits natural variation within a
species as well as any underlying process of disease or evo-
lution. Thus, it will be necessary to use large data sets and
statistical methods to demonstrate conclusive results. Even
in longitudinal studies of disease, where there are several
images of the same person over time—which are potentially
very useful for understanding the course of a disease—there
will be substantial variety between individuals in the appear-
ance and progression over time of the change process, which
is complicated by the action of the normal growth or ageing
process.
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Thompson’s work inspired the field of geometric morpho-
metrics [3], where corresponding points identified in pairs of
images (landmarks) are used to align the objects. The image is
modified by the deformation induced by the transformation
of these points, usually using thin-plate splines. However,
these do not form a group, and statistical analysis in this
field tends to be on the set of landmark points, not on the
deformations.

Thompson’s work is also often used as a motivation for
diffeomorphic image registration (see, e.g. [15]); the dif-
feomorphisms are a group, albeit an infinite-dimensional
one. One key difference is that Thompson explicitly stated
that simple, preferably global, warps were to be preferred.
Although diffeomorphic registration can potentially produce
very good matches between images of objects, such as the
brains of different individuals, it makes statistical analysis
extremely difficult: while we have access to a Riemannian
metric on the diffeomorphism group, the manifold is infinite
dimensional and has curvature.

Within the field of diffeomorphic image registration of
medical images there has been previouswork considering the
analysis of longitudinal development of disease over a period
of time. This work has largely focussed on transporting the
diffeomorphic trajectories of transformations into a common
reference space, which enables the comparison of the vector
fields directly. The most common approach is to use par-
allel transport, whereby vectors are transported along the
geodesics, keeping the orientation of the vector unchanged.
This has been applied to both the ‘LargeDeformationDiffeo-
morphic Metric Mapping’ (LDDMM) [27] and ‘Stationary
Velocity Field’ (SVF) [5,10] methods of constructing dif-
feomorphisms. In [9] a method for computing the parallel
transport is given, which is based on Schild’s ladder, a con-
struction fromgeneral relativity. For example, one-parameter
subgroups may be geodesic in the SVF framework [11]. The
alternatives to parallel transport are to use coadjoint transport
of the vector field directly [28] or to use the group properties
to define a way to compose the transformations (known as
transformation conjugation) [19].

All of these methods suffer from the problem that the
entire diffeomorphic transformation has to be transported
and compared. This requires a large number of computation-
ally expensive registrations, where a lot of the deformation
is quite possibly irrelevant to the process being studied.
We argue that it is better to find the gross trajectories (in
a simple group) first, and perform statistical analysis of
the low-dimensional representations of longitudinal varia-
tion in the small group, before considering more expensive,
infinite-dimensional image registrations. Our approach is to
consider image registration in simple groups with a small
number of parameters, in line with Thompson’s stated aims
in ‘On Growth and Form’. This is an important consideration
from the applications point of view: while any two shapes

that are broadly (e.g. topologically) the same can be regis-
tered, close resemblance of a family of shapes under simple
transformations (a low-dimensional model and the geomet-
ric significance of a group) is more significant. Further, the
transformations themselves (as well as non-matching fea-
tures) carry information.

There are two alternative approaches that can be used to
simplify the analysis. One is to use strong regularisation in
the registration in order to simplify the deformation that is
identified; this is already a standard part of the optimisation
process in LDDMM. However, while the deformation looks
smoother, it is still necessary to analyse the entire deforma-
tion, which is parameterised by either the pixel grid, or a
large number of landmarks on the image. Another possibil-
ity is to apply some form of statistical averaging across a set
of deformations, again to simplify the warps. This has been
done for landmarks, and leads to stochastic versions of the
deformation equations [13,20,25]. Again, although this leads
to smoother deformations, it does not reduce the underlying
complexity of the allowable transformations. By explicitly
reducing the number of free parameters in the deformation,
weproduce transformations that are far simpler, and therefore
more amenable to statistical analysis, as well as providing
more information about whether or not the model fit is good.

We propose a methodology that can assist in the statisti-
cal analysis of the underlying deformations by providing a
low-dimensional space in which the images (and their under-
lying variation) are represented. Our approach is motivated
by Thompson’s focus on simple deformations. We return to
the spirit of Thompson’s work, and apply deformations cho-
sen from planar Lie groups. While the quality of the match
between the images is lower than using diffeomorphisms, the
gross structures align well, and we can study the deforma-
tions between objects in a low-dimensional space (a subspace
of the Lie algebra) using standard methods. In addition, by
comparing the quality of the image match between different
groups it is possible to select as amodel the group that appears
to best describe the underlying process. The use of model
selection to identify the particular low-dimensional group
being used provides further information about the underly-
ing growth (or other deformation) process. In addition, the
use of simple groups means that the models are simple both
qualitatively and geometrically, and may possibly carry bio-
logically relevant information, as argued by Petukhov [18].

