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Abstract
A novel formulation called Virtual Interest Point is presented and used to register point clouds. An implicit quadric surface
representation is first used to model the point cloud segments. Macaulay’s resultant then provides the intersection of three such
quadrics,which forms a virtual interest point (VIP).Aunique feature descriptor for eachVIP is computed, and correspondences
in descriptor space are established to compute the rigid transformation to register two point clouds. Each step in the process
is designed to consider robustness to noise and data density variations, as well as computational efficiency. Experiments were
performed on 12 data sets, collected with a variety of range sensors, to characterize robustness to noise, data density variation,
and computational efficiency. The data sets were extracted from both natural scenes, including plants and rocks, and indoor
architectural scenes, such as cluttered offices and laboratories. Similarly, several 3D models were tested for registration to
demonstrate the generality of the technique. The proposed method significantly outperformed a variety of alternative state-of-
the-art approaches, such as 2.5D SIFT-based RANSAC method, Super 4-Point Congruent Sets and Super Generalized 4PCS,
and the Go-ICP method in registering overlapping point clouds with both a higher success rate and reduced computational
cost.

Keywords Virtual interest point · Registration · Point cloud

1 Introduction

Registration is the process of rigidly transforming the coor-
dinate reference frames of two or more partially overlapping
3D point clouds, such that their intersecting regions overlap
correctly. Once registered, the point clouds can be merged
into a single convenient frame and can be used for further
processing for many applications, such as object reconstruc-
tion, segmentation, SLAM, and recognition [1,2]. To do so,
detection of the area of overlap between two point clouds
plays an important role. This is done by finding correspond-
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ing points between the two-point clouds, using one of two
approaches. The first approach assumes that the point clouds
are initially approximately aligned and applies the nearest
neighbor search to establish point correspondences based on
their proximity in 3D space. The registration process is com-
pleted when a convergence criterion is satisfied, such as a
minimal threshold of the average separation between cor-
respondences, or a maximum threshold on the number of
iterations. Such techniques can be termed non-feature-based
registration. Iterative closest point (ICP)method and itsmany
variations are based on this approach [3,4].

The second approach is feature based registration, in
which the data sets are processed to extract interest points
and feature descriptors. In this approach, there is no require-
ment for an initial approximate alignment of the data sets, and
the correspondences are established by determining matches
in descriptor space [5,6]. A relatively small number of repeat-
able representative points in the point cloud are first detected,
called interest points1. For each interest point, a feature
descriptor is computed that contains the salient and distinct

1 An alternative popular nomenclature is key points.
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properties based on the neighborhood of that point. Feature
descriptors between the two point clouds are then matched
to determine correspondences.A transformation is calculated
using the correspondences. Typically, this process iswrapped
in a robust framework such as RANSAC, to accommodate
any false correspondences (i.e., outliers) that result from
occasional and inevitable mismatches in descriptor space.

The existence of noise in point cloud data is one source
of outliers and presents challenges in determining corre-
spondences for both feature-based and non-feature-based
registration. Noise is present in the data for several rea-
sons, such as the fundamental physics and measurement
technique upon which the sensor is based, which is referred
to collectively as sensor-specific noise [7]. Sensor-specific
noise includes pixel position error, axial noise, and quan-
tization error. Alternately, scene-specific noise is a result
of the sensor’s limitation to correctly observe certain areas
in the scene such as corners, edges, and reflective objects
[8]. Feature-based registration techniques generally identify
interest points in regions with large shape variations. Unfor-
tunately, these regions of large variation are among those
which are the most highly affected by scene-specific noise,
thereby increasing the chances of feature mismatches and
registration inaccuracies and failures.

Data density variation significantly affects the registration
process. Data density also varies from sensor to sensor, as
each sensor has a predefined resolution and offset between
points. Furthermore, data density is also scene-dependent, as
it relies on the distance to the sensors. The higher the density
and the resolution of the sensor, the higher the details around
each data point. The descriptor is computed normally based
on the neighborhood of an interest point. If data is dense, the
neighborhood contains a notable description. On the other
hand, coarse datamakes the descriptor less descriptive. Thus,
density highly affects the descriptorwhich is used to compute
correspondences. Feature-based registration techniques are
highly affected when data, collected using different sensors,
is registered.

In this paper, a novel method is proposed for registering
two noisy point clouds. Themain idea is to observe the under-
lying structure of the scene, extract implicit surfaces, identify
the intersection of multiple implicit surfaces as virtual inter-
est points, and then use these virtual interest points to register
the original point clouds. Implicit surfaces such as planar
surfaces are the most stable areas in the scene because they
contain minimal shape variation and are therefore less sus-
ceptible to both sensor-specific and scene-specific noise [7].
Large shape variation areas are filtered from the cloud so that
implicit surfaces are computed only for the most stable areas
in the scene. Furthermore, implicit surfaces do not depend
on the data density variation. The stability of the underlying
implicit surfaces can result in stable and repeatable virtual
interest points, which leads to accurate registration results.

In addition, only one correct correspondence of virtual inter-
est points is sufficient to register two point clouds, which
significantly improves the computational efficiency.

2 RelatedWork

The most widely used approach for non-feature-based reg-
istration of two point clouds is the ICP algorithm [3], and
many variants of ICP have been developed that use different
error functions and point selection strategies. The three most
commonly used distance functions are point-to-point, point-
to-plane and plane-to-plane [3,9,10]. The transformation is
iteratively refined by applying the computed transformation
and recalculating the correspondences. For large initial off-
sets between two noisy point clouds, however, ICP-based
approaches will fail to converge [10].

For feature-based registration, there exist a number of
different 3D interest point operators that are based on dif-
ferent properties of the data, and yet extracting interest
points repeatably among multiple point clouds is a chal-
lenge. The local surface patch (LSP) approach [1] searches
for areas with large shape variations as measured by shape
indices, which are calculated through principal curvature.
Intrinsic shape signatures (ISS) [11] addresses the detec-
tion of view-invariant interest points. 2.5D SIFT [12] detects
interest points using an enhanced version of theLowe’s scale-
invariant feature transform (SIFT) algorithm [13]. A discrete
scale-space representation by using Gaussian smoothing and
difference ofGaussian (DOG)pyramid techniques is first cre-
ated, and maxima are detected within the DOG scale-space.
The interest points are finally validated and located by com-
paring the ratio of the principal curvatures with a predefined
threshold.

Once extracted, the support region for each interest point is
used to compute a unique feature descriptor. Again there are
a number ofmethods for feature descriptor computation. Sig-
nature based methods describe the local neighborhood of an
interest point by encoding one or more geometric measures
computed individually at each point of a subset of the neigh-
borhood [14]. Histogram based methods describe the local
neighborhood of an interest point by accumulating geometric
or topological measurements into histograms [15]. A com-
prehensive overview of a number of interest point and feature
descriptor techniques is given in [16]. Given two sets of fea-
ture descriptors from two acquired scans, correspondences
are computed to find overlapping parts in the data. Formatch-
ing in feature descriptor space, brute force matching and
k-d tree nearest-neighbor search (e.g., FLANN) have been
applied [17]. Since incorrect correspondences can negatively
affect the estimation of the final transformation, some outlier
rejection method such as RANSAC is required. The last step
is to compute the transformation based on the best correspon-
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dences, typically minimizing some least square measure of
error.

