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Abstract
We focus on the minimization of the least square loss function under a k-sparse constraint encoded by a �0 pseudo-norm.
This is a non-convex, non-continuous and NP-hard problem. Recently, for the penalized form (sum of the least square loss
function and a �0 penalty term), a relaxation has been introduced which has strong results in terms of minimizers. This
relaxation is continuous and does not change the global minimizers, among other favorable properties. The question that has
driven this paper is the following: can a continuous relaxation of the k-sparse constraint problem be developed following
the same idea and same steps as for the penalized �2 − �0 problem? We calculate the convex envelope of the constrained
problem when the observation matrix is orthogonal and propose a continuous non-smooth, non-convex relaxation of the
k-sparse constraint functional. We give some equivalence of minimizers between the original and the relaxed problems. The
subgradient is calculated as well as the proximal operator of the new regularization term, and we propose an algorithm that
ensures convergence to a critical point of the k-sparse constraint problem. We apply the algorithm to the problem of single-
molecule localization microscopy and compare the results with well-known sparse minimization schemes. The results of the
proposed algorithm are as good as the state-of-the-art results for the penalized form, while fixing the constraint constant is
usually more intuitive than fixing the penalty parameter.

Keywords Inverse problems · �0 Problem · Sparse modeling · Non-convex · Non-smooth · Relaxation

1 Introduction

In this paper, we consider the constrained �2 − �0 problem:

min
x∈RN

1

2
‖Ax − d‖2 such that ‖x‖0 ≤ k (1)
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where A ∈ R
M×N is an observation matrix, d ∈ R

M is the
data, and ‖ · ‖0 is, by abuse of terminology, referred to as the
�0-norm:

‖x‖0 = #{xi , i = 1, · · · , N : xi �= 0}

with #S defined as the number of elements in S. This formu-
lation ensures that the solution x̂ has at maximum k nonzero
entries. This type of problem appears in many applications,
such as source separation, machine learning, and single-
molecule localization microscopy. These problems are often
underdetermined, i.e., problems where M � N . A more
studied sparse problem is the penalized �2 − �0 problem:

min
x∈RN

1

2
‖Ax − d‖2 + λ‖x‖0 (2)

where λ ∈ R≥0 is a trade-off parameter. Even though the
formulations (1) and (2) are similar, they are not equivalent
(see, for example, [25] for a theoretical comparison). These
problems also differ in their sparsity parameter. With the λ

parameter, it is not possible to know the sparsity of the solu-
tionwithout testing it. The constrained problemdoes not have
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this problem as k fixes the number of nonzero components.
However, the problems are both non-convex, non-smooth and
NP-hard. In the following paragraph, we will outline the dif-
ferent methods to solve (1) and (2).

Greedy algorithms Greedy algorithms are designed to
solve problems of the form (1). These algorithms start with
a zero initialization and add one component to the signal x
at each iteration until the wished-for sparsity is obtained.
Among them, we find the matching pursuit (MP) algo-
rithm [23], and the orthogonal matching pursuit (OMP) [26].
Newer algorithms add and subtract components at each iter-
ation, among them are the algorithm greedy sparse simplex
[3] or single best replacement (SBR) [37].

Mathematical program with equilibrium constraint
Another method to solve a sparse optimization problem is to
introduce auxiliary variables to simulate the nature of the �0-
norm and add a constraint between primaries and auxiliaries,
and thus called a mathematical program with equilibrium
constraint. Mixed integer reformulations [8] and Boolean
relaxation [28] are two among the many algorithms based on
this method. Algorithms entering these families have been
proposed to solve sparse problems (see [6,22], for example).
A recent paper [2] proved the exactness of a reformulation
of the constrained �2 − �0 problem and showed its abilities
on single-molecule localization microscopy.

Relaxations An alternative to working with the non-
convex �0-norm is to replace it with the convex �1-norm.
This is called convex relaxation, but only under strict assump-
tions such as the RIP conditions, the original, and the convex
relaxed problems are equivalent in terms of minimizers [11].
Furthermore, ‖x‖1 penalizes not only the number of com-
ponents in x but also their magnitude. Thus, the �0-norm
and �1-norm are very different when x contains large val-
ues. Non-smooth, non-convex but continuous relaxations
were primarily introduced to avoid this difference. These
relaxations are still non-convex, and the convergence of the
algorithms to a global minimum is not assured. Some of
the non-convex continuous relaxations are the nonnegative
garrote [9], the log-sum penalty [12] or capped-�1 [27] to
mention some. The continuous exact �0 penalty introduced
in [35] proposes an exact relaxation for problem (2), and a
unified view of these functions is given in [36]. A recent con-
vex relaxation has been proposed in [33], which replace the
�0-norm with a non-convex term, but where the sum of the
data-fitting term and the relaxation is convex. Relaxation of
the constrained �2−�0 problem is less studied. However, the
fixed rank problem and its convex envelope have been pre-
sented in [1], and the problem has certain similarities with
the constrained �2 − �0 problem.

Contributions and outline The paper presents and stud-
ies a non-smooth and non-convex relaxation of the con-
strained problem (1). Following the procedure used to design
theC E L0-relaxation of problem (2) [35], wewant to explore

if an equivalent continuous relaxation can be found for (1).
The next section shows the computation of the convex hull
of the constrained �2 − �0 formulation in the case of orthog-
onal matrices. The convex hull yields the square norm plus
a penalty term that we name Q(x). Note that the expres-
sion of Q(x) could be obtained by applying the quadratic
envelope presented in [14], choosing the right parameters.
In other words, the present paper provides exact relaxation
properties of the quadratic envelope [14] in a new regime that
goes beyond those previously identified in [14]. In particu-
lar, our results are independent of A. This will be discussed
later in Sect. 3. In the same section, the relaxed formula-
tion is investigated as a continuous relaxation of the initial
problem for any matrix A. We prove some basic properties
of Q(x) to show that the relaxation favors k-sparse vectors.
The relaxation does not always ensure a k-sparse solution,
but it promotes sparsity. We show that if a minimizer of
the relaxed expression is k-sparse, then the minimizer of
the relaxed problem is a minimizer of the initial one. We
propose an algorithm to minimize the relaxed formulation
using an accelerated FBS method, and we add a “fail-safe”
strategy which ensures convergence to a critical point of the
initial problem. The relaxation and its associated algorithm
is applied to the problem of single-molecule localization
microscopy and compared to other state-of-the-art algo-
rithms in �2 − �0 minimization.

Notations and Assumption

– A ∈ R
M×N is an M × N matrix.

– The vector x↓ ∈ R
N is the vector x where its components

are sorted by their magnitude, i.e., |x↓
1 | ≥ |x↓

2 | ≥ · · · ≥
|x↓

N |.
– Let P(y) ∈ R

N×N a permutation matrix such that
P(y)y = y↓, we denote the vector x↓y = P(y)x .

– ai is the i th column of A. We suppose ‖ai‖ �= 0 ∀i .
– The indicator function χX is defined for X ⊂ R

N as

χX (x) =
{

+∞ if x /∈ X

0 if x ∈ X .

– sign∗(x) is the function sign for x �= 0 and sign∗(0) =
{−1, 1}.

– R
N≥0 denotes the space {x ∈ R

N |xi ≥ 0,∀i}.

Proposition 1 We can suppose that ‖ai‖2 = 1, ∀ i , without
loss of generality.

Proof The proof is based on the fact that �0-norm is invariant
to a multiplication factor. Let �‖ai ‖ and � 1

‖ai ‖
be diagonal

matrices with the norm of ai (respectively, 1/||ai ||) on its
diagonal, and let z = �‖ai ‖x , then ‖� 1

‖ai ‖
z‖0 = ‖z‖0 =

‖x‖0, and thus,
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argmin
x

1

2
‖Ax − d‖22 + χ‖·‖0≤k(x)

= � 1
‖ai ‖

argmin
z

1

2
‖Anz − d‖22 + χ‖·‖0≤k(z)

where An is a matrix deduced from A where the norm of
each column is 1. �

We assume therefore that A has normalized columns
throughout this paper.

2 The Convex Envelope of the Constrained
�2 − �0 Problemwhen A is Orthogonal

In this section, we are interested in the case where A is an
orthogonal matrix, i.e., < a j , ai >= 0,∀ i �= j . In contrast
to the penalized form (2), the functional with A orthogonal
is not separable so the computation of the convex envelope
in the N dimensional case cannot be reduced to the sum of
N one-dimensional cases (as in [35]). The problem (1) can
be written as the minimization of

Gk(x) = 1

2
‖Ax − d‖2 + χ‖·‖0≤k (x) (3)

where χ is the indicator function defined in notations. Before
calculating the convex envelope, we need some preliminary
results.