We introduce our approach in Sect. 2, describing the
method of image registration we use, introducing Lie groups
briefly, anddescribing the statistical analysismethods that are
then available, as well as the simple algorithm that enables us
to interpolate between images. We then provide two exam-
ples in Sect. 3: the cannon-bones of the ox, sheep, and giraffe,
and the development of the human skull. We have chosen
these because they are the canonical examples from the lit-
erature, being based on an example of Thompson himself
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[24], and of Petukhov [18], who considered the action of
non-Euclidian groups as a method of growth for living bod-
ies. They also reflect examples of evolutionary change, and
growth.

2 Using Planar Lie Groups for Image
Registration and Analysis

2.1 Image Registration

Given two images I and J referred to as the source and
target, respectively, image registration consists of identify-
ing a deformation that makes the difference between the
transformed source and the target as small as possible, as
measured in somenorm.There aremanymethods of perform-
ing such registrations, with three primary differences being
the choice of set fromwhich the deformations can be chosen,
the function by which image differences are measured, and
the method of optimisation. References giving introductions
to image registration methods include [12,17,21].

In this paper, our registrations are performed using gra-
dient descent on sum-of-squares difference (i.e. RSS =
‖I ◦ ϕ−1

I J − J‖22, where ϕ−1
I J is the (inverse) transformation

between the pair of images) between the pixel intensities,
starting at the identity deformation, which is the standard
approach. Images are blurred by convolving with a Gaus-
sian filter of standard deviation four pixels in a first pass, and
then registered without blurring in a second pass. As well as
improving the registration results for full images, the blur-
ring also enables line drawings to be registered, since the
lines already overlap after the first registration. The quality
of the registration from this process largely seems to be very
good, although in some cases we do find it useful to shade
the inside of objects

Where our approach differs from previous methods is in
our choice of transformation sets. It is common to register
images using either the similarity group (the set of trans-
lations, rotations, and scaling, being four dimensional for
2D images), the affine group (which includes shears, and is
six dimensional for 2D images), or the full diffeomorphism
group (the infinite-dimensional group of smooth functions
with smooth inverses). Instead, we consider choices from
the planar Lie groups, which are finite dimensional and rela-
tively ‘simple’ in the sense of Thompson. There are 28 such
groups, and they are classified in [6] up to the change of
coordinates. The largest group in this set is that of invertible
2 × 2 matrices semi-direct product with the reals of dimen-
sion r , R

r
� GL(2, C), i.e. the affine group for r = 2. The

planar groups have a left action on images given by right
composition with the inverse mapping, i.e. I · ϕ = I ◦ ϕ−1.

2.2 Lie Groups

A Lie group (G, ◦) is a group that is also a smooth manifold
where the group operation (g, h) ∈ G × G �→ g ◦ h ∈ G
and inverse map g ∈ G �→ g−1 ∈ G are both smooth and
compatible with the manifold structure. The Lie algebra of
a Lie group is the tangent space at the identity element of
the group, denoted by TeG. A Lie group is diffeomorphic to
its Lie algebra in a neighbourhood of its identity, and this
diffeomorphism is given by the exponential map. Hence the
global group can be replaced by its local linearisation, which
is easier to work with. In addition, a metric can be defined
on a Lie group, which enables us to measure the distance
between images. Planar Lie groups are Lie groups together
with an action of the group on the plane.

We identify three groups of particular interest: PSL(2, C)

(the Möbius group), which acts on complex z by:

z �→ az + b

cz + d
, a, b, c, d, z ∈ C, ad − bc = 1, (1)

and is 6 dimensional, since the constraint reduces the 4 com-
plexvariables to 3, the 8-dimensional projective special linear
group PSL(3, R), which acts on the plane by:

(x, y) �→
(
a1x + b1y + c1
a3x + b3y + c3

,
a2x + b2y + c2
a3x + b3y + c3

)
, (2)

where det

⎛
⎝a1 b1 c1
a2 b2 c2
a3 b3 c3

⎞
⎠ = 1, and the product of two copies

of the linear-fractional group, PSL(2, R)×PSL(2, R), which
acts on the plane by:

(x, y) �→
(
a1x + b1
c1x + d1

,
a2y + b2
c2y + d2

)
, (3)

(where a1d1 − b1c1 = a2d2 − b2c2 = 1) and is 6 dimen-
sional. All of these groups include the 4-dimensional set of
Euclidean similarities as subgroups. Together with their sub-
groups, they comprise 20 of the 28 finite-dimensional planar
Lie groups. We use them because they correspond to those
used by the original authors in our examples (Sect. 3). How-
ever, the principles that we demonstrate are true for all of the
groups, not just these examples.

The particular parameters of the transformation provide a
coordinate representation of the warp necessary to construct
each target image from the source in a group-specific space.
We now consider how to use this information for the analysis
of image registration data.