The proposed method falls under the category of feature-
based registration.Virtual interest points (VIPs) are identified
by observing the underlying structure of the scene. The use
of the term virtual highlights that these points do not exist in
the original point cloud data; rather, they are 3D points that
are injected at distinct locations based on a computation. The
VIPs between two point clouds are further annotated, based
on the properties of their supporting implicit surfaces, and are
matched in feature descriptor space. A rigid transformation
to register two point clouds can be computed from a single
trueVIP correspondence.As discussed in Sect. 5, experimen-
tation has shown improvements in both registration success
and computational efficiency over ICP [3], GICP [9], and
conventional feature-based registration techniques [12].

The remainder of this paper is organized as follows: In
Sect. 3, the mathematical foundation of quadric surface rep-
resentation and intersection is described. In Sect. 4, the
methodology of the novel interest point operator is explained,
as is the criteria to computeVIPs, and the steps of registration
using VIPs. In Sect. 5, experimental evidence demonstrates
that the method registers noisy point clouds accurately
and efficiently compared to other well-known techniques.
Finally, Sect. 7 concludes the paper with a summary and
discussion of future work.

3 Quadric Surface Intersection

Quadric surface intersection is a well-known technique and
has been used in a number of computer vision applications
such as absolute pose estimation of a calibrated camera,
multi-camera pose estimation and generalized structure from
motion [18]. In our case, we are considering the intersections
to form virtual interest points, which we are using to com-
pute the registration of two noisy point clouds, which is a
different application of quadric surface intersection than has
previously been considered. The mathematical formulation
to calculate quadric surface intersections and that allows their
use as virtual interest points is detailed in the following sec-
tions.

3.1 Quadric Surface Representation

A bivariate quadric surface is represented by a quadratic
equation of three variables, two of which are of degree two
with the remaining variable of degree one. In contrast to
general quadrics (three variables each of degree two) which
represent volumes, bivariate quadrics represent surfaces, and
are therefore used here to naturally model 2.5D point clouds.

A bivariate quadric is represented implicitly as:

pT Qp

⎧
⎨

⎩

< 0 ⇐⇒ p lies below the surface
= 0 ⇐⇒ p lies on the surface
> 0 ⇐⇒ p lies above the surface

(1)

where Q is a 4 × 4 matrix called the discriminant of the
quadric surface. Q is symmetric and for any real nonzero
scalar β, the quantity βQ is equivalent to Q, since they
describe the same surface. Satisfaction of Eq. (1) implicitly
determines membership of point p on the quadric surface
defined by Q. Expanding the elements of Eq. (1) gives:

[
x y z 1

]

⎡

⎢
⎢
⎣

a b c d
b e f g
c f h k
d g k j

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

x
y
z
1

⎤

⎥
⎥
⎦ = 0. (2)

The upper-left 3 × 3 principal submatrix of Q, called the
subdiscriminant Qu , contains all of the second-order terms:

Qu =
⎡

⎣
a b c
b e f
c f h

⎤

⎦ (3)

The ranks of Q and Qu , along with the sign of the deter-
minant of the discriminant det(Q), are helpful in classifying
the quadric surface. There are 17 standard types as listed in
Table 1, with the planar, elliptic paraboloid and hyperbolic
paraboloid types being well-suited to the 2.5D point cloud
representation.

For a point set P = {pi }n1 drawn from a quadric surface,
Eq. (2) can be expanded into the form AC = 0, where A is
the n ×10 matrix comprising the point components, and C
is a column vector representing the unknown discriminant
coefficients:

⎡

⎢
⎢
⎢
⎣

x21 x1y1 x1z1 x1 y21 y1z1 y1 z21 z1 1
x22 x2y2 x2z2 x2 y22 y2z2 y2 z22 z2 1
...

...
...

...
...

...
...

...
...

...

x2n xn yn xnzn xn y2n ynzn yn z2n zn 1

⎤

⎥
⎥
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⎥
⎥
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⎥
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⎥
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 0 (4)

For n ≥ 9, the elements of C can be estimated using
numerical methods, such as by applying Singular Value
Decomposition (SVD) on matrix A.
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Table 1 Quadric surfaces type
with their canonical equation is
given for rank of discriminant
� = rank(Q) and
subdiscriminant
�u = rank(Qu), and sign of the
determinant of discriminant
ρ = sgn(det(Q))

Surface type Equation � �u ρ

Coincident plane x2 = 0 1 1

Parallel planes (imaginary) x2 = −a2 2 1

Parallel planes (real) x2 = a2 2 1

Intersecting planes (imaginary) x2

a2
+ y2

b2
= 0 2 2

Intersecting planes (real) x2

a2
− y2

b2
= 0 2 2

Parabolic cylinder x2 + 2r z = 0 3 1

Elliptic cylinder (imaginary) x2

a2
+ y2

b2
= −1 3 2

Elliptic cylinder (real) x2

a2
+ y2

b2
= 1 3 2

Hyperbolic cylinder x2

a2
− y2

b2
= −1 3 2

Elliptic cone (imaginary) x2

a2
+ y2

b2
+ z2

c2
= 0 3 3

Elliptic cone (real) x2

a2
+ y2

b2
− z2

c2
= 0 3 3

Elliptic paraboloid x2

a2
+ y2

b2
= z 4 2 –

Hyperbolic paraboloid - x2

a2
+ y2

b2
= z 4 2 +

Ellipsoid (imaginary) x2

a2
+ y2

b2
+ z2

c2
= −1 4 3 +

Ellipsoid (real) x2

a2
+ y2

b2
+ z2

c2
= 1 4 3 –

Hyperboloid of one sheet x2

a2
+ y2

b2
− z2

c2
= 1 4 3 +

Hyperboloid of two sheet x2

a2
+ y2

b2
− z2

c2
= −1 4 3 –

3.2 Intersection of Three Quadric Surfaces

When three quadric surfaces intersect, calculating the set of
intersection points can be more or less involved, depending
on the types of the three surfaces involved, revealed by the
ranks of their respective Q and Qu matrices and the signs of
their determinants det(Q), as listed in Table 1. In the follow-
ing two subsections, the calculation will be described first for
the simplest case of three intersecting planes, and then for the
most general case of three intersecting non-planar quadrics.

3.2.1 Planar Intersections

When considering three planes �i = [
ai bi ci di

]
, i =

1 . . . 3, the existence of a common point of intersection can
be determined by examining the coefficient matrix Mc and
the augmented matrix Ma :

Mc =
⎡

⎣
a1 b1 c1
a2 b2 c2
a3 b3 c3

⎤

⎦ (5)

Ma =
⎡

⎣
a1 b1 d1
a2 b2 d2
a3 b3 d3

⎤

⎦ (6)

The three �i can only intersect at a point if both Mc and
Ma are of full rank. Further,Mc contains the rowunit normals

for each plane, and so the closer det(Mc) is to one, the closer
are the three planes to being mutually perpendicular.