Proposition 2 Let x ∈ R
N . There exists j ∈ N such that

0 < j ≤ k and

|x↓
k− j+1| ≤ 1

j

N∑
i=k− j+1

|x↓
i | ≤ |x↓

k− j | (4)

where the left inequality is strict if j �= 1, and where x0 =
+∞. Furthermore, Tk(x) is defined as the smallest integer
that verifies the double inequality.

The proof of existence is given in “Appendix A.1.” We
will also use the Legendre–Fenchel transformation which
is essential in the calculation of the convex envelope.

Definition 1 The Legendre–Fenchel transformation of a
function f : R

N → R ∪ {+∞} is defined as:

f ∗(u∗) = sup
u∈RN

< u, u∗ > − f (u).

The biconjugate of a function, that is applying the Legendre–
Fenchel transformation twice, is the convex envelope of the
function.

Following [35], we present the convex envelope of Gk (3)
when A is orthogonal.

Theorem 1 Let A ∈ R
M×N be such that AT A = I . The

convex envelope of Gk(x) is

G∗∗
k (x) = 1

2
‖Ax − d‖22 + Q(x) (5)

where

Q(x) = −1

2

N∑
i=k−Tk (x)+1

x↓2
i + 1

2Tk(x)

⎛
⎝ N∑

i=k−Tk (x)+1

|x↓
i |

⎞
⎠

2

(6)

and where Tk(x) is defined as in Proposition 2.

Proof Since AT A = I , the function Gk (3) can be rewritten
as:

Gk(x) = χ‖·‖0≤k (x) + 1

2
‖d − b‖22 + 1

2
‖x − z‖22 (7)

where b = AAT d and z = AT d. This reformulation
allows us to decompose the data-fitting term into a sum of
one-dimensional functions. We apply the Legendre transfor-
mation on the functional (7):

G∗
k(y) = sup

x∈RN
< x, y > −χ‖·‖0≤k (x) − 1

2
‖d − b‖22

−1

2
‖x − z‖22 .

We leave out the terms that are not depending on x .

G∗
k(y) = −1

2
‖d − b‖22

+ sup
x∈RN

(
< x, y > −χ‖·‖0≤k (x) − 1

2
‖x − z‖22

)
.

Writing differently the expression inside the supremum, we
get

G∗
k(y) = −1

2
‖d − b‖22

+ sup
x∈RN

(
−χ‖·‖0≤k (x) − 1

2
‖x − (z + y)‖22

+1

2
‖z + y‖22 − 1

2
‖z‖22

)
.

We develop further

G∗
k(y) = −1

2
‖d − b‖22 − 1

2
‖z‖22 + 1

2
‖z + y‖22

+ sup
x∈RN

(
−χ‖·‖0≤k (x) − 1

2
‖x − (z + y)‖22

)
.
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The supremum is reached when xi = (z + y)
↓
i , i ≤ k,

and xi = 0, ∀i > k. The Legendre transformation of Gk is
therefore

G∗
k(y) = −1

2
‖d − b‖22 − 1

2
‖z‖22 + 1

2

k∑
i=1

(z + y)
↓2
i .

To obtain the convex envelope of the function Gk , we com-
pute the Legendre transformation of G∗

k .

G∗∗
k (x) = sup

y
< x, y > +1

2
‖d − b‖22

+1

2
‖z‖22 − 1

2

k∑
i=1

(z + y)
↓2
i .

We add and subtract 1
2‖x‖2 and < x, z > in order to obtain

an expression that is easier to work with.

G∗∗
k (x) = sup

y
< x, y > +1

2
‖d − b‖22 + 1

2
‖z‖22

+ 1

2
‖x‖2 − 1

2
‖x‖2

+ < x, z > − < x, z > −1

2

k∑
i=1

(z + y)
↓2
i

G∗∗
k (x) = sup

y
< x, z + y > +1

2
‖d − b‖22

+ 1

2
‖x − z‖22 − 1

2
‖x‖2 − 1

2

k∑
i=1

(z + y)
↓2
i .

Noticing that 12 ‖d − b‖22+ 1
2‖x − z‖22 = 1

2‖Ax −d‖22, using
the notation w = z + y, and given the definition of w↓, this
is equivalent to

G∗∗
k (x) = 1

2
‖Ax − d‖22 − 1

2
‖x‖2

+ sup
w∈RN

< x, w > −1

2

k∑
i=1

w
↓2
i . (8)

The above supremumproblemcanbe solvedbyusingLemma
1, which is presented after this proof. This yields

G∗∗
k (x) = 1

2
‖Ax − d‖22 − 1

2

N∑
i=k−Tk (x)+1

x↓2
i

+ 1

2Tk(x)

⎛
⎝ N∑

i=k−Tk (x)+1

|x↓
i |

⎞
⎠

2

(9)

�

The following lemma is necessary in the proof of the convex
envelope.

Lemma 1 Let x ∈ R
N . Consider the following supremum

problem

sup
y∈RN

−1

2

k∑
i=1

y↓2
i + < y, x > . (10)

This problem is concave, and the value of the supremum
problem (10) is

1

2

k−Tk (x)∑
i=1

x↓2
i + 1

2Tk(x)

⎛
⎝ N∑

i=k−Tk (x)+1

|x↓
i |

⎞
⎠

2

.

Tk(x) is defined in Proposition 2. The supremum argument
is given by

y = P(x)−1
ŷ

where ŷ is

ŷ j (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sign(x↓
j ) 1

Tk (x)

∑N
i=k−Tk (x)+1 |x↓

i | if k ≥ j ≥ k − Tk(x) + 1

or if j > k and x↓
j �= 0

[−1, 1] 1
Tk (x)

∑N
i=k−Tk (x)+1 |x↓

i | if j > k and x↓
j = 0

x↓
j if j < k − Tk(x) + 1.

(11)

The proof can be found in “Appendix A.2,” and it depends
on multiple preliminary results in “Appendix A.1.”

Remark 1 ŷ is such that ŷ = ŷ↓.

This expression of the convex envelope may be hard to grasp
since the expression is on a non-closed form. To understand
better Q(x), we have the following properties:

Property 1 Q(x) : Rn → [0,∞[.
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Proof Let us show that Q(x) ≥ 0, ∀x . We use Eq. (6) as
starting point.

Q(x) = −1

2

N∑
i=k−Tk (x)+1

x↓2
i

+ 1

2Tk(x)

⎛
⎝ N∑

i=k−Tk (x)+1

|x↓
i |

⎞
⎠

2

≥ −1

2
|x↓

k−Tk (x)+1|
N∑

i=k−Tk (x)+1

|x↓
i |

+ 1

2Tk(x)

⎛
⎝ N∑

i=k−Tk (x)+1

|x↓
i |

⎞
⎠

2

≥ −1

2
|x↓

k−Tk (x)+1|
N∑

i=k−Tk (x)+1

|x↓
i |

+ 1

2
|x↓

k−Tk (x)+1|
N∑

i=k−Tk (x)+1

|x↓
i | = 0.

Weused the fact that |x↓
k−Tk (x)+1| ≥ |x↓

i |, ∀i ≥ k−Tk(x)+1
for the first inequality. For the second inequality, we used the
inequality in the definition of Tk(x) (see Proposition 2) to go
from the second to third line. Note that for Tk(x) > 1 the last
inequality is strict. �
Property 2 The function Q(x) is continuous on R

N .

Proof By definition we have that G∗∗
k (x) = 1

2‖Ax −
d‖2 + Q(x) when A is orthogonal, and G∗∗

k is lower semi-
continuous, and continuous in the interior of its domain. From
[29, Corollary 3.47] for coercive functions, dom(co( f )) =
co(dom( f )), where co is the convex envelope of a function
and dom is the domain of the function. First, Gk is coercive
when A is orthogonal since we have ‖Ax‖2 = (Ax)T Ax =
xT AT Ax = ‖x‖2.G∗∗

k is continuous onR
N . Since dom(Gk)

is made up of all different supports where ‖x‖0 ≤ k, its con-
vex envelope is R

N . Thus, dom(G∗∗
k ) = R

N , and G∗∗
k is

continuous on R
N . Moreover, Q(x) = G∗∗

k (x) − 1
2‖Ax −

d‖2, so Q(x) is the difference between a continuous function
and a continuous function, and is independent of A, and thus
continuous. �
Property 3 Let ‖x‖0 ≤ k. Then, Tk(x) as defined in Proposi-
tion 2 is such that Tk(x) = 1. The inverse is not necessarily
true.

Proof From Proposition 2, we know that Tk(x) satisfies

|x↓
k−Tk (x)+1| ≤ 1

Tk(x)

N∑
i=k−Tk (x)+1

|x↓
i | ≤ |x↓

k−Tk (x)|.

First, note that for all x such that ‖x‖0 ≤ k, we have
∀ j > k, x↓

j = 0, and in this case the inequalities are clearly
satisfied for Tk(x) = 1. Furthermore, Tk(x) is defined as the
smallest possible integer, and thus Tk(x) = 1.