The purpose of choosing Lie groups for the registration
is that they are manifolds as well as groups, and so there
is a natural space in which to analyse the deformations that
are identified for the registration, namely the Lie algebra.
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The coordinates of the group parameters that transform the
source into a particular target (up to the variations allowed
by that group) can be used as a location in a d-dimensional
space, where d is the dimension of the group. If a metric is
then defined on that space, then distances between images
can be defined in the group. In addition, series of images can
be examined—either as indications of an underlying evolu-
tionary or disease process acting through time, or to try to
cluster related images—by plotting a line that fits through
the data points, representing a trajectory that passes close to
the data. It is then simple to interpolate between the images,
extrapolate the further progression of the process (with the
usual caveats about accuracy of extrapolation), or to plot
longitudinal data from several different people and compare
them.

As the transformation acts on the left, we use a right-
invariant Riemannian metric (since this means that if a
transformation is applied to a set of images, their pairwise dis-
tances (and relative transformations) do not change), which
on matrix Lie groups can be written as:

〈X ,Y 〉A = tr((XA−1)T YA−1),

where X ,Y ∈ g, the Lie algebra, tr(·) is the trace of the
matrix, and the base point A is a matrix in the group.

2.3 Interpolation in the Algebra

We assume that we have a family of images of putatively
related forms. Our approach consists of fitting a curve
through the data in the Lie algebra and then mapping the
curve into the group using the exponential map, yielding the
following simple algorithm. Note that the group exponential
and logarithm, exp and log, are taken at the identity through-
out the paper.

Let {ϕi , i = 1, 2, 3, . . . } be the given data in the group,
i.e. the set of registrations of each image to the reference.
If one of the images ( j) is chosen to be the reference, then
ϕ j will be the identity transformation, mapping the image to
itself, and ϕi , i 	= j are the transformations from that image
to each of the others. In the case of exact matching, it would
not matter which image is chosen as the reference, since the
transformations could be transformed between the images
by computing the inverse transforms explicitly. However, in
general, the registration is imperfect (inexact), so that the
inverse mapping ϕ−1

i is not the optimal transformation from
the reference image back to image i .

There are a few ways to approach this problem. One is to
ignore it and assume that the forward and inverse transfor-
mations are reasonably similar. This means that any of the
images from the data set can be chosen andused. In the case of
a growth or evolutionarily development data set, where there
is an explicit time-ordering of the images, the hypothesis is

that the development is the growth process presents as chang-
ing group parameters, likely monotonically. In this case, it is
sensible to use the temporal information to choose the refer-
ence image, as either the first image, or the middle one (since
the latter choice will be less different from the first and last
elements of the time series than they are from each other,
and so exhibit less extreme parameter values). The alterna-
tive, which is particularly appropriate for non-temporal data,
is to use the mean of the transformed images as a moving
target (so compute the pixel-wise mean of the images as the
initial reference, register to that, and then update this refer-
ence with the mean of the transformed images, and iterate).
This is a form of groupwise registration [14,22,26].

Regardless of how the transformations are found, the data
analysis is then computed by the following process:

– Map ϕi into the Lie algebra using the log map: log(ϕi ) =
vi .

– Find a parameterised curve E : R �→ g passing near the
vi :

min
E∈E,ti

Σi‖E(ti ) − vi‖22, (4)

where E is some set of curves, ‖ · ‖ is some metric on
the Lie algebra, and t the parameters of E . (For a line
through the origin, E(t) = t A where A ∈ g.)

– Map the curve E(t) into the group using the exponential
map: exp(E(t)).

2.4 Model Selection

The previous analysis presupposes that an appropriate group
has been chosen.While in some cases theremay be biological
knowledge that informs this, in general the choice of group
is a modelling choice. Applying Occam’s razor, it is appro-
priate to use model selection to argue that the best group to
use is the one with the lowest dimension that describes the
transformations observed in the data well, i.e. it is a trade-off
between model simplicity and the capacity of the model to
describe the phenomena that underlie the data. We measure
the first by the number of degrees of freedom (dimension)
of the group and the second by the goodness-of-fit of the
model to the data, which in the case of image registration
corresponds to the residual sum-of-squares remaining after
registration in the relevant group. Of course, care must be
taken with this measure to ensure that the registration has
not become stuck in a local minimum.

Whencomparing the registrations betweendifferent groups
it is important to remember that in many cases one of the
groups will be a subgroup of the other, so that the models
are nested. In this case, the residuals from registration in the
group must necessarily be at least as small as the residu-
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als from registration in the subgroup, since there are more
degrees of freedom to allow a better match.

