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Abstract
Two key ideas have greatly improved techniques for image enhancement and denoising: the lifting of image data to multi-
orientation distributions and the application of nonlinear PDEs such as total variation flow (TVF) and mean curvature flow
(MCF). These two ideas were recently combined by Chambolle and Pock (for TVF) and Citti et al. (for MCF) for two-
dimensional images. In this work, we extend their approach to enhance and denoise images of arbitrary dimension, creating a
unified geometric and algorithmic PDE framework, relying on (sub-)Riemannian geometry. In particular, we follow a different
numerical approach, for which we prove convergence in the case of TVF by an application of Brezis–Komura gradient flow
theory. Our framework also allows for additional data adaptation through the use of locally adaptive frames and coherence
enhancement techniques. We apply TVF and MCF to the enhancement and denoising of elongated structures in 2D images
via orientation scores and compare the results to Perona–Malik diffusion and BM3D. We also demonstrate our techniques in
3D in the denoising and enhancement of crossing fiber bundles in DW-MRI. In comparison with data-driven diffusions, we
see a better preservation of bundle boundaries and angular sharpness in fiber orientation densities at crossings.

Keywords Total variation ·Mean curvature · Sub-Riemannian geometry · Roto-translations · Denoising · Fiber enhancement

1 Introduction

In the last decade, many PDE-based image-analysis tech-
niques for tracking and enhancement of curvilinear structures
in images took advantage of lifting image data, typically
defined on R

d , to a multi-orientation distribution (e.g., an
orientation score) defined on the homogeneous space Md

of d-dimensional positions and orientations, see Fig. 1
and [5,8,11,14,20,53]. After lifting the image to a multi-
orientation distribution, the distribution is taken as an initial
condition of a PDE flow. After solving a limited number of
iterations of the PDE model, one obtains a regularized ver-
sion of the original distribution, and by integration over all
orientations, one obtains a regularized version of the original
image.
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The key advantage of lifting the images from R
d to the

homogeneous space Md is that the PDE flow can act differ-
ently on substructures with different orientations [5,11,24].
For instance, if the image contains two crossing lines, the
PDE can regularize the two lines independently, rather than
regularizing the whole crossing. Similarly, if the image con-
tains a corner, the corner is preserved in the regularized
image.

This idea of lifting images has been successfully imple-
mented for image enhancement [13,30], geodesic tracking
[6,11,51], imagedenoising [31], contrast perception andopti-
cal illusions [7]. For instance, Perona–Malik diffusion has
been lifted to the homogeneous space Md [17] and coher-
ence enhancing diffusion (CED) [54] has been lifted to the
method of coherence enhancing diffusion on invertible ori-
entation scores (CED-OS) [30] and to its 3D generalization
[33].

PDE flows on orientation lifts of 3D images are relevant
for applications such as fiber enhancement [17,21,46,53] and
fiber tracking [45] in diffusion-weightedmagnetic resonance
imaging (DW-MRI), and in enhancement [33] and tracking
[15] of blood vessels in 3D images.
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Fig. 1 Instead of direct PDE-based processing of an image, we apply
PDE-based processing on a lifted image U : Rd

� Sd−1 → R (e.g., an
orientation score:OS). TheOS is obtained by convolving the imagewith
a set of rotated wavelets allowing for stable reconstruction [5,20,33].
2nd row: vessel tracking in a 2D image via geodesic PDE flows in OS

that underlay TVF: [5,11,24], with n = (cos θ, sin θ)T ∈ S1. 3rd row:
CED-OS diffusion of a 3D image [23,33] visualized as a field of angu-
lar profiles (see Remark 1). In this article we study image enhancement
and denoising via TVF and MCF on Md = R

d
� Sd−1 and compare to

nonlinear diffusion methods

The general workflow is illustrated in Fig. 1. The original
image is described by a function f : � f → R

+, where
� f ⊂ R

d is its support. From f ∈ L2
(
� f

)
, one computes

an orientation liftU :Md → C, compactly supported within

� = � f × Sd−1 ⊂Md . (1)

There are various ways to construct such a lift: it can be (the
real part of) an invertible orientation score [22] (cf. Fig. 1),
a channel representation [28], a lift by Gabor wavelets [3],
or a fiber orientation density [44]. In all of these approaches
the absolute value |U (x, n)| can be regarded (after normal-
ization) as a probability density of finding a fiber structure
at position x ∈ R

d with local orientation n ∈ Sd−1. We set
the orientation lift U as an initial condition of a PDE flow
U �→ �t (U ) with evolution time t > 0. Finally, the pro-
cessed multi-orientation representation �t (U ) is integrated
over all orientations to obtain the enhanced image ft . In this
article, we will work with the orientation score, with the
main motivation being that this operation is invertible [20],
so that when taking t ↓ 0, the output equals the input, i.e.,
limt↓0 ft = f in L2-sense.

The enhanced image that one obtains after running a PDE
flow, (the bottom-right picture in Fig. 1), naturally depends
on the type of flow used. One flow may be more suitable
than another, depending on the requirements imposed on the
resulting image. In case it is important to preserve sharp tran-

sitions in the image, while maintaining plateaus, nonlinear
flows such as total variation flows (TVF) and mean curvature
flow (MCF) [49] are typically more suited than nonlinear dif-
fusion flows (such as Perona and Malik diffusion [42] and
coherence-enhancing diffusion [54]).

For d = 2, TVF and MCF were recently generalized to
lifted images by Chambolle and Pock [11] and Citti et al.
[13], respectively.

Their promising results have motivated us to generalize
TVF and MCF to lifted images for general dimension d and
provide a general geometric and algorithmic framework that
can accommodate features such as locally adaptive frames
and coherence enhancement.