If a common point of intersection is determined to exist,
then its value can be recovered as:

⎡

⎣
x
y
z

⎤

⎦ = M−1
c

⎡

⎣
−d1
−d2
−d3

⎤

⎦ (7)

3.2.2 Non-planar Quadric Intersections

When all three surfaces are non-planar, as revealed by an
examination of the ranks of their discriminants and sub-
discriminants, then a more involved method is required to
compute their intersections. By Bezout’s Theorem, three
quadric surfaces intersect at either at most eight, or infinitely
many points [19]. There are three known approaches to cal-
culate these points, the first of which is to calculate the
intersection of two of the three surfaces, which results in
a curve known as a Quadric Surfaces Intersection Curve
(QSIC). This QSIC is substituted into the expression for the
third surface, yielding a polynomial of maximum degree four
which is then solved to yield the points of common intersec-
tion [20].

In the second approach, three QSICs are calculated from
the set of possible intersections of all pairs of the three sur-
faces. The curve–curve intersections of pairs of QSICs are
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then calculated and compared, and those points common to
all three pairs of curve–curve intersections are the common
points of intersections of all three surfaces.

The third approach is to apply elimination methods to
arrange the three quadric surface equations into a linear sys-
tem, which can then be solved directly. A particular case
of Macauley’s resultant, which is one of the main tools of
effective elimination theory, is applied to concisely solve the
intersections of three implicit quadric surfaces by simulta-
neously computing the intersection of three polynomials of
degree two in three variables [21]. For convenience, we will
reorder the variables and relabel the coefficients to express
an i th implicit quadric surface as:

ci,1x
2 + ci,2y

2 + ci,3z
2 + ci,4xy + ci,5xz

+ci,6yz + ci,7x + ci,8y + ci,9z + ci,10 = 0 (8)

where the ci, j coefficients above correspond to the (reordered)
elements of vector C in Eq. (4). The intersections of three
such surfaces can be expressed as the solution to the system
of equations:

⎡

⎣
c1,1 c1,2 . . . c1,10
c2,1 c2,2 . . . c2,10
c3,1 c3,2 . . . c3,10

⎤

⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x2

y2

z2

xy
xz
yz
x
y
z
1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 0. (9)

Equation (8) can be rearranged so as to isolate the variable
x , known as freezing x as an indeterminate constant coeffi-
cient:

ci,2y
2 + ci,3z

2 + ci,6yz + (
ci,4x + ci,8

)
y

+ (
ci,5x + ci,9

)
z +

(
ci,1x

2 + ci,7x + ci,10
)

= 0. (10)

The system of Eq. (9) can be similarly arranged as:

⎡

⎣
−c1,2 −c1,3 −c1,6
−c2,2 −c2,3 −c2,6
−c3,2 −c3,3 −c3,6

⎤

⎦

⎡

⎣
y2

z2

yz

⎤

⎦

=
⎡

⎣
c1,4x + c1,8 c1,5x + c1,9 c1,1x

2 + c1,7x + c1,10
c2,4x + c2,8 c2,5x + c2,9 c2,1x

2 + c2,7x + c2,10
c3,4x + c3,8 c3,5x + c3,9 c3,1x

2 + c3,7x + c3,10

⎤

⎦

⎡

⎣
y
z
1

⎤

⎦

(11)

or more succinctly as:

A

⎡

⎣
y2

z2

yz

⎤

⎦ = P(x)

⎡

⎣
y
z
1

⎤

⎦ . (12)

Assuming A to be of full rank and therefore invertible, Eq.
(12) can be manipulated further into the form:

(
B (x) A−1P (x) − C (x)

)
⎡

⎣
y
z
1

⎤

⎦ = 0 (13)

where the terms of B(x) andC(x) comprise first- and second-
order polynomials of the terms of A−1P (x). This leads to
the definition of Macauley’s resultant M(x) as:

M (x) = B (x) A−1P (x) − C (x) . (14)

The above formulation of Macauley’s resultant elegantly
addresses the intersection of three quadric surfaces through
the solution of the roots of the single univariate polynomial:

det(M (x)) = 0 (15)

where det(M(x)) is a polynomial of degree eight. Up
to eight-ordered nonlinear equations can be computed as
the eigenvalues of its companion matrix, or using Sturm
sequences in some feasible interval. This gives a set of x
values, which can then be substituted into M(x) thereby
allowing for the solution of the linear system for both y and
z.

Since the existence of a solution requires polynomials
with necessary vanishing conditions, each root x of the resul-
tant corresponds to a solution of indeterminate variable, for
x �= 0. Thus, the intersection problem reduces to solving
for the root of a single univariate polynomial, provided that
resultant is a non-zero non-constant polynomial. Similarly,
x can be replaced with y or z as an indeterminate constant.
The resultant, a polynomial in x , may have infinitely many
roots, called the identically zero resultant.

The intersection of three quadric surfaces has atmost eight
intersection points [22], all eight of which become virtual
interest points. Within a given point cloud, there will be sev-
eral VIPs depending upon the number of intersections of sets
of three quadric surfaces. Out of at most eight VIPs from an
intersection of three quadric surfaces, only one VIP is used
to register the point cloud, as described in Sect. 4.3. Any of
these intersection points, once matched to the target inter-
section points, are potential candidates for computing the
registration matrix of two point clouds. We select the best
pair that minimizes the reprojection error between the two
point clouds in a RANSAC fashion.
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4 Global Registration with VIPs

Equipped with a method to calculate the points of intersec-
tion of three quadric surfaces, this section now describes a
process to use these intersection points for the efficient and
robust global registration of two point clouds. These points
of intersection are called Virtual Interest Points (VIPs), as
they do not exist in the original point cloud data.

The proposedmethod limits the search spacewhen detect-
ing interest points by avoiding noisy areas in the point clouds.
A significant amount of noise exists in areas with large shape
variations, which occur in regions normally composed of
corners, edges, and extremas, and so such regions are not tar-
geted here to find interest points. Conversely, smooth regions
with small surface variation contain relatively less noise.
Such regions are less affected by sensor-specific and scene-
specific noise and are thus considered as the most stable
regions to support a search for repeatable interest points [23].
It is these less noisy regions that are modeled into quadric
surface representations. Only a few points from these regions
are required to support a quadric surface model, and so the
quadric representation does not require any specific or sig-
nificant data density. Similarly, the quadric surface fitting
absorbs the effects of noise. Once the surface representa-
tion has been extracted, the remainder of the algorithm then
only depends on the estimated parameters of the extracted
quadrics.

The two point clouds are first segmented into a set of
implicit quadric surfaces, with each segment represented by
a quadratic equation. Within each point cloud, two pairs of
quadric surfaces are also compared together to avoid spurious
calculations. A refined set of quadratic equation parameters
is then added to a segment database, one for each point cloud,
based on a qualification criterion such that the represented
segments will likely intersect at real isolated points. Once
the two segment databases are populated with quadric sur-
face equations, intersections of combinations of three such
surfaces within each segment database are processed using
Macaulay’s resultant to extract VIPs. A descriptor for each
VIP is also computed, and the VIPs along with their descrip-
tors are then added to a distinct VIP database for each point
cloud. The twoVIP databases are next passed to aVIPmatch-
ing process, in which a k-d tree is used to establish VIP
correspondences in descriptor space. The correspondences
are further refined using a geometric consistency clustering
technique. The group of consistent VIP correspondences is
then processed using aRANSAC framework to determine the
rigid transformation matrix that minimizes the global regis-
tration error between the two point clouds.

The main steps of this global registration process are
described in greater detail in the following subsections.