As previously discussed, it is unlikely that the registration
will be perfect, since even if the process driving the deforma-
tion iswellmodelledby aparticular groupof transformations,
there will also be local variations and imperfections, as well
as other processes occurring. These variations, as well as the
nature of images (which are based on a discrete, pixellated
representation of the underlying continuous picture) and of
the numerical methods mean that the registrations will not
be perfectly symmetric (i.e. the registration from I to J will
not be the precise inverse of the registration from J to I ).
It is hard to interpret the numbers in the distance function,
since they differ from image to image and group to group.We
therefore normalise the distance function and calculate the
geometric mean for each pair of the images by computing:

D = 1 −
√

‖I ◦ ϕ−1
I J − J‖22

‖I − J‖22
‖J ◦ ϕ−1

J I − I‖22
‖I − J‖22

(5)

for source image I , target J and forward and backward trans-
formations ϕI J and ϕJ I . If I and J match perfectly with
ϕ then D = 1, and if ‖I ◦ ϕ−1

I J − J‖22 = ‖I − J‖22 and
‖J ◦ ϕ−1

J I − I‖22 = ‖I − J‖22 then D = 0. For black and
white images, the value of D tells us the amount of the over-
lap and match between the images.

The approach is then to perform the set of registrations
using each potential group of interest, and then use model
selection to select the group that best describes the transfor-
mations that explain the data, i.e. to consider the group of
allowable transformations as a model of the data deforma-
tions.

Two of the most popular model selection criteria are the
Akaike information criterion (AIC):

AIC = −2 lnL + 2p, (6)

and the Bayesian information criterion (BIC):

BIC = −2 lnL + p ln n. (7)

Here, L is the likelihood of the errors in the estimated model
(i.e. group), p is the number of parameters in themodel, and n
is the sample size. In the case that the model errors are inde-
pendent and normally distributed, lnL = −n| ln(RSS/n)|
(where RSS is the residual sum-of-squares error, i.e. the dif-
ference between the images after registration). A lower value
of AIC (resp. BIC) is preferred. A rule of thumb is that a dif-
ference ofAIC or BIC between twomodels of 2–6 is positive,
6–10 is strong, and more than 10 is very strong. Note that
these criteria cannot be used to compare methods based on
the full diffeomorphism group, since it has an infinite number
of parameters.

Fig. 1 Left: Cannon-bones of the ox, sheep and giraffe. The bones are
scaled to have the same length in the y direction, and then corresponding
points along that axis are identified. Right:Curves showing the cannon-
bone length of the ox, sheep and giraffe as functions of the ox length
(hence the identity relationship of the ox bone with itself). Both of these
images are from [24]

A review of model selection in ecology [1] found that
84% of studies used AIC, 14% used BIC, and 2% used some
other criterion. They argue that AIC is preferred when the
‘true’ model is extremely complex and essentially unknow-
able, and prediction errors are to be minimised, while BIC
is preferred when the ‘true’ model is simple and can be in
principle determined given enough data. We now use exam-
ples to demonstrate our method on an evolutionary process
and a growth process. We have assumed in both cases that
the true model is complex and not possible to find, and hence
followed the suggestion in [1], and use AIC in this paper.

3 Examples

3.1 An Example fromThompson: Cannon-Bones

One of Thompson’s examples in On Growth and Form [24]
is a comparison of the cannon-bones (the bone in hoofed
mammals that extends from the knee or hock to the fetlock)
of the ox, sheep, and giraffe. He intended this to suggest a
phylogenetic link between these animals: he identified that
the fundamental difference between these bones in the three
animals is their relative length and breadth, suggesting that
they are closely related by evolution. In order to test this, he
scaled them to a common length of 100, and then calculated
the breadth of the sheep’s bone as two-thirds of the breadth
of the ox’s and the breadth of the giraffe’s as one-third of
the breadth of the ox’s. By identifying corresponding points
o, a, b, c on each bone (shown in Fig. 1), he was then able to
measure oa, ob, oc, and oy.

Taking thesemeasurements in his three examples, Thomp-
son considered three transformations: ox to ox (the identity
transformation), ox to sheep, and ox to giraffe. He then plot-
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ted the corresponding lengths of the four sections, with the x
coordinate being the lengths for the ox, and the y coordinate
being the lengths for the second animal. By drawing a line
through each of these sets of points, Thompson was able to
showhow to transform the cannon-bone of one of the animals
into another in a relatively simple way. This is an example of
an image registration using landmarks, using the transforma-
tion set Diff ([0, 1]) × Sim (i.e. an arbitrary rescaling of the
four lengths independently after a one-dimensional horizon-
tal scaling; here Sim is the group of similarities x �→ ax+b).

