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Abstract
The curvature regularities are well-known for providing strong priors in the continuity of edges, which have been applied
to a wide range of applications in image processing and computer vision. However, these models are usually non-convex,
non-smooth, and highly nonlinear, the first-order optimality condition of which are high-order partial differential equations.
Thus, numerical computation is extremely challenging. In this paper, we estimate the discrete mean curvature and Gaussian
curvature on the local 3×3 stencil, based on the fundamental forms in differential geometry. By minimizing certain functions
of curvatures over the image surface, it yields a kind of weighted image surfaceminimization problem, which can be efficiently
solved by the alternating direction method of multipliers. Numerical experiments on image restoration and inpainting are
implemented to demonstrate the effectiveness and superiority of the proposed curvature-based model compared to state-of-
the-art variational approches.

Keywords Image reconstruction · Image surface · Differential geometry · Curvature regularization · Mean curvature ·
Gaussian curvature

1 Introduction

Curves and surfaces are important geometric elements in
image processing and analysis, which can be ideally mea-
sured by quantities such as arc length, area and curvatures
[12]. Let u : � → R be an image defined on an
open-bounded subset � ⊂ R

2 with Lipschitz continuous
boundary. For each gray level λ, by taking the length energy
as the curve model, it yields the well-known total variation
(TV) regularization [42]

TV(u) =
∫ ∞

−∞
Length(Γλ)dλ =

∫
�

|∇u|dx, (1)

where Γλ = {x ∈ �|u(x) = λ}. Curvatures can depict the
amount of a curve frombeing straight as in the case of a line or
a surface deviating from being a flat plane, which have also
been applied to various image processing tasks [1,23,43].
Suppose we take the curvature curve model, then the image
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model becomes

E(u) =
∫

�

g(κ)|∇u|dx =
∫

�

g
(∣∣∣∇ ·

( ∇u

|∇u|
)∣∣∣

)
|∇u|dx, (2)

where g(κ) = 1 + ακ2, α > 0, yielding the Euler’s elas-
tica image model [36]. Nitzberg, Mumford and Shiota [39]
observed that line energies such as Euler’s elastica can be
used as regularization for the completion of missing con-
tours in images by providing strong priors for the continuity
of edges. Since then, Euler’s elastica has been successfully
used for image denoising [47,56], inpainting [35,45,54], seg-
mentation [3,18,61], segmentation with depth [22,59] and
illusory contour [28].

However, the numerical minimization of Euler’s elastica
is highly challenging due to its non-smoothness, nonlin-
earity and non-convexity. The gradient flow was used to
solve a set of coupled second-order partial differential equa-
tions in [4,45] for minimizing the Euler’s elastica energy,
which usually takes high computational cost in imaging
applications. Schoenemann, Kahl and Cremers [43] solved
the associated linear programming relaxation and thresh-
olded the solution to approximate the original integer linear
program regarding curvature regularization. Discrete algo-
rithms based on graph cuts methods have been studied for
Euler’s elastica models in [2,21]. Thanks to the development
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of operator splitting technique and augmented Lagrangian
algorithm, fast solvers for Euler’s elastica models have been
presented in [3,19,47,52,54]. Recently, Deng, Glowinski and
Tai [15] proposed a Lie operator-splitting-based time dis-
cretization scheme, which is applied to the initial value
problem associated with the optimality system. A convex,
lower semi-continuous, coercive approximation of Euler’s
elastica energy via functional lifting was discussed in [8].
Later, Chambolle and Pock [11] used a lifted convex repre-
sentation of curvature depending variational energies in the
roto-translational space and yielded a natural generalization
of the total variation to the roto-translational space.

By considering the image surface or graph in a high-
dimensional space, the image denoising problem turns to find
a piecewise smooth surface to approximate the given image
surface. Bothmean curvature andGaussian curvature can be
used as the regularizer to preserve geometric features of the
image surface for different image processing tasks. Themean
curvature was first introduced for noise removal problems
as the mean curvature-driven diffusion algorithms [20,55],
which evolved the image surface at a speed proportional to
the mean curvatures. Zhu and Chan [58] proposed to employ
the L1-norm of mean curvature over the image surface as
follows

H(u) =
∫

�

∣∣∣∣∇ ·
( ∇u√

1 + |∇u|2
)∣∣∣∣dx, (3)

which was proven to be able to keep corners of objects
and greyscale intensity contrasts of images and remove the
staircase effect. Originally, the smoothed mean curvature
regularized model was numerically solved by the gradient
descent method, which involves high-order derivatives and
converges slowly in practice. To deal with this difficulty,
some effective and efficient numerical algorithms for mean
curvature regularized models were proposed based on the
augmented Lagrangian method [37,60]. However, there exist
some inevitable problems in this kind of method, such as the
choices of the algorithm parameters and the slow conver-
gence rate.

Gaussian curvature-driven diffusion was studied in [30]
for noise removal problems, which was shown superior in
preserving image structures and details. Lu, Wang and Lin
[32] proposed an energy functional based onGaussian curva-
ture for image smoothing, which was solved by a diffusion
process. Gong and Sbalzarini [25] presented a variational
model with local weighted Gaussian curvature as the regu-
larizer, which was solved by the splitting techniques. In [9],
the authors minimized the following L1-norm of Gaussian
curvature of the image surface

K(u) =
∫

�

|det ∇2u|
(1 + |∇u|2)2 dx, (4)

with ∇2u being the Hessian of function u and

det ∇2u = ∂2u

∂x2
∂2u

∂ y2
−

∣∣∣ ∂2u

∂x∂ y

∣∣∣2.

Similarly, Gaussian curvature regularizer can also preserve
image contrast, edges and corners very well. However, the
minimization of (4) is even harder due to the determinant of
Hessian, which was solved by a two-step method based on
the vector filed smoothing and gray-level interpolation.

Recently, efficient methods are proposed to directly esti-
mate curvatures in the discrete setting. Ciomaga, Monasse
and Morel [13] evaluated the curvatures on the level lines of
the bilinearly interpolated images, where a smoothing step
depending on affine erosion of the level lines is implemented
on the images to remove pixelization artifacts. Gong and
Sbalzarini [26] presented a filter-based approach to use the
pixel-local analytical solutions to approximate the TV, mean
curvature and Gaussian curvature by enumerating the con-
stant, linear and developable surfaces in the discrete 3 × 3
neighborhood. Although the curvature filter avoids solving
the high-order partial differential equations associated with
the curvature-based variational models, it lacks rigorous def-
inition and accurate estimation of the curvatures. Zhong et
al. [57] introduced the total curvature regularization bymini-
mizing all the normal curvatures over image surface, inwhich
the normal curvatures are well-defined in a pixel-wise local
neighborhood.

1.1 Our Contributions

Assume an image surface (x, y, u(x, y)) is defined on�. We
define a level set function φ(x, y, z) = u(x, y) − z, the zero
level set of which corresponds to the surface z = u(x, y). By
integrating over�, it gives the surface area energy as follows

A(u)=
∫

�

√( ∂z

∂x

)2+( ∂z

∂ y

)2 + 1dx=
∫

�

√
1+|∇u|2dx,

(5)

which has been used as the efficient regularization for image
smoothing [46,55] and blind deblurring [31], etc. We formu-
late a new curvature regularized model by minimizing either
the mean curvature or Gaussian curvature over image sur-
faces. Taking image denoising as an example, we define the
curvature energy as follows

min
u

∫
�

g(κ)
√
1 + |∇u|2dx + λ

2

∫
�

(u − f )2dx, (6)

where κ denotes eithermean curvature orGaussian curvature
and g(·) is a certain function of the curvature. According to
[11], the following three typical energies are considered and
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Fig. 1 The estimated curvature maps of a simple image ‘Cat’ estimated by image curvature microscope (ICM) [13] and our approach, where yellow
denotes zero curvature, and green and red represent positive and negative curvatures, respectively (Color figure online)

extended to the graph, where α is a positive parameter to
balance the curvature and surface area.

