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Abstract
Periodic noise degrades the image quality by overlaying similar patterns. This noise appears as peaks in the image spectrum. In
this research, a method based on fuzzy transform has been developed to identify and reduce the peaks adaptively. We convert
the periodic noise removal task as image compression and a smoothing problem. We first utilize the direct and inverse fuzzy
transform of the spectrum to detect periodic noise peaks. Second, we propose a fuzzy transform-based notch filter for spectral
smoothing and separating the original image from the periodic noise components. This noise correction approach filters out a
portion (given by fuzzy transform) of the noise component. Extensive experiments on both synthetic and non-synthetic noisy
images have been carried out to validate the effectiveness and efficiency of the proposed algorithm. The simulation results
demonstrate that the proposed method outperforms state of the art algorithms both visually and quantitatively.

Keywords Image noise removal · Fuzzy transform · Periodic noise · Stripping noise

1 Introduction

Image noise is any random variation of the pixel value which
can be produced in digital image acquisition by sensors, scan-
ner, and circuits of digital cameras [19]. The periodic noise,
as one type of image noise, is generated by electrical or mag-
netic interference [39]. This noise is seen in some visual
applications such asmedicine [18], remote sensing [10], tele-
vision [35], traffic control [25], and real-time applications.
Periodic noise is detected as a repetitive pattern on the image,
which degrades the image quality. Due to its abundance, peri-
odic noise removal is one of the important issues in image
processing.

Periodic noise not only sharply degrades the image quality
in the visual effect but also risks its suitability for subse-
quent processing, e.g., image un-mixing and classification.
The goal of our work is to remove periodic noise and improve
image quality before subsequent interpretation.
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Periodic noise for an image of size M, N is spatially mod-
eled through the summation of several sinusoidal functions
(S) with different parameters [8] as follows:

n(x, y) =
S∑

i=1

Ai sin

([
2πu0i (x + Bxi )

M

]
+

[
2πv0i (y + Byi )

N

])

(1)

where Ai denotes the amplitude, u0i and v0i are the i th sinu-
soidal frequency along the axes x and y and Bxi and Byi

are the phase displacements with respect to the origin and
S∈Z+.

Periodic noise is divided into global, local, and strip-
ping categories. Global periodic noise, the noise parameters
(amplitude, frequency, and phase) are spatial-independent. In
local periodic noise, these parameters are spatial-dependent
[33]. The stripping noise is a kind of periodic noise in which
the peak is along the vertical or horizontal axis in the Fourier
domain. Figure 1 shows three types of periodic noise.

Periodic noise reduction methods are divided into two
general groups. The groups are spatial methods and spectral
methods. Numerous spatial approaches have been proposed
for the stripping noise due to it is spatially simpler than other
periodic noise. Spatial domain methods operate directly on
the image pixels for periodic noise suppression [17], while
spectral methods are based on frequency domain filtering [7].
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(a) Global (b) Local (c) Stripping

Fig. 1 X-Ray imaging of the human skeleton corrupted by periodic
noise [21]

Fig. 2 Fourier transform of an image contaminated by periodic noise

From the methodological perspective, spatial methods
are divided into two categories namely: optimization based
methods and statistical based methods.

Themain idea in statistical-basedmethods is to correct the
distribution of the data to a reference distribution [32]. In the
optimization based methods, denoising tasks are modeled as
inverse problems to be tackled by regularization [9,14].

Since of scattering in the spatial domain, the efficiency
of spatial methods decreases with global and local periodic
noise [13]. Despite the spread of periodic noise in the spatial
domain, it is concentrated in oneormore adjacent coefficients
in the frequency domain. Figure 2 shows the periodic noise
at the frequency domain. Therefore, the frequency domain
approaches are usually preferred.

In the frequency domain, noise reduction is performed in
two steps. The first step is to find the location of the noisy
frequencies. The main challenge in this step is to find out
the location of the noise frequencies. The second step is
how to repair the noisy frequencies and to get the restored
image. Spectral approaches can be divided into subcategories
according to the function they provide.

The first subcategory consists of algorithms that try to
detect the peaks such as threshold-based methods [21,22,
39], histogram analysis-based methods [8], clustering-based
methods [12], spectral modelingmethods [40,41], statistical-
based methods [1–3,36–38].

The second subcategory consists of algorithms that try to
repair noise frequencies. In the simplest case, noise frequen-
cies were replaced by zero or divided by a constant [1,12]. To
improve the repair operation, the noise component replaced

by the minimum value [39] or median value [3,41] of its
neighbors. In several studies, once the peaks detected, each
peak together with its closest surroundings corrected by a
windowedGaussian notch filter [2,22,38].Meanwhile,Gaus-
sian notch filter not only rejected the central noise frequency
but also suppressed its neighbors [5]. Gaussian-star filter and
sinc-based filter were proposed due to the star-like appear-
ance of noise peak [6,8].

Moreover, it should be noted that the Low-Frequency
Region (LFR) should not be confused with periodic noise.
In the simplest case, the LFR protected by protecting the DC
component [1] or a square/circle in the center of the spec-
trum [2,3,36,38]. In addition, the region growing method [8]
and connected component analysis method [12] were used
to separate the low-frequency region.

This paper holds mainly two twofold. First, periodic noise
peaks are found adaptively. The first hypothesis is that a com-
pression method can be used for adaptive detection of the
peaks because of the content loss is one part of the inherent
property of lossy compression methods. If the content loss
in a compression method takes place in edge pixels, it can
also be used for adaptive peak detection. Second, the noise
frequencies are repaired. The hypothesis is that filtering of
the noise frequencies should be performed using a smoothing
method.