4.1 Segmentation

The segmentation of 2.5D surfaces is a well-explored prob-
lem, and a number of effective solution methods exist. In the
surface splatting approach [24], the input points are grown to
construct a continuous surface. Each of these grown points,
now consisting of a volume and a normal, is called a surface
splat. The most intuitive and simple technique is to let the
points grow as spheres until there are no more holes in the
surface. The drawback of this technique is that it does not
generate a hole-free approximation.

As an alternative, the moving least squares technique
builds a local fit for every point on the surface using higher-
order polynomials [25,26]. To reconstruct a smooth surface
from the input set of points, the geometric error of the approx-
imation is minimized. This makes it computationally fast
and the locality of the neighborhood is responsible for the
reconstruction properties. The continuity of the surface can
be adjusted based on the kernel function, such that if sharp
edges need to be reconstructed, the method becomes compu-
tationally expensive.

The approach taken here uses region growing segmenta-
tion based on characterizing the surface curvature of points
in a region. The three eigenvalues of the covariance matrix in
the neighborhood of a point p are computed, and the surface
curvature γ = curvature(p) is calculated as the ratio of
the smallest to the sum of all eigenvalues. The segmentation
process alternates between specifying a seed point, and then
identifying all points in the neighborhood of that seed that
satisfy a smoothness criterion. Initially, all points and their
associated γ values are added to a list, which is sorted by
increasing γ . The point of minimum curvature which there-
fore lies in the flattest region is identified as the initial seed
point and is extracted from the point list. This initial seed
point is used to segment each region as shown inAlgorithm1.

Algorithm 1: Segment a region
Input: List of points P , an initial seed point s
Output: Segmented region R

1 Initialize the list of seed points S = {s}
2 Initialize the segmented region R = ∅
3 foreach seed point si ∈ S do
4 Find k-nearest neighbors N = {n1, n2, · · · , nk} of si from P
5 foreach n j ∈ N do
6 if angle(normal(si ), normal(n j )) < ε then
7 Remove n j from P
8 Add n j to R
9 if |curvature(si ) − curvature(n j )| < ρ then

10 Add n j to S
11 end
12 end
13 end
14 end
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Fig. 1 Region Growing Segmentation. a A frontal view of the Water-
melon Kid model. b Regions extracted for surface representation and
depicted in color-codes as segmentation

In line 4 of Algorithm 1, we have used a value of k = 50.
The condition in line 6 prevents corners and edges frombeing
added to the region whereas the condition in line 9 helps to
grow the region beyond the current neighborhood of the seed
point. The region returned by Algorithm 1 is added to the set
of regions. The algorithm is repeated by extracting the next
point withminimum surface curvature γ value from the point
list as the initial seed point for the next region. The process
continues until the point list is empty.

In order to find an optimal number of regions, we use
a scale-space approach inspired by Lowe [13]. For the first
iteration, a small neighborhood is selected for curvature esti-
mation so that abrupt changes in curvature are identified
resulting in only very smooth regions being segmented. The
neighborhood size is increased gradually in subsequent itera-
tions so that a large number of valid regions can be identified,
which are not detectable with a small neighborhood radius
for the curvature estimate. The output of the algorithm is a
set of regions, as illustrated in Fig. 1.

4.1.1 Segment Pair Qualification

Once the quadric surface coefficients have been computed
for each segment using the method described in Sect. 3.1,
the surface database is then populated. Each surface in the
database has to pass a qualification criterion, before being
considered further to compute intersections.

For all pairs of quadric surfaces in the database, the cri-
terion checks the potential for intersection of the surfaces
based on the directions of their normals, which is calculated
as the eigenvector associated with the smallest eigenvalue of
the covariance matrix of those points comprising the quadric
surface. If the magnitude of the solid angle between the nor-

mals of the two surfaces is less than a certain threshold, then
they are either parallel (in the case of planar surfaces) or their
intersection is far away, and the surface pair is considered
disqualified.

Those surface pairs that do not pass the above two criteria
are grouped together and considered as a single surface for
subsequent computations, so that their intersection calcula-
tions can be avoided. For each point cloud, a surface database
is then populated with the following information:

• Group indexParallel (non-intersecting) surfaces are
grouped together so that spurious calculations can be
avoided;

• Surface coefficientsCoefficients of the quadratic equa-
tions, that are used to compute the VIPs;

• Number of points NsA trust measure, such that a greater
value of Ns , indicates a more stable surface.

4.2 VIP Descriptor

Once calculated from the intersection of three intersecting
quadric surfaces S1, S2, and S3, each VIP is added to a VIP
database along with its associated feature descriptor, which
is composed of the following three properties:

• Angles θ , φ, and ρ between the normals of S1, S2, and
S3;

• Degree of Orthogonality of the three surfaces, measured
as det(Mc), where matrixMc stacks the first three param-
eters of the normals (ai , bi , ci ) of each corresponding
intersecting surface Si :

Mc =
⎡

⎣
a1 b1 c1
a2 b2 c2
a3 b3 c3

⎤

⎦ (16)

• Trust Factor t f , calculated as

t f = |S1| + |S2| + |S3|
|P| (17)

where |Si | is the cardinality (number of points) of surface
Si , and |P| is the cardinality of the complete point cloud.
The higher the value of t f , the more reliable the VIP is
considered to be.

Surfaces composed of fewer points can contain higher
amounts of noise compared to those with more points. The
trust factor quantifies the importance of certain VIPs over
others.
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4.3 VIP Correspondences

A nearest-neighbor search mechanism is employed to match
the VIPs across two point clouds. A k-d tree is populated
where each property of the feature descriptor serves as a
dimension, and source image VIPs are matched with the
nearest target image VIPs in descriptor space. Only one cor-
rect correspondence is required to recover the registration
transformation, and an obvious selection of the best corre-
spondence is thatwith theminimumdistance in feature space.
It is possible, however, that correspondence selection based
on only minimum descriptor space distance might return an
outlier, and so aRANSACframework is employed to increase
robustness.

The correspondences are first grouped using a geometric
consistency checking algorithm that enforces simple geo-
metric constraints between pairs of correspondences [1].
Candidate corresponding pairs are filtered based on the geo-
metric constraint:

|‖ s1 − s2 ‖ − ‖ t1 − t2 ‖|< ε, (18)

where s1 and s2 are two VIPs from the source point cloud, t1
and t2 are their two corresponding VIPs from the target point
cloud. ‖ s1 − s2 ‖ and ‖ t1 − t2 ‖ are the Euclidean dis-
tances between the two VIPs and ε = 5.0 cm is a threshold
for allowable difference between the two distances. This con-
sistency check guarantees that the distances ‖ s1 − s2 ‖ and
‖ t1 − t2 ‖ are similar within each point cloud, and therefore
the correspondence across the point clouds is not inconsis-
tent. Potential corresponding pairs are grouped together, and
the larger the group is, the more likely it will be to contain a
number of true correspondences.

As only one true VIP pair correspondence is required to
register two point clouds, a rigid transformation is computed
for a randomly selected correspondence from this largest
group. The transformation involves a three-step registration
process, with one translation and two rotations. The transla-
tion is calculated trivially as the difference between the two
VIPs, i.e., T = v1xyz − v2xyz . To calculate the two rotations,
first it is recognized that query and matching VIPs have three
quadric surfaces in common, so that three angles between the
normals of the matched quadric surfaces are computed as

αi = cos−1

(
(n1i · n2i )√

(n1i · n1i ) ∗ (n2i · n2i )

)

(19)

where αi is the angle between the i ∈ {1, 2, 3} normals n1i
and n2i of the twomatched VIPs.We used RANSACmecha-
nism to choose the order for normal angles, i.e., orders were
randomly selected and tested, and that transformation on the
VIPs was selected that minimize the projection error.