(1) Total absolute curvature (TAC): measures the sum of the
surface area and absolute curvature

g1(κ(u)) = 1 + α|κ(u)|. (7)

(2) Total square curvature (TSC): penalizes the surface area
and the squared curvature

g2(κ(u)) = 1 + α|κ2(u)|. (8)

(3) Total roto-translational variation (TRV): measures the
surface area and curvature through an Euclidean metric

g3(κ(u)) =
√
1 + α|κ2(u)|. (9)

Both mean curvature and Gaussian curvature are esti-
mated based on normal curvatures, which can be defined
on a 3 × 3 neighborhood of each pixel followed our previ-
ous work [57]. As long as the curvatures being computed
explicitly, we can use the operator splitting technique and
ADMM-based algorithm to iteratively solve the curvature
minimization problem (6). We prove the existence of a solu-
tion and discuss the convergence of the ADMM algorithm
under certain assumptions. Numerical applications to image
denoising and inpainting show the superiority of the pro-
posed method, which can provide better restoration qualities
with lower computational cost compared to several state-of-

the-art variational models. To sum up, our method presents
the following advantages:

(1) Wedevelop a newdiscretemethod to estimate bothmean
curvature and Gaussian curvature on image surfaces.
Different from the discrete curvature in [13], which is
designed for 2D level lines and strongly relies on the
smoothness of the level lines, our approach makes use
of 3D level sets information. As shown in Fig. 1, the
curvature maps are different on image edges due to
the intrinsic differences among the curvatures, and our
method performs better on the original image by pro-
ducing fewer outliers.

(2) By computing the normal curvatures in the 3× 3 neigh-
borhood, we can estimate both mean curvature and
Gaussian curvature in terms of principal/normal curva-
tures. Thus, our model can be regarded as a re-weighted
minimal surface model, where the weights are automat-
ically updated using curvature information. It can not
only achieve good image restoration results but also pre-
serve the geometric properties, such as edges, corners,
etc., very well.

(3) Because we only introduce one artificial variable, our
ADMM has fewer parameters than other curvature-
based models. More specifically, our algorithm has one
parameter of the augmented term while the ADMMs for
Euler’s elastica model in [47] andmean curvature model
in [60] have three and four such kinds of parameters,
respectively.
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Fig. 2 Curvature vector

(4) Our formulation is more flexible to adapt to the different
combinations of the function-type and curvature-type
without affecting the way of the operator-splitting and
the associated ADMM-based algorithm. The proposed
curvature regularization can be easily applied to other
image processing tasks such as segmentation [18,33],
reconstruction [52,56], etc.

1.2 Organizations

This paper is organized as follows. We introduce the esti-
mation of curvatures based on differential geometry theory
in Sect. 2. The ADMM-based algorithm and convergence
analysis are discussed in Sect. 3. Section 4 is dedicated to
numerical experiments on image reconstruction problem to
demonstrate the efficiency and superiority of the proposed
approach. Finally, we draw some conclusions in Sect. 5.

To summarize this section, we would like to mention that
the proper functional frameworks to formulate the curvature-
based variational models involving aforementioned curva-
ture regularizations (2)–(4) have not been identified yet.
Therefore, we do not knowmuch about the function space of
our model (6), which has to be a subspace of L2(�). Obvi-
ously, the discrete problems largely ignore these functional
analysis considerations. Thus, we discuss our model under
the discrete setting in the followings.

2 Curvature Estimation

2.1 Notations and Definitions

Let r = r(x, y) : � ⊂ R
2 → R

3 be a regular parametric
surface S and (x, y) be the coordinates on �. In order to
quantify the curvature of a surface S, we consider a curve C
on S passing through point O shown in Fig. 2. The curvature
vector is used to measure the rate of change of the tangent

Fig. 3 The projection distance of a neighboring point to the tangent
plane

along the curve, which can be defined using the unit tangent
vector t and the unit normal vector n of the curve C at point
O as

κ = dt
ds

= κn + κg

with κn being the normal curvature vector and κg being the
geodesic curvature vector. Let N be the surface unit normal
vector, which is defined as

N = rx × r y
|rx × r y | .

By differentiating N · t = 0 along the curve with respect to
s, we obtain

d t
ds

· N + t · dN
ds

= 0.

Thus, the normal curvature of the surface at O in the direction
t can be expressed as

κn = dt
ds

· N = −t · dN
ds

= −dr
ds

· dN
ds

= Ldx2 + 2Mdxdy + Ndy2

Edx2 + 2Fdxdy + Gdy2
, (10)

which is the quotient of the second fundamental form and the
first fundamental form. The denominator of (10) is the first
fundamental form, which is the square of the arc length

I = ds2 = dr · dr = Edx2 + 2Fdxdy + Gdy2,

with the first fundamental form coefficients E = rx · rx ,
F = rx · r y , G = r y · r y . On the other hand, the numerator
of (10) is the second fundamental form such that

II = −dr · dN = d2r · N = Ldx2 + 2Mdxdy + Ndy2,
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Table 1 List of notations used
in the this work

Notations Description

r Regular parametric surface

κ Curvature vector

t Unit tangent vector

s Arc length element

n Unit normal vector of curve C
N Surface unit normal vector

κn Normal curvature vector

κg Geodesic curvature vector

I The first fundamental form

II The second fundamental form

d Projection distance of a point to the tangent plane

l Length of the parametric curve

κn Normal curvature

κmax, κmin Principal curvatures

H Mean curvature

K Gaussian curvature

with the second fundamental form coefficients L = rxx · N ,
M = rxy · N , N = r yy · N .

Proposition 2.1 Suppose S: r = r(x, y) is a regular para-
metric surface, O(x0, y0) being an arbitrary point onS, then
the second fundamental form at point O can be estimated by

II ≈ 2d, (11)

where d denotes the projection distance of its neighboring
point P(x0 + 	x, y0 + 	y) to the tangent plane of O.

Proof As shown in Fig. 3, the projection distance of the
neighboring point P(x0 +	x, y0 +	y) to the tangent plane
is obtained as follows

d(	x,	y) = (r(x0 + 	x, y0 + 	y) − r(x0, y0)) · N.

By Taylor’s expansion, we have

r(x0 + 	x, y0 + 	y) − r(x0, y0)

= (rx	x + r y	y) + 1

2
(rxx (	x)2 + 2rxy	x	y

+ r yy(	y)2) + o((	x)2 + (	y)2),

and

lim
(	x)2+(	y)2→0

o((	x)2 + (	y)2)

(	x)2 + (	y)2
= 0.

Owing to rx · N = r y · N = 0, it follows that

d(	x,	y) = 1
2 [L(	x)2 + 2M	x	y + N (	y)2]
+o((	x)2 + (	y)2),

the first term on the right-hand side of which gives the second
fundamental form. Thus, as long as

√
(	x)2 + (	y)2 → 0,

there is

II ≈ 2d(	x,	y),

which completes the proof. �

With the normal curvatures, we can further define the two
principal curvatures of point O to measure how the sur-
face bends by different amounts in different directions at
that point, which are

κmax := themaximum normal curvature atO,

κmin := theminimum normal curvature atO.

Nowwe are ready to define themean curvature andGuassian
curvature based on the principal curvatures as follows.

Definition 2.2 The mean curvature and Gaussian curvature
of S at point O are defined as

H = 1

2
(κmax + κmin), and K = κmaxκmin. (12)

The Gaussian curvature is also known as the curvature of
a surface, which is an intrinsic measure of the curvature,
depending only on distances that measured on the surface,
not on the way that isometrically embedded in Euclidean
space. Although the mean curvature is not intrinsic, a sur-
face with zero mean curvature at all points is called the
minimal surface, which is widely used in shape analysis,
high-dimensional data processing, etc. For convenience, the
important notations used in this paper are summarized in
Table 1.

123



Journal of Mathematical Imaging and Vision (2021) 63:30–55 35

Fig. 4 Calculate the normal curvature on image surface, the gray triangle in which represents a tangent plane of center point O

2.2 Calculation of Normal Curvatures

Without loss of generality, we represent a gray image as a
m × n matrix and the grid � = {(ih, jh) : 1 ≤ i ≤ m, 1 ≤
j ≤ n}with h being the grid step size fixed as the same value
in the x-axis and the y-axis. In the following, we use the
notation u(i, j) = u(ih, jh) and (i, j) denotes a discrete
point. Similarly to Euler’s elastica energies [11,45,47], we
use the staggered grid in the x − y plane, where an example
with 3×3 pixels is displayed in Fig. 4a. The	-nodes express
half grids and �-nodes represent middle points, which are
used as the neighboring points in the calculation of normal
curvatures. The intensity values on	-nodes are estimated as
the mean of its two neighboring •-nodes, while on �-nodes
are estimated as the mean of the four surrounding •-nodes.