In this research, the fuzzy transform (shortly, F-transform)
is used to test hypotheses. Fuzzy transform is an approx-
imation technique with a simple idea. The domain of a
continuous function is partitioned using overlapping fuzzy
sets. The theoretical preliminaries of the fuzzy transform
have been described in [27], and its practical applications
have been developed in time series analysis and forecast-
ing [23], smoothing [15], edge detection [29], image fusion,
image reconstruction [30], image compression [20], and
image analysis [31,34]. The fuzzy transform is suitable for
the purpose intended in this research because the content
loss in the fuzzy transform take place on edges. Therefore,
this method is used to detect periodic noise peaks. In addi-
tion, F-transform has been successfully applied in smoothing
applications. Hence, a fuzzy notch filter can be presented
according to the F-transform smoother while saving the com-
putational time as well. Comparative study shows that our
proposed algorithm outperforms both statistically and visu-
ally for various types of pure, quasi periodic noises including
low, high, and multi-frequency periodic noise.

The main contribution of this paper is summarized as fol-
lows:

1. In this research, the problem of periodic noise reduc-
tion task is converted to a form of the compression, and
smoothing problem and a fuzzy-based model is proposed
for adaptive periodic noise removal.
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2. The content loss has been used to construct a model for
detection of noise frequencies which offers a new per-
spective on periodic noise reduction task.

3. Using the F-transform in a spectral method requires by
taking into account for decreasing trend of the spectrum.
In this research, F-transform has been used in the fre-
quency domain by changing the partition space.

4. The noise peaks must be smoothed after detecting the
noise frequencies. A fuzzy notch filter is proposed to
repair the noise frequencies.

The structure of the paper is organized as follows. In
Sect. 2, we briefly overview the main notions of the F-
transform theory. Section 3 is devoted to a theoretical
explanation of the efficiency of F-transform in the problem
of periodic noise reduction. It goes into the details of the
algorithm in Sect. 4. Comparison results between the pro-
posed algorithm and some conventional methods are given
and discussed in Sect. 5. The final section also presents the
conclusion.

2 Preliminaries

F-transform is used as a tool in image processing applica-
tions and has two phases: direct and inverse. An image after
normalization can be considered as a fuzzy matrix (relation).
In the fuzzy partition, this matrix is divided into several sub-
matrices known as blocks.

In the direct F-transform, each block is transformed to
achieve the F-transform component. In fact, this component
is theweightedmean value of the block that theweights given
by the basic functions. In the inverse F-transform, a recon-
structed block is obtained using basic functions resulting in
an approximation of the original one [20]. The concepts and
theories related to the fuzzy transform are explained below.

Fuzzy Partition

If the rectangle area D2 = [a, b]×[c, d] is a commondomain
of all real-valued functions, the main idea consists of con-
struction of two fuzzy partitions for intervals [a, b] and [c, d].
Definition 1 [24] If the interval [a, b] is partitioned by basic
functions A1, . . . , An ⊆ [a, b], n > 2, and the interval [c, d]
is partitioned by basic functions B1, . . . , Bm ⊆ [c, d],m >

2, the fuzzy partition of D2 would be obtained by fuzzyCarte-
sian product {A1, . . . , An}×� {B1, . . . , Bm}, with respect to
the product t-norm of these two fuzzy partitions. In case,
both fuzzy partitions of particular axes are uniform, then the
overall fuzzy partition is also uniform.

The direct and inverse Fuzzy transformof two variables func-
tion is a generalization of the case of one variable.

Direct Fuzzy Transform

Definition 2 [16] Let A1, ,̇An ⊆ [a, b] and B1, ,̇Bm ⊆ [c, d]
be basic functions that form fuzzy partition of [a, b]×[c, d].
In the discrete case, an original function w : (pi , q j ) ∈
([a, b]×[c, d]) → R is known only at points (pi , q j ), where
i = 1, ,̇N , j = 1, ,̇M . In addition, the discrete F-transform
FT [w] ofw is given by the followingmatrix of components:

FT [w] = (FTkl [w])nm =
⎡

⎢⎣
FT11[w] . . . FT1m[w]

...
. . .

...

FTn1[w] . . . FTnm[w]

⎤

⎥⎦

where for k = 1, . . . , n, l = 1, . . . ,m, the components of
FTkl are given by

FTkl =
∑N

j=1
∑M

i=1 w(pi , q j )Ak(pi )Bl(q j )
∑N

j=1
∑M

i=1 Ak(pi )Bl(q j )
(2)

Inverse Fuzzy Transform

Definition 3 [24]Let A1, . . . , An ⊆ [a, b] and B1, . . . , Bm ⊆
[c, d] be fuzzy partitions. Let FT [w] be the F-transform of
w : [a, b] × [c, d] → R with respect to the basic functions
A1, . . . , An and B1, . . . , Bm . Then, inverse fuzzy transform
of w̃ would be defined as:

w̃(pi , q j ) =
n∑

k=1

m∑

l=1

FTkl Ak(pi )Bl(q j ) (3)

3 Theoretical Framework

F-transform is a method that is successfully used in image
compression. Lossy image compression methods tend to
introduce distortions such as general loss of sharpness and
oscillations around high-contrast edges, blocking structure
and loss of color details. The considered distortion in F-
transform takes place at edges. This property to detect the
noise frequencies adaptively in this research as used, mean-
ing that the noise frequency, like edge pixels, has a rapid
change in the intensity. So, if the image spectrum undergoes
to this transform, the periodic noise peaks will be detected.

In this section, the main goal is to show that the F-
transform enables a extraction of the main image frequencies
and the sub-component forming the noise component by F
-transform can be either completely removed or significantly
reduced. The explanation will be given on the example of a
discrete function that corresponds to the function w. Let w

be represented by the discrete function w : P → R of two
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variables where P = (i, j)|i = 1, . . . , N , j = 1, . . . , M is
an N × M array.

Proposition 1 The klth component FT [w]kl(k = 1, . . . , n, l
= 1, . . . ,m) minimizes the function

�(y) =
l∑

j=1

(w(i, j) − y)2Ak(i)Bl( j) (4)

The next statement [28] describes a representation of the
discrete Fourier transform of the F-transform components.