An example to prove the inverse is not true: Let x =
(6, 3, 2, 1)T . Let k = 2, then

N∑
i=k

|x↓
i | = 6 ≤ |x↓

k−1| = 6.

Tk(x) = 1, but the constraint ‖x‖0 ≤ 2 is clearly not satis-
fied. �

Property 4 Q(x) = 0 if and only if ‖x‖0 ≤ k.

Proof From Property 1, Q(x) ≥ 0 and the inequality is strict
if Tk(x) > 1. Thus, it suffices to investigate Tk(x) = 1. The
expression is thus reduced to:

Q(x) =
N∑

j=k+1

j−1∑
i=k

|x↓
i ||x↓

j |

which is equal to 0 only if at least ∀ j, j > k, x↓
j = 0. �

In the next section, we will investigate the use of Q(x)

when A is not orthogonal.

3 A New Relaxation

Fromnowon,we suppose A ∈ R
M×N with A not necessarily

orthogonal.
We are interested in a continuous relaxation of Gk defined

as

Gk(x) = 1

2
‖Ax − d‖2 + χ‖·‖0≤k (x).

Following the C E L0 approach, we propose the following
relaxation of Gk :

G Q(x) = 1

2
‖Ax − d‖2 + Q(x) (12)

with

Q(x) = −1

2

N∑
i=k−Tk (x)+1

x↓2
i + 1

2Tk(x)

⎛
⎝ N∑

i=k−Tk (x)+1

|x↓
i |

⎞
⎠

2

(13)
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where Tk(x) is the function defined in Proposition 2 as the
smallest integer that verifies the inequality:

|x↓
k−Tk (x)+1| ≤ 1

Tk(x)

N∑
i=k−Tk (x)+1

|x↓
i | ≤ |x↓

k−Tk (x)| (14)

where, by definition, the inequality is strict if Tk(x) > 1.
Remark that, from its definition [see Eq. (8)], Q(x) can

be written as:

Q(x) = −1

2

N∑
i=1

x2i + sup
w∈RN

−1

2

k∑
i=1

w
↓
i

2+ < w, x > . (15)

Note that the properties of Q(x) proved in Sect. 2 are valid
for any A.

The exactness of a relaxationmeans that the relaxation has
the same global minimizers as the initial function. Further-
more, it does not add any minimizers that are not minimizers
of the initial function. The C E L0 relaxation [35] is an exact
relaxation of the penalized functional (2). The proposed
relaxation G Q of the constraint functional Gk (3) is not exact
as a counterexample later in the paper shows. We can prove,
however, some partial results.

Remark 2 From Property 4, we have Q(x) = 0 ∀ x such that
‖x‖0 ≤ k. Thus, G Q(x) = Gk(x) ∀ x such that ‖x‖0 ≤ k.

Theorem 2 Let x̂ be a local (respectively global) minimizer
of G Q. If ‖x̂‖0 ≤ k, then x̂ is a local (respectively, global)
minimizer of Gk.

Proof Let S :={x : ‖x‖0 ≤ k}. Let x̂ be a local mini-
mizer of G Q , such that ‖x̂‖0 ≤ k and let N (x̂, γ ) denote
the γ -neighborhood of x̂ . By contradiction assume that
∃x̄ ∈ N (x̂, γ )

⋃
S s.t. Gk(x̄) < Gk(x̂). From Remark 2,

G Q(x̄) = Gk(x̄) and G Q(x̂) = Gk(x̂), which means
∃x̄ ∈ N (x̂, γ ) ∪ S s.t .G Q(x̄) < G Q(x̂) which is a con-
tradiction since x̂ is a minimizer of G Q . The same reasoning
can be applied in the case of global minimizers. �

Thus, if a minimizer of the relaxed functional satisfies the
sparsity constraint, then it is a minimizer of the initial prob-
lem. Furthermore, the relaxation is a mix of absolute values
and squares and promotes therefore sparsity. The subgradi-
ent, as can be seen in the next section, promotes a k-sparse
solution.

Further note thatwe could have applied the quadratic enve-
lope [14] to obtain the relaxation Q. The quadratic envelope
can be defined as applying twice the Sγ transformation on a
function f . The Sγ transformation is defined as:

Sγ ( f )(y):= sup
x

− f (x) − γ

2
‖x − y‖2.

If we apply the quadratic envelope to the constrained �0 indi-
cator function, we obtain γ Q. Further, the author proposes
to either choose γ I ≺ AT A, where I is the identity matrix,
or γ I � AT A. It is important to note that if we have a γ

such that γ I � AT A, does not mean that γ I ≺ AT A. When
γ is such that γ I � AT A, the relaxation is exact. However,
numerically, we found this condition far too strong, and it
did not perform better than minimizing the initial hard con-
straint function Gk (3). For a normalized matrix A, Q can
be found by taking γ = 1 in Sγ (Sγ (χ‖·‖0≤k )). However, we

do not have necessarily I � AT A. Nevertheless, we show in
this paper, some exact relaxation properties for G Q .

Furthermore, what is hidden in our proposed method is
the fact that each column of A is normalized. Without this
assumption, each element xi would be weighted by ‖ai‖2,
which is finer than multiplying a constant to the whole reg-
ularization term. Again, we can compare with the C E L0
relaxation. When applying the quadratic envelope to the �0
penalization term, we obtain C E L0, but instead of ‖ai‖2 in
the expression, there is a γ .

However, we are obliged to normalize A to calculate the
proximal operator of the regularization term.

3.1 The Subgradient

In this section, we calculate the subgradient of G Q . Since
G Q is neither smooth nor convex, we cannot calculate the
gradient nor the subgradient in the sense of convex analysis.
We calculate the generalized subgradient (or Clarke subgra-
dient). The obtained expression shows the difficulties to give
optimal necessary conditions for the relaxation.

To calculate the generalized subgradient, we must first
prove that Q(x) is locally Lipschitz.

Definition 2 A function f : R
N → R is locally Lipschitz at

point x if

∃(L, ε),∀(y, y′) ∈ N (x, ε)2, | f (y) − f (y′)| ≤ L‖y − y′‖

where L ∈ R≥0, and N (x, ε) is a ε neighborhood of x.

Lemma 2 Q(x) is locally Lipschitz, ∀x ∈ R
N .

Proof First, it is well known that the supremum of locally
Lipschitz functions is locally Lipschitz. Let us use the def-
inition of Q(x) from (15). The function defined as x →
supw − 1

2

∑k
i=1 w

↓
i

2+ < w, x > is locally Lipschitz since

∀i the functions x → − 1
2

∑k
i=1 w

↓
i

2+ < w, x > are locally
Lipschitz. Furthermore, the sum of two locally Lipschitz
functions is locally Lipschitz. �

Since Q(x) is locally Lipschitz, we can search for the
generalized subgradient, denoted ∂ .
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Definition 3 The generalized subgradient [16] of a function
f : R

N → R (which is locally Lipschitz) is defined by

∂ f (x):={ξ ∈ R
N : f 0(x, v) ≥< v, ξ >,∀v ∈ R

N }

where f 0(x, v) is the generalized directional derivative in
the direction v,

f 0(x, v) = lim sup
y→x
η↓0

f (y + ηv) − f (y)

η
.

Theorem 3 Let x ∈ R
N , and let Tk(x) be as defined in Propo-

sition 2. The subgradient of G Q(x) is

∂G Q(x) = A∗(Ax − d) − x + y(x) (16)

where y(x) is the argument where the supremum is reached
in Lemma 1.

Proof G Q is sumof three functions, supw − 1
2

∑k
i=1 w

↓
i

2+ <

w, x >, 1
2‖Ax − d‖2 and − 1

2‖x‖2. From [16, Proposition
2.3.3 and Corollary 1] and since the two last functions are
differentiable, we can write the generalized subgradient of
G Q as the sum of the gradient of the two last functions and
the generalized subgradient of the first, i.e.,

∂G Q = ∇
[
1

2
‖A · −d‖2

]
(x) − ∇

[
1

2
‖ · ‖2

]
(x)

+∂[ sup
w∈RN

−1

2

k∑
i=1

w
↓
i

2+ < w, · >](x). (17)

Thus, the difficulty is to calculate ∂[supw − 1
2

∑k
i=1 w

↓
i

2+ <

w, · >](x).
From [24, Theorem 2.93], the subgradient of the supre-

mum is the convex envelop of the subgradients where the

supremum is reached.We define g(w, x) = − 1
2

∑k
i=1 w

↓
i

2+
< w, x >. The subgradient of g with respect to x is
∂(g(w, ·))(x) = w. Now, we need to find the supremum in

supw − 1
2

∑k
i=1 w

↓
i

2+ < w, x >. From Lemma 1, we know
that the supremum is reached at y(x), given in (11).We insert
y(x) into (17) and this concludes the proof. �

3.2 A Numerical Example of the Relaxation in Two
Dimensions

In order to obtain a clearer view of what is gained with the
proposed relaxation, we study two numerical examples in
two dimensions. We set k = 1 and the initial problem is

Gk(x) = 1

2
‖Ax − d‖2 + χ‖·‖0≤1(x).