The benefits of our approach are that we obtain a single
unifying geometric and algorithmic framework for arbitrary
d, with efficient algorithms (for d = 2, 3) that preserve cross-
ing lines, corners, plateaus, edges and bundle boundaries and
can improve curvature adaptation via the optional inclusion
of locally adaptive frames. Such frames account for curva-
ture of lines and allow us to remove bias toward sampled
orientations in orientation scores.

Our PDE methods on Md are computationally more
expensive than their counterparts acting only on R

d , but they
are still practical. Similar to crossing-preserving nonlinear
diffusion on SE(2) ≡ M2, locally adaptive frames allow us
to remove orientation sampling bias in orientation scores [29,
Fig. 6.11] and to use only 4 orientation samples [30]. For our
crossing-preserving MCF and TVF on M2 we sample our
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Table 1 We formulate our PDEs
independently of our choice of
frame and metric and then apply
it to both the left-invariant and
gauge geometries

Choice of geometry Left invariant Gauge

Frame A1, A2, . . . ,A2d−1 B1, B2, . . . ,B2d−1
Co-frame ω1, ω2, . . . , ω2d−1 β1, β2, . . . , β2d−1

Metric tensor G J
Gradient ∇ ∇G ∇J
Divergence div (Riemannian)

∑2d−1
i=1 Ai ◦ ωi ∑2d−1

i=1 Bi ◦ β i

Divergence div (sub-Riemannian)
∑2d−1

i=d Ai ◦ ωi ∑2d−1
i=d Bi ◦ β i

Norm ‖·‖ ‖·‖G ‖·‖J
Volume form dμ̃ ω1∧ω2∧...∧ω2d−1

√
DS
√
DSDA

d−1 β1 ∧ β2 ∧ . . . ∧ β2d−1

(processed) orientation scores only on 8 orientations. On M3

we compute regularized orientation lifts on a grid with 162
orientations, where we rely on efficient numerical schemes
for PDEs on M3 relying on the low-order PDE discretiza-
tion schemes explained in [17,37], instead of higher-order
schemes via spherical harmonics [34, Ch. 3.4], in order to
reduce computation time.

The structure of this article is as follows. We start by
recapitulating orientation scores and explaining the homo-
geneous space Md as a Lie group quotient in the rigid body
motion group SE(d) in Sect. 2 and explain the necessary
geometric concepts. In Sect. 3, we introduce the PDEs for
total variation and mean curvature flow on Md and explain
our explicit discretization scheme. Our numerical scheme
includes regularization for which we prove convergence in
Sect. 4. In Sect. 5 we evaluate the potential of our methods
with 2D and 3D experiments.

Remark 1 (Visualization of 3D orientation scores) In the
3rd row of Fig. 1, and henceforth, we visualize a lifted
image U : R

3
� S2 → R

+ by a grid of angular profiles
{μU (x,n)n | x ∈ Z

3,n ∈ S2 }, with fixed μ > 0.

Remark 2 (Additional content in this version) This article is
an extended version of the authors’ SSVMarticle by the same
name [25]. The following content is new:

– A coordinate-free formulation of gauge-frame fitting
in Sect. 2.4 that generalizes our previous coordinate-
dependent approach of [23].

– An introduction of distinct geometric setups (with or
without locally adaptive frames) for any dimension ofMd

that admits the formulation of TVF and MCF PDEs. A
quick overview of the two distinct geometric approaches
is provided in Table 1.

– A general formulation of our “coherence enhancement
technique” for TVF and MCF on Md in Sect. 2.5.

– A proof for the theorem of the strong convergence, stabil-
ity and accuracy of TV flows. This result was announced
in [25] but not yet proven.

Table 2 The two geometries we developed on SE(d) can be naturally
applied to the homogeneous space Md using the natural extension of
scalar functions (39) and vector fields (40)

Md tools Left invariant Gauge

∇U (x, n) =
(
∇GŨ

)
(x, Rn)

(
∇J Ũ

)
(x, Rn)

(v,w)Md

∣
∣∣
(x,n)

= G
∣∣
(x,Rn)

(ṽ, w̃) J
∣∣
(x,Rn)

(ṽ, w̃)

‖v‖Md
= ‖ṽ‖G ‖ṽ‖J

(divv) (x, n) = (divG ṽ) (x, Rn) (divJ ṽ) (x, Rn)

dμ (x, n) = dμ̃G (x, Rn) dμ̃J (x, Rn)

(Ev) (x, n) (EG ṽ) (x, Rn) (EJ ṽ) (x, Rn)

These objects are well defined despite the noninjective mapping used
since the choice of particular Rn ∈ SE(d) that maps a to n does not
affect any of them

– Extensions of our 2D denoising/enhancing experiments,
Sect. 5, Figs. 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, and Table 4.
These experiments now include a full comparison of
isotropic and anisotropic processing, and the effect of the
including coherence enhancement (via locally adaptive
frames) in TVF and MCF. They also include additional
comparisons to Perona–Malik [42] diffusion and to a
well-established denoising method: BM3D [18,35].

– A more comprehensive treatment of the geometric tools
used such as vector fields and metric tensors. We now
clearly distinguish between the group SE(d) and the
homogeneous spaceMd . We also explain how to transfer
geometric tools on these sets in Sect. 2.6 and Table 2.

2 Preliminary Theory

Before we can provide the generalized PDEs, which include
TVF and MCF as special cases, we need to construct the
necessary tools.