Now we discuss how to estimate the discrete normal cur-
vatures locally. As shown in Fig. 4b, we use the triangular
plane TXY Z to approximate tangent plane of point O . Since
the 3D coordinates of point X , Y and Z are known, the nor-
mal vector N of TXY Z can be decided by the cross-product
of the vector

−→
XY and

−→
X Z as follows

N = −→
XY × −→

X Z = (2ui, j − ui, j−1 − ui, j+1, ui, j−1 − ui, j+1, 2).

In order to implement Proposition 2.1 to approximate the
second fundamental form, we use the half point P(i −
1
2 , j, ui− 1

2 , j ) in Fig. 4b for estimating the projection distance
d of P to its tangent plane TXY Z , which gives

d = dist(P,TXY Z ) = −→
QP · N

= 2ui, j − ui, j−1 − ui, j+1

2
√

(2ui−1, j − ui, j−1 − ui, j+1)2 + (ui, j−1 − ui, j+1)2 + 4
.

(13)

On the other hand, the first fundamental form can be esti-
mated using the arc length Ô P , which is approximated by
the length of the line segment, i.e., |OP|. Based on the
Pythagorean theorem, we have

ds = Ô P ≈

√
(ui− 1

2 , j − ui, j )2 + h2, (14)

where ui− 1
2 , j can be estimated as the mean of its two

neighboring points ui−1, j and ui, j . Therefore, according to
formula (10), the normal curvature of point O in direction−→
OP can be expressed as follows

κn ≈
2d

ds2
≈

2ui, j − ui, j−1 − ui, j+1

((ui− 1
2 , j − ui, j )2 + h2)

√
(2ui−1, j − ui, j−1 − ui, j+1)2 + (ui, j−1 − ui, j+1)2 + 4

. (15)
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Fig. 5 The eight tangent planes
of the center point in a 3 × 3
local window and the
representatives of the two
different kinds of projections

Proposition 2.3 The approximation of the normal curvature
by (15) is o(h2).

Proof As shown in Fig. 4b, P(i− 1
2 , j,

ui−1, j+ui, j
2 ) is a neigh-

boring point of O(i, j, ui, j ) used to calculate the normal

curvature.Obviously,when h → 0,we obtain lim
h→0

̂OP
|OP| = 1.

As a result, the approximate error of first fundamental form
using the square of |OP| is o(h2). On the other hand,
according to Proposition 2.1, the approximate error of sec-
ond fundamental form using the projection distance d is also
o(h2). Thus, the estimation of the normal curvature by (15)
is a second-order approximation. �

2.3 Mean Curvature and Gaussian Curvature

In order to estimate the mean and Gaussian curvatures t each
point of the image surface,we compute the normal curvatures
along eight directions in the local 3 × 3 window. As shown
in Fig. 5a, eight triangular planes (i.e., T1-T8) are defined
as the approximate tangent planes, which locate physically
nearest to the center point O and pairwise centrosymmet-
ric to avoid the grid bias. We can simply divide these tangent
planes into two categories such that T1-T4 use the half points
and T5-T8 use the middle points to compute the projections.
The examples of each type (i.e., T2 and T8) are also pre-
sented in Fig. 5b, c, which illustrate the tangent planes and
the corresponding projections.

Given the eight neighboring points being either the half
points or themiddle points,we can estimate the second funda-
mental form by calculating the distance from the neighboring
point P as depicted in Fig. 5b, c to the corresponding tan-
gent plane.More specifically,we calculated
 = dist(P
, T
),

 = 1, . . . , 8, which are defined as

d1 = 2ui, j − ui, j−1 − ui, j+1

2
√

(2ui−1, j − ui, j−1 − ui, j+1)2 + (ui, j−1 − ui, j+1)2 + 4
;

d2 = ui, j−1 + ui, j+1 − 2ui, j

2
√

(2ui+1, j − ui, j−1 − ui, j+1)2 + (ui, j+1 − ui, j−1)2 + 4
;

d3 = ui−1, j + ui+1, j − 2ui, j

2
√

(ui+1, j − ui−1, j )2 + (ui−1, j + ui+1, j − 2ui, j−1)2 + 4
;

d4 = 2ui, j − ui−1, j − ui+1, j

2
√

(ui−1, j − ui+1, j )2 + (ui−1, j + ui+1, j − 2ui, j+1)2 + 4
;

d5 = ui−1, j−1 + ui−1, j+1 + ui+1, j−1 − ui, j − ui−1, j − ui, j−1

2
√

(ui+1, j−1 − ui−1, j−1)2 + (ui−1, j+1 − ui−1, j−1)2 + 4
;

d6 = ui, j + ui+1, j + ui, j+1 − ui+1, j+1 − ui−1, j+1 − ui+1, j−1

2
√

(ui−1, j+1 − ui+1, j+1)2 + (ui+1, j−1 − ui+1, j+1)2 + 4
;

d7 = ui, j + ui−1, j + ui, j+1 − ui−1, j−1 − ui+1, j+1 − ui−1, j+1

2
√

(ui−1, j+1 − ui+1, j+1)2 + (ui−1, j−1 − ui−1, j+1)2 + 4
;

d8 = ui−1, j−1 + ui+1, j+1 + ui+1, j−1 − ui, j − ui+1, j − ui, j−1

2
√

(ui+1, j−1 − ui−1, j−1)2 + (ui+1, j+1 − ui+1, j−1)2 + 4
.

On the other hand, we estimate the arc length of the cen-
tral point O(i, j, ui, j ) to the neighboring points P
, 
 =
1, . . . , 8, in the local 3 × 3 neighborhood, which is com-
puted by the square root of the quadratic sum of the intensity
differences and the grid size between two points according to
(14). As a result, eight normal curvatures can be calculated
using (15) as

κ
 ≈

⎧⎨
⎩

2d


(u�

 −ui, j )2+h2

, 
 = 1, 2, 3, 4,
2d


(u�

 −ui, j )2+2h2

, 
 = 5, 6, 7, 8,
(16)
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where u�

 and u�


 denote the intensities of the two types of
neighboring points as shown in Fig. 4a. The normal curva-
tures are well-defined and applicable to every point on the
image surface.

With all normal curvatures, we are ready to obtain the two
principal curvatures κmax and κmin from

κmax = max{κ
}, κmin = min{κ
}, for 
 = 1, 2, . . . , 8.

(17)

According to Definition 2.2, both mean and Gaussian curva-
tures are evaluated on each point of the image surface, which
only involve simple arithmetic operations.

3 The Curvature-Based Variational Model
and Numerical Algorithm

3.1 ADMM-Based Numerical Algorithm

Nowwe discuss the numerical algorithm for solving themin-
imization problem (6) by firstly rewriting it into the following
discrete form

min
u

∑
i, j

g(κ(ui, j ))
√
1 + |∇ui, j |2 + λ

2
‖u − f ‖2, (18)

where κ(ui, j ) denotes either the mean curvature or Gaussian
curvature, |·| is the usual Euclidean norm inR

2 and ‖·‖ is the
l2 norm. Note that all matrix multiplication and divisions in
this paper are element-wise. The discrete gradient operator
∇ : R

mn → R
mn×mn is defined by

(∇u)i, j=((∇u)xi, j , (∇u)
y
i, j ) for i=1, . . . ,m, j=1, . . . , n

with

(∇ui, j )
x =

{
ui+1, j − ui, j , if 1 ≤ i < m

u1, j − ui, j , if i = m
, and

(∇ui, j )
y =

{
ui, j+1 − ui, j , if 1 ≤ j < n

ui,1 − ui, j , if j = n
.

As can be seen, when the mean and Gaussian curvatures
are given, the curvature regularized model (18) becomes a
weighted minimal surface model, for which fast algorithms
can be used as the numerical solver, for instance the split
Bregmanmethod [24], primal-dual splittingmethod [10] and
augmented Lagrangian method [50]. Therefore, we solve the
weighted minimal surface model based on the ADMM algo-
rithm and then evaluate the curvatures separately using the
most recent update of u in an iterative way. To be specific, we

introduce an auxiliary variable v and rewrite the minimiza-
tion problem (6) into a constrained minimization as follows

min
u,v

∑
i, j

g(κ(ui, j ))
√
1 + |vi, j |2 + λ

2
‖u − f ‖2

s.t., vi, j = ∇ui, j .