The question is whether or not this is the best choice
of space of transformations. This question has been asked
before, notably by Milnor in a talk he gave to the Insti-
tute for Advanced Studies [16]. He used an invariant (the
one-dimensional cross-ratio, which is the restriction of the
two-dimensional cross-ratio to real numbers) based on two
sets of four marked points: o, a, b, c and a, b, c, y, as well
as the two-dimensional cross-ratio. Milnor found that the
one-dimensional cross-ratios were nearly equal, but the two-
dimensional ones were not; he then registered the bones
using Thompson’s landmarks, using the groups PSL(2, C)

and PSL(3, R). However, in neither case was the registra-
tion satisfactory. Instead, we consider the product group
PSL(2, R) × PSL(2, R), which we choose because the one-
dimensional cross-ratio is preserved.

We also consider the simpler group Sim × PSL(2, R),
which scales the bones linearly in the x direction and uses
the linear-fractional transformation in y. Note that this is
a subgroup of the first group, and that in both groups, we
can compose the transformations, and hence an approxima-
tion (because of the inexact matching) of the ox to giraffe
transformation can be made by composing ox–sheep and
sheep–giraffe; this is shown experimentally in Fig. 2.

The values of D (Eq. (5)) in the registrations of the bones
in (first) PSL(2, R) × PSL(2, R) and (second) its subgroup
Sim × PSL(2, R) are: for ox–sheep, 0.6433 and 0.6244, for
ox–giraffe 0.9025 and 0.9005, and for sheep–giraffe 0.8873
and 0.8701, so there is very little difference between the two
groups. These values indicate how well the images match;
for example 90% of the ox is matched to the giraffe by reg-
istration. The registration between the ox and sheep leaves a
relatively high residual, but it can be seen in Fig. 3 that the
two images overlap well, although there are some differences
at the boundaries of the images.

In Table 1, we compare the residuals when using each of
the images as the source and the others as the targets for both
groups. These show that the two groups provide very similar
results for this data set; we will shortly apply model selection
to choose between the groups. However, note that while the
choice of source has some correlation with the residual, it is
unclear precisely how to interpret this. We will demonstrate
registration to the moving reference shortly, but in order to
enable comparison with the results of Thompson shown in

Fig. 2 Discrepancy between a transformed ox (to sheep) and sheep, b
transformed ox (to giraffe) and giraffe, c transformed sheep (to giraffe)
and giraffe using the group PSL(2, R) × PSL(2, R)

Fig. 1 we first use the ox as the source. Figure 3 shows the
outline of the ox bone after transformation to the sheep and
giraffe bones using both the group and subgroup. The group
and subgroup differ only in their allowable x transformations,
and Fig. 3 shows that the transformations found in the two
groups are largely identical, being uniform scaling.

Figure 4 shows the progression of the registration in the
subgroup Sim×PSL(2, R)when the reference image is cho-
sen to be the pixel-wise mean of the set of images rather
than one of the images. The figure shows the mean of the
three, which progresses from being blurry to clear as the reg-
istration runs. The residuals after the five iterations (although
there is actually very little change in values after just three
iterations) are 1116 for the ox, 751 for the sheep, and 1119
for the giraffe, while the values of D are 0.79, 0.90, and 0.90,
respectively; the latter are very similar to those of registering
to the fixed true image of the ox bone.

This first finite-dimensional registration supports Thomp-
son’s idea of simple transformation between related forms,
but we still need to decide which group to use for registra-
tion. In the present example, the models are nested, so the
residuals from registration in the group must necessarily be
at least as small as the residuals from registration in the sub-
group. The question becomes howmuch reduction in residual
is needed to justify a more complex model. In this example
the difference between the two AIC values ≈ 2, and so the
simpler model is preferred (in both the registration to the ox,
and the registration to the mean). The results for the sim-
pler Sim×PSL(2, R) model, registered to the ox, are shown
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Fig. 3 The ox cannon-bone with a super-imposed rectangular grid (a),
and then the transformation of the ox bone and the rectangular grid to
the sheep using (b) the group PSL(2, R)×PSL(2, R) and (c) subgroup

Sim × PSL(2, R), followed by the transformation to the giraffe bone
using the same group (d) and subgroup (e)

in Fig. 5; they are very close to Thompson’s registration in
Fig. 1.

Of course, it would be possible to obtain a better reg-
istration using a larger group, but the most likely groups
are infinite dimensional, namely Diff (R) × Diff (R) and
Diff (R2). Since 5 parameters have already explained 90%
of the difference between the bones, it seems unlikely from
the point of view of model selection that such drastically
more complex models would be preferred. However, in a
more detailed study (ideally with a much larger data set) it
would be possible to perform statistical model selection if an
appropriate distribution for the data could be identified. An
alternative method of describing image deformations, such
as using B-splines [17] could also be considered; it would
allow larger sets of deformations to be applied, albeit at the
cost of losing a natural metric on the space of transformations

and the qualitative properties inherent to Lie transformation
groups.

Turning now to interpolation between the bones in the Lie
group, we label the three transformations we have computed
as ϕi , (i = 1: ox–ox, i = 2: ox–sheep, i = 3: ox–giraffe),
which in full generality can be written as:

ϕi (x, y) =
(
si x + ti ,

ai y + bi
ci y + di

)
.