Next, we select the two largest angles and calculate the
rotation matrix R using Rodrigues’ rotation formula, in
which rotation in one axis is given by:

R = I + sin α1[k]× + (1 − cosα)(kkT − I ) (20)

where k = (n1×n2) is the cross-product of two normals and
[k]× is a cross-product matrix of k:

[k]× =
⎡

⎣
0 −kz ky
kz 0 −kx

−ky kx 0

⎤

⎦. (21)

Two point clouds are registered together by using the trans-
lation matrix T and the rotation matrix R. Only one true
correspondence is therefore required to register two-point
clouds which significantly reduces the computational cost of
the registration process.

The residual error is minimized by applying a number of
iterations of ICP to all points in the neighborhood, and this
process is repeated for a number of randomly selected cor-
respondences from this group. That correspondence which
leads to the minimum ICP residual error is considered to
return the best transformation.

5 Experimental Results

The proposed VIP method was tested under different chal-
lenging conditions for robustness to noise and data density
variation, as well as computational efficiency. A total of
twelve (12) data sets were collected from both natural and
architectural scenes, as well as models from different sensors
for registration with known ground truth. The VIP technique
was comparedwith state-of-the-art feature-based registration
and non-feature-based registration techniques. Furthermore,
registration was performed by using VIPs for noisy pairs of
point clouds as well as those with different data density vari-
ations.

The algorithms’ running times and performance were
recorded for the different data sets. The proposedmethodwas
implemented using C++ and compared with efficient, opti-
mized C++ implementations of other techniques provided
by the authors. A Quad Intel Corei5-3330 CPU with a speed
of 3.00 GHz and 8 gigabytes of RAM was used to run the
experiments.

All experiments were verified by using ground truth
registration, generated using manual alignment. Four-point
correspondences were precisely selected manually in two
frames and using correspondences the point clouds are
aligned. The transformation computed using four point cor-
respondences are considered as ground truth transformation.
As described by Mohamad et al. [27], automatic registra-
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Table 2 Seven data sets were
used to test the proposed method

Data sets # of pairs Av. size Conv. (%) R error (deg) T error (cm) Av. time (s)

Object 8 214877 100 0.6 1.3 6.6

Lab 9 307200 78 2.2 4.7 5.8

Plant 8 70988 85 2.4 3.6 1.6

Goose 4 8152 100 2.5 1.3 0.365

Elmo 8 82119 75 2.4 2.8 2.5

Rabbit 8 27748 87.5 4.7 3.5 0.26

Sailor 4 31510 75 2.1 1.6 2.7

Average point cloud size Av. Size, Convergence rate (Conv.), rotation error (R Error), translation error (T
Error), and average time (Av. Time) were computed

tion was considered a success if the rotation and translation
errors were less than 5 degrees and 5 cm, respectively.
We define the convergence rate of a given experiment
as the percentage of trials that successfully satisfy this
criterion.

Seven data sets were used to test the proposed method in
architectural and natural environments along with 3D mod-
els, as shown inTable 2.Twodata sets,Object andPlant,were
collected using aMicrosoft Kinect version 2. TheObject data
set consists of 8 pairs of point clouds of a small area of a
graduate student laboratory where various objects with dif-
ferent shapes such as spheres, cylinders, boxes, and planes
are captured. A natural scene with mostly non-planer sur-
faces is captured by the Plant data set which has 8 pairs of
point clouds of an indoor plant. A data set using the (nois-
ier) Microsoft Kinect version 1 of the cubical in a laboratory,
called Lab, was tested. This data set has a total of 9 pairs
of point clouds. Four data sets of 3D models, Goose, Elmo,
Rabbit, and Sailor of abstract shapes were captured using a
NextEngine3Dsensorwith 4, 8, 8, and4pairs of point clouds,
respectively. Some registration results from these tests are
shown in Fig. 2.

5.1 Comparison to Feature-Based Registration
Techniques

VIP technique was compared for registration with state-of-
the-art interest point operators and feature descriptors for
two RGB-D data sets, Office and Storage, captured using a
Kinect version 1. We also tested two standard Stanford reg-
istration data sets, Stanford-office and Stanford-stage. The
interest point operators Harris 3D [28], Harris 6D, intrinsic
shape signature (ISS) [11], and SIFT 2.5D [12] were used
in combination with feature descriptors FPFH [15], SHOT
[14], and SpinImages [29] to register pairs of point clouds.
Combinations of interest points (IPs) and feature descriptors
(FDs) were applied to register 9 and 7 pairs of point clouds
of Office and Storage data sets, respectively. The results
were compared with the VIP technique for convergence and
performances, as shown in Table 3. All techniques were suc-

cessfully able to register all pairs of Office data set, although
the computational efficiency of most of the techniques is
significantly lower than that of VIPs. Only Harris 3D with
SpinImages had slightly better computational efficiency than
VIPs in some tests, albeit this efficiency improvement always
accompanied a reduced convergence rate. For the Storage
data set, VIPs outperformed all the other techniques for com-
putational efficiency and convergence. Several combinations
of interest points and feature descriptors failed to achieve
100%convergence.Most techniques failed to converge on the
Stanford data sets because the overlapping region between
the two clouds was significantly small. It can be noticed
that the convergence for Stanford-stage is slightly higher
than Stanford-office for all the techniques. The reason is that
Stanford-stage has higher inter-frame overlap and is captured
in an indoor environment without any presence of sunlight.
On the other hand, Stanford-office has a smaller inter-frame
overlap and direct sunlight is present in the room that down-
grades IR-based sensors, such as the Kinect . In both data
sets, VIP-based registration failed only for one pair of point
cloud each. VIP-based registration requires at least three
identical surfaces in two point clouds in order to perform
correct registration. We manually inspected the failure cases
and identified that failures occurred due to a smaller over-
lap and a lack of similar surfaces. The VIP convergence rate
was still considerably better than that of all other techniques.
The performance of the VIP-based technique was also more
efficient than other techniques except for the Harris3D with
SpinImages combination, which was 3.91 s. However, this
combination of Harris3D with SpinImages was only able to
converge on 1 pair of point clouds and was therefore not very
effective.