(19)

Given some (uk, vk) ∈ R
mn × R

mn×mn , the proximal
augmented Lagrangian of above-constrained minimization
problem can be defined as

L(u, v;Λ) =
∑
i, j

g(κ(uki, j ))
√
1 + |vi, j |2 + λ

2
‖u − f ‖2

+ < Λ, v − ∇u > +μ

2
‖v − ∇u‖2

+ τ

2
‖u − uk‖2 + σ

2
‖v − vk‖2,

where Λ represents the Lagrangian multiplier, and μ, τ, σ

are positive parameters. Then,we iteratively and alternatively
solve the u-subproblem and v-subproblem until reaching the
terminating condition; see Algorithm 3.1.

Algorithm 3.1: ADMM-based algorithm for the curva-
ture regularized model (18)

1: Input:Degraded image f , parametersα, λ,μ, τ , σ , max-
imum iteration number Imax and stopping threshold ε.

2: Initialize: u0 = f , v0 = 0, Λ0 = 0.
3: while (not converged and k ≤ Imax) do

(i) Compute vk+1 from:

vk+1 = argmin
v

{ ∑
i, j

g(κ(uki, j ))
√
1 + |vi, j |2 (20)

+ μ

2

∥∥∥v − ∇uk + Λk

μ

∥∥∥2 + σ

2
‖v − vk‖2

}
;

(ii) Compute uk+1 from:

uk+1 = argmin
u

{λ

2
‖u − f ‖2 + μ

2

∥∥∥∇u − vk+1

(21)

− Λk

μ

∥∥∥2 + τ

2
‖u − uk‖2

}
;

(iii) Update Λk+1 from:

Λk+1 = Λk + μ(vk+1 − ∇uk+1); (22)

(iv) Evaluate κ (H or K) according to (12) using the latest
update uk+1;
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(v) Check convergence condition by the relative error
defined using the l1 norm:

‖uk+1 − uk‖1 ≤ ε‖uk‖1;

4: end while
5: output: Restored image u.

3.1.1 The v-Subproblem

The sub-minimization problem w.r.t. v is a typical nonlinear
minimization problem, which can be solved by Newton’s
method. Assume vk+1,0 = vk , we compute

vk+1,
+1 = vk+1,
 − g(κ(uk))vk+1,
(1 + |vk+1,
|2)− 1
2 + μ(vk+1,
 − ∇uk) + Λk + σ(vk+1,
 − vk,
)

g(κ(uk))(1 + |vk+1,
|2)− 3
2 + μ + σ

,

for 
 = 0, 1, . . . , L − 1. Then, the update of variable v is
given as vk+1 = vk+1,L .

3.1.2 The u-Subproblem

The first-order optimality condition of (21) gives us a linear
equation as follows

(
(λ + τ)I − μ	

)
uk+1 = λ f + τuk − ∇ · (μvk+1 + Λk)

withI being the identitymatrix.Under the periodic boundary
condition, we can solve the above equation by the fast Fourier
Transform (FFT), i.e.,

uk+1 = F−1
(F(

λ f − ∇ · (μvk+1 + Λk) + τuk
)

(λ + τ)I − μF(	)

)
, (23)

where F and F−1 denote the Fourier transform and inverse
Fourier transform, respectively.

3.2 Convergence Analysis

In this subsection, we discuss the convergence of Algorithm
3.1. Firstly, we prove that a solution of our curvature-based
regularization model (18) exists.

Lemma 3.1 There exists a minimizer u∗ ∈ R
mn for the dis-

crete minimization problem (18).

Proof By the definitions of g in (7), (8) and (9), g(κ(u)) ≥ 1.
According to Lemma 3.8 of [27], we have

∑
i, j

|∇ui, j |+ λ
2‖u−

f ‖2 is coercive. Then, there is
∑
i, j

g(κ(ui, j ))
√
1 + |∇ui, j |2 + λ

2
‖u − f ‖2

>
∑
i, j

|∇ui, j | + λ

2
‖u − f ‖2 (24)

is also coercive. By definition of κ = {H,K} as defined
in (12) and continuity of the min/max functions, κ =
κ({κmin, κmax}) is continuous on {κ
 : 
 = 1, . . . , 8}. More-

over by (16), κ
 (
 = 1, . . . , 8) are continuous functions

on u. Therefore,
∑
i, j

g(κ(ui, j ))
√
1 + |∇ui, j |2 + λ

2‖u − f ‖2

is continuous on u. Together with coercivity and continuity,
we have that the discrete minimization problem (18) has a
minimizer u∗ ∈ R

mn . �

The convergence analysis of the proximal ADMM scheme
has been widely studied [6,14,16,44]. We follow the work
[54] to give some theoretical analysis of Algorithm 3.1. We
first prove the monotonic decrease of the error sequence and
the convergence of the residuals under certain assumption.
Then, we show the iterative sequences generated by Algo-
rithm3.1 converges to a limit point that satisfies thefirst-order
optimality conditions.

Theorem 3.2 Let {(uk, vk;Λk)}k∈N
be the sequence gener-

ated by proposed ADMM-based Algorithm 3.1 and (ū, v̄; Λ̄)

be a point satisfying the first-order optimality conditions

⎧⎪⎨
⎪⎩
g(κ(u)) v√

1+|v|2 + Λ = 0,

λ(u − f ) + ∇ · Λ = 0,
v − ∇u = 0.

(25)

Suppose uke = uk − ū, vke = vk − v̄ andΛk
e = Λk −Λ̄ denote

the error sequence. If the quantity

	k := 〈
g(κ(uk−1))

vk√
1 + |vk |2 − g(κ(ū))

v̄√
1 + |v̄|2 ,

vk − v̄
〉 ≥ 0, ∀k ∈ N, (26)
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then the followings hold: (1) The sequence {ek}k∈N
defined

by

ek := τ

2
‖uke‖2 + μ

2
‖∇uke‖2 + σ

2
‖vke‖2 + 1

2μ
‖Λk

e‖2 (27)

is monotonically decreasing.
(2)The sequence {(uk , vk;Λk)}k∈N

converges to a limit point
(u∗, v∗;Λ∗) that satisfies the first-order optimality condi-
tions (25).

Proof (1) The optimality conditions of subproblems in pro-
posed ADMM-based algorithm are

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

g(κ(uk)) vk+1√
1+|vk+1|2 + μ(vk+1 − ∇uk)

+Λk + σ(vk+1 − vk) = 0,
λ(uk+1 − f ) − μ∇ · (∇uk+1 − vk+1)

+∇ · Λk + τ(uk+1 − uk) = 0,
Λk+1 = Λk + μ(vk+1 − ∇uk+1).

(28)

We express (28) in the form of the error differences uke , v
k
e

and Λk
e and obtain

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

g(κ(uk)) vk+1√
1+|vk+1|2 − g(κ(ū)) v̄√

1+|v̄|2
+μ(vk+1

e − ∇uke) + Λk
e + σ(vk+1

e − vke) = 0,
λuk+1

e − μ∇ · (∇uk+1
e − vk+1

e ) + ∇ · Λk
e

+τ(uk+1
e − uke) = 0,

Λk+1
e = Λk

e + μ(vk+1
e − ∇uk+1

e ).

Taking the inner product of each of the above equations,
respectively, with vk+1

e , uk+1
e and Λk

e , we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

〈
g(κ(uk)) vk+1√

1+|vk+1|2 − g(κ(ū)) v̄√
1+|v̄|2 , v

k+1
e

〉
+μ〈vk+1

e − ∇uke, v
k+1
e 〉 + σ 〈vk+1

e − vke, v
k+1
e 〉

= −〈Λk
e, v

k+1
e 〉,

λ‖uk+1
e ‖2 + μ〈∇uk+1

e − vk+1
e ,∇uk+1

e 〉
+τ 〈uk+1

e − uke, u
k+1
e 〉 = 〈Λk

e,∇uk+1
e 〉,

〈Λk+1
e − Λk

e,Λ
k
e〉 = μ〈vk+1

e − ∇uk+1
e ,Λk

e〉.