The translation part of ϕi (x, ·) can be ignored, because it
only relates to the position of the image in the plane, hence
ti = 0. Furthermore, the boundary conditions (ϕi (x, 0) =
(x, 0) andϕi (x, 1) = (x, 1)) and the fact that the determinant

Table 1 Residuals after
registration (as a percentage of
the original sum-of-squares
pixel intensities differences)
when registering the
cannon-bones in the product
groups PSL(2, R) × PSL(2, R)

and Sim ×PSL(2, R)

Source | Target Ox Sheep Giraffe
x-transform PSL(2, R) Sim PSL(2, R) Sim PSL(2, R) Sim

Ox 0 0 30% 31% 5% 5%

Sheep 42% 45% 0 0 7% 9%

Giraffe 18% 19% 18% 19% 0 0
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Fig. 4 Iterative improvement of the pixel-wise mean of the three images, which is used as the reference image, as the registration iterates. I0 is
before any registration. After three iterations the algorithm has largely converged

Fig. 5 Vertical dimension of the ox, sheep and giraffe cannon-bones
as functions of the ox vertical dimension, as determined from an image
registration in Sim × PSL(2, R). These results may be compared to
Thompson’s ‘by hand’ registration in Fig. 1

of the transformation =1 mean that:

ai (0) + bi
ci (0) + di

= 0 ⇒ bi = 0,

det

(
ai 0
ci di

)
= 1 ⇒ di = 1

ai
,

ai (1) + 0

ci (1) + 1
ai

= 1 ⇒ ci = ai − 1

ai
.

Hence:

ϕi (x, y) =
(
si x,

ai y

(ai − 1
ai

)y + 1
ai

)
,

which corresponds to transformations in the product group
of the linear-fractional transformations SL(2, R)×SL(2, R)

by:

ϕi (x, y) ↔
((√

si 0
0 1√

si

)
,

(
ai 0

ai − 1
ai

1
ai

))
.

We identify ϕi with the correspondingmatrix. The general
form of a Lie algebra element corresponding to ϕi is then:

vi = log(ϕi ) =
((

βi 0
0 −βi

)
,

(
αi 0
2αi −αi

))
.

Figure 6 shows the data {(βi , αi ), i = 1, 2, 3} in R
2

and the fitted line in the Lie group L (which is not the
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Fig. 6 The three data points and (left) a line L fitted through them in
the Lie algebra of Sim × PSL(2, R), (right) the curve exp(L) in group
parameters in the group for top: registration to the ox, and bottom:
registration to the mean

least-squares line fitted to the data points) aswell as the corre-
sponding curve in the group Sim×PSL(2, R), for registration
to both the ox and the mean. We performed a leave-one-out
test on the data by computing the interpolation between two
of the bones and comparing the interpolated version of the
third with the ground truth. The mean-square error of both
is smaller: for the first 0.018, while for the second it is 0.08;
in both case, it suggests that the method is reliable. Figure 7
shows some equally spaced interpolations between the three
sample bones. Since there are only three data points it is not
surprising that the data fit very well. However, the interpola-
tions also look like bones.

We now move on to consider a different data set, which is
a product of growth rather than evolutionary change.

3.2 An Example from Petukhov: Human Skull
Growth

A related investigation of biological change was considered
by Petukhov,who in [18], in the spirit of the Erlangen project,
looked at the role of non-Euclidean symmetry groups in bio-
logical growth. One of the examples used by Petukhov is the
growth of a human skull. We used the data shown in Fig. 8,
which is a craniofacial growth series of an immature human
from [4], to validate Petukhov’s work. The method of roent-
gencephalometry was used to align the set of X-ray tracings
based on a physiological landmark (the sella located in the
middle of pituitary fossa) and orientates the images on the
line that stretches from sella to nasion; for more information,
see [8]. Our first question is whether or not Petukhov’s mod-
elling choice (theMöbius group) is a good one.We study this
by considering other modelling choices as well, and testing

themon a small data set.While the data set is small, it suffices
for demonstration purposes.

Following the discussion in Sect. 2.3 concerning time-
series data, the third (middle) skull is taken as the source and
registered with the others using PSL(2, C) and PSL(3, R).
Figure 9 shows the discrepancy between transformed source
and the targets. It can be seen that PSL(2, C) has produced a
bettermatching of the jawof the human skull thanPSL(3, R),
while PSL(3, R) has done a better job of matching the head
shape. Looking at the quality of the registrations, it seems that
either group provides a reasonable model of human growth.
UsingAIC, PSL(2, C) is preferred as it has fewer parameters,
but given the shortage of data, we progress by using both
groups, and seeking curves in their Lie algebras that fit the
growth of the skull.