In this section, we review orientation scores, the rigid-
bodymotion group SE(d), and the homogeneous spaceMd of
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positions and orientations. For further reading on engineering
applications and harmonic analysis on Lie group SE(d) we
refer to [12, Ch. 6]. For theory on homogeneous spaces we
refer to [36, Ch. 21]. For image processing on SE(2), see for
example [5,8,11,14], for image processing on SE(3), see for
example [39,45,47].

2.1 Orientation Scores: Lifting the Image Domain
fromR

d toMd

In order to disentangle all local orientations in an image we
lift the data fromposition spaceR

d to the homogeneous space
Md of positions and orientations. This means that we extend
the domain of an image. See Fig. 1, where we lift the data
from R

d toward Md via invertible orientation scores.
Building an orientation score starts with selecting an

orientation-sensitive filter (or wavelet) ψ ∈ L1 ∩ L2
(
R
d
)
.

We can then (under appropriate conditions [20,33]) filter out
a particular direction from an image f ∈ L2

(
R
d
)
by con-

volving the image with this filter aligned to that direction. An
orientation score Wψ f can then be constructed by applying
this filtering for all directions n ∈ Sd−1:

Wψ f (x, n) =
∫

Rd
ψ(R−1n ( y − x)) f ( y) d y, (2)

for all x ∈ R
d and rotations Rn that map a reference axis

a ∈ Sd−1 to n.
For this paper we will be using cake wavelets [20,33] for

our filter ψ , illustrated in Fig. 2 for d = 2. These wavelets
are directional filters that have the property that we can accu-
rately reconstruct the original image from the orientation
score (again under appropriate conditions) by integration
over Sd−1, i.e.,

f (x) ≈
∫

Sd−1
Wψ f (x, n) dσ(n), (3)

where σ denotes the usual surface measure over Sd−1. We
always use standard cake wavelet parameter settings from
[37] in our experiments.

The explicit formulas for these cake wavelets that allow
invertible orientation scores are available in [5,20] and specif-
ically for d = 3 in [33]. An intuitive illustration of an
orientation score is given in Fig. 2.

2.2 SE(d) and the Homogeneous Space of Positions
and OrientationsMd

Consider the rigid bodymotion group SE(d) = R
d
�SO(d),

the semidirect product of the translation group R
d and the

rotation group SO(d) of orthogonal d × d matrices. We call

Fig. 2 Top: cake wavelets [20] for d = 2 used to directionally filter
an image and construct an orientation score. Bottom: How orientation
scores disentangle orientations

elements of SE(d) roto-translations. The product of two roto-
translations gi = (xi , Ri ) in SE(d) is given by

g1g2 = (x1, R1) (x2, R2) := (x1 + R1x2, R1R2) . (4)

These roto-translations act transitively on the space R
d ×

Sd−1 by

(x, R)� ( y, n) := (x + Ry, Rn), (5)

for all ( y, n) ∈ R
d × Sd−1 and all roto-translations (x, R) ∈

SE(d).
We choose an a priori reference vector a ∈ Sd−1, say

a = (1, 0)T if d = 2 or a = (0, 0, 1)T if d = 3. Then the
stabilizer of the element (0, a) is given by

Hd := {g ∈ SE(d) | g � (0, a) = (0, a)} , (6)

which is isomorphic to SO(d − 1).
The homogeneous space of positions and orientations is

the partition of left cosets

Md := R
d

� Sd−1 := SE(d)/Hd .

The left cosets are equivalence classes in SE(d) with respect
to the equivalence relation

g1 ∼ g2 ⇐⇒ g−11 g2 ∈ Hd .

For d = 2, the subgroup H2 = {(0, I)} consists only of the
unit element, and thereby the manifold M2 is diffeomorphic
to SE(2). However, for d > 2 the manifolds Md and SE(d)

are not diffeomorphic.
For d = 3, the stabilizer can be described by

H3 =
{∣∣
∣hα :=

(
0, Ra,α

) ∣∣
∣ α ∈ [0, 2π)

}
,

where Ra,α denotes a (counter-clockwise) rotation over
angleα around the reference axis a. Thismeans that two roto-
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translations g1 = (x1, R1) and g2 = (x2, R2) are equivalent
if and only if

x1 = x2 and ∃α ∈ [0, 2π) : R1 = R2Ra,α.

The equivalence classes [g] = {
g′ ∈ SE(3)

∣∣ g′ ∼ g
}
are

usually just denoted by p = (x, n) as they consist of all rigid
bodymotions g = (x, Rn) thatmap the referencepoint (0, a)
onto (x, n) ∈ R

3 × S2:

g � (0, a) = (x, n).

Remark 3 (DistinguishingSE(d) fromMd )As thedistinction
between the group SE(d) and the homogeneous space Md

(which is not a group for d = 3 and above) is important, we
will use g, h for elements of SE(d), and p, q for points in
Md .

To understand why the situation changes from d = 2
to d > 2 observe that in 2 dimensions we need one angle
to specify orientation and have one rotational degree of free-
dom, in 3 dimensionswe need 2 angles to specify orientation,
but we have 3 rotational degrees of freedom, i.e., M3 has one
dimension less than SE(3). See also Fig. 3 for an illustration
of this difference.

For d > 3 this situation persists aswehavemore rotational
degrees of freedom that do not change the orientation.

Remark 4 (Domain of an orientation score) The orientation
score is well defined on the domain Md if we assume ψ is
not affected under the action of subgroup Hd . For d = 3 this
means we must impose axial symmetry on the wavelets, for
details see [33].