In our previous work [30], planar-VIP method does not
apply to non-planar data sets mostly used in these exper-
iments. However, we compared registration on the Office
data set, which is composed of mostly planar regions, with
planar-VIP. The planar-VIP was faster (2.6 s) than proposed
VIP (5.8 s). The reason for the higher computational expense
of proposed more general VIP over the planar VIP was
because it did not reject any surfaces. In this work, which
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Fig. 2 Successful registration of various data set using VIP technique.
The row in the blue presents one view of the objects, while the second
row in orange color represents another view which is captured from a
slightly different angle, and the third row represents the registration of

the above two views into a registered point cloud. The quality of the
registration is highlighted by showing two clouds in two different colors

Table 3 Two data sets were used to compare the proposed method with a number of feature-based registration techniques for computational
efficiency (average time in s) and convergence rate

IPs FDs RCV-office (9 pairs) Storage (7 pairs) Stanford-office (7 pairs) Stanford-stage (6 pairs)

Conv (%) Avg. time (s) Conv (%) Avg. time (s) Conv (%) Avg. time (s) Conv (%) Avg. time (s)

Harris 3D FPFH 100 160.3 50 85.1 28.5 350.1 50 135.4

SHOT 100 26.7 75 16.1 42.8 114.3 66.6 20.2

SpinImages 100 4.3 100 3.1 0 74.5 16.6 3.9

Harris 6D FPFH 100 171.5 100 110.7 28.5 697.2 33.3 159.5

SHOT 100 44.7 75 126.7 28.5 236.6 33.3 70.7

SpinImages 100 8.8 100 12.5 0 160.5 16.6 11.8

ISS FPFH 100 167.5 100 96.4 0 373.1 16.6 148.1

SHOT 100 34.8 75 31.2 28.5 105.9 50 31.9

SpinImages 100 7.4 100 7.9 0 43.7 0 8.4

SIFT 2.5D FPFH 100 143.6 75 109.5 14.2 257.1 33.3 144.4

SHOT 100 39.2 100 40.3 0 99.5 16.6 35.9

SpinImages 100 21.1 100 17.9 0 54.5 16.6 19.7

Virtual interest
point

100 5.8 100 2.6 85.7 5.6 83.3 4.1

Bold values indicate the best figures as compared to other methods
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Table 4 Running time in seconds achieved by SUPER4PCS (S4PCS), SUPERG4PCS (SG4PCS), Go-ICP, andVIP for different data sets. (Speedup
of VIP in brackets.)

Model N1 N2 S4PCS SG4PCS Go-ICP VIP

Rabbit 27748 27500 0.53 (2.0) 0.78 (3.0) 5.44 (20.9) 0.26

Elmo 82119 69594 20.0 (8.0) 3.76 (1.5) 164.63 (65.8) 2.5

Sailor 31510 38699 3.65 (1.4) 1.98 (0.7) 91.28 (33.8) 2.7

is inspired by our recent work [31], we fit quadrics to all
clusters, subsequently, these quadrics are grouped together to
find the intersections. The discriminant and sub-discriminant
are used to find the type of the quadric. The intersec-
tion of planar is computed using the methods explained
in Sect. 3.2.1 and for non-planar quadrics, the intersec-
tion is computed using Macaulay’s resultant as explained
in Sect. 3.2.2. The proposed VIP was slightly slower but
it considered all possible surfaces to find interest points,
and thus overcame the limitation of planar VIP by regis-
tering pairs of point clouds that are composed of non-planar
surfaces.

5.2 Comparison to Non-feature Based Registration
Techniques

Three data sets of the models were used to compare the pro-
posed technique with non-feature-based techniques such as
Super 4PCS, Super Generalized 4PCS [27] and Go-ICP [32].
Thedata setsElmo,Rabbit, andSailor of abstract shapeswere
captured using a NextEngine 3D sensor with 8, 8, and 4 pairs
of point clouds, respectively.

In order to fairly compare the algorithms, the parameters
for S4PCS and SG4PCS were optimized, respectively, for
each algorithm, so that the comparison was of the most effi-
cient version and tuning of each algorithm. Several trialswere
executed for each algorithm, and a trial was considered suc-
cessful if the error in the resulting transformation was within
the rotation and the translation threshold of the ground truth
transformation.

In Table 4, a comparison of running time (in s) for S4PCS,
SG4PCS, Go-ICP, andVIP is givenwhen the registration rate
of the algorithms was 100%. The ratio of each method’s run-
ning time over that of the VIP running time for that data
set is shown in brackets. The first two columns indicate the
number of points in the two frames being registered. VIP
was more efficient than S4PCS, and significantly more effi-
cient than Go-ICP for all data sets. It was also more efficient
than SG4PCS for the Rabbit and Elmo data sets, although
it was slightly slower than SG4PCS for the Sailor data set.
The rotation and translation error for all three data sets were
less than 1 degree and 3 cm, respectively. The initial pose
estimated by VIP was further refined by using ICP with only
five iterations. Some results of the registration using VIP are

Fig. 3 Registration using Implicit Quadric Surfaces. In a and b two
point clouds of the WaterMellonKid data set with implicit quadric sur-
faces are shown where different colors highlights surfaces. Whereas in
c registration result of the two point cloud are shown

illustrated in Fig. 2. In this figure, each object is shown in
three views, with the top two rows representing two views of
the same objects captured from different view points, such
that there is sufficient overlap where repeatable virtual inter-
est points can be extracted. The bottom view is generated
using matched VIPs from both top views, which are regis-
tered together into a single frame. The distinct color of above
two views is maintained in the third view to highlight their
overlapping merged regions, as well as to illustrate the non
overlapping regions.

To further explore the relative performance of SG4PCS
and the proposed VIP method, the WaterMelonKid data set
shown in Fig. 3a–c was captured using Microsoft Kinect v2.
and tested. A total of 14 pairs were registered using both
techniques. The convergence rates of VIP and SG4PCS were
100% and 84%, respectively. The VIP approach executed in
2.8 s, whereas SG4PCS executed in 8.67 s, for a 3 times
speedup of VIP over SG4PCS. VIP therefore outperformed
SG4PCS with respect to both accuracy and efficiency on this
data set.

5.3 Robustness to Noise

Another experiment was performed to test convergence in
the presence of noise. Gaussian white noise with zero mean
and standard deviation σ ranging from 0.0001 m to 0.07 m
was added to the two point clouds of Lab data sets. The
proposed technique is compared to eight feature-based reg-
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Fig. 4 Robustness to noise is shown by plotting a rotation error in
degrees and b translation error in meters for Noise standard deviations
σ from 0.0001 to 0.07 m

Fig. 5 Robustness to noise. Noise standard deviations σ =
0.0001 m, 0.001 m, and 0.01 m are added to two point clouds of the
Lab data set and registered using VIP

istration techniques for robustness to noise, with the results
plotted in Fig. 4. The two plots show the rotation error and
translation error with the increase in the noise in the data. The
registration using VIP was successful for up to σ = 0.01 m
as shown in Fig. 5. However, other techniques failed to con-
verge to a global minimum as the σ is increased. The reason
for the convergence for VIP was that the saliency measure of
extracting implicit surfaces was less affected by noise (Fig.
6).
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Fig. 6 Robustness to data density variation is shown by plotting a rota-
tion error in degrees and b translation error in meters for downsampled
percentage

Fig. 7 Robustness to data density variation. a Original size, b 46% of
original size of the second point cloud of the pair and c registration
using VIP, converged to a global minimum

5.3.1 Robustness to Data Density Variation

The approach was further tested by downsampling one of
the point clouds in the pair to reduce the data density. The
results for the Sailor data set are illustrated in Fig. 7. In Fig.
7b, the point cloud was downsampled to 46% of the original
size. The pair of point clouds converged to a global mini-
mum with translation and rotation errors of 0.24 degrees and
0.003 cm. This experiment was performed on two data sets,
Lab and Sailor, for different downsampling percentages, and
rotation error and translation error are plotted in Fig. 6. It can
be seen that the error was within the acceptance threshold for
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Table 5 Computational complexity of various modules of the technique

Module Avg. iterations Avg. time (ms) Min. time (ms) Max. time (ms)

Region segmentation 89 825 53 1124

Surface parameter extraction N/A 819 32 811

VIP computation N/A 684 21 1140

VIP matching 47 920 76 3054

ICP 5 297 78 471

Each module’s averaging running time (Avg. Time), minimum time (Min. Time), and maximum time (Max. Time) in milliseconds are given along
with average number of iterations (Avg. Iterations), where applicable

up to 35% of downsampled point clouds for the Sailor data
set. However, when the point cloud was further downsam-
pled, the error increased significantly. The rotation error and
translation error were very low even when downsampled to
10% of the original point cloud size. It is worth mentioning
here that feature-based techniqueswere also tested for robust-
ness to data density variation but none of the feature-based
technique converged to a global minimum because feature
matching failed in descriptor space.