In two dimensions, the problem Gk=1 is a simple problem to
minimize. The solution is either when the first component,
x̂1 is 0, or when the second component x̂2 = 0, or both. For
k = 1 we have that Tk(x) = 1, and the relaxed formulation
is then

G Q(x) = 1

2
‖Ax − d‖2 + |x1||x2|.

Weconsider the casewhere A ∈ R
2×2, and the two following

examples:

A =
(
3 2
1 3

)
�1/‖ai ‖ and d =

(
1
2

)
(18)

A =
(−3 −2

1 3

)
�1/‖ai ‖ and d =

(
1
2

)
(19)

where �1/‖ai ‖ is a diagonal matrix with 1
‖ai ‖ on its diagonal,

and ‖ai‖ is the norm of the i th column of A. Figure 1 presents
the contour lines of Gk and G Q . The red semi-transparency
layer over the contour line of the Gk represents the infinite
value, and the blue semi-transparency layer over the relax-
ation marks the axes. The figures show the advantages of
using G Q as relaxation. The relaxation is continuous, and in
Example (18), the relaxation is exact. This can be observed
in the upper row in Fig. 1. Example (19) gives an example
when the relaxation is not exact. In the lower row of Fig. 1,
we observe the effect of the relaxation, as it is a product of
the absolute value of x1 and x2. The global minima for the
relaxation in this case is situated in (−0.086, 1.0912) and the
two minima for Gk are (−0.3162, 0) and (0, 1.094).

4 Algorithms to Deal withGQ

The analysis of the relaxation shows that it promotes sparsity.
The function G Q is non-convex and non-smooth, but G Q is
continuous, which is not the case for Gk . One could imple-
ment a subgradient method, either by using gradient bundle
methods (see [10] for an overview) or classical subgradient
methods. However, there are no convergence guarantees for
the latter. Both methods are also known to be slow compared
to the classical forward–backward splitting algorithm (FBS).
The FBS algorithm is proven to converge when the objective
function has the Kurdyka-Łojasiewicz (K-Ł) property. More
recent algorithms propose accelerations of the FBS, such as
the non-monotone accelerated proximal gradient algorithm
(nmAPG) [21] which is used in the numerical experiences of
this paper. The algorithm is presented in “Appendix A.4.” It
is designed to work on problems of the form:

x̂ ∈ argmin
x

F(x):= f (x) + g(x) (20)
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Fig. 1 Top: Level lines of the function Gk and G Q for the example (18). Bottom: Level lines of the function Gk and G Q for the example (19)

where f is a differentiable function, ∇ f is L-Lipschitz, and
the proximal operator of g can be calculated. It is possible to
add a fail-safe to be sure that the algorithm always converges
to a solution that satisfies the sparsity constraint. A simple
projection to the constraint ‖x‖0 ≤ k using the proximal of
the constraint and then the calculation of the optimal inten-
sity for the given support would suffice. To use the FBS and
its variants, we need to calculate the proximal operator of
Q(x). To do so, we present some preliminary results before
presenting the proximal operator.

Lemma 3 G Q satisfies the K-Ł property.

Proof 1
2‖Ax − d‖2 is semi-algebraic. Using the definition

of Q(x) in (15), we can prove that Q(x) is semi-algebraic.
First, note that ‖x‖22 is semi-algebraic. Furthermore,

k∑
i=1

x↓2
i = sup

y
g(x, y):= − χ‖·‖0≤k (y) − 1

2
‖x − y‖2

and g(x, y) is semi-algebraic [7]; then,
∑k

i=1 x↓2
i is semi-

algebraic. Thus, f (x, y):= − ∑k
i=1 y↓2

i + < x, y > is

semi-algebraic, and the supremum as well. We can conclude
that Q(x) is semi-algebraic, and thus, G Q satisfies the K-Ł
property. �

The expression of Q(x) in (6) is not on a closed-form
expression because of the function Tk(x) and calculating
the proximal operator directly from this expression is diffi-
cult. The following proposition facilitates the calculation of
proxQ . The proposition is inspired by [13, Proposition 3.3],
and the proof is omitted in this article as it follows the same
steps and arguments as in the referenced article.

Proposition 3 Let ρ > 1 and z = prox−(
ρ−1
ρ

)
∑N

i=k+1(·)↓2(y).

We have

prox Q
ρ
(y) = ρy − z

ρ − 1
. (21)

Thus, it suffices to calculate the proximal operator of
ζ(x):= − (

ρ−1
ρ

)
∑N

i=k+1 x↓2
i . This is done in Lemma 8 in

“Appendix A.3.” The following theorem presents the proxi-
mal operator of Q
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Theorem 4 The proximal operator of Q for ρ > 1 is such
that

prox Q
ρ
(y)

↓y
i =

⎧⎨
⎩

ρy↓
i −sign(y↓

i )max(|y↓
i |,τ )

ρ−1 if i ≤ k
ρy↓

i −sign(y↓
i )min(τ,ρ|y↓

i |)
ρ−1 if i > k

or, equivalently

prox Q
ρ
(y)

↓y
i =

⎧⎪⎪⎨
⎪⎪⎩

y↓
i if i ≤ k∗

ρy↓
i −sign(y↓

i )τ

ρ−1 if k∗ < i < k∗∗

0 if k∗∗ ≤ i .

where k∗ is the first index such that τ > |y↓
i | and k∗∗ is the

first index such that ρ|y↓
i | < τ . τ is a value in the interval

[|y↓
k |, ρ|y↓

k+1|], and is defined as

τ = ρ
∑

i∈n1 |y↓
i | + ρ

∑
i∈n2 |y↓

i |
ρ#n1 + #n2

(22)

where n1 and n2 are two groups of indices such that ∀ i ∈
n1, y↓

i < τ and ∀ i ∈ n2, τ ≤ ρ|y↓
i | for an #n1 and #n2 are

the sizes of n1 and n2. To go from prox Q
ρ
(y)↓y to prox Q

ρ
(y),

we apply the inverse permutation that sorts y to y↓.

Proof The result is direct by applying Proposition 3 and
Lemma 8 which present the proximal operator of
prox−(

ρ−1
ρ

)
∑N

i=k+1(·)↓2(y); the latter is presented in

“Appendix A.3.” �
Note that the proximal operator of Q is only a relaxation of
the proximal operator of ‖x‖0 ≤ k, which keeps the k largest
values of x . Further note that the search for τ can be done
iteratively by sorting in descending order all values of y↓

i i ≤
k and ρy↓

i i > k that are (with respect to their absolute value)

in the interval [|y↓
k |, ρ|y↓

k+1|]. The elements in the interval
are sorted, and denoted pi . n1,n2 must calculated for each
interval [pi+1, pi ]. The search is over if τ is ∈ [pi+1, pi ].

The codes to compute the proximal operator and the cost
function are available online: https://github.com/abechens/
SMLM-Constraint-Relaxation.

5 Application to 2D Single-Molecule
LocalizationMicroscopy

In this section,we compare theminimization of the relaxation
with other 2D grid-based sparse algorithms. The algorithms
are applied to the problemof 2D single-molecule localization
microscopy (SMLM).

SMLM is a microscopy method that is used to obtain
images with a higher resolution than what is possible with

traditional optical microscopes. The method was first intro-
duced in [5,19,30]. Fluorescent microscopy uses photoacti-
vatable fluorophores that can emit light when they are excited
with a laser. The fluorophores are observed with an optical
microscope, and, since the fluorophores are smaller than the
diffraction limit, what is observed is not each fluorophore, but
rather a diffraction pattern (or equivalently the point spread
function (PSF)) larger than the fluorophores. This limits the
resolution of the image. SMLMexploits photoactivatable flu-
orophores, and, instead of activating all the fluorophores at
once as done by other fluorescent microscopy methods, one
activates a sparse set of fluorescent fluorophores. The proba-
bility that two fluorophores are in the same PSF is low when
only a few fluorophores are activated (low-density images),
and precise localization of each is therefore possible. The
localization becomes harder if the density of emitting fluo-
rophores is higher because of the possibility of overlapping
PSF’s. Once eachmolecule has been precisely localized, they
are switched off and the process is repeated until all the fluo-
rophores have been activated. The total acquisition time may
be long when activating few fluorophores at a time, which
is unfortunate as SMLM may be used on living samples that
can move during this time. We are, in this paper, interested
in high-density acquisitions.