Then, applying 〈x − y, x〉 = 1
2 (‖x‖2 +‖x − y‖2 −‖y‖2)

to the above equations yields

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈
g(κ(uk)) vk+1√

1+|vk+1|2 − g(κ(ū)) v̄√
1+|v̄|2 , vk+1

e
〉

+(
σ+μ
2 )‖vk+1

e ‖2 + μ
2 ‖vk+1

e − ∇uke‖2
+σ

2 ‖vk+1 − vk‖2 = μ
2 ‖∇uke‖2 + σ

2 ‖vke‖2 − 〈Λk
e , v

k+1
e 〉,

λ‖uk+1
e ‖2 + μ

2 ‖∇uk+1
e ‖2 + μ

2 ‖∇uk+1
e − vk+1

e ‖2
+ τ

2 ‖uk+1
e ‖2 + τ

2 ‖uk+1 − uk‖2
= τ

2 ‖uke‖2 + μ
2 ‖vk+1

e ‖2 + 〈Λk
e , ∇uk+1

e 〉,
1
2μ‖Λk+1

e ‖2 = 1
2μ‖Λk

e‖2 + μ
2 ‖vk+1

e − ∇uk+1
e ‖2

+〈vk+1
e − ∇uk+1

e , Λk
e〉.

(29)

Moreover, summing of the equations in (29), it follows that

τ

2
‖uk+1

e ‖2 + μ

2
‖∇uk+1

e ‖2 + σ

2
‖vk+1

e ‖2 + 1

2μ
‖Λk+1

e ‖2

+τ

2
‖uk+1 − uk‖2 + μ

2
‖vk+1

e − ∇uke‖2

+σ

2
‖vk+1 − vk‖2 + λ‖uk+1

e ‖2 + 〈
g(κ(uk))

vk+1√
1 + |vk+1|2

− g(κ(ū))
v̄√

1 + |v̄|2 , vk+1
e

〉 = τ

2
‖uke‖2 + μ

2
‖∇uke‖2

+ σ

2
‖vke‖2 + 1

2μ
‖Λk

e‖2.

By the assumptionof the theorem,wehave
〈
g(κ(uk)) vk+1√

1+|vk+1|2 −
g(κ(ū)) v̄√

1+|v̄|2 , vk+1
e

〉 = 	k+1 ≥ 0. By dropping the nonnega-

tive terms λ‖uk+1
e ‖2 and 	k+1, there is

ek+1 + τ

2
‖uk+1 − uk‖2 + μ

2
‖vk+1

e − ∇uke‖2

+ σ

2
‖vk+1 − vk‖2 ≤ ek . (30)

Since τ
2‖uk+1 − uk‖2 + μ

2 ‖vk+1
e − ∇uke‖2 + σ

2 ‖vk+1 −
vk‖2 ≥ 0, then {ek}k∈N

is a monotonically decreasing
sequence.

(2)By the sequence {ek}k∈N
beingmonotonically decreas-

ing, we add the inequality (30) from k = 0 to ∞ to obtain

∞∑
k=0

(
τ

2
‖uk+1 − uk‖2 + μ

2
‖vk+1

e − ∇uke‖2

+σ

2
‖vk+1 − vk‖2

)
≤

∞∑
k=0

ek − ek+1 < ∞.

This indicates

lim
k→∞ ‖uk+1 − uk‖ = lim

k→∞ ‖vk+1
e − ∇uke‖

= lim
k→∞ ‖vk+1 − vk‖ = 0. (31)

In addition, using (31) and the Minkowski’s inequality,
we also obtain

‖Λk+1 − Λk‖ ≤ (
μ‖vk+2

e − vk+1
e ‖

+μ‖vk+2
e − ∇uk+1

e ‖) = 0,

thus

lim
k→∞ ‖Λk+1 − Λk‖ = lim

k→∞ ‖vk+1 − ∇uk+1‖ = 0.

Based on part (1), the error term {ek}k∈N
is a monotone

decreasing sequence for any point (ū, v̄; Λ̄) that satisfies
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(25) in R
+, this shows the sequence {(uk, vk;Λk)}k∈N

gen-
erated by Algorithm 3.1 is a Cauchy sequence and has a
weakly convergent subsequence.We denote the subsequence
as {(uk
 , vk
;Λk
 )}
∈N

and the limit point as (u∗, v∗;Λ∗).

Therefore, the sequence {(uk
 , vk
;Λk
 )}
∈N
satisfies the

optimality conditions (28) such that

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

g(κ(uk
)) vk
+1√
1+|vk
+1|2 + μ(vk
+1 − ∇uk
 ) + Λk


+σ(vk
+1 − vk
 ) = 0,
λ(uk
+1 − f ) − μ∇ · (∇uk
+1 − vk
+1) + ∇ · Λk


+τ(uk
+1 − uk
 ) = 0,
Λk
+1 = Λk
 + μ(vk
+1 − ∇uk
+1).

(32)

By taking the limit of the convergent sequence, it yields

⎧⎪⎨
⎪⎩
g(κ(u∗)) v∗√

1+|v∗|2 + Λ∗ = 0,

λ(u∗ − f ) + ∇ · Λ∗ = 0,
v∗ − ∇u∗ = 0,

for almost every point in �. This implies that the limit point
(u∗, v∗;Λ∗) of the sequence {(uk, vk;Λk)}k∈N

satisfies the
first-order optimality conditions (25). �

Remark 3.3 Similarly to the κTV method in [54], we intro-
duce the proximal terms to gain the theoretical convergence
of Algorithm 3.1 and simply set σ = 0 and τ = 0 in the
numerical experiments. Although it is difficult to validate
the lower bound of 	k , we observe that 	k ≥ 0 holds for
k ≥ 0 numerically as shown in Fig. 6.

4 Experiments

In this section, comprehensive experiments on both synthetic
and real image reconstruction problems are implemented to
verify the effectiveness and efficiency of our curvature-based
model. All numerical experiments are performed utilizing
MATLAB R2016a on a machine with 3.40GHz Intel(R)
Core(TM) i7-6700 CPU and 32GB RAM.

In our experiments, we use both peak signal-to-noise ratio
(PSNR) and structural similarity (SSIM) [48] to quantita-
tively evaluate the qualities of the reconstruction results. The
PSNR is defined explicitly as

PSNR(u0, u) = 10log
2552

MSE
,

where u0 denotes the clean image, u denotes the recovery
image and MSE denotes the mean squared error between u0
and u. We further define the SSIM as follows

SSIM(u0, u) = (2μu0μu + c1)(2σu0u + c2)

(μ2
u0 + μ2

u + c1)(σ 2
u0 + σ 2

u + c2)
,

whereμu0 andμu express the localmean values of images u0
and u, σu0 and σu signify the respective standard deviations,
σu0u is the covariance value between the clean image u0 and
recovered image u, and c1 and c2 are two constants to avoid
instability for near-zero denominator values. Theoretically,
higher PSNR and SSIM values indicate better performance
of the restoration methods.

4.1 Computational Complexity

In this subsection, we analyze the computational complexity
of Algorithm 3.1. The main computationally expensive com-
ponents include the calculation of H or K, the FFT, inverse
FFT and Newton iterations. Generally speaking, calculating
the H or K on image surface costs O(mn). The compu-
tational complexity of FFT, inverse FFT in u-subproblem
is well-known as O(mn log(mn)) at each iteration. The
v-subproblem with two components can be computed at
the cost O(2mn) using the Newton iterations. Therefore,
the total computational complexity of Algorithm 3.1 is
O(2mn log(mn) + 3mn). On the other hand, the augmented
Lagrangian method (ALM) of the Euler elastica model in
[47] has four subproblems, which are solved by the FFT,
inverse FFT and shrinkage operators. Its total computational
complexity can be expressed as O(6mn log(mn) + 4mn)

per iteration. Besides, the augmented Lagrangian method
for mean curvature regularization model in [60] has five
subproblems, whose total computational complexity can be
denoted as O(6mn log(mn)+8mn) per iteration. Therefore,
our algorithm has lower computational complexity per iter-
ation compared to the other two curvature-based models.
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Fig. 6 The behavior of	k with iteration numbers in TACmethod on different test images with τ = 0 and σ = 0. Note that	k ≥ 0 for all iterations

(a) (b) (c)

(d) (e) (f)

Fig. 7 The PSNR evolutions of ‘Cameraman’ obtained by different combinations of the parameter μ and α with fixed regularized parameters λ in
TAC-K method

4.2 Parameters Discussion

There are a total of three parameters in the proposed algo-
rithm, i.e., λ, α and μ. Both λ and μ are model parameters,
such that λ balances the contributions between the data
fidelity and the regularization term, and α tradeoffs the
influences between the curvature regularization and areamin-

imization. The parameter μ is the penalty parameter, which
affects the convergent speed and stability of the proposed
algorithm. In the paragraphs below, we use the total abso-
lute Gaussian curvature (TAC-K) as the regularization term
to discuss the impacts of the parameters in more details.