5.4 Computational Complexity

VIP technique has shown significant improvements in terms
of computational cost over the state-of-the-art techniques,
as shown in Tables 2, 3 and 4. The average iterations and
running time of all the modules are given in Table 5.

The first module of the proposed technique is surface
extraction using region growing segmentation algorithm.The
number of iterations and computational cost for this module
is proportional to the surfaces found in the point cloud. If the
point cloud is of an architectural structure,which is composed
of a few surfaces, the algorithm will require fewer iterations
to compute the surfaces. On the contrary, if the point cloud is
composed of a natural structure, which has a significant num-
ber of surfaces, the algorithmwill requiremore iterations and
higher computational cost. Another important factor in the
computational complexity is point density of a point cloud.
A dense point cloud will require more computation as com-
pared to a coarse point cloud. This is depicted in Table 2
where Goose data set is composed of 8152 points per view
on the average and thus computation time for registration is
less than a second. On the other hand, Lab and Object data
sets are composed of average sizes of 307,200 and 214,877
points per view, respectively, so each has a computation time
of more than 5 s. It can be noticed that Lab data set with
more points has lower computation time because it is com-
posed of an architectural structure while the Object data set is
composed of objects with varying geometry such as spheres,
cylinders, etc. so, it requires more computation time.

Thenextmodule is quadratic surface parameter extraction.
It is not an iterative process; however, it depends on the num-

ber of surfaces to be processed within a point cloud. Once
the surface parameters are extracted, the rest of the technique
only works with parameters. This significantly improves the
computational cost as compared to the state-of-the-art tech-
niques.

The next module is VIP computation which requires sur-
face filtering. The filtering process filters quadric surfaces
that result in spurious virtual interest points. Surfaces that
are not potentially useful for VIP computation are paral-
lel surfaces or surfaces with similar curvature. Therefore,
three quadric surfaces with a very high degree of orthogo-
nality are only considered for VIP computation module. As a
result, only a few quadric surfaces qualify for computing the
repeatable and distinct virtual interest points. This module
also includes descriptor computation for each VIP extracted.

The next module is VIP matching module which is an
iterative process that depends onminimizing the reprojection
error in a RANSAC fashion. The complexity depends on the
number of VIPs extracted in the previous module as well
as the accuracy of matches. The last module is a refinement
module which is based on five iterations of ICP.

6 Discussion

VIP outperforms all other tested techniques in terms of com-
putational efficiency for most of the data sets. In the noisy
data sets where measurement noise and quantization error
was very high, VIP is converged to a global minimum.
Implicit surfaces absorb the effect of noise. Furthermore,
VIPs are not based on a single implicit surface but a group
of three, which is the reason for the good repeatability of
VIPs even in the presence of a significant amount of noise.
Similarly, the surface fitting does not rely on the density of
the surface unless the curvature is maintained. This makes
the technique robust to data density variations.

The limitation of VIP is that it requires at least three non-
parallel implicit surfaces in the point cloud to compute a
single VIP. In the presence of only parallel surfaces, it nor-
mally fails which is an issue to be addressed in future work.
Nevertheless, point clouds normally acquired from natural
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and artificial environments are rich in areas that exhibit non-
parallel surfaces. Using ICP as a post-processing step for
further refinement improves the quality of registration and
may also register only parallel surfaces, but decreases the
running time of the algorithm. Parallel surface cases may be
solved by adopting the planes correspondences determina-
tion technique [33].

7 Conclusion

A novel robust feature-based registration method is pre-
sented. The method is robust to noise because avoiding noisy
areas is one of the key aspect considered in design crite-
ria. The VIPs are computed by observing the most stable
regions in the scene, and therefore the performance of the
algorithm degrades gracefully in the presence of noise and
reduced resolution. Furthermore, the feature descriptors are
computed in such a way that only one true correspondence
is required for registration of noisy point clouds. As a result,
compared to other commonly used registration methods, the
proposedmethod is both stable and computationally efficient.
The method was experimentally evaluated and shown to out-
perform the PCL versions of ICP, GICP, and 2.5D SIFT, with
respect to both convergence behavior and efficiency.

In future work, this method will be expanded to solve the
aforementioned cases by including other types of parametric
surfaces, such as lines, spheres, and conics. The technique
will also be tested against other natural scenes, and general-
ized for object recognition purposes.

References

1. Chen, H., Bhanu, B.: 3D free-from object recognition in range
images using local surface patches. Pattern Recognit. Lett. 28(10),
1252–1262 (2007)

2. Endres, F., Hess, J., Engelhard, N., Sturm, J., Cremers, D., Bur-
gard, W.: An evaluation of the RGB-D SLAM system. In: IEEE
International Conference on Robotics and Automation (ICRA). St.
Paul, MA, USA (2012)

3. Besl, P.J., McKay, N.D.: A method for registration of 3-d shapes.
IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)

4. Zhang, Z.: EnglishIterative point matching for registration of free-
form curves and surfaces. Engl. Int. J. Comput. Vis. 13(2), 119–152
(1994)

5. Forsman, P., Halme, A.: Feature based registration of range images
formapping of natural outdoor environments. In: 2nd International
Symposium on 3D Data Processing, Visualization and Transmis-
sion, pp. 542–549 (2004)

6. Bowen, F., Du, E., Hu, J.: New region feature descriptor-based
image registration method. In: IEEE International Conference on
Systems, Man, and Cybernetics (SMC), pp. 2489–2494 (2012)

7. Andersen, M., Jensen, T., Lisouski, P., Mortensen, A., Hansen,
M., Gregersen, T., Ahrendt, P.: Kinect depth sensor evaluation for
computer vision applications. Electrical and Computer Engineer-
ing, Aarhus University, Tech. Rep. (2012)

8. Lange, R.: 3D Time-Of-Flight distance measurement with custom
solid-state image sensors in CMOS/CCD-technology. Ph.D. Dis-
sertation, University of Siegen (2000)

9. Segal,A.,Haehnel,D., Thrun, S.:Generalized-ICP. In: Proceedings
of Robotics: Science and Systems. Seattle, USA (2009)

10. Mitra, N.J., Gelfand, N., Pottmann, H., Guibas, L.: Registration
of point cloud data from a geometric optimization perspective. In:
Symposium on Geometry Processing, pp. 23–31 (2004)

11. Zhong, Y.: Intrinsic shape signatures: a shape descriptor for 3D
object recognition. In: International Conference on Computer
Vision Workshops (ICCV Workshops), pp. 689–696 (2009)

12. Lo, T.-W.R., Siebert, J.P.: Local feature extraction andmatching on
range images: 2.5d SIFT. Comput. Vis. Image Underst. 113(12),
1235–1250 (2009). special issue on 3D Representation for Object
and Scene Recognition