Proposition 2 Let Zl = {0, 1, . . . , l − 1} and w̄ be the
Fourier transform of a function w : Zl → R. Let n ≥ 3 and
A1, . . . , An−1 be a fuzzy partition [a, b]. Let W : Zl → R
be the discrete function given by

W (t) =
l−1∑

j=0

A(t − j)w( j); t = 0, . . . , l − 1 (5)

which contains the F-transform components of w among its
values. The Fourier transform of W is given by

W̄ (0) = w̄(0)

W̄ (k) ≈ mn2

2π2k2
exp(−2π ik/n)

(
1 − cos

2πk

n
.w̄(k)

k = 1, . . . , l − 1

(6)

where m is a fixed parameter.

ByProposition2, the influenceof theFourier coefficient w̄(k)
in the presentation (6) is weakened by the factor 1

k2
, k =

1, . . . , l − 1, i.e., every F-transform component works as a
low pass filter of an original function. So, the content loss
takes place in edge pixels.

In each case, the difference between an original function
and its inverse F-transform works as a high-pass filter of the
former have been concluded. Therefore, this difference can
be used as a membership function of the fuzzy set “noisy
component” in respects the following rule: the bigger is the
value n, the “higher” are the corresponding periodic noise
bandwidth. This rule is a core of the proposed algorithm.

Peaks in a noisy spectrum are an area that can be character-
ized by a significant change of intensity. This characterization
can be formalized. Firstly, the characteristic function of a
given crisp set will be formed which corresponds, to the
above-given characteristics and then provide a fuzzified ver-
sion.

E = {(xi , y j ) ∈ P|∃(x, y) ∈ P(d((xi , y j ), (x, y)) ≤ λ)

and |w(xi , y j ) − w(x, y)| ≥ κ} (7)

where d is a distance, λ determines a size of the “important”
neighborhood or in other way, bandwidth of the noise, and κ

specifies a “significance” of the intensity change. The right-
hand side expresses the fact that the value of a derivative of
w at the point (xi , y j ) ∈ E is “rather big.”

Now, the fuzzy set with the membership function is char-
acterized for a noisy component that assigns a degree of
belongness to every frequency. Given membership function
fuzzifies the characteristic function (7) of a noisy component.
Both properties Propositions 1 and 2 of the F-transform com-
ponents will be used in the proposed characterization.

Let n,m be numbers of fuzzy sets in a fuzzy partition of
the domain P = [1, N ]×[1, M] ofw. Numbers n,m relate to
a size of a chosen neighborhood in (7) was characterized by
the inequality d((xi , y j ), (x, y)) ≤ λ. In our approach, the
above inequality is characterized by Ai (x) · Bj (y), where λ

relates to lengths of supports of Ai , Bj . If FT [w]i, j , 1 ≤
i ≤ n, 1 ≤ j ≤ m are components of the F-transform of w,
then the difference |w(x, y) − FT [w]i, j | approximates the
respective difference |w(xi , y j ) − w(x, y)| in (7). Thus, the
following fuzzy set is:

E = {(x, y) ∈ P|(∃i, j)(x ∈ Ai )

and (y ∈ Bj ) and |w(x, y) − FT [w]i, j |} (8)

The membership function of a noisy component E is rep-
resented in (8) by the formal expression with the following
interpretation: ∃ relates to the addition, “and” to the prod-
uct, (x ∈ Ai ) is interpreted as Ai (x) (similarly, y ∈
Bj ), and finally |w(x, y) − FT [w]i, j | is re-scaled to [0, 1]
value. Therefore, the membership degree E(x, y) is equal to
| ∑n

i=1
∑m

j=1 Ai (x)Bj (y)(w(x, y) − FT [w]i, j )|. The fol-
lowing Proposition gives another representation of the value
of E(x, y)which will be used in the periodic noise reduction
algorithm.

Proposition 3 Let the assumptions above be fulfilled. Then,
for all (x, y) ∈ P,

E(x, y) =
∣∣∣∣∣∣

n∑

i=1

m∑

j=1

Ai (x)Bj (y)(w(x, y) − FT [w]i, j )
∣∣∣∣∣∣

= |w(x, y) − wn.m(x, y)| ≤
n∑

i=1

m∑

j=1

Ai (x)Bj (y)|(w(x, y) − FT [w]i, j )|

(9)

4 Experimental Verification

In this section, the main steps of the periodic noise reduc-
tion algorithm demonstrate how the above-described method
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works on a noisy image, it will be comparedwith the classical
methods.

In this section, we will explain the main steps of the peri-
odic noise reduction algorithm and demonstrate how the
above-described method works on noisy images. We will
also compare it with the classical methods for periodic noise
reduction.

F-transform-Based Algorithm for Periodic
Noise Reduction

This research is based on F-transform, and two main steps
are considered in it. The first step is the periodic noise fre-
quencies detection, and the second one is the restoration step.

Let f (x, y) and g(x, y) and f̂ (x, y) be the pixel values of
noise-less and noisy image and restored image in the (x, y)
coordinate, respectively. The origin shifted Fourier transform
of a noisy image is defined by

Ḡ(u, v) = 1

MN

M−1∑

x=0

N−1∑

y=0

(−1)x+yg(x, y)e− j2π( uxM + vy
N )

(10)

where (−1)(x+y) denotes the origin shifting operation. The
diagramof the proposedmethod is shown inAlgorithm1, and
the peak detection algorithm is detailed through the following
steps.

The Preprocessing

The preprocessing stage of the algorithm is normalizing the
magnitude spectrum. The operation is performed by dividing
the magnitude spectrum by its largest value and defined as:

ns(u, v) =
∣∣Ḡ(u, v)

∣∣

maxu=1,...,M,v=1,...,N
∣∣Ḡ(u, v)

∣∣
∣∣Ḡ(u, v)

∣∣ =
√
R2(u, v) + I 2(u, v)

(11)

where R(u, v) and I (u, v) are real and imaginary values of
Ḡ(u, v).