2.3 Differential Structure on SE(d),Md

As amanifold, we view the group SE(d) in a standard way as
a submanifold of R

d ×R
d×d . The Lie algebra is, as a vector

space, the tangent space at the unit element (see [36, Ch. 7]).
We view elements of tangent spaces (i.e., tangent vectors) as
derivations acting on functions: If v is an ordinary vector in
R
d × R

d×d tangent to SE(d), the corresponding derivation
acting on a function f ∈ C1 (SE(d)) is just the derivative of
f in the direction of v.
TheLie algebra has dimension D = 1

2d(d+1).We choose
a basis (Ai )

D
i=1 for the Lie algebra of SE(d) with the follow-

ing properties. The basis is orthonormal with respect to the
inner product belonging to the standard Euclidean metric on
R
d × R

d×d ; the vectors {A1, . . . , Ad} span the spatial part
of the Lie algebra, which is isomorphic to R

d with the vec-
tor Ad corresponding to the derivative in the direction of a.
Recall that for d = 2 the subgroup Hd is trivial. For d ≥ 3
one has that the set {A2d , . . . , AD} forms a basis for the sta-
bilizer subgroup Hd . We take the convention that the Lie

Fig. 3 Illustration of the Lie algebra of left-invariant vector fields
(Ai )

D
i=1 of SE(d) for left: d = 2 and right: d = 3, note the orientation-

preserving rotation generator A6

algebra vector Ai+d generates the in-plane rotation in the
plane spanned by Ai and a for i = 1, . . . , d − 1.

For the case d = 2 this gives us two spatial generators, A1

and A2, and one rotation generator A3. Moving to d = 3 we
have 3 spatial degrees of freedom and 3 rotational degrees of
freedom, but only 2 of those rotational degrees of freedom
will change the orientation, we denote the generator corre-
sponding to the rotation that preserves the reference axis by
A6. This gives us the following basis:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∣
∣∣A1, A2, A3
︸ ︷︷ ︸

spatial
generators

,

∣
∣∣A4, A5,
︸ ︷︷ ︸

generators of rotations
that move a

∣
∣∣A6
︸︷︷︸

generator of rotation
that fixes a

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

.

As is illustrated inFig. 3 ford = 3wehave a rotational degree
of freedom that does not change the orientation reference
axis.As a resultM3 is not isomorphic to SE(3). It is rather a 5-
dimensional quotient of the 6-dimensional Lie group SE(3),
see also Remark 3.

Remark 5 (Generalization for d > 3) Generalizing this
scheme for d > 3 we would have the following basis for
the Lie algebra:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∣
∣
∣A1, . . . , Ad
︸ ︷︷ ︸

spatial
generators

,

∣
∣
∣Ad+1, . . . , A2d−1
︸ ︷︷ ︸
generators of rotations

that move a

,

∣
∣
∣A2d , . . . , AD
︸ ︷︷ ︸

generators of rotations
that fix a

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

.

We extend the vectors Ai to left-invariant vector fields Ai

as follows. The group acts on itself by left multiplication,

Lgh := gh, ∀g, h ∈ SE(d), (7)

and the derivation (Ai )g , evaluated in a point g, is given by
the pushforward

Ai
∣∣
g f := (

(
Lg

)
∗ Ai ) f = Ai

(
f ◦ Lg

)
, (8)
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for all f ∈ C∞ (SE(d), R). We denote the corresponding
covector fields by ωi : g �→ ωi |g . For each g ∈ SE(d), the
covector ωi |g is an element of the dual to the tangent space
of SE(d) at g. The covector fields are characterized by

〈
ωi ,A j

〉
= δij , (9)

where δij denotes the Kronecker delta.
Note that

Ad = a · ∇Rd

∣∣∣
0
=

d∑

i=1
ai

∂

∂xi

∣∣∣∣
0
, (10)

and so for all g = (x, Rn) ∈ SE(d):

Ad

∣∣∣
g
= (

Lg
)
∗ Ad =

d∑

i=1
(Rna)i

∂

∂xi

∣∣∣∣
x

=
d∑

i=1
ni

∂

∂xi

∣∣∣∣
x
= n · ∇Rd

∣∣∣
x
, (11)

from which we infer that the left-invariant frame is aligned
with the direction n ∈ Sd−1.

Remark 6 (Left-Invariant Basis in 2D) We can represent an
element of SE(2) by its position and angle as (x, θ) ∈
R
2×[0, 2π)which allows us towrite the left-invariant vector

fields Ai as:

A1
∣∣
(x,θ)

= − sin θ∂x
∣∣
x + cos θ∂y

∣∣
x,

A2
∣
∣
(x,θ)

= cos θ∂x
∣
∣
x + sin θ∂y

∣
∣
x = n · ∇R2

∣
∣
x,

A3
∣∣
(x,θ)

= ∂θ .

For an explicit form of the left-invariant vector fields Ai in
case d = 3, see “Appendix A.”

We introduce the following metric tensor field in terms of

the left-invariant co-vector fields
(
ωi

)2d−1
i=1 .

Definition 1 (Left-invariant metric tensor field) Given posi-
tive constants DS > 0 and DA > 0, and a nonnegative real
number e ≥ 0, we define the left-invariant metric tensor field
G by

G =
⎧
⎨

⎩

ωd⊗ωd

DS
+

∑d−1
i=1 ωi ⊗ωi

e2DS
+

∑2d−1
i=d+1 ωi ⊗ωi

DA
if e > 0,

ωd ⊗ωd

DS
+

∑2d−1
i=d+1 ωi ⊗ωi

DA
if e = 0.