The localization problem of SMLM can be described as
a �2 − �0 minimization problem such as (1) and (2) with an
added positivity constraint since we reconstruct the intensity
of the fluorophores. For G Q , this is done by using the dis-
tance function to the nonnegative space since the proximal
operator of the sum of Q(x) and the positivity constraint is
not known. A is the matrix operator that performs a con-
volution with the point spread function and a reduction of
dimensions. The fluorophores are reconstructed on a finer
grid ∈ R

M L×M L than the observed image ∈ R
M×M , with

L > 1. A detailed description of the mathematical model
can be found in [2]. Note that an estimation of the number
of excited fluorophores is possible to do beforehand as this
is dependent on the intensity of the excitation laser. Thus,
the constrained sparse formulation (1) may be more suitable
to use compared to the penalized sparse formulation (2) as
the sparsity parameter k is the maximum number of nonzero
pixels to reconstruct, and one pixel can be roughly equivalent
to one observed excited fluorophore.

We compare first G Q with iterative hard thresholding
(IHT) [17] which minimizes the constrained initial func-
tion (1). This gives a clear comparison between the initial
function and the proposed relaxation. We construct an image
artificially with 213 of fluorophores randomly scattered on
a 256 × 256-grid, where each square measures 25 × 25nm.
The observed image is 64×64-pixel image, where each pixel
measures 100×100nm, with a simulated Gaussian PSFwith
an FWHM of 258.21nm. Note that we use these parame-
ters as this is representative of the simulated 2D-ISBI data
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Fig. 2 Example of the
simulated dataset. The number
of fluorophores is 213. To the
left: ground truth. To the right:
one of the 100 observations

Fig. 3 Comparison of the constrained-based algorithms: G Q and con-
strained IHT. The y-axis represents the value 1

2‖Ax − d‖2. The lower,
the better

presented in the next section. We then construct 100 obser-
vations by applying different realizations of Poisson noise to
the same image. The signal-to-noise ratio is around 20dB for
each observation (Fig. 2).

We compare the ability of G Q and constrained IHT to
minimize the �2 data fidelity term under the constraint that
only 213 pixels are nonzero.

In Fig. 3, we compare the results of G Q and constrained
IHT using the data fidelity term. The results of the 100
image reconstructions are presented with boxplots. The red
mark in the box is the median of the reconstruction result
of the 100 noisy, blurred, and downsampled images. The
upper (respectively, lower) part of the box indicates the 75th
(25th) percentiles median. We can observe that G Q always
minimizes better than constrained IHT in terms of the data
fidelity term. Thus, it manages more efficiently to solve the
initial problem.

G Q reconstructs the 100 images with a median data
fidelity value of 1.55. To compare, constrained IHT has 2.74
as a median data fidelity value.

This small example shows clearly the advantage of using
G Q compared to constrained IHT. In the next section, we
compare G Q and constrained IHT with other �2 − �0-based
algorithms.

5.1 Comparison on 2013 ISBI Data

We compare G Q and constrained IHTwith CoBic [2], which
is designed to minimize the constrained �2−�0 problem.We
further compare the algorithms with two algorithms: C E L0
[18] and the �1 relaxation, both relaxations of the penalized
formulation (2). The �1 relaxation is minimized using FISTA
[4], andG Q isminimizedwith the non-monotone accelerated
proximal gradient algorithm (nmAPG) [21]. The algorithms
are applied to the problemof 2D single-molecule localization
microscopy (SMLM).

The algorithms are tested on two datasets with high-
density acquisitions, accessible from the ISBI 2013 challenge
[31]. For a review of the SMLM and the different localiza-
tion algorithms, see the ISBI-SMLM challenge [31]. A more
recent challenge was launched in 2016 [32]. We decided to
use the 2013 challenge as the data are denser in the 2013
challenge. Furthermore, the 2D data in the 2016 challenge
contain observationswhere someelements are not in the focal
plane. Thus, our image formation model is not optimized for
this image acquisition method.

Figure 4 shows twoof the 361 acquisitions of the simulated
dataset as well as the sum of all the acquisitions. We apply
the localization algorithm to each acquisition, and the sum of
the results of the localization of the 361 acquisitions yields
one super-resolution image.

We use the Jaccard index to do a numerical evaluation of
the reconstructions. The Jaccard index is known from prob-
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Fig. 4 Simulated images, from
left to right: 1st acquisition,
361st acquisition, and the sum
of all the acquisitions

Table 1 The Jaccard index
obtained for an reconstruction of
around 90, 100 and 142 nonzero
pixels on average. In bold: best
reconstruction for the tolerance
and the number of pixel
reconstructed

Method/tolerance Jaccard index (%) for 90 | 99 |142 non-zero
pixels on average

50nm 100nm 150nm

Constrained IHT 20.2|21.3|22.0 35.0|37.8|42.2 38.9|42.9|51.0
C E L0 26.7|29.3|32.7 37.7|41.3|46.9 38.8|42.4|49.2
CoBic 23.9|25.2|– 36.3|40.0 |– 38.2|43.2|–
G Q 27.3|29.5|32.5 37.4|41.9|42.5 39.5|43.5|44.0
�1-relaxation 20.1|22.4|27.5 33.5|37.7|47.3 37.5|42.4|54.1

ability and is used to evaluate similarities between sets. In
this case, it evaluates the localization of the reconstructed
fluorophores (see [31]), and is defined as the ratio between
the correctly reconstructed (CR) fluorophores and the sum
of CR, false negatives (FN), and false positives (FP) fluo-
rophores. The index is 1 for a perfect reconstruction, and the
lower the index, the poorer the reconstruction. The Jaccard
index includes a tolerance of error in its calculations when
identifying the CR, FN and FP.

Jac = C R

C R + F P + F N
× 100%.

5.2 Results of the ISBI Simulated Dataset

The simulated dataset represents 8 tubes of 30nm diameter.
The acquisition is captured on a 64 × 64 pixel grid with a
pixel size of 100×100 nm2. The acquisition used a simulated
point spread function (PSF) modeled by a Gaussian function
with a full width at half maximum (FWHM) of 258.21nm.
Among the 361 images, there are 81 049 fluorophores.

The algorithms localize the fluorophores with higher pre-
cision on a 256 × 256 grid, where each pixel measures
25 × 25 nm2. This can be written as a reconstruction of
x ∈ R

M L×M L with an acquisition d ∈ R
M×M , where L = 4

and M = 64. The position of the fluorophore is estimated
using the center of the pixel.

We test the reconstruction ability of G Q with the sparsity
constraint k, set to three different values, and the Jaccard
index is presented in Table 1. The λ parameters for the
penalized functional (2) are set such that the same num-
ber of nonzero pixels is reconstructed as for the constrained

problem. The reconstructions for 99 nonzero pixels from the
different algorithms are presented in Fig. 5. The proposed
relaxation performs slightly better than CELO. The relax-
ation performs better than any of the constrained formulation
algorithms (CoBic and constrained IHT); moreover, CoBic
does not reconstruct more than 99 nonzero pixels on average.
The average reconstruction time for one acquisition is found
in Table 2.

5.3 Results of the Real Dataset

The algorithms are applied to the real high-density dataset,
provided from the 2013 ISBI SMLM challenge [31]. In total,
there are 500 acquisitions and each acquisition is of size
128 × 128 pixels and each pixel measures 100 × 100 nm2.
The FWHM is evaluated to be 351.8nm [15]. The local-
ization is done on a fine 512 × 512 pixel grid, where each
pixel measures 25 × 25 nm2. Extensive testing of the spar-
sity parameters has been done to obtain the results, presented
in Fig. 6, as we have no prior knowledge of the solution.
The parameters were chosen such that the parts in red and
green had distinctive tubes, as well as the overall tubulins,
were reconstructed. The results of the real dataset confirm the
results of the simulated data, where the constrained IHT per-
formance is not good, and the �1 relaxation seems to tighten
the holes which are observed in red.

An important note In the numerical experience, the pro-
posed relaxed formulation converges always to a critical
point that satisfies the sparsity constraint, and thus, the “fail-
safe” strategy is never activated.
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Fig. 5 Reconstructed images
from the simulated ISBI dataset,
99 nonzero pixels on average.
Top: from left to right: G Q ,
CoBic and IHT. Bottom: from
left to right: ground truth,
C E L0, and �1-relaxation

Table 2 Average reconstruction time for one image acquisition for the
different methods

Method Average reconstruction time

G Q C. IHT C E L0 CoBic �1

Time (s) 84 67 105 87 49

6 Conclusion

We have investigated in this paper a continuous relaxation of
the constrained �2−�0 problem.We compute the convex hull
of Gk when A is orthogonal. We further propose to use the

same relaxation for any A and name this relaxation G Q . This
is the same procedure as the authors used to obtain C E L0
[35]. The question that has driven us has been answered; the
proposed relaxation, G Q , is not exact for every observation
matrix A. However, it promotes sparsity and is continuous.
We propose an algorithm to minimize the relaxed function.
We further add a “fail-safe” strategy which ensures conver-
gence to a critical point of the initial functional. In the case
of SMLM, the relaxation performs as good as the other grid-
based methods, and it converges toward a critical point of
the initial problem each time without the “fail-safe” strat-
egy activated. Furthermore, the constraint parameter of G Q

Fig. 6 Reconstructed images
from the real ISBI dataset. Top:
from left to right: G Q , CoBic
and IHT. Bottom: from left to
right: sum of all acquisitions,
C E L0, and �1-relaxation
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is usually easier to fix than the regularizing parameter λ in
C E L0 in many sparse optimization problems.
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A Appendix

A.1 Preliminary Results for Lemma 1

Proposition 2 (Reminder) Let x ∈ R
N . There exists j ∈ N

such that 0 < j ≤ k and

|x↓
k− j+1| ≤ 1

j

N∑
i=k− j+1

|x↓
i | ≤ |x↓

k− j | (23)

where the left inequality is strict if j �= 1, and where x0 =
+∞. Furthermore, Tk(x) is defined as the smallest integer
that verifies the double inequality.