Adaptive Peak Detection and Filtering

The proposed method is a spectral domain method. Thus,
fuzzy partition, direct, and inverse F-transform have to
be matched with spectrum properties. In an origin shifted
Fourier spectrum, the amplitudes often decrease as the
frequency increases in each direction away from the ori-
gin. Therefore, the frequency coefficients in polar coordi-
nates have been used and defined fuzzy partitioning into

Algorithm 1 Pseudocode for F- Transform- based

Periodic Noise Removal

1: function FTBPNR(Noisy Image)
2: Ncoe f (i, j) = 1,∀(i, j)
3: F ← Convert to Frequency Domain(NoisyImage);
4: ns ← Normalize(F)/ ∗ Equation5
5: NS ← DirectF- Transform(ns);
6: n̂s ← InverseF- Transform(NS);
7: for all (i, j ) do
8: if n̂s(i, j)/ns(i, j) < χ(i, j) then
9: W = {(ûi , v̂ j )} ← Plus- shapedNeighborhood(i, j);

10: ST DW =
√

(nsW − n̂sW )
2;

11: for each(u, v) ∈ W do
12: if (n̂s(u, v)/ns(u, v) < θ2)and(ST D(u, v) > θ1

then
13: Ncoe f (u, v) = n̂s(u, v)/ns(u, v);
14: end if
15: end for
16: end if
17: end for
18: SPC ← SymmetricallyPaddedConvolution(Ncoef)/ ∗

Equation13
19: FT NotchFilter ← min(Ncoe f , SPC)

20: F̂ ← F . ∗ FT NotchFilter
21: Restored I MG ← ConvertToSpatialDomain(F̂);

return restored I MG
22: end function

[1,max(ρ)] and [0, π ] intervals and adapted the direct and
inverse F-transform to this domain. Note that (ρ, φ) is the
polar coordinates of the position (u, v) in the spectrum of
size M × N . It is given by:

ρ =
√( u

M

)2 +
( v

N

)2
(12)

where ρ is the radial distance from (0, 0) and φ is the coun-
terclockwise angle from the u-axis.

The direct and inverse F-transform are modified as fol-
lows. Suppose that the input domain is a rectangle [a, b] ×
[c, d] ∈ Z × R and x1 < . . . < xn are fixed nodes
from [a, b] and y1 < . . . < yn are fixed nodes from
[c, d], such that x1 = 1, xn = max(ρ), y1 = 0, ym = π

and n,m ≥ 2. Assuming that A1, . . . , An ⊆ [a, b] and
B1, . . . , Bm ⊆ [c, d] are basic functions defined on these
nodes. The direct and inverse fuzzy transforms are given by

NSkl =
∑π

j=0
∑max (ρ)

i=1 ns(ρi , φ j )Ak(ρi )Bl(φ j )
∑π

j=0
∑max (ρ)

i=1 Ak(ρi )Bl(φ j )
(13)

for each k = 1, . . . , n, l = 1, . . . ,m.

n̂s(ρi , φ j ) =
π∑

k=0

max (ρ)∑

l=1

NSkl Ak(ρi )Bl(φ j ) (14)
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The zero frequency coefficient is excluded in the calcu-
lation since its amplitude dominates over the others. The
F-transform components of the normalized spectrum have
been computed. Then, we obtain an approximation of the
original one using the inverse F-transform.

In the proposed method, we consider practical considera-
tion. It is expected that the coefficients of the noise-less image
spectrum will not be changed. Firstly, the algorithm identi-
fies the maximum frequency value of a noise peak. Then,
the neighboring noisy areas associated with the peak are
identified. In a noise-less image, no coefficient should be
determined as center frequency and the neighboring coeffi-
cients should not undergo subsequent changes.

The center frequency in the normalized spectrum has
a clear difference with its approximation. Additionally, it
was mentioned that the amplitudes in the spectrum usually
decrease as frequency increases in any direction away from
the origin. So, we tried to utilize a descending threshold
function to detect noise center frequencies as shown in the
following equations:

CF(u, v) =
{
1 if n̂s(u,v)

ns(u,v)
< χ(u, v),

0 otherwise

χ(u, v) = max

(
ε,

(ρ(u, v) − max(ρ))power

2(max(ρ) − 1)power

) (15)

where χ is a descending threshold function and ε is the great-
est lower bound to identify the noisy center.

After that, the algorithm considers all neighborhood into
a binary map image defined by:

NOI SEMAP(û, v̂) = 1,∀û ∈ {u − 1, u, u + 1}, v̂ ∈ {1, . . . , N },
∀v̂ ∈ {v − 1, v, v + 1}, û ∈ {1, . . . , M}

(16)

where (u, v) is the position of the coefficient that satisfies the
condition in (15).

If the frequency center placed at the spectrum border,
the binary map will wrap around its opposite side and will
flag those pixels in the NOI Z EMAP . Moreover, if noise-
bandwidth increases, then many coefficients in a row or
column would be involved. In this case, the condition in
(15) is satisfied by several components in the center of the
peak, and a greater number of adjacent rows and columns are
flagged in the binary map.

We want to filter out only the noisy portion effectively
without damaging the non-noisy part asmuch as possible. So,
an adaptive filtration framework is proposed by exploiting
the F-transform. Now, the flagged components are inves-
tigated with two considerations. First, it is important that
the value of the flagged component in the normalized spec-
trum is greater than its approximation. Second, there is a

large gap between this and the mean value. The approxima-
tion values obtained from the inverse fuzzy transform are
used as mean. So, a filtering mask for flagged components
of NOI SEMAP defined by:

Ncoe f (u, v) =
{ n̂s(u,v)

ns(u,v)
if ST D(u, v) > θ1and

n̂s(u,v)
ns(u,v)

< θ2

1 otherwise
(17)

ST D(u, v) =
√

(ns(u, v) − n̂s(u, v))
2

∀(u, v) ∈ NOI SEMAP
(18)

where θ1 is the minimum distance from the mean and θ2 is
the least upper bound for the ratio between the normalized
coefficient value and its approximation.