(12)

Remark 7 (Sub-Riemannian case) Henceforth we refer to
e = 0 as the sub-Riemannian case where tangent vectors
are constrained to the span of Ad , . . . ,A2d−1. Intuitively
when e ↓ 0 the other tangent directions get infinite cost and

become prohibited. This means that we restrict ourselves to
so-called horizontal tangent vectors:

(ẋ, ṅ) ∈ T(x,n)(Md) is horizontal ⇐⇒ n ∧ ẋ = 0. (13)

Observe that this sub-Riemannian metric tensor is defined
(and invertible) on a sub-bundle of the tangent bundle on
the group as it does not contain any of the covectors dual to
the sub-bundle induced by subgroup Hd . Furthermore it is
spatially isotropic orthogonal to the primary spatial direction.
Also spherically we impose isotropy in the metric as can be
seen from the last term in the above definition.

Thismetric induces an associatednorm: If ġ ∈ Tg (SE(d)),
then

‖ġ‖G :=
√

G∣∣g (ġ, ġ), (14)

where again in the sub-Riemannian case we only allow ġ to
be in the span of Ad , . . . ,A2d−1.

Now thatwehaveSE(d) equippedwith a (sub)-Riemannian
metric tensor, we can derive the basic tools that are required
to formulate our geometric PDEs. These basic tools include
the gradient, its norm, and the divergence of a vector field.
Let us relabel our parameters as

Di =
⎧
⎨

⎩

DS if i = d,

e2DS if 1 ≤ i ≤ d − 1,
DA if d + 1 ≤ i ≤ 2d − 1.

(15)

Let Ũ : SE(d)→ R carry the axial symmetry:

Ũ (x, R) = U (x, Ra), (16)

for some U : Rd × Sd−1→ R.
Then in the Riemannian setting the gradient of a differen-

tiable function Ũ : SE(d)→ R on the group induced by this
metric tensor becomes

∇GŨ =
2d−1∑

i=1
Di

(
Ai Ũ

)
Ai , (17)

where the sum only runs to 2d − 1 and not to dim(SE(d)) =
D = 1

2d(d + 1) since (16) implies that

Ai Ũ = 0 for 2d − 1 < i ≤ D. (18)

The gradient then has the following norm

∥
∥∥∇GŨ

∥
∥∥
2

G =
2d−1∑

i=1
Di

(
Ai Ũ

)2
. (19)
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The divergence of a vector field is given by

divGv =
2d−1∑

i=1
Aiv

i for all v =
2d−1∑

i=1
viAi .

In the sub-Riemannian setting, where we restrict ourselves
to vector fields spanned by (Ai )

2d−1
i=d , we have

∇GŨ =
2d−1∑

i=d
Di

(
Ai Ũ

)
Ai , and

divG v =
2d−1∑

i=d
Aiv

i for all v =
2d−1∑

i=d
viAi . (20)

2.4 Locally Adaptive Frames on SE(d) as SVD of the
Hessian

As an alternative to the left-invariant frame we can choose a
frame (and subsequently a metric tensor field) that is adapted
to the data (whichwe also refer to as gauge frames in analogy
with [23]). Specifically, instead of having the vector field
Ad = n · ∇ as a static forward direction we want to choose
a vector field Bd that locally aligns with the data [23]. In
particular, Bd can take on a angular component, meaning the
local “straight forward” will follow the curve of the data;
consequently, flows can better follow curved structures, see
Fig. 4 for an example.

Remark 8 (Fitting a frame) We can induce an entire frame
in SE(d) from a choice of main vector, see [23, Appendix
A] for details. For an intuitive illustration see Fig. 4. In this
article we will focus on the method by which the main gauge
vector is obtained.

Nextwewill present a singular value decomposition of the
Hessian; we will choose the eigenvector associated with the
smallest eigenvalue as Bd . Geometrically, this can be seen as
the direction in which the gradient changes the least. Before
we can formulate this procedure we explain the concept of
exponential curves (see Fig. 5).

Definition 2 (Exponential curve) Let ġ ∈ Tg (SE(d)) then
the exponential curve parameterized by t through g with tan-
gent vector ġ is written as eġtg and is the curve for which

eġ0g = g and which has the property that for all t ∈ R:

(
d

dt
eġtg

)
(t) =

2d−1∑

i=1
ωi |g (ġ) Ai

∣∣
eġtg

.

Fig. 4 Illustrating gauge frame fitting. Top: left-invariant frame where
Ad = n · ∇R2 , recall (11), the red line indicates the exponential curve
associated withA2. Bottom: we choose a frame that takes into account
the local curvature; here the green line indicates the exponential curve
associated with B2

Or more explicitly in coordinates, if ġ =∑2d−1
i=1 ġiAi

∣∣
g we

have that:

(
d

dt
eġtg

)
(t) =

2d−1∑

i=1
ġi Ai

∣∣
eġtg

.

Hence the exponential curves are those curves whose tan-
gent vector components with respect to the left-invariant
frame do not change. For an illustration of such curves for
the case d = 2 see Fig. 5.

In view of (16) and (18) we define

T (g) := span {A1, . . . ,A2d−1} ⊂ Tg(SE(d)). (21)

Now we want to select Bd
∣
∣
g (normalized with respect to

the existing metric tensor G∣∣g) so that the gradient of the

data Ũ ∈ C1 (SE(d), R) changes as little as possible (recall
Fig. 4) in the following manner.

Definition 3 (Main gauge vector) We define the main gauge
vector as

Bd

∣∣∣
g
:= argmin ġ∈T (g),

||ġ||G=1

∥∥∥Hess|g(Ũ )(ġ, · )
∥∥∥
2

G∗
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Fig. 5 A set of exponential curves through a common point for d = 2.
Exponential curves are those curves whose tangent vectors are part of
a left-invariant vector field. Taken with permission from [5]

= argmin ġ∈T (g)
||ġ||G=1

∥∥∥∥
d

dt

[(
L
ge−t ġg

)

∗
∇GŨ

(
et ġg

)]∣∣∣∣
t=0

∥∥∥∥

2

G
,

where we assume that Ũ is such that we have a unique mini-
mizer. The Hessian in the previous equation is induced by a
Cartan connection as outlined in [23, Appendix 4, (133)].