Proof First, we suppose that (23) is not true for j ∈
{1, 2, . . . , k − 1}, i.e., either

|x↓
k− j+1| >

1

j

N∑
i=k− j+1

|x↓
i |, (24)

or

1

j

N∑
i=k− j+1

|x↓
i | > |x↓

k− j |, (25)

or both. We prove by recurrence that if (23) is not true ∀ j ∈
{1, 2, . . . , k − 1}, then (24) is false, and (25) is true. We
investigate the case j = 1:

N∑
i=k

|x↓
i | = |x↓

k | +
N∑

i=k+1

|x↓
i | ≥ |x↓

k |. (26)

The above inequality is obvious, and we can conclude that
for j = 1, (24) is false, and thus, (25) must be true, i.e.,

N∑
i=k

|x↓
i | > |x↓

k−1|. (27)

We suppose that for some j ∈ {1, 2, . . . , k − 1}, (24) is
false and (25) is true, and we investigate j + 1.

1

j + 1

N∑
i=k− j

|x↓
i | = 1

j + 1

⎛
⎝|x↓

k− j | + j

j

N∑
i=k− j+1

|x↓
i |

⎞
⎠

>
1

j + 1

(
|x↓

k− j | + j |x↓
k− j |

)
= |x↓

k− j+1|.
(28)

We get (28) since we have supposed (25) is true for j . Thus,
by recurrence, we can conclude that (24) is false, and (25) is
true ∀ j ∈ {1, 2, . . . , k − 1}.

Now, we investigate j = k:

1

k

N∑
i=1

|x↓
i | = 1

k

(
|x↓

1 | + k − 1

k − 1

N∑
i=2

|x↓
i |

)

>
1

k

(
|x↓

1 | + (k − 1)|x↓
1 |

)
= |x↓

1 |. (29)

We use the fact that (25) is true for j = k − 1 to obtain the
above inequality. Thus, (24) is false.Bydefinition x↓

0 = +∞,
and thus, (25) is also false. Thus, Tk(x) = k verifies the
double inequality in (23).

To conclude, either Tk(x) = k, or there exists j ∈
{1, 2, . . . , k − 1} such that Tk(x) = j . �
Definition 4 Let P(x) ∈ R

N×N be a permutationmatrix such
that P(x)x = x↓. The space D(x) is defined as:

D(x) = {b; ∃P(x) s.t. P(x)b = b↓}.

z ∈ D(x) means < z, x >=< z↓, x↓ >.

Remark 3 D(x) = D(|x |), since we have |x↓| = |x |↓.
Proposition 4 Let (a, b) ∈ R

N≥0 × R
N≥0. Then,

∑
i

ai bi ≤
∑

i

a↓
i b↓

i

and the inequality is strict if b /∈ D(a).

Proof [34, Lemma 1.8] proves it without proving the strict
inequality.

We assume that a is not on the form a = t(1, 1 . . . , 1)T ,
i.e., there exists i �= j, ai �= a j . If a = t(1, 1 . . . , 1)T ,

then b ∈ D(a), and
∑

i ai bi = ∑
i a↓

i b↓
i . Moreover, for

simplicity, without loss of generality, we suppose a = a↓.
We write

N∑
i

ai bi = aN

N∑
i=1

bi + (aN−1 − aN )

N−1∑
i=1

bi + · · · + (a1 − a2)b1. (30)
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As it is obvious that ∀ j = 1, . . . N

j∑
i=1

bi ≤
j∑

i=1

b↓
i , (31)

and since a j−1 − a j ≥ 0 ∀ j , we get

N∑
i=1

ai bi ≤
N∑

i=1

ai b
↓
i =

N∑
i=1

a↓
i b↓

i (32)

The goal of Proposition 4 is to show that the inequality in
(32) is strict if b /∈ D(a).

First, we can remark if b /∈ D(a), then there exists j0 ∈
{2, 3, . . . , N } such
j0−1∑
i=1

bi <

j0−1∑
i=1

b↓
i . (33)

By contradiction, if (33) is not true, we have ∀ j ∈
{2, 3, . . . , N }
j−1∑
1=1

b↓
i ≤

j−1∑
1=1

bi ,

and with (31), we get

j−1∑
1=1

b↓
i =

j−1∑
1=1

bi . (34)

From (34), we easily obtain ∀ j,

b j = b↓
j ,

which means b↓ = b, i.e., b ∈ D(a), which contradicts the
hypothesis b /∈ D(a). So there exists j0 such that (33) is true,
and if a j0−1 �= a j0

(a j0−1 − a j0)

j0−1∑
i=1

bi < (a j0−1 − a j0)

j0−1∑
i=1

b↓
i ,

which, with (30), implies

N∑
i=1

ai bi <

N∑
i=1

ai b
↓
i .

It remains to examine the case where a j0−1 = a j0 . In this
case, we claim there exists j1 ∈ {1, . . . , j0−2} such that

j1∑
i=1

bi <

j1∑
i=1

b↓
i , (35)

or j1 ∈ { j0, . . . , N } such that

j1∑
i= j0

bi <

j1∑
i= j0

b↓
i . (36)

If not, with the same proof as before we get

b↓
i = bi i ∈ {1, . . . , j0 − 2} ∪ { j0 + 1, . . . , N },

i.e., we have⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b↓
1

b↓
2
...

b↓
j0−2

x↓
1

x↓
2

b↓
j0+1
...

b↓
N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1
b2
...

b j0−2

x1
x2

b j0+1
...

bN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where (x1, x2) = (b j0−1, b j0) or (b j0 , b j0−1). The order does
not matter since a j0−1 = a j0 . This implies that b ∈ D(a),
which contradicts the hypothesis. So (35) and (36) are true
and we get, for example,

(a j1−1 − a j1)

j1−1∑
i=1

bi < (a j1−1 − a j1)

j1−1∑
i=1

b↓
i ,

and if a j1−1 − a j1 �= 0 we deduce

∑
i

ai bi <
∑

i

ai b
↓
i . (37)

If a j1−1 = a j1 , we repeat the same argument and proof as
above, and we are sure to find an index jw such that a jw−1 −
a jw �= 0 since we have supposed that a �= t(1, 1, . . . , 1)T .
Therefore, (37) is always true which concludes the proof. �
Proposition 5 [38] g(x) : R

N → R defined as g(x) =
1
2

∑k
i=1 x↓2

i , is convex. Furthermore, note that g(|x |) =
g(x).

Lemma 4 Let f1(z, x) ∈ R
N × R

N → R be defined as

f1(z, x):= − 1

2

k∑
i=1

z↓2
i + < z↓, x↓ > .

Let us consider the concave problem

sup
z∈RN≥0

f1(z, |x |). (38)
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Problem (38) has the following optimal arguments

arg sup
z∈RN≥0

f1(z, |x |) = {z; ∃ P ∈ R
N×N

a permutation matrix s.t. Pz = ẑ}, (39)

where ẑ is defined as

ẑ j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
Tk (x)

∑N
i=k−Tk (x)+1 |x↓

i | if k ≥ j ≥ k − Tk(x) + 1

or if j > k and x↓
j �= 0[

0, 1
Tk (x)

∑N
i=k−Tk (x)+1 |x↓

i |
]

if j > k and x↓
j = 0

|x↓
j | if j < k − Tk(x) + 1.

(40)

We can remark that ẑ = ẑ↓, and Tk(x) is defined in Proposi-
tion 2. The value of the supremum problem is

1

2

k−Tk (x)∑
i=1

x↓2
i + 1

2Tk(x)

⎛
⎝ N∑

i=k−Tk (x)+1

|x↓
i |

⎞
⎠

2

. (41)

Proof Problem (38) can be written as:

sup
z∈RN≥0

k∑
i=1

|x↓
i |z↓

i − 1

2

k∑
i=1

z↓2
i +

N∑
i=k+1

|x↓
i |z↓

i . (42)

We remark that finding the supremum for z↓
i , i > k reduces

to finding the supremum of the following term, knowing that
z↓

i is upper bounded by z↓
i−1:

N∑
i=k+1

|x↓
i |z↓

i . (43)

Let z↓
k be a constant. The sum in (43) is nonnegative and

increasing with respect to z↓
j , and the supremum is obtained

when z↓
j reaches its upper bound, i.e., z↓

j = z↓
j−1 ∀ j > k

and |x↓
j | �= 0. By recursion, z↓

j = z↓
k ∀ j > k and |x↓

j | �= 0.