We aim to form a filtering mask that reduces a portion of
frequency value corresponding to the periodic noise. So, the
term n̂s(u,v)

ns(u,v)
is used in filtering mask.

Up to now, the noisy frequencies are identified. Then, the
F-transform notch filter is obtained after convolving the out-
lier map, Ncoe f , by a Gaussian kernel defined as:

FTmask(u, v) = min(Nooe f (u, v),
∑

p

∑

q

Nooe f (p, q)Ga(u − p + 1, v − q + 1)

Ga(n1, n2) = hg(n1, n2)∑
n1

∑
n2 hg

hg(n1, n2) = e
−(n21+n22)

2σ2

(19)

This filter is used to compensate for noisy components.
Finally, the algorithm performs inverse shifted Fourier trans-
form to reconstruct the restored image.

F̌(u, v) = Ḡ(u, v) × FTmask(u, v) (20)

5 Implementation and Experimental Results

The proposed method is implemented in the MATLAB
environment. The performance of this method has been
objectively/subjectively assessed by other state-of-the-art
algorithms in terms of the mean absolute error (MAE),
the standard deviation of absolute error (ST D), the peak
signal-to-noise ratio (PSN R), the mean structural simi-
larity index measure (SSI M), and the edges fall-out and
miss rate(EFM). The performance analysis of different
algorithms is carried out with synthetic and non-synthetic
corrupted images.

If f and f̂ are noise-less image and restored image of size
M ×N , respectively, then the objective performance metrics
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are expressed by:

MAE =
∑M−1

x=0
∑N−1

y=0

∣∣ f (x, y) − f̂ (x, y)
∣∣

M × N
(21)

ST D =
⎡

⎣ 1

M × N

M−1∑

i=0

N−1∑

j=0

[∣∣∣ f (x, y) − f̂ (x, y)
∣∣∣ − MAE

]2
⎤

⎦

1
2

(22)

PSN R is the ratio of the power of peak signal to the power
of distorting noise and it is usually expressed in terms of the
logarithmic decibel scale [4]. It is mathematically defined as:

PSN R = 10 log10

(
2552

MSE

)
(dB)

MSE =
∑M−1

x=0
∑N−1

y=0 ( f (x, y) − f̂ (x, y))
2

M × N

(23)

SSI M takes into account the biological factors of the
human vision systemwhen comparing the quality of restored
images [42]. It is expressed by

SSI M = (2μ f μ f̂ + C1) × (2σ f f̂ + C2)

(μ2
f + μ2

f̂
+ C1) × (σ 2

f + σ 2
f̂
+ C2)

(24)

where μ f and σ f are the mean intensity and standard devia-
tion of pixels in the original image, and μ f̂ and σ f̂ are mean
intensity and standard deviation of pixels in the de-noised
image. C1 and C2 are added to avoid instability.

Fall-out andMiss Rate of the Edge Pixels

One of the obvious effects of the periodic noise is seen on
the edge pixels; i.e., periodic noise may introduce some extra
edges or destroy some of the edges. A good restoration algo-
rithm must be able to remove the undesired edges and to
reconstruct the decayed ones. Since false positive and true
negative have a high chance of occurring, the performance
of the restoration algorithms can also be evaluated in terms
of fall-out and miss rate of the edge pixels [41]. For calcu-
lating those parameters, we need the information about true
edge points and false edge points. Here, the Canny method
is employed for edge detection.

(A) The miss rate of the edge pixels : This measure is
the percentage of edges present in the edge image of the
noise-less image but not present in the edge image of the
restored image to the total number of edge pixels present in

the noise-less image and is defined by:

ξ1 =
(∑M

x=1
∑N

y=1 Nξ1( f , f̂ )
∑M

x=1
∑N

y=1 O( f , f̂ )

)
× 100(%)

Nξ1( f , f̂ ) =
{
1 if O( f , f̂ ) = 1 and R( f , f̂ ) = 0
0 otherwise

(25)

where O and R are the edge images of the original image
( f ), and the restored image ( f̂ ), respectively.

(B) The fall-out of the edge pixels: It is the percentage
of edges present in the edge image of the restored image but
are not present in the edge image of the noise-less image to
the total number of non-edge pixels present in the noise-less
image and is defined by

ξ2 =
( ∑M

x=1
∑N

y=1 Nξ2( f , f̂ )

MN − ∑M
x=1

∑N
y=1 O( f , f̂ )

)
× 100(%)

Nξ2( f , f̂ ) =
{
1 if O( f , f̂ ) = 0 and R( f , f̂ ) = 1
0 otherwise

(26)

EFM = ξ1 + ξ2 (27)

An efficient algorithm in noise reduction would have a
high value of SSI M and PSN R and low value of MAE ,
ST D, and EFM .

The performance of the proposed method is compared
withWindowedAdaptiveSwitchingMinimumFilter (WASMF)
[40], Adaptive Threshold-Based Frequency domain filter
(ATBF) [39], Laplacian-based Frequency Domain Filter
(LFDF) [41], Median Filter in spectral domain (AMF1)
[3], Mean Filter in spectral domain (AMF2) [1], Windowed
Gaussian Notch Filter (WGNF) [2], Adaptive Gaussian
Notch Filter (AGNF) [22], Adaptive Optimum Notch Filter
(AONF) [21], A-Contrario Automated Removal of quasi-
Periodic noise using frequency domain statistics (ACARP)
[36], Automated Removal of quasi-Periodic noise using fre-
quency domain statistics (ARP) [38], soft morphological
filter (SMF) [17], Adaptive Sinc Restoration Filter (ASRF)
[6]. Table 1 shows the parameters of compared methods.