Let ϕi , ψi , i = 1, 2, 3, 4, 5 be the transformations that
were obtained by registration in PSL(2, C) and PSL(3, R),
respectively (note that ϕ3 andψ3 will be the identity element
since they are registering the image to itself). The groups
PSL(2, C) and SL(2, C) are homomorphic, as are PSL(3, R)

and SL(3, R).Weuse this relationship byfitting a curve in the
matrix group and then mapping the curves homomorphically
into the projective group.

We consider standard bases for the Lie algebras sl(2, C)

and sl(3, R) and the standard Euclidianmetric in those bases.
In the standard basis of sl(2, C), we omit the vectors relating
to rotation and translation, because the ‘shape’ of anobject (in
the sense of shape space [7]) is invariant under these actions.
In sl(3, R), we ignore only translation. This projection is
equivalent to using a metric on the Lie algebra that is zero in
the similarity components.

Now, we need to choose a model to fit the data in the
Lie algebra. A polynomial of degree four can be fitted per-
fectly through the data, but we prefer a simpler model, which
will not overfit (this point will be considered further later).
One-parameter subgroups are the simplest model that can
describe the points in the algebra, and hence the relationship
between the human skulls at different ages. They correspond
to straight lines passing through the origin in the Lie alge-
bra; in order to add one extra degree of freedom, we also
considered straight lines that do not pass through the origin.

LetΓ1 andΣ1 be the lines that pass through the origin, and
Γ2 and Σ2 be the lines that do not, in sl(2, C) and sl(3, R),
respectively, with the Euclidian metric on the subspace of the
Lie algebra. The residuals for the fitted lines are 0.0123 for
the non-0 intercept line and 0.0254 for the 0 intercept using
sl(2, C) and 0.0376 and 0.0552, respectively, using sl(3, R).

The group exponential maps of these lines (exp(Γ1),
exp(Γ2), exp(Σ1) and exp(Σ2)) are the curves fitting through
the points representing the skulls.

For the Möbius registration, we now provide the relevant
computations; they are very similar for the case of PSL(3,
R).
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Fig. 7 Transformation of ox foot by exp(L(t)); E(t) is the line fitted through log(ϕi )

Fig. 8 Traditional craniofacial growth series based on longitudinal
cephalometric radiographs, taken from [8]

Let ϕk(z) = (Sk+i Rk )z+T 1
k +iT 2

k
(Ak+i Bk )z+D1

k+i D2
k
be a transformation in

PSL(2, C) that is obtained by the registration in the Möbius
group, with corresponding matrix in SL(2, C):

(
Sk + i Rk T 1

k + iT 2
k

Ak + i Bk D1
k + i D2

k

)
.

Then for ζk = log(ϕk):

ζk =
(
sk + irk t1k + i t2k
ak + ibk −(sk + irk)

)
. (8)

We consider a standard basis for the Lie algebra, sl(2, C)

(matrices in sl(2, C) have trace equal to zero):

v1 =
(
1 0
0 −1

)
, v2 =

(
i 0
0 −i

)
, v3 =

(
0 1
0 0

)
,

v4 =
(
0 i
0 0

)
, v5 =

(
0 0
1 0

)
, v6 =

(
0 0
i 0

)
. (9)

We calculate the norm of sub-transformations: scale, rota-
tion, translation and nonlinear transformation ( z

cz+1 ) in ϕk by
calculating the norm of their corresponding vectors in the Lie
algebra. For example, if ζk = a1v1 + a2v2 + a3v3 + a4v4 +
a5v5 + a6v6, then the norm of scale is tr((a1v1)(a1v1)∗)

1
2 .

The norms of the rotation and translation parts are very
close to zero, and the ‘shape’ of an object is invariant
under rotation and translation [7]. Therefore, we ignore these

parts of ζk , and so ζk = log(ϕk) =
(

sk 0
ak + ibk −sk

)
, and

ϕk =
(

Sk 0
Ak + i Bk

1
Sk

)
.

The left of Fig. 10 shows the data (sk, ak, bk) and the fitted
lines Γ1 and Γ2, while the right shows the data (Sk, Ak, Bk)

and the curves exp(Γ1), exp(Γ2), respectively. These are the
best fitted models in two different representational spaces of
this data.