Writing the tangent vector in terms of the local left-
invariant frame as ġ = ∑2d−1

i=1 ġiAi
∣∣
g ∈ T (g) let us write

out the Hessian as follows:

Bd
∣∣
g = argmin ġ∈T (g),

||ġ||G=1

2d−1∑

i=1
Di

(
ġ
(
Ai Ũ

))2

= argmin ġ∈T (g)
||ġ||G=1

2d−1∑

i=1
Di

⎛

⎝
2d−1∑

j=1
ġ jA j

(
Ai Ũ

)
⎞

⎠

2

.

(22)

We can write this problem in terms of matrices by defining
the following:

ġ =
(
ġ1, ġ2, . . . , ġ2d−1

)T
,

M = diag
(√

D1,
√
D2, . . . ,

√
D2d−1

)
,

K = K
(
Ũ
) ∣
∣
g :=

(
A j

∣
∣
g

(
Ai

∣
∣
gŨ

))

i, j
.

with i as row index and j as column index.
Using these the objective function in (22) becomes

(MK ġ)T (MK ġ) = ġT K T M2K ġ, (23)

which we want to minimize under the constraint

2d−1∑

i=1

(
ġi
)2

Di
=

∥∥∥M−2 ġ
∥∥∥
2 = 1. (24)

Taking the derivative of the Lagrangian of this convex opti-
mization problem gives us optimality under the following
condition (λ ∈ R):

KT M2K ġ = λM−2 ġ ⇐⇒ M2KT M2K ġ = λ ġ, (25)

i.e., ġ needs to be an eigenvector of the matrix M2KT M2K
with eigenvalue λ (serving as the Lagrangian multiplier). If
for a moment we rewrite (25) as

(MKM)T (MKM)
(
M−1 ġ

)
= λ

(
M−1 ġ

)
, (26)

we see that λ is indeed real since (MKM)T (MKM) is sym-
metric. With this eigenvalue and vector objective function
(23) evaluates to

ġT K T M2K ġ = ġT M−2M2KT M2K ġ

= ġT M−2λ ġ
= λ ġT M−2 ġ
= λ ‖ġ‖2G = λ.

This last equation incidentally proves that M2KT M2K is
positive semidefinite and, more importantly, that tominimize
the change in gradient we need to look at the eigenvector
belonging to the smallest eigenvalue.

In practice, we do not immediately calculate the eigenvec-
tors and eigenvalues from the scheme we have just proposed,
but for the purpose of stability we first apply a component-
wise Gaussian smoothing on the matrix K as follows:

K̃
∣∣
g := (G ∗ K ) (x, Rn)

=
∫

Rd

∫

Sd−1
G

(
x − y, RT

mn
)

K
∣∣
( y, Rm)

dσ(m)d y,

(27)

ergen with the usual surface measure σ on Sd−1 and with the
smoothing kernel

G( y,m) := GR
d

ρs
(0, y) · GSd−1

ρa
(a,m) , (28)

where GM
ρ is the heat kernel on the Riemannian manifold M

with timescale ρ > 0, the spatial kernel is centered on 0, and
the orientation kernel is centered on the reference direction
a.
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Remark 9 (Diffusion on Md ) It is important in the context
of Md to choose diffusion that is isotropic spatially (with
timescale ρs) and spherically (with timescale ρa) since this
is the only diffusion that commutes with the left-invariant
vector fields. Note that GR

d

ρs
(0, y) depends only on ‖ y‖

and GSd−1
ρa

(a,m) depends only on arccos (a · m) making
G( y,m) the heat kernel on the product manifold R

d× Sd−1.
This smoothing method is a variant on the one used in [23].

The remaining basis vectors are determined by consider-
ing a rotation that maps Ad

∣
∣
g to Bd

∣
∣
g and then applying a

specific rotation to the remainingAi
∣∣
g that keeps the remain-

ing spatial generators spatial. For an illustration see Fig. 4.
How this rotation is chosen and applied is detailed in [23,
App.B].

Having determined a data-adaptive frame (Bi )
2d−1
i=1

(induced by Bd , recall Fig. 4), we equip it with the following
straightforward metric, where again we rely on the corre-

sponding dual frame
(
β i

)2d−1
i=1 given by

〈
β i ,B j

〉
= δij . (29)

Definition 4 (Gaugemetric tensor field)We define the gauge
metric tensor field g �→ J ∣∣

g (·, ·) as

J :=
2d−1∑

i=1
β i ⊗ β i , (30)

which induces a norm on ġ ∈ Tg (SE(d)):

‖ġ‖J :=
√

J ∣∣
g (ġ, ġ), (31)

a gradient on Ũ ∈ C1 (SE(d)):

∇J Ũ :=
2d−1∑

i=1

(
Bi Ũ

)
Bi , (32)

with norm

∥∥
∥∇J Ũ

∥∥
∥
2

J =
2d−1∑

i=1

(
Bi Ũ

)2
, (33)

and finally gives the divergence of a vector field as:

divJ =
2d−1∑

i=1
Bi ◦

(
g �→ β i

∣∣
g

)
, (34)

which means that if we apply it to a vector field expressed in
the gauge frame as u =∑2d−1

i=1 uiBi we have:

divJ u =
2d−1∑

i=1
Bi u

i .