5.1 Results and Discussion

The proposed method was tested in several steps as follows

– Synthetic periodic noise

– Low-frequency periodic noise of various noise strengths
– High-frequency periodic noise of various noise strengths
– Pure and quasi-periodic noise
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Table 1 The parameters of compared methods

Method Parameter value Method Parameter value

AMF2(Mean) Window size 11 × 11 LFDF C1 0.4

Threshold 7 C2 1.1

Normalizing Divider 50 γ 0.9

ARP Patch size 128 AONF w 3

WGNF Window size 11 × 11 ASRF C1 10

Threshold 7 C2 2.5

A 0.1 Structure element size 5

B 1.0 Smallest filtering window(P) 2

AMF1(Median Like) Window size 11 × 11 WASMF C1 0.4

Threshold 7 C2 1.1

ATBF Alpha 1.8 SMF Structure element size 5

AGNF w 3 ACARP Patch size 128

A 1.0 LogNFAthresh 0

B 0.01

– Striping noise
– Multi-frequency periodic noise
– Periodic noise on a tonal gradient image
– Non-synthetic periodic noise
– Noise-less image
– Periodic noise removal in RGB images

Then, the computational complexity analysis of the proposed
method is discussed. The synthetic corrupted images are
created by adding artificially generated sinusoidal noise pat-
terns to the uncorrupted reference images. The performance
of spectral domain techniques is strongly dependent on the
test image and the noise parameters; therefore, the results
averaged on the 40 repetitions under test conditions. In all
tests, the test images are 256 × 256 pixels. In all tables, the
“noisy image” column is added to evaluate the quality of
the degraded noisy image. For that, the performance values
are averaged for each set of noisy images. Tables 2, 3, 4, 5,
6, and 7 show the performance comparison of our proposed
algorithm with comparison with other approaches in terms
of performance measures.

Synthetic Periodic Noise

Low-frequency Periodic Noise of Various Noise
Strengths

In this step, low-frequency periodic noise structures are con-
sidered as a noise source. In this case, the simulations are
carried out on the images with noise pattern of Eq. 1 with
u0, v0 ⊆ [2, 14]. The simulation results are shown in Table
2.

This table shows the performance of the compared algo-
rithm for synthetic periodic noise with varying noise ampli-
tudes. Generally, the restoration method should restore a
more inferior image when increasing the noise amplitude.
It is evident from Tables 2 that the proposed algorithm is
capable of achieving higher performances than the others.

The LFR radius detection in AGNF is not optimum in [8].
In AGNF, the coefficients are averaged to calculate the LFR
radius. As DC and its nearby region are usually enriched
with higher spectral amplitude values, these values will be
affected the average value when the noise peak is revealed
near the LFR;

In this case, the noise peak may not be detected and mis-
taken as part of the LFR. The simulations show that some
methods are incapable of peak detection when the noise peak
appears near the DC component. This issue is reflected in the
results as in Table 2. It is due to WASMF, LFDF, ACARP,
andARPuse static prefixedwindows for the LFR radius, irre-
spective of noise conditions; in this case, the noisy peak area
may place in this region and exclude this peak from restora-
tion. Of course, ACARP and ARP show better performance
because the LFR radius is relatively small in these methods.
Also, inASRF, the noise area is added to the boundaries of the
LFR in the dilation process and is excluded from restoration.

As shown in Table 2, a higher PSNR value is not necessar-
ily associated with a higher SSIM value. In other words, the
method may have a higher PSNR and lower SSIM than the
other, or vice versa. This will better capture the challenges
of periodic noise reduction. Noisy components should be
replaced by appropriate values after the restorationmethod to
find the noise peaks. Otherwise, the brightness of the image
may be affected. In this case, a restoration method has a
higher value of the SSIM metric and a lower value of the
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PSNR. Obviously, this is more important for low-frequency
noise due to the high values of the low-frequency region.

High-frequency Periodic Noise of Various Noise
Strengths

In Table 3, high-frequency periodic noise structures are con-
sidered. In this case, the simulations are carried out on the
images with noise pattern of Eq. 1 with u0, v0 > 20. The
simulation results are shown in Table 3. It is clear in Tables 2
and 3 that the restoration algorithms have better performance
in high-frequency periodic noise fading.

When the bandwidth of the periodic noise increases, sev-
eral rows or columns of the spectrum may be involved, so a
restorationmethodwith better detection and correction capa-
bilities has a higher efficiency.

The region growing approach in AGNF curbs the number
of detected coefficients. In ASRF, the noise affected zone is
limited by the position of the nearest fundamental peak and
the DC component. This method is better to expand the cor-
rection of coefficients in rows and columns, but as the noisy
zone has expanded across the spectrum, many coefficients
undergo changes inevitably.

In addition, for increasing the noise power tends to
decrease the performance of spatial-domain methods such
as SMF and AONF regardless of frequency bands. Naturally,
AMF1, AMF2, and WGNF may perform efficiently for a
specific image-noise combination, but they are not adaptive.

Pure and Quasi-periodic Noise

In this step, pure periodic noise is added to the original images
and the performance of the proposed method is evaluated. In
this case, the simulations are carried out on the images with
noise pattern of Eq. 1 with integer values for u0 and v0. The
simulation results are shown in Table 4.

Periodic noise is detected as peaks in pure and quasi-
periodic case. In pure case, the periodic noise affects only
one frequency, and quasi-periodic case influences a set of
frequencies.