We first evaluate the impact of the parameter λwith regard
to α and μ on image ‘Cameraman’, where λ is chosen from
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(a) (b) (c)

(d) (e) (f)

Fig. 8 The PSNR evolutions of ‘Cameraman’ obtained by different combinations of the parameter μ and Iter with fixed regularized parameters α

in TAC-K method

(a) (b)

Fig. 9 The PSNR evolutions of ‘Cameraman’ obtained by different inner Newton iterations (L) in TAC-H and TAC-K methods

λ ∈ {0.045, 0.09, 0.18}. For each λ, we vary the parame-
ters (α, μ) ∈ {α0 × 2−δ, α0 × 2−δ+1, . . . , α0 × 2δ−1, α0 ×
2δ}×{μ0 ×2−δ, μ0 ×2−δ+1, . . . , μ0 ×2δ−1, μ0 ×2δ} with
α0 = 12, μ0 = 2 and δ = 9. In Fig. 7, we plot the values of
PSNRversus different combinations ofλ and (α, μ), together
with the best recovery results for λ = {0.045, 0.09, 0.18},
respectively. For a fixed λ, the value of PSNR drops as α and
μ become too large, but there are relatively large intervals

for both α and μ to produce satisfactory results. In addi-
tion, too small λ results in over smooth recovery result with
some details missing, while too large λ leads to non-smooth
recovery results with some noises remaining. Thus, λ needs
to be manually tuned according to the noise levels and image
structures in practice.

We further analyze the impact of α relating to μ and
the convergence with a fixed λ = 0.09. Different values
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(a) (b)

(c) (d)

Fig. 10 Evaluations of ‘Cameraman’ obtained by the proposed methods. From left to right: Relative error in uk , numerical energy, PSNR and
SSIM, respectively (Color figure online)

Table 2 The PSNR and SSIM of Gaussian noise removal for the Euler’s elastica and our curvature-based models

Images Noisy image Euler’s elastica TAC-H TAC-K TSC-H TSC-K TRV-H TRV-K

A1(100 × 100) 28.24 36.52 38.21 38.08 38.05 37.94 37.98 37.87

PSNR/SSIM 0.5925 0.9515 0.9660 0.9647 0.9650 0.9638 0.9625 0.9622

A2(60 × 60) 28.29 35.02 36.27 36.16 36.14 36.05 36.08 36.02

PSNR/SSIM 0.6458 0.9484 0.9570 0.9555 0.9542 0.9535 0.9533 0.9525

A3(128 × 128) 28.25 38.85 39.65 39.50 39.54 39.45 39.51 39.40

PSNR/SSIM 0.5164 0.9690 0.9769 0.9760 0.9763 0.9750 0.9752 0.9748

The bold values denote the best results

of α ∈ {3, 12, 48} and (μ, Iter) ∈ {2−8, 2−7, . . . , 27, 28} ×
{0, 30, . . . , 570, 600} are used to evaluate the denoising per-
formance. As shown in Fig. 8, for a fixed α, we notice that
the value of μ affects the numerical convergence such that a
relatively largeμ yields faster convergence and a too smallμ
usually results in using more iterations to reach convergence.
Therefore, we useμ = 2 as its default value unless otherwise
specified.With the defaultμ, the plots reveal that the number

of iterations Iter = 300 is enough for different α. We also
observe that a too small α (e.g., α = 3 for ‘Cameraman’)
leads to non-smooth results and a too large α (e.g., α = 48
for ‘Cameraman’) results in over-smooth results. Thus, α

should be properly chosen according to image structures and
noise levels to smooth out the homogenous regions as well
as preserve the image details.
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Moreover, the iteration number of inner Newton’s method
also affects the efficiency of the proposed algorithm. Under
the same stopping condition ε = 2 × 10−5, Fig. 9 displays
the values of PSNR versus CPU time with three different
options of the iteration number L , i.e., L = 1, 5 and 10. It
can be seen that a too large L results in higher computational
cost and a too small L leads to a lower PSNR. Therefore,
we fix L = 5 for all applications. Lastly, we fix the spatial
step size h as h = 0.5 in all experiments for the best balance
between the smoothness and fine details.

4.3 Numerical Convergence

The decays of the relative error and numerical energy are pro-
vided to illustrate the convergence of the ADMM algorithm
versus the iterations

ReErr(uk) = ‖uk − uk−1‖1
‖uk−1‖1 ,

and

E(uk) =
∑
i, j

g
(
κ(uk−1

i, j )
)√

1 + |∇uki, j |2 + λ

2
‖uk − f ‖2.

With the optimal parameters λ = 0.09,μ = 2, α = {0.3, 12}
for TAC-H and TAC-K models, respectively, we track the
decays of the relative errors and the numerical energies, as
well as the values of PSNRs and SSIMs for ‘Cameraman’,
which are displayed using log-scale in Fig. 10. These plots
demonstrate the convergence of the iterative process and
the stability of the proposed methods. Note that the TAC-K
model usually converges to a comparable larger relative error
due to a relatively larger α is used in the Gaussian curvature-
based model to achieve the best restoration results.

4.4 Gaussian Denoising

In the first place, we compare the proposed models relying
on TAC, TSC and TRV, with the Euler’s elastica model on
image denoising examples. Three smooth images (i.e., A1,
A2 and A3) corrupted by Gaussian noise with zero mean
and the standard deviation 10 are used in the evaluation. We
fix the parameters λ = 0.11 and μ = 2 for our model,
and set α = 0.3 for the mean curvature-based variational
models (i.e., TAC-H, TSC-H and TRV-H) and α = 12 for the
Gaussian curvature-based models (i.e., TAC-K, TSC-K and
TRV-K). In particular, we implement the ALM algorithm in
[47] with the same parameters as the ones used in the original
paper such that α = 10, λ = 102, r1 = 1, r2 = 2 · 102,
r4 = 5 · 102 and ε = 10−2, 1.3 · 10−3, 8 · 10−3 for image A1
to A3, respectively.

In Table 2, we detail the comparison results in terms of
PSNR and SSIM. It can be observed that our curvature-
based model always achieves higher PSNR and SSIM than
the Euler’s elastica method for all combinations of curva-
ture functions and curvature types. Moreover, the TAC-H
model gives the best recovery results for all three images
among the combinations. In Fig. 11, we display the restora-
tion results obtained by the Euler’s elastica model and our
TAC-H model, which clearly shows our model can ideally
preserve image structures such as edges and corners. The
numericalmean curvatures of the imageA1andA2are exhib-
ited in Fig. 12, which are computed using Eqs. (12)–(17) on
the clean images, denoising images obtained by the Euler’s
elastica model and our TAC-Hmodel. For a fair comparison,
we min-max scale all images into [0, 1] in advance of the
calculation. It can be observed the numerical mean curvature
is relatively small in the homogeneous regions, and jumps
across the edges, which demonstrates that mean curvature
regularization can well preserve sharp jumps in images. The
image surfaces of the clean images and restored images of
Euler’s elastica and TAC-H models in Fig. 13 also accord
with our conclusion such that our mean curvature regular-
ization has an advantage in preserving the edges and sharp
corners over the Euler’s elastica.

To further demonstrate the effectiveness and efficiency of
our curvature-based model, we evaluate the performance on
more synthetic and natural images by comparingwith several
state-of-the-art variational denoising methods including the
total variation (TV) model in [53], Euler’s elastica (Euler)
model in [47], the second-order total generalized variation
(TGV) model in [7] and mean curvature regularizer (MEC)
model in [60]. Four test images (i.e., ‘Cameraman’, ‘Trian-
gle’, ‘Lena’ and ‘Plane’) are explored and degraded by the
Gaussian noise with zero mean and the standard deviation
20. To set up the experimental comparison as fair as possi-
ble, the parameters of the comparative methods are selected
as suggested in the corresponding papers, which are given as
(a) TV: r1 = 10 and λ = 15; (b) Euler’s elastica: α = 10,
r1 = 1, r2 = 2 · 102, r4 = 5 · 102 and λ = 2 · 102; (c) TGV:
α0 = 1.5, α1 = 1.0, r1 = 10, r2 = 50 and λ = 10; (d) MEC:
r1 = 40, r2 = 40, r3 = 105, r4 = 1.5 · 105 and λ = 102.
The experience-dependent parameters are set as λ = 0.09,
μ = 2, α = 0.3 for TAC-H model and α = 12 for TAC-K
model.