2.5 Coherence Enhancement Operator

Coherence-enhancing diffusion is a well-known technique
for image enhancement [54]. It is intended for line ampli-
fication rather than strictly denoising. Crossing-preserving
versions on Md have been developed [23] and evaluated
for denoising. Here, crossing lines are well enhanced, but
plateaus and boundaries of line structures are damaged.
Therefore we propose to include the coherence enhancement
technique into TV and MC flows.

Next we explain how this coherence enhancement opera-
tor is constructed from an orientation confidence.

In R
3, orientation confidence is calculated by the Lapla-

cian in the subspace orthogonal to the line structure. We can
take a similar approach in Md by taking the Laplacian in the
space spanned by (Ai )

2d−1
i=1,i �=d . Recall that Ad is implicitly

aligned with the local line structure along n. In the gauge-
frame setting Bd is explicitly aligned with the line structure
(see Fig. 4), and therefore we take the Laplacian in the span
of (Bi )

2d−1
i=1,i �=d .

In the sub-Riemannian case (i.e., D1 = · · · = Dd−1 = 0)
this just reduces to the second derivatives in the (d − 1)-
dimensional spaces spanned by (Ai )

2d−1
i=d+1 and (Bi )

2d−1
i=d+1,

respectively. With that in mind we define orientation confi-
dence in SE(d) as follows.

Let Ũ : SE(d) → R, then in the left-invariant case we
define

CŨ ,LI(g) :=
∣∣∣
∣∣∣

2d−1∑

i=1,i �=d
Di Ai

∣
∣
g

(
Ai Ũ

)
∣∣∣
∣∣∣
, (35)

or

CŨ ,GF(g) :=
∣∣∣∣
∣∣

2d−1∑

i=1,i �=d
Bi

∣∣
g

(
Bi Ũ

)
∣∣∣∣
∣∣
. (36)

in the gauge-frame case.
Note that theBi ’s are normalizedwith respect to oldmetric

(12) and as such the parameters Di are still included in (36).
In the case that Bd is aligned with Ad we have Bi = √DiAi

and (35) and (36) coincide.

Definition 5 (Isotropy factor) Let c > 0 be a chosen scaling
constant, then the isotropy factor is defined as:

αŨ (g) := e−
C
Ũ

(g)

c ,
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with CŨ defined by (35), respectively (36).
What is convenient about this quantity is that it gives a

number in the range (0, 1] with a number close to zero indi-
cating a high degree of anisotropy and a 1 indicating perfect
isotropy. This is the quantity that we can use to steer flow.

The choice of c controls how steep the decline of the
isotropy factor is. Its appropriate value depends on the
application and on exactly how the data are represented
numerically (normalized to [0, 1] in our case) and are best
determined heuristically or by histogram. For our experi-
ments we have used c = 0.2.

Using this scalar function αŨ on the group SE(d), we can
locally modify vectors based on how certain we are the data
are locally aligned. We refer to this modification of vector
fields as coherence enhancement (as in coherence enhancing
diffusion [30]). Tangent vectors (such as the gradient as we
will see) are modified as follows. Let v be a vector field on
SE(d). Then the coherence-enhanced vector field is given as

EG (v) :=
〈
ωd , v

〉
Ad + αŨ

2d−1∑

i=1
i �=d

〈
ωd , v

〉
Ai , (37)

for the left-invariant geometry and as

EJ (v) :=
〈
βd , v

〉
Bd + αŨ

2d−1∑

i=1
i �=d

〈
βd , v

〉
Bi . (38)

and for the gauge geometry.
Intuitively, these linear operators EG, EJ : T (G) →

T (G) preserve the magnitude of the vector in the main direc-
tion and weaken it orthogonal to the main direction if we are
certain the data are locally aligned to the main direction.

2.6 Descending to the Homogeneous Space

So far we have developed two distinct geometries on the
group SE(d) that are summarized in Table 1. We can bring
these geometries down to the homogeneous spaceMd bycon-
sidering the natural extension of functions and vector fields
on Md to SE(d). Consider a function U ∈ C∞(Md), then
the function Ũ , given by

Ũ (g) = Ũ (x, R) := U (x, Ra) (39)

for all g = (x, R) ∈ SE(d), is its natural extension to SE(d)

and is clearly also smooth. Similarly, a tangent vector field
(recall that we understand these as differential operators act-
ing on scalar functions) v on Md can be extended as follows:
(
ṽŨ

)
(g) =

(
ṽŨ

)
(x, R) := (vU ) (x, Ra) , (40)

under the additional constraint that ṽ vanishes in the direction
induced by the subgroup Hd (i.e., for all i ≥ 2d we have〈→i , ṽ

〉 = 0) this extension is unique.
Having extended functions and vector fields upward to

the group, we can apply the tools from Table 1 to them and
subsequently project the results back to the homogeneous
space by the mapping (x, R) �→ (x, Ra). This mapping is
not injective. Nevertheless, thanks to metrics (12), (30) being
laterally and spherically isotropic and the way we extend
functions to the group by (39), (40), all the tools we list in
Table 2 are well defined on Md .

Remark 10 (Choice of Rn) While the choice of mapping
n �→ Rn does not matter for the final result, a choice does
have to be made for an implementation when d ≥ 3. The
most straightforward manner is selecting that Rn which is an
in-plane rotation, meaning the plane of rotation is spanned
by a and n. In the two cases where this is not possible (i.e.,
n = ±a) we pick Ra = 0 and R−a = Rez ,π , where Rey ,π

denotes the rotation around the axis ey by an angle π . Con-
cretely the in-plane rotation in 3D is given in terms of the
ZYZ-Euler angles α, β, γ by requiring that α = −γ , which
gives the mapping

n �→ Rez ,−αRey ,β Rez ,α, (41)

for the unique α ∈ [0, 2π) and β ∈ (0, π) so that the result-
ing rotation maps a to n.