When ∃ j > k, |x↓
j | = 0, we observe that z↓

j is multiplied
with zero, and can take on every value between its lower
bound and upper bounds, which is between 0 and z↓

k . Then,
obviously, the supremum argument for (43) is

z↓
i

{
= z↓

k if |x↓
i | �= 0

∈ [0, z↓
k ] if |x↓

i | = 0
(44)

Further, from (42), we observe that for i < k, the optimal
argument is

z↓
i = max(|x↓

i |, z↓
i+1). (45)

By recursion, we can write this as

z↓
i = max(|x↓

i |, z↓
k ). (46)

It remains to find the value of z↓
k .

Inserting (44) and (46) into (42), we obtain:

sup
z↓

k

k∑
i=1

|x↓
i |max(|x↓

i |, z↓
k ) − 1

2

k∑
i=1

max(|x↓
i |, z↓

k )2

+
N∑

i=k+1

|x↓
i |z↓

k . (47)

To treat the term max(|x↓
i |, z↓

k ), we introduce j∗(k) =
sup j { j : z↓

k ≤ |x↓
j |} , i.e., j∗(k) is the largest index such that

|x↓
j∗(k)| ≥ z↓

k , and we define x↓
0 = +∞. Therefore, (47) is

rewritten as:

sup
z↓

k

j∗(k)∑
i=1

|x↓
i |2 − 1

2

j∗(k)∑
i=1

|x↓
i |2 +

k∑
i= j∗(k)+1

|x↓
i |z↓

k

−1

2

k∑
i= j∗(k)+1

z↓2
k +

N∑
i=k+1

|x↓
i |z↓

k . (48)

(48) is a concave problem, and the optimality condition yields

−
k∑

i= j∗(k)+1

z↓
k +

N∑
j∗(k)+1

|x↓
i | = 0. (49)

We define
∑k

i= j∗(k)+1 1 = S. Then, j∗(k) = k − S and

z↓
k = 1

S

N∑
k−S+1

|x↓
i |. (50)

Furthermore, since j∗(k) = k − S was the largest index
such that |xk−S| ≥ z↓

k > |xk−S+1|. This translates to

|x↓
k−S| ≥ 1

S

N∑
k−S+1

|x↓
i | > |x↓

k−S+1|,

which implies S = Tk(x) (see Proposition 2). Note that if
j∗(k) = k (which is the same to say Tk(x) = 1), then the
right part of the above inequality is not strict.

Now, assume |x↓
j∗(k)| = z↓

k . Then, the max function can

both take z↓
k or |x↓

j∗(k)|. If it is the latter, than the expression
above is correct. In the former case, max(|x↓

j∗(k)|, z↓
k ) = z↓

k .
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We obtain

z↓
k = 1

Tk(x) + 1

N∑
k−Tk (x)

|x↓
i |. (51)

Furthermore, we use the fact that |x↓
j∗(k)| = z↓

k and j∗(k) =
k − Tk(x), and develop (51) as:

z↓
k = 1

Tk(x) + 1

⎛
⎝xk−Tk (x) +

N∑
k−Tk (x)+1

|x↓
i |

⎞
⎠
(52)

(Tk(x) + 1)z↓
k = z↓

k +
N∑

k−Tk (x)+1

|x↓
i | (53)

Tk(x)z↓
k =

N∑
k−Tk (x)+1

|x↓
i | (54)

z↓
k = (50) (55)

The unique value of z↓
k is given by (50). �

Lemma 5 Let x ∈ R
N and f2(y, x) ∈ R

N × R
N → R,

defined as

f2(y, x) = −1

2

k∑
i=1

y↓2
i + < y, x >

The following concave supremum problem

sup
y∈RN

f2(y, x) (56)

is equivalent to

sup
z∈RN≥0

f2(z, |x |). (57)

The arguments are such that ŷ↓
i = sign∗(x↓ẑ

i )ẑ↓
i .

Proof Let ẑ ∈ R
N≥0 be the argument of the supremum

in (57), ŷ be such that ŷi = sign(xi )ẑi , and note that
f2(y, x) = −g(y)+ < y, x > with g defined as in Proposi-
tion 5 in “AppendixA.1.” First, f2(y, x) is a concave function
in y (see Proposition 5). Furthermore, f2(y, x) is such that
− f2(y, x) is coercive in y. Thus, a supremum exists. Fur-
ther note that g(ŷ) = g(|ŷ|) = g(ẑ). Then, the following
sequence of equalities/inequalities completes the proof:

(57) = sup
z∈RN≥0

f2(z, |x |) = −g(ẑ)

+
N∑

i=1

ẑi |xi | = −g(ẑ) +
N∑

i=1

sign(xi )ẑi xi

= −g(ŷ) +
N∑

i=1

ŷi xi ≤ (56)

= sup
y∈RN

f2(y, x) ≤
<y,x>≤<|y|,|x |>

sup
y∈RN

f2(|y|, |x |)

= sup
z∈RN≥0

f2(z, |x |) = (57)

�

A.2 Proof of Lemma 1

Proof Note that a similar problem has been studied in [1].
They do, however, workwith low-rank approximation; there-
fore, they did not have the problem of how to permute x since
they work with matrices. First, letD(x) be as defined in Def-
inition 4.

We are interested in

sup
y∈RN

f2(y, x),

and its arguments, with f2 defined in Lemma 5. From this
lemma, we know that we can rather study

sup
z∈RN≥0

f2(z, |x |).

Furthermore, from Lemma 4, we know the expression of
supz∈RN≥0

f1(z, |x |) and its arguments. We want to show that

supz∈RN≥0
f2(z, |x |) = supz∈RN≥0

f1(z, |x |), and to find a con-
nection between the arguments of f2 and f1.

First, note that

sup
z∈RN≥0

f2(z, |x |) ≥ sup
z∈RN≥0∩D(x)

f2(z, |x |). (58)

From [34, Lemma 1.8] and Proposition 4, we have that
∀(y, x) ∈ R

N≥0 × R
N≥0:

< y, x >≤< y↓, x↓ >,

and the inequality is strict if y /∈ D(x), and thus

sup
z∈RN≥0

f2(z, |x |) ≤ sup
z∈RN≥0

f1(z, |x |). (59)
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Note that we have D(|x |) = D(x), then ∀z ∈ D(x),
f2(z, |x |) = f1(z, |x |) and:

sup
z∈RN≥0∩D(x)

f2(z, |x |) = sup
z∈RN≥0

N∑
i=1

z↓
i |x↓

i |

−1

2

k∑
i=1

z↓2
i = sup

z∈RN≥0

f1(z, |x |). (60)

Using inequalities (58) and (59) and connecting them to (60),
we obtain

sup
z∈RN≥0

f1(z, |x |) = sup
z∈RN≥0∩D(x)

f2(z, |x |)

≤ sup
z∈RN≥0

f2(z, |x |) ≤ sup
z∈RN≥0

f1(z, |x |).

f2(z, |x |) is upper and lower bounded by the same value;
thus, we have

sup
z∈RN≥0

f2(z, |x |) = sup
z∈RN≥0

f1(z, |x |) (61)

The supz∈RN≥0
f1(z, |x |) is known from Lemma 4:

sup
z∈RN≥0

f1(z, |x |) = 1

2

k−Tk (x)∑
i=1

x↓2
i

+ 1

2Tk(x)

⎛
⎝ N∑

i=k−Tk (x)+1

|x↓
i |

⎞
⎠

2

(62)

with the optimal arguments:

arg sup
z∈RN≥0

f1(z, |x |) = {z; ∃ P ∈ R
N×N

a permutation matrix s.t. Pz = ẑ}, (63)

where ẑ is such that:

ẑ j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
Tk (x)

∑N
i=k−Tk (x)+1 |x↓

i | if k ≥ j ≥ k − Tk(x) + 1

or if j > k and x↓
j �= 0[

0, 1
Tk (x)

∑N
i=k−Tk (x)+1 |x↓

i |
]

if j > k and |x↓
j | = 0

|x↓
j | if j < k − Tk(x) + 1.

(64)

Now we are interested in the optimal arguments of f2.
Let P(x) be such that P(x)x = x↓. We define z∗ = P(x)−1

ẑ.
Evidently, P(x)z∗ = ẑ, and since ẑ is sorted by its absolute
value, P(x)z∗ = z∗↓, and thus, z∗ ∈ D(x). Furthermore,
from Lemma 4, z∗ is an optimal argument of f1.