We compare the restoration results both quantitatively and
qualitatively. The recovery results and the residual images
f − u of ‘Cameraman’ and ‘Triangle’ are visually exhib-
ited in Figs. 14 and 15, while the denoising images and
the selected local magnified views of ‘Lena’ and ‘Plane’
are shown in Figs. 16 and 17. In general, all methods can
remove the noises and recover the major structures and fea-
tures quitewell.However, theTVmodel suffers fromobvious
staircase-like artifacts and lots of image details and textures
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Fig. 11 The denoising results of the smooth images A1, A2 and A3 (from top to bottom) obtained by the Euler’s elastica and our TAC-H model

Fig. 12 The numerical mean curvature of the clean images and denoising images obtained by the Euler’s elastica and TAC-H model

can be observed in the residual images. As representatives of
high-order regularities, the Euler’s elastica, TGV and MEC
models canovercome the staircase effects andpreserve image

details to a certain extent. And our TAC-H and TAC-K mod-
els always give the best recovery results, which can not only
keep the smoothness in the homogeneous regions but also
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(a) (b) (c)

(d) (e) (f)

Fig. 13 The image surfaces of the clean images and reconstructed images by the Euler’s elastica and our TAC-H model

Fig. 14 The denoising results of ‘Cameraman’ (top) and the corresponding residual images (bottom) generated by the comparative methods

preserve fine details in the texture regions. Table 3 records
the values of PSNR and SSIM for all the algorithms, which
also convinces our TAC-K model and gives the overall best
recovery results.

TheCPU time recorded in Table 4 illustrates that our TAC-
H and TAC-K models are more efficient than other high-
order methods, which are significantly faster than the Euler’s
elastica and mean curvature models. To better visualize the
convergence of the comparativemethods, we plot the relative
errors inuk of thesemethods for ‘Lena’ and ‘Plane’ inFig. 18.
Although the relative error of theEuler’s elasticamodel drops

faster at the beginning, our curvature-basedmodels can attain
smaller relative errors as the number of iterations increases.
Thus, our proposal usually converges faster than others when
a stringent relative error is used as the stopping criterion.

The visual illustrations of the numerical mean and Gaus-
sian curvatures of ‘Cameraman’ and ‘Lena’ estimated on the
noisy images, restoration images, and the clean images are
presented in Fig. 19. Significant noises can be observed in the
curvature maps of noisy images, while the curvature maps of
the recovery images are noiseless and only jump on edges.
Indeed, the curvature maps of the restorations are much alike
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Fig. 15 The denoising results of ‘Triangle’ (top) and the corresponding residual images (bottom) generated by the comparative methods

Fig. 16 The denoising results of ‘Lena’ (top) and the corresponding local magnification views (bottom) generated by the comparative methods

Fig. 17 The denoising results of ‘Plane’ (top) and the corresponding local magnification views (bottom) generated by the comparative methods

to the ones obtainedon the clean images in visual perceptions.
It reveals that the TAC-H and TAC-K models successfully
reduce the noises contained in the mean curvature and Gaus-
sian curvature maps, which indicates the reasonability and

effectiveness of our proposed models. Through an in-depth
comparison between the curvature maps of the recovery
images and clean images, we have the following two obser-
vations:
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Table 3 The PSNR and SSIM
of Gaussian noise removal for
comparative methods

Images Noisy images TV Euler’s elatica TGV MEC TAC-H TAC-K

Cameraman 22.45 27.29 27.93 28.22 28.38 28.70 28.96

PSNR/SSIM 0.4087 0.7905 0.8187 0.8161 0.8203 0.8264 0.8340

Triangle 22.71 32.04 34.85 35.52 36.65 35.92 37.01

PSNR/SSIM 0.2666 0.9247 0.9588 0.9504 0.9654 0.9596 0.9762

Lena 22.34 27.25 28.10 28.04 28.18 28.32 28.56

PSNR/SSIM 0.4855 0.8139 0.8335 0.8307 0.8352 0.8388 0.8405

Plane 22.12 29.48 30.22 30.16 30.35 30.63 30.92

PSNR/SSIM 0.3555 0.8505 0.8681 0.8548 0.8719 0.8731 0.8769

The bold values denote the best results

Table 4 The CPU time(s) comparison of Gaussian noise removal for comparative methods, where underline represents the lowest computational
cost, bold and italics denote the computational cost of our TAC-H and TAC-K models, respectively

Images Cameraman (256 × 256) Triangle (214 × 254) Lena (256 × 256) Plane (512 × 512)

Methods Time Iterations Time Iterations Time Iterations Time Iterations

TV 6.17 300 5.61 300 6.06 300 33.98 300

Euler’s elastica 21.83 300 19.38 300 21.65 300 137.72 300

TGV 22.89 300 21.18 300 22.85 300 115.95 300

MEC 28.01 300 26.23 300 27.68 300 170.63 300

TAC-H 8.91 200 9.76 255 8.60 195 43.62 141

TAC-K 13.32 300 11.27 300 13.24 300 90.60 300

– Only main edges are presented in the Gaussian curvature
maps. The Gaussian curvature has a small magnitude, as
long as one principal curvature is small. It well explains
why the Gaussian curvature-based model gives lower
numerical energy; see Fig. 10b. Thus, minimizing Gaus-
sian curvature allows for finedetails and structures,which
is more suitable for natural images such as ‘Lena’ and
‘Cameraman’ etc.

– More details and small edges exist in the mean curva-
ture maps. By minimizing the total mean curvature of
the noisy image, some tiny structures in the mean curva-
turemapswill be smoothed out. Thus, themean curvature
regularization works better for images containing large
homogeneous or slowly varying regions e.g., the smooth
images in Fig. 11.

4.5 Salt & Pepper and Poisson Denoising

In this subsection, both the salt & pepper and Poisson denois-
ing examples are operated to further illustrate the advantages
of our curvature regularized model. According to the statisti-
cal properties of the salt&pepper noise,we adopt the l1-norm
data fidelity term instead of the l2-norm one [17,24,38],
which gives

min
u

∑
i, j

g(κ(ui, j ))
√
1 + |∇ui, j |2 + λ‖u − f ‖1. (33)

To deal with the above minimization problem, two auxiliary
variables are introduced to rewrite it into the following con-
strained minimization problem

min
u,v,w

∑
i, j

g(κ(ui, j ))
√
1 + |vi, j |2 + λ‖w‖1

s.t. vi, j = ∇ui, j , w = u − f .

More details of the numerical algorithm for solving such
constrainedminimization problem can be referred to [24,53].

We use two grayscale test images ‘House’ (256 × 256)
and ‘Realtest’ (400 × 420), both of which are corrupted by
30% salt & pepper noise. The parameters are set as λ =
1.8, α = 2, and μ1 = 2, μ2 = 0.1. Figure 20 shows the
recovery results and the selected magnified views obtained
by the Euler’s elastica, TGV and our TAC-K methods. It
can be observed that all methods can avoid the staircase-
like artifacts in smooth regions. Table 5 illustrates that our
TAC-Kmodel gives slightly higher PSNR and SSIM than the
Euler’s elastica and TGVmodels. Simultaneously, our TAC-
K model can save much computational cost compared to the
other two high-order methods on both images for meeting
the same stopping criteria.