It is not always easy to see visually how well the linear
model fits the data. We therefore calculated the coefficient of
determination (R2) and the adjusted coefficient of determi-
nation (R̄2). The following table gives the values of R2 and
R̄2 of the fitted lines in sl(2, C) and sl(3, R). As can be seen
in the table, the value of R̄2 for the three models is 0.8, which
suggests that the fitted lines represent the data well. There is
no significant difference between the fits in the two groups.
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Fig. 9 Left: Grids showing the deformation applied to the middle skull
in the time sequence in order to register it to each skull in groups PSL(2,
C) (top) and PSL(3, R) (below). Right: The discrepancy between the
middle skull in the sequence after registration to each skull in the two

groups (hence, the perfect registration in the middle column is the reg-
istration of the skull to itself). It can be seen that the transformations do
seem to follow a trajectory, with the degree of deformation increasing
through the sequence

Fig. 10 Fits of the skull registrations in PSL(2, C). On the left,
the points correspond to the positions of the 5 images in the three-
dimensional parameter space remaining once rotation and translation
have been taken out.Γ1 is a line passing through the origin fitted through
ζk , while Γ2 is not constrained to pass through the origin. They map by
the group exponential into the group, producing the parameters plotted
on the right

sl(2, C) R2 R̄2 sl(3, R) R2 R̄2

Γ1 0.79 0.73 Σ1 0.85 0.80
Γ2 0.90 0.80 Σ2 0.90 0.80

So far, we have shown that the linear models represent
the data well. Therefore, we generate some possible human
skulls by interpolation using both exp(Γ2(t)) and exp(Σ2(t))
and applying the transformation to the source (middle skull)
in order to generate a new skull; these are shown in themiddle
and right of Fig. 11, respectively. Both provide reasonably
good matches to the data.

In order to test whether or not the straight line models did
indeed provide goodmatches,we also increased the degree of

Fig. 11 a The original skulls. b Generating skulls using the curve
exp(Γ2) in PSL(2, C). c Generating skulls using the curve exp(Σ2)

in PSL(3, R)

Fig. 12 Skulls generating by the curves in PSL(2, C). Exponential of
the fitted a line with zero intercept, b line with nonzero intercept, c
quadratic curve, d cubic curve in psl(2, C)

the model, using a quadratic and cubic function to fit the data
with the Möbius transformation. The residuals of the four
models are: cubic: 0, quadratic: 0.0037, line (nonzero inter-
cept): 0.0123, line (zero intercept): 0.0254. As the degree
of the model increases, so their residual decreases, but the
predictions made by the models gets worse, a clear sign of
overfitting; this is shown in Fig. 12, where the interpolated
skulls along the growth curve are generated by the four mod-
els. It can be seen that the cubic and quadraticmodels provide
very unlikely looking skulls. Therefore, it seems that cubic
and quadratic are not good models to describe human skull
growth. We used a leave-one-out method to check the relia-
bility of themodels in the prediction of newdata.We compute
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the Mean Squared Error (MSE) of the leave-one-out errors
for the models, which suggest that the straight line method
is the most reliable: cubic: 0.0079, quadratic: 0.0214, line
(nonzero intercept): 0.0085, line (zero intercept): 0.0119.

Using the residuals of the registration, we computed the
AIC for PSL(2, C) as 16.2, and for PSL(3, R) as 17.8. This
suggests that there is very little difference in the information
provided by the two models.

4 Conclusion

The simple transformations advocated by Thompson in ‘On
Growth and Form’ have metamorphosed into diffeomor-
phic image registration. While this has many useful features,
there are times when the added complexity does not pro-
vide benefits. First, the registration itself can provide explicit
information about the growth process itself, and second, the
use of simple groups gives access to additional statistical
analysis methods. In addition, it is substantially quicker and
easier to perform registrations in low-dimension groups.

In this paper, we have developed a method based on the
planar Lie groups that provides access to interpolation meth-
ods in the corresponding Lie algebra to the group where
registration is performed, and demonstrated that this group
can be selected using statistical model selection methods.
We have demonstrated this on two simple data sets which
are classical examples of evolutionary development (Thomp-
son’s cannon-bones of three hoofedmammals) andbiological
growth (the human skulls considered by Petukhov). The
results using these small and simple data sets are very
promising and show that our approach has benefits as an
initial step for understanding growth processes. Our exam-
ples have considered three groups, but the methods that we
have demonstrated will work for any of the 28 planar Lie
groups, and also to products of them.

In this paper, we have provided case studies based on
single sets of examples, and there is a need to perform larger-
scale experiments based on more data. This will enable the
model selection approach to be used to identify the correct
modelling group far more accurately. Two benefits of doing
this will be to further investigate the work of Thompson and
Petukhov: in the more than 100 years since Thompson first
proposed his theory of the method of transformations (in
[23]) it has not been fully tested, as was observed by [2].
Further, Petukhov postulates that the Möbius group forms
the basis of many examples of the development process; our
method will also allow this to be verified.

Another possible modelling choice is in the metric that is
used. We can consider different metrics and how they can
be chosen appropriately. This is a question of data fitting,
and is somewherewhere the low-dimensional representations
implicit in this approach have significant benefits, compared

to trying to fit parameters for the metric in diffeomorphic
image registration,which is extremely data intensive. Finally,
we are also in the process of combining registrations in dif-
ferent groups to better understand the growth process, and
how a variety of different processes can act simultaneously.
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