We have then f2(z∗, |x |) = f1(z∗, |x |) = supz∈RN≥0
f1(z,

|x |). z∗ is therefore an optimal argument of f2 since (61)
shows the equality between the supremum value of f1 and
f2.
We have shown that there exists ẑ ∈ arg sup

z∈RN≥0

f1(z, |x |),

from which we can construct z∗ ∈ D(x), an optimal argu-
ment of f2. Now, by contradiction, we show that all optimal
arguments of f2 are in D(x). Assume ẑ = arg sup

z∈RN≥0

f2(z, |x |)

and that ẑ /∈ D(x). We can construct z∗, such that z∗↓ = ẑ↓,
and z∗ ∈ D(x). We have then

f2(z
∗, |x |) − f2(ẑ, |x |)

= −1

2

k∑
i

z∗↓2
i + < z∗, |x | > +1

2

k∑
i

ẑ↓2
i − < ẑ, |x | >

=< z∗, |x | > − < ẑ, |x | >=< z∗↓, |x↓| >

− < ẑ, |x | >> 0.

The last equality is due to z∗ ∈ D(x), and the last inequality
is from Proposition 4. Thus, ẑ is not an optimal argument for
f2, and all optimal arguments of f2 must be in D(x).
Furthermore, thus it suffices to study supz∈RN≥0∈D(z) f2(z,

|x |), and from (60), we can rather study f1, and construct all
supremum arguments of f2 from f1.

arg sup
z∈RN≥0

f2(z, |x |) = P(x)−1
ẑ (65)

where ẑ is defined in (64). �

A.3 Calculation of Proximal Operator of �(x)

As preliminary results, we state and prove the two following
lemmas 6 and 7.

Lemma 6 Let j : R → R be a strictly convex and coercive
function, let w = argmin

t
j(t), and let us suppose that j

is symmetric with respect to its minimum, i.e., j(w − t) =
j(w + t)∀t ∈ R. The problem

z = argmin
b≤|t |≤a

j(t)

with a and b positive, has the following solution:

z =

⎧⎪⎨
⎪⎩

w if b ≤ |w| ≤ a

sign∗(w)a if |w| ≥ a

sign∗(w)b if |w| ≤ b.

Proof However, j is symmetric with respect to its minimum
j(w + t1) ≤ j(w + t2)∀|t1| ≤ |t2|. Assume that 0 < w ≤
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b. We can write j(b) = j(w + α), α > 0 and j(−b) =
j(w + β), β < 0. Since w > 0, then |α| < |β|, and thus,
the minimum is reached with z = b on the interval [b, a].
Similar reasoning can be used to prove the other cases. �
Lemma 7 Let gi : R → R , i ∈ [1..N ] be strictly convex and
coercive. Let w = (w1, w2, . . . wN )T = argmin

ti

∑
gi (ti ),

i.e., wi = argmin
ti

gi (ti ). Assume that |w1| ≥ |w2| ≥ · · · ≥
|wk | and |wk+1| ≥ |wk+2| ≥ · · · ≥ |wN |. Let gi be sym-
metric with respect to its minimum. Consider the following
problem:

argmin
|t1|≥···≥|tN |

N∑
i

gi (ti ). (66)

The optimal solution is

ti (τ ) =
{
sign∗(wi )max(|wi |, τ ) if 1 ≤ i ≤ k

sign∗(wi )min(|wi |, τ ) if i > k
(67)

where τ ∈ R is in [min(|wk |, |wk+1|),max(|wk |, |wk+1|)]
and is the value that minimizes

∑
gi (ti (τ )).

Proof Note that this proof is inspired by [20, Theorem 2],
with some modifications. First, if |wk | ≥ |wk+1|, then w

satisfies the constraints in Problem (66), and thus, w is the
optimal solution. If |wk | < |wk+1|, we must search a little
more. In both cases, we can, since each gi is convex and
symmetric with respect to its minimum, apply Lemma 6 for
ti , and the choices can be limited to the following choices:

ti =

⎧⎪⎨
⎪⎩

wi if |ti−1| ≥ |wi | ≥ |ti+1|
sign∗(wi )|ti+1| if |wi | < |ti+1|
sign∗(wi )|ti−1| if |wi | > |ti−1|

(68)

This can be rewritten in a shorter form, at first in the case
where i ≤ k.

ti = sign(wi )
∗ max (|wi |, |ti+1|). (69)

This can be proved by recursion. In the case of i = 1,w1 is the
optimal argument if |w1| ≥ |t2|; otherwise, sign∗(w1)|t2| is
optimal. Therefore, t1 = sign∗(w1)max(|w1|, |t2|). Assume
that this is true for the i th index.

ti+1 =

⎧⎪⎪⎨
⎪⎪⎩

wi+1 if |ti | ≥ |wi+1| ≥ |ti+2| and i + 1 ≤ k

sign∗(wi+1)|ti+2| if |wi+1| < |ti+2| and i + 1 ≤ k

sign∗(wi+1)|ti | if |wi+1| > |ti | and i + 1 ≤ k.

(70)

But ti = sign∗(wi )max(|wi |, |ti+1|), which yields |ti | ≥
|wi | ≥ |wi+1| and thus, the third case of (70) can be ignored.

Now assume for an i ≤ k that ti �= wi . This implies that

|ti | = |ti+1| > |wi |.

Since wi is non-increasing for i ≤ k, the following
inequality |ti+1| > |wi+1| is true. Furthermore, |ti+1| =
max(|wi+1|, |ti+2|) = |ti+2|. By recursion, we have

|ti | = |ti+1| = |ti+2| = · · · = |tk |.

To facilitate the notations, |tk | = τ . The lemma is proved by
inserting τ instead of |ti+1| and |tk | into Eq. (69)

When i > k, a similar proof of recursion gives:

ti = sign∗(wi )min(|tk |, |wi |). (71)

and by adopting the notation τ , we finish the proof. �
Remark 4 Note that if w, defined in Lemma 7 is such that
|wk | ≥ |wk+1|, then w is solution of (66).

Lemma 8 Let y ∈ R
N . Define ζ : R

N → R as ζ(x):= −
(
ρ−1
ρ

)
∑N

i=k+1(xi )
↓2. The proximal operator of ζ is such that

proxζ(·)(y)↓y =
{
sign(y↓

i )max (|y↓
i |, τ ) if i ≤ k

sign(y↓
i )min(τ, |ρy↓

i |) if i > k.
(72)

If |y↓
k | < ρ|y↓

k+1|, then τ is a value in the interval

[|y↓
k |, ρ|y↓

k+1|], and is defined as

τ = ρ
∑

i∈n1 |y↓
i | + ρ

∑
i∈n2 |y↓

i |
ρ#n1 + #n2

(73)

where n1 and n2 are two groups of indices such that ∀ i ∈
n1, y↓

i < τ and ∀ i ∈ n2, τ ≤ ρ|y↓
i | for an #n1 and #n2 are

the sizes of n1 and n2. To go from proxζ(·)(y)↓y to proxζ(·)(y),
we apply the inverse permutation that sorts y to y↓.

Note that we search

prox−
(

ρ−1
ρ

) ∑N
i=k+1(·)↓2

(y) = argmin
x

−1

2

N∑
i=k+1

x↓2
i

+ ρ

2(ρ − 1)
‖x − y‖22

We define two functions, l1 : R
N × R

N → R and l2 :
R

N × R
N → R.

l1(z, a) = ρ

2(ρ − 1)

N∑
i

(zi − |ai |)2 − 1

2

N∑
i=k+1

z↓2
i (74)

l2(z, |a|) = ρ

2(ρ − 1)

N∑
i

(z↓
i − |a↓

i |)2 − 1

2

N∑
i=k+1

z↓2
i . (75)
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As in Lemma 1, we can create relations between l1 and l2,
where l2 can be solved using Lemma 7.
We omit the proof as it is similar to the one of Lemma 1.

A.4 The Algorithm

Algorithm 1: Nonmonotone APG
Initialization:

z(1) = x (1) = x (0), t (1) = 1, t (0) = 0, η ∈ [0, 1), δ >

0, c(1) = F(x (1)), q(1) = 1, αx < 1
L , αy < 1

L

Repeat:

y(p) = x (p) + t (p−1)

t (p)
(z(p) − x (p)) + t (p−1) − 1

t (p)
(x (p) − x (p−1))

z(p+1) = proxαx g(y(p) − αy∇ f (y(p)))

if F(z(p+1)) ≤ c(p) − δ‖z(p+1) − y(p)‖2 then:

x (p+1) = z(p+1)

else:

v(p+1) = proxαx g(x (p) − αy∇ f (x (p)))

x (p+1) =
{

z(p+1) if F(z(p+1)) ≤ F(v(p+1))

v(p+1) otherwise

end if.

t (p+1) =
√
4(t (p))2 + 1 + 1

2

q(p+1) = ηq(p) + 1

c(p+1) = ηq(p)c(p) + F(x (p+1))

q(p+1)

Until: Convergence
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