The size of the filtering window in WGNF is not adap-
tive to noisy peak areas. This decreases the performance of
this method for pure periodic noise. In ARP and ACARP, the
noise peak is characterized in the average power spectrum
which is smaller than the original spectrum size. Then, the
outlier map is expanded by interpolation to match the size of
the spectrum. The interpolation operation propagates filter-
ing from bright spots to the surrounding area. It may fail to
produce satisfactory results for pure periodic noise.

Stripping Noise

In this step, stripping noise structures are considered as a
noise source. The simulation results are shown in Table 5.

Stripping noise signal always appears as spike along the
vertical or horizontal axis in the Fourier domain. In this case,
the simulations are carried out on the images with noise
patterns of Eq. 1 with u0 = 0 and v0 = 0. De-striping
requires more precision in the detection and correction of
noisy frequencies. In this case, the filtering problem con-
sists of removing the striping noise of the images without
introducing any blurring effect or eliminating the horizon-
tal/vertical components of the spectrum. So, only prominent
peaks must be considered.

Multi-frequency Periodic Noise

In this case, the simulations are carried out on the imageswith
noise pattern of Eq. 1 with s ⊆ 1, 2, 3, 4, 5. The simulation
results are shown in Table 6. Qualitative evaluation of the
restoration algorithms is shown in Fig. 6 for Lena image
corrupted by multi-frequency periodic noise.

Generally, the restoration algorithms work well for single
frequency periodic noise, but multi-frequency periodic noise
fading is a challenging problem. Most of the non-synthetic
images are corrupted by multi-frequency periodic noise. In
this simulation, the reference images are presentedwith addi-
tional multi-frequency periodic noise.

Periodic Noise in a Tonal Gradient Image

Periodic noise increases the value of one or more coefficients
in the spectrum. If the noisy component is replaced by zero
value, the damage to image frequency is notable. This effect
may not be obvious in high-frequency noise condition, but
the degree of damage may be severe in low-frequency noise.
However, the compared methods used various correction
approach to reinstate the noisy frequency. The result must
preserve the dynamic range of the intensity values, accura-
cies and sharpness of the edges. In this simulation, a tonal
gradient corrupted by synthetic periodic noise is considered.
Qualitative results of the restoration algorithms are shown in
Fig. 5.

One of the advantages of the proposedmethod is its noise-
correction-manner framework. The main slogan is to filter
out only a portion of the flagged component, and this portion
is given by F-transform. Therefore, the tonal attributes of
the restored image will be preserved. As depicted in Fig. 5,
the proposed method preserves gray-scale values, while it
removes the periodic patterns. In this case, F-transform helps
to replace the noise coefficient by a proper value.
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Non-Synthetic Periodic Noise

The performance of the proposed method is evaluated in a
real situation. In this case, the images from various fields,
corruptedwith different types of non-synthetic periodic noise
structures, are tested as a benchmark.

As the distortion-free reference image is not within reach,
the performance evaluation metrics cannot be computed.
Hence, the performance is compared only visually. Fig-
ures 7 and 8 show that our method outperforms the most
recent state-of-the-art algorithms for non-synthetically cor-
rupted images in real situations. Figure 9 shows the restored
outputs of the proposed algorithm while restoring a few non-
synthetically corrupted images.

Periodic Noise Removal in RGB Images

Spectral periodic noise reductionmethods can easily general-
ize from gray-scale images to RGB images. For this purpose,
image planes are separated from each other. Then, the peri-
odic noise reduction method is applied to each separated
plane. The final RGB image is obtained from the combi-
nation of these results. Figure 3 shows the restored outputs
of the proposed algorithmwhile restoring the corrupted color
image.

Noise-less Image

It is expected that the coefficients of the noise-less image
spectrumwill not be changed, particularly when dealingwith
adaptive periodic noise detection. The local structures of the
original image must be well preserved. In this simulation,
the reference images are considered and the performance of
the proposed method is evaluated. The simulation results are
shown in Table 7. In this table, “INF” denotes infinity, i.e.,
the restored image is the same as the reference image.

While filtering permits to eradicate periodic noise, this
requires first to discriminate between noise spikes and
spectrum patterns caused by spatially localized textures or
repetitive structures. It is important to note that the periodic
structures and repetitive patterns are revealed as peaks at the
spectrum. These peaks would be the weakness of the spectral
methods.

Parameter Analysis

This section makes the parameter analysis of the param-
eters used by the proposed algorithm. The parameter ε is
used for ensuring that the descending function is above the
uncorrupted version of the F-transformed spectrum. Figure
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(a) Corrupted yellow lily

(b) De-noised yellow lily

Fig. 3 Periodic noise removal in RGB images using proposed method
(ε = 0.08, power = 10, θ1 = 0.5, θ2 = 9 × 10(−4))

4a shows the average performance metrics values obtained
from several restored images by varying noise strength and
ε values. In this research, the value of ε is set to 0.08.

The parameter θ1 is used to ensure that a component is
greater than its fuzzy transformed component. Since the peak
center passes the previous step, the parameters θ1 and θ2 are
used to extend substitution across adjacent components in
rows and columns. More neighboring frequencies may be
changed by increasing the value of these parameters. Figure
4b shows the average performance metrics values obtained
from several restored images by varying noise strength and
θ1 values. In this study, an attempt is made to change the
minimum frequency components. Therefore, experiments
conducted by varying θ1. The parameter θ1 is selected 0.5
in this research.

Each noise component must be dominant over its coun-
terpart component in the F-transformed spectrum, and the
algorithm controls the domination intensity by parameter θ2.
The increase in this parameter gradually decreases this sen-
sitivity. Hence, according to Fig. 4c, more neighbors may be
changed, and the performance measures may be reduced. In
this research, the parameter θ2 is selected 9 × 10(−4).

It is noted that in all of the experiments of this section,
different types of periodic noise (low frequency, high fre-
quency, pure, stripping, andmulti-frequency) considered and
the average value of criteria reported. In addition, for test-
ing each parameter, the other two parameters are considered
fixed and the experiments are conducted.