We also conduct examples on Poisson noises removal, the
variational model of which can be formalized by integrating
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(a) (b)

Fig. 18 Relative errors in uk of ‘Lena’ and ‘Plane’ obtained by the comparative methods

Fig. 19 The numerical mean curvature and Gaussian curvature maps of the noisy images (N), the restoration results (R) obtained by our proposals
and clean images (C) on the first, second and third row, respectively
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Fig. 20 The salt & pepper denoising results of ‘House’ and ‘Realtest’ obtained by the Euler’s elastica, TGV and TAC-K methods

Table 5 The evaluations of salt
& pepper noise removal for the
Euler’s elastica, TGV and
TAC-K methods

Methods Euler’s elastica TGV TAC-K

Images PSNR SSIM Time PSNR SSIM Time PSNR SSIM Time

House (256 × 256) 30.69 0.8719 20.09 30.75 0.8726 19.25 30.94 0.8744 12.73

Realtest (420 × 400) 33.05 0.9104 76.85 32.95 0.9095 74.81 33.16 0.9112 54.65

The bold values denote the best results

Fig. 21 The Poisson denoising results of ‘Hill’ and ‘Boats’ obtained by the Euler’s elastica, TGV and TAC-K methods

with the Kullback-Leibler (KL) distance as follows

min
u

∑
i, j

g(κ(ui, j ))
√
1 + |∇ui, j |2

+λ
∑
i, j

(ui, j − fi, j log ui, j ). (34)

More detailed implementation of the operator splitting and
ADMM-based algorithm for the above minimization prob-
lem (34) can be found in [29,51].

In Fig. 21, Poisson noises are introduced into two clean
images, i.e., ‘Hill’ (256× 256) and ‘Boats’ (512× 512). We
set the parameters in our model as λ = 25, α = 15, μ1 = 2
and μ2 = 4. As shown in Fig. 21, the TAC-K model can

preserve more image details and features than both Euler’s
elastica and TGV models, e.g., the window area in ‘Hill’
and the mast area in ‘Boats’, which are further verified by
the PSNR and SSIM in Table 6. Similarly to the previous
experiment, our TAC-K method outperforms the other two
methods by significantly reducing the calculation time.

4.6 Color Images Denoising

In this subsection, we extend our TAC-K model to color
image restoration [34,49].Without loss of generality, we con-
sider a vectorial function u = (ur , ug, ub) : � → R

3. For
the sake of simplicity, we propose to independently recover
each RGB channel of color images (channel by channel),
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Table 6 The evaluations of
Poisson noise removal for the
Euler’s elastica, TGV and
TAC-K methods

Methods Euler’s elastica TGV TAC-K

Images PSNR SSIM Time PSNR SSIM Time PSNR SSIM Time

Hill (256 × 256) 31.53 0.8689 21.47 31.85 0.8739 20.04 32.15 0.8792 13.20

Boats (512 × 512) 31.90 0.8772 138.10 32.34 0.8854 126.18 32.68 0.8894 89.24

The bold values denote the best results

Fig. 22 The denoising results of ‘Airplane’ generated by the Euler’s elastica and TAC-K methods

Fig. 23 The denoising results of ‘Fruits’ generated by the Euler’s elastica and TAC-K methods

Fig. 24 The denoising results of ‘Flower’ generated by the Euler’s elastica and TAC-K methods

Table 7 The evaluations of color image noise removal for the Euler’s elastica and TAC-K methods

Images Methods PSNR SSIM Time

Airplane(θ = 20) Euler’s elastica 30.55 0.8955 403.98

512 × 512 TAC-K 31.17 0.9086 258.94

Fruits(θ = 30) Euler’s elastica 28.34 0.9156 335.99

480 × 512 TAC-K 28.90 0.9226 241.82

Flower(θ = 40) Euler’s elastica 28.32 0.9282 336.78

480 × 512 TAC-K 28.95 0.9372 246.30

The bold values denote the best results
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Fig. 25 The inpainting results (top) and local magnification views (bottom) of synthetic image obtained by TV, Euler’s elastica, TAC-H and TAC-K
methods, where the parameters are adopted as λ = 5, α = {0.5, 10}, μ1 = 2, μ2 = 0.2

Fig. 26 The inpainting results of real images obtained by TV, Euler’s elastica, TAC-H and TAC-K methods

Table 8 The evaluations of
image inpainting for TV, Euler’s
elastica, TAC-H and TAC-K
methods

Images Harmonic (315 × 357) Turtle (318 × 500) Pepper (512 × 512)

Methods PSNR SSIM Time PSNR SSIM Time PSNR SSIM Time

TV 35.92 0.9823 12.49 37.09 0.9724 40.38 34.28 0.9810 65.46

Euler’s elatica 37.65 0.9895 91.66 38.57 0.9818 248.10 35.30 0.9908 410.24

TAC-H 38.87 0.9965 60.89 39.70 0.9925 165.11 36.37 0.9956 264.71

TAC-K 39.21 0.9982 62.24 40.01 0.9937 166.20 36.71 0.9970 266.56

The bold values denote the best results

and then generate the final restored image by combining the
RGB channels together. Thus, the corresponding color image
denoisingmodel forGaussian noise removal can be described
as

min
u

∑
c∈{r ,g,b}

∑
i, j

g(κ(uci, j ))
√
1 + |∇uci, j |2

+λ

2

∑
c∈{r ,g,b}

‖uc − f c‖2. (35)

We plan to extend our curvature regularized models to the
color TV model [5] and Beltrami color image model [40,41]
in the future.
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Three different color images are selected as examples to
demonstrate the efficiency and superiority of our TAC-K
model, which are ‘Airplane’, ‘Fruits’ and ‘Flower’ degraded
by the Gaussian noise with zero mean and the standard
deviation θ = {20, 30, 40}, respectively. The parameters
are set as λ = {0.09, 0.06, 0.03}, α = 10 and μ = 2
for different noise levels accordingly to guarantee satis-
factory restoration results can be achieved. On the other
hand, the parameters of the Euler’s elastica model are set
as λ = {2 · 102, 1.5 · 102, 102}, α = 10, r1 = 1, r2 = 2 · 102
and r4 = 5 ·102 for the three images, respectively. As shown
in Figs. 22, 23 and 24, the proposed TAC-K model can pro-
vide sharper image edges and smoother homogenous regions.
The energy curves demonstrate that our algorithm converges
well for the vectorial image problems. To further evaluate
the denoising performance, quantitative results with differ-
ent degradations are summarized in Table 7, which shows
the TAC-K model outperforms the Euler’s elastica model in
both recovery quality and computational efficiency.

4.7 Image Inpainting

Last but not least, we demonstrate some examples of our cur-
vature regularized model on the applications of color image
inpainting [45]. In general, the task of image inpainting is
to reconstruct missing parts of an image using information
from the given regions, where the missing parts are called
the inpainting domain and denoted by D ⊂ �. For a given
image f = ( f r , f g, f b), we formulate the curvature-based
inpainting model as follows

min
u

∑
c∈{r ,g,b}

∑
i, j

g(κ(uci, j ))
√
1 + |∇uci, j |2

+λ

2

∑
c∈{r ,g,b}

‖uc − f c‖2�\D, (36)

which is also implemented channel by channel. More details
of the numerical implementation of the above model can be
found in [54].

In Figs. 25 and 26, we present several convincing exam-
ples obtained by the TV, Euler’s elastica, and our TAC-H,
TAC-K models on both color synthetic and real image
inpainting applications. It is obviously shown that the results
of the TV model tend to fill in the inpainting domain with
the piecewise constant values, which are unnatural for large
missing domains. The Euler’s elastica, TAC-H and TAC-K
models have the capability of connecting the large gap aswell
as protecting image structures owing to the minimization of
the curvatures. Moreover, it can be observed that the TAC-K
model gives the visually best inpainting results, which can
well recover the inpainting domain and preserve fine details.
Table 8 records the evaluations of the inpainting results in

terms of PSNR, SSIM and CPU time, which further verifies
the efficiency and superiority of our curvature regularized
models in providing significantly better PSNR and SSIM
using only 2/3 of the CPU time of the Euler’s elastica model.

5 Conclusions

In this work, we introduced novel curvature regularizers
for image reconstruction problems, where both mean cur-
vature and Gaussian curvature were derived and investigated
using the normal curvatures according to differential geom-
etry theory. The proposed curvature regularized model was
regarded as a re-weighted image surfaceminimizationmodel
and efficiently solved by the ADMM-based algorithm. We
discussed the existence of the minimizer and provided the
convergence analysis for the proposed ADMM-based algo-
rithm. Numerical experiments on both gray and color images
have illustrated the efficacious and superior performance of
our proposed method in terms of quantitative and qualitative
evaluations. The proposedmethod can be used for other prac-
tical applications in image processing and computer vision,
for instance, image segmentation, image registration, image
super-resolution, etc.
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