13. Lowe, D.G.: Distinctive image features from scale-invariant key-
points. Int. J. Comput. Vis. 60(2), 91–110 (2004)

14. Tombari, F., Salti, S., Di Stefano, L.: Unique signatures of his-
tograms for local surface description. In: Proceedings of the 11th
European Conference on Computer Vision Conference on Com-
puter Vision: Part III, ser. ECCV’10. Springer, Berlin, pp. 356–369
(2010)

15. Rusu, R.B., Blodow, N., Beetz, M.: Fast point feature histograms
(FPFH) for 3D registration. In: Proceedings of the IEEE Inter-
national Conference on Robotics and Automation (ICRA), Kobe,
Japan, (May 12–17 2009)

16. Sohel, F.,Wan, J., Lu,M.,Bennamoun,M.: 3Dobject recognition in
cluttered scenes with local surface features: a survey. IEEE Trans.
Pattern Anal. Mach. Intell. 99(PrePrint), 1 (2014)

17. Muja, M., Lowe, D. G.: Fast approximate nearest neighbors with
automatic algorithm configuration. In: International Conference on
Computer Vision Theory and Application VISSAPP’09). NSTICC
Press, pp. 331–340 (2009)

18. Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of
three quadrics and applications in computer vision. In: 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 1799–1808 (2016)

19. Levin, J.: A parametric algorithm for drawing pictures of solid
objects composed of quadric surfaces. Commun. ACM 19(10),
555–563 (1976)

20. Miller, J.R.: Analysis of quadric-surface-based solid models. IEEE
Comput. Graph. Appl. 8(1), 28–42 (1988)

21. Chionh, E.-W., Goldman, R.N., Miller, J.R.: Using multivariate
resultants to find the intersection of three quadric surfaces. ACM
Trans. Graph. (TOG) 10(4), 378–400 (1991)

22. qiang Xu, Z., Wang, X., diao Chen, X., guang Sun, J.: A robust
algorithm forfinding the real intersections of three quadric surfaces.
Comput. Aided Geom. Des. 22(6), 515–530 (2005)

23. Alexandre, L.A.: 3D descriptors for object and category recog-
nition: a comparative evaluation. In: Workshop on Color-Depth
Camera Fusion in Robotics at the IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS). Vilamoura,
Portugal (2012)

24. Zwicker, M., Pfister, H., van Baar, J., Gross, M.: Surface splat-
ting. In: Proceedings of the 28th Annual Conference on Computer
Graphics and Interactive Techniques, ser. SIGGRAPH ’01. New
York, NY, USA: ACM, pp. 371–378. [Online]. Available: https://
doi.org/10.1145/383259.383300 (2001)

25. Levin, D.: The approximation power of moving least-squares.
Math. Comput. 67(224), 1517–1531 (1998). https://doi.org/10.
1090/S0025-5718-98-00974-0. [Online]

26. Levin, D.: Mesh-independent surface interpolation. In: Mathemat-
ics and Visualization, pp. 37–49. [Online]. Available: https://doi.
org/10.1007/978-3-662-07443-5-3 (2004)

123

https://doi.org/10.1145/383259.383300
https://doi.org/10.1145/383259.383300
https://doi.org/10.1090/S0025-5718-98-00974-0
https://doi.org/10.1090/S0025-5718-98-00974-0
https://doi.org/10.1007/978-3-662-07443-5-3
https://doi.org/10.1007/978-3-662-07443-5-3


Journal of Mathematical Imaging and Vision (2021) 63:457–471 471

27. Mohamad,M., Ahmed,M.T., Rappaport, D., Greenspan,M.: Super
generalized 4pcs for 3D registration. In: International Conference
on 3D Vision (3DV), pp. 598–606 (2015)

28. Sipiran, I., Bustos, B.: Harris 3D: a robust extension of the harris
operator for interest point detection on 3D meshes. Vis. Comput.
27(11), 963 (2011)

29. Johnson, A.: Spin-images: a representation for 3-d surface match-
ing. Ph.D. Dissertation, Robotics Institute, Carnegie Mellon Uni-
versity, Pittsburgh, PA (1997)

30. Ahmed, M.T., Mohamad, M., Marshall, J.A., Greenspan, M.: Reg-
istration of noisy point clouds using virtual interest points. In:
12th Conference on Computer and Robot Vision (CRV), pp. 31–38
(2015)

31. Ahmed, M.T., Marshall, J.A., Greenspan, M.: Point cloud regis-
tration with virtual interest points from implicit quadric surface
intersections. In: 2017 International Conference on 3D Vision,
3DV 2017, Qingdao, China, October 10-12, 2017. IEEE Com-
puter Society, pp. 649–657. [Online]. Available: https://doi.org/
10.1109/3DV.2017.00079 (2017)

32. Yang, J., Li, H., Campbell, D., Jia, Y.: Go-ICP: a globally optimal
solution to 3D ICP point-set registration. IEEETrans. Pattern Anal.
Mach. Intell. 38(11), 2241–2254 (2016)

33. Pathak, K., Birk, A., Vaskevicius, N., Poppinga, J.: Fast registra-
tion based on noisy planes with unknown correspondences for 3-D
mapping. IEEE Trans. Robot. 26(3), 424–441 (2010)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Mirza Tahir Ahmed is a Research
Scientist at Epson Canada. He has
completed his Ph.D. from Queen’s
University, Kingston, Canada in
Fall 2017. His research interests
are 3D Computer Vision, Point
Cloud Registration, Object Pose
Estimation, Augmented Reality,
Deep Learning, Action Classifi-
cation, and Robot Learning from
Demonstration.

SheikhZiauddin is a Post-Doctoral
Fellow at Queen’s University,
Kingston, Canada. He completed
his doctorate from Asian Insti-
tute of Technology, Thailand. His
research interests include object
detection and recognition, scene
understanding, pattern recognition,
and medical image analysis.

Joshua A. Marshall research
focuses on mining systems, field
robotics, and automation. His
work involves the development and
application of methods for per-
ception, modeling, analysis, and
control of mining equipment and
processes.

Michael Greenspan is with the
Department of Electrical and
Computer Engineering at Queen’s
University, Canada. His research
interests include 3D global reg-
istration and object recognition,
projector camera systems and aug-
mented reality.

123

https://doi.org/10.1109/3DV.2017.00079
https://doi.org/10.1109/3DV.2017.00079

	Point Cloud Registration Using Virtual Interest Points from Macaulay's Resultant of Quadric Surfaces
	Abstract
	1 Introduction
	2 Related Work
	3 Quadric Surface Intersection
	3.1 Quadric Surface Representation
	3.2 Intersection of Three Quadric Surfaces
	3.2.1 Planar Intersections
	3.2.2 Non-planar Quadric Intersections


	4 Global Registration with VIPs
	4.1 Segmentation
	4.1.1 Segment Pair Qualification

	4.2 VIP Descriptor
	4.3 VIP Correspondences

	5 Experimental Results
	5.1 Comparison to Feature-Based Registration Techniques
	5.2 Comparison to Non-feature Based Registration Techniques
	5.3 Robustness to Noise
	5.3.1 Robustness to Data Density Variation

	5.4 Computational Complexity

	6 Discussion
	7 Conclusion
	References