Computational Complexity Analysis

Since the proposed method is a spectral method, it is neces-
sary to compute the Fourier transform of the image. If fast
Fourier transform is used, the complexity of this step would
be O(MNlogMN ) [11].

For a general type of partitions, the time consumption
requirement is o(Sr(2r + log(n)) for direct F-transform and
o(r(2r + log(n))) for inverse F-transform [26] where r is
the dimension of the original function domain that is to say
the number of input variables. The frequency coefficients are
presented in polar coordinates so, r = 2. Also, S is the count
of the sample in which the original function is known or
simply the number of input data vectors. In order to speed
up further, the proposed method makes use of the symmetric
property of the Fourier spectrum. It processes the noisy peak
area detection to the first two quadrants. So, S = (M×N )/2,
M , and N are the spectrum size.

Finally, n is equal to the maximal number of basic func-
tions from individual dimensions and defined by

n =
r∨

l=1

nl (28)

where
∨

denote the maximum operator and nl is number of
basic functions in dimension l.

Low-frequency components with large amplitude are
located near the center of the Fourier spectrum and higher
frequency components with small values are located toward
the edges of the Fourier spectrum. Notably, non-uniform par-
titioning was considered in the proposed method.

{
2i

}
, i =

0, 1, . . . , log2(max(ρ)) are considered as fixed nodes in
the ρ dimension. In addition, a 10-uniform partition with{
10( j − 1), j = 1, . . . , 19

}
nodes is considered for the φ

dimension.
The number of noise coefficients of a spectrum is usu-

ally lower than non-noisy coefficients. If the computational
complexity of the correction of these coefficients is assumed
to be constant, the computational complexity of the algo-
rithm is dominated by the Fourier transform. Therefore,
the computational complexity of the proposed method is
O(MN log(MN )).

123



520 Journal of Mathematical Imaging and Vision (2021) 63:503–527

(a) Average performance metrics values obtained from several restored images by varying ε values.

(b) Average performance metrics values obtained from several restored images by varying θ1 values.

(c) Average performance metrics values obtained from several restored images by varying θ2 values.

Fig. 4 Parameter analysis on ε, θ1, and θ2
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(a) Gradient image (b) noisy image (c) WASMF

(d) ATBF (e) LFDF (f) AMF1 (g) AMF2

(h) WGNF (i) AGNF (j) AONF (k) ACARP

(l) ARP (m) SMF (n) ASRF (o) Proposed Method

Fig. 5 Visual comparisons for different denoising algorithms for a synthetically corrupted tonal gradient image by periodic noise of strength
a = 1.3(ε = 0.08, power = 10, θ1 = 0.5, θ2 = 9 × 10(−4))
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(a) noisy image
(b) Surface plot of noisy im-
age (c) The spectrum

(d) WASMF (e) ATBF (f) LFDF (g) AMF1

(h) AMF2 (i) WGNF (j) AGNF (k) ACARP

(l) ARP (m) SMF (n) ASRF (o) Proposed Method

Fig. 6 Visual comparisons for different denoising algorithms for a synthetically corrupted sample imageLena bymulti-frequency periodic noise(ε =
0.08, power = 10, θ1 = 0.5, θ2 = 9 × 10(−4))
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(a) WASMF (b) ATBF (c) LFDF (d) AMF1

(e) AMF2 (f) WGNF (g) AGNF (h) AONF

(i) ACAP (j) ARP (k) SMF (l) ASRF

(m) Corrupted spectrum (n) noisy image (o) Proposed Method (p) Restored spectrum

Fig. 7 Visual comparisons for different denoising algorithms for a non-synthetically corrupted image Clown (ε = 0.08, power = 10, θ1 =
0.5, θ2 = 9 × 10(−4))
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(a) WASMF (b) ATBF (c) LFDF (d) AMF1

(e) AMF2 (f) WGNF (g) AGNF (h) AONF

(i) ACARP (j) ARP (k) SMF (l) ASRF

(m) Proposed Method (n) Proposed Method (o) noisy image

Fig. 8 Visual comparisons for different denoising algorithms for a non-synthetically corrupted image Moonlanding (ε = 0.08, power = 10, θ1 =
0.5, θ2 = 9 × 10(−4))
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(a)  Non-synthetic Tree (b) De-noised tree

(c)  Non-synthetic woman (d) De-noised woman

(e)  Non-synthetic man (f) De-noised man

(g) Non-synthetic Detector strip-
ing

(h) De-noised Detector striping

Fig. 9 Real images corrupted by different non-synthetic periodic
noise structures, and restored images using proposed method (ε =
0.08, power = 10, θ1 = 0.5, θ2 = 9 × 10(−4))

6 Conclusion

There is a various source of periodic noise and many
studies have attempted to remove it from the images. How-
ever, there are still challenges about adaptive detection of
noise frequencies and appropriate attenuation. This study
showed that adaptive detection can be achieved by a com-
pression method in which the content loss takes place in
high-frequency positions. Moreover, in such a case decom-
pressed result is smooth. However, the current findings

suggest that F-transform smoothing property can be used
as an attenuation factor for better restoration of noise fre-
quencies. In this research, fuzzy partitioning was proposed
in polar coordinates for the operation in the frequency
domain. Experimental results in terms of subjective and
objective metrics depicted that the performance of the pro-
posed method in restoring periodic noise corrupted images
is better as compared to the state-of-the-art algorithms used
in the comparative study. Further work will be directed to the
improvement of the developed solution. It is difficult to dis-
criminate between noise peaks and spectrum peaks caused
by spatially localized textures or repetitive structures. Fur-
thermore, providing a dual-domain approach is one of the
subjects of our future research. Further still, the proposed
method is not a fully automatic method due to several param-
eters. As for the model to automate the parameters can be
attempted as another future work by incorporating fuzzy,
neural network, and optimization techniques.
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