3 Total Variation, Mean Curvature PDE Flows
on Md

3.1 PDE System

OnR
n the formulation of total variation is built on the identity

div( f v) = f div(v)+∇ f · v. Similarly on Md we have:

div (Uv) = U div(v)+ dU (v)

= U div(v)+ (∇U , v)Md
. (42)

From the last equation we deduce the following integration
by parts formula:

∫

�

U (p) divv(p)dμ(p) =
∫

�

(∇U (p), v(p))Md
dμ(p),

(43)

for allU ∈ C1(�) and all smooth vector fields v vanishing at
the boundary ∂�. This formula allows us to build a weak for-
mulation of TVF on Md starting from functions of bounded
variation (BV) [1].
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Definition 6 (Weak formulation of TVF on Md ) Let e ≥ 0.
Let U ∈ L1(�) (recall (1)). Let χ0(�) denote the vector
space of smooth vector fields that vanish at the boundary ∂�

and let ε ≥ 0. Then we define

TVε(U ) := sup
ψ ∈ C∞c (�)

v ∈ χ0(�)

‖v(p)‖2e + |ψ(p)|2 ≤ 1

∫

�

(
ε

U (p)

)
·
(

ψ(p)
div v(p)

)
dμ(p).

(44)

If TV0(U ) <∞ we say that U ∈ BV (�).

For all U ∈ BV (�) we have

TV0(U ) ≤ TVε(U ) ≤ TV0(U )+ ε|�|.

Recall Remark 7 about the sub-Riemannian setting, and
recall the notion of horizontal tangent vectors (13). So (44)
also covers the sub-Riemannian setting (i.e., e = 0) when
setting

‖v(p)‖e=0 =
{ G|p (v(p), v(p)) if v(p) is horizontal ,
∞ else,

(45)

for tangent vector v(p) = (ẋ(p), ṅ(p)) ∈ Tp(Md) at base
point p = (x,n) ∈Md .

Lemma 1 Let ε ≥ 0. For U ∈ C1(�, R) we have

TVε(U ) =
∫

�

√
‖∇U (p)‖2

Md
+ ε2 dμ(p). (46)

Furthermore for U ∈ C2(Md , R) and e, ε > 0 we have that

∂ TVε(U ) = div ◦
⎛

⎝ ∇U
√
‖∇U‖2

Md
+ ε2

⎞

⎠ . (47)

Proof First we substitute (43) into (44), then we apply Gauss
theorem and use Uv|∂� = 0. Then we apply Cauchy–
Schwarz on Vp := R× TpMd for each p ∈ Md , with inner
product

(ε1, v1) · (ε2, v2) = ε1ε2 + (v1, v2)Md
,

which holds with equality iff the vectors are linearly depen-
dent. Therefore we smoothly approximate

1
√

ε2 + ‖∇U‖2
Md

(ε,∇U )

by (ψ, v) one obtains (46).

For U ∈ C2(�, R), δ ∈ C∞c (�, R) we obtain

(∂ TVε(U ), δ)L2(�) = lim
h↓0

TVε(U + h δ)− TVε(U )

h

(43)=
⎛

⎝div ◦
⎛

⎝ ∇U
√
‖∇U‖2

Md
+ ε2

⎞

⎠ , δ

⎞

⎠

L2(�)

,

and the result follows. ��
For vector fields v on Md define the regularized norm:

‖v‖ε :=
√
‖v‖2

Md
+ ε2. (48)

This is a common way to regularize denominators, and we
will use Sect. 4 to prove that this approach converges for
ε→ 0.

Now we propose the following roto-translation equivari-
ant enhancement PDE on � ⊂Md , recall (1).

Definition 7 (Equivariant enhancement PDE) Given U ∈
BV (�) with ε > 0 then we call W ε : Md × R≥0 → R

(being smooth) obeying

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂W ε

∂t (p, t) = ‖∇W ε(p, t)‖aε div

(
∇W ε(·, t)
‖∇W ε(·, t)‖bε

)

(p),

∇RdW ε(p, t) · N(x) = 0 forp = (x,n)∈∂�, t≥0,
W ε(p, 0) = U (p) forp ∈ �,

(49)

the gradient flow started at U with evolution time t ≥ 0 and
parameters a, b ∈ {0, 1}. Here we use Neumann boundary
conditions with N(x) as the normal to the spatial boundary
at x ∈ � f .

The coherence enhancement version of this PDE is given
by replacing div by div ◦ E (recall (37) and (38)):

∂W ε

∂t
(p, t) = ∥∥∇W ε(p, t)

∥∥a
ε

div ◦ E

(
∇W ε(·, t)
‖∇W ε(·, t)‖bε

)

(p).

Remark 11 (Two versions of the PDE) This PDE system on
the quotient Md has two versions depending on whether one
chooses the left invariant or gauge geometry as outlined in
Tables 1 and 2.

We then have the following cases:

– For (a, b) = (1, 1) we arrive at mean curvature flow
(MCF), studied for d = 2 in [13].

– For (a, b) = (0, 1) we arrive at total variation flow, stud-
ied for d = 2 in [11].

– For (a, b) = (0, 0) we arrive at a linear diffusion for
which exact smooth solutions exist for both d = 2 and
d = 3 [43].
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Remark 12 (PDE in terms of curvature) By product rule (42)
the right-hand side of (49) for ε ↓ 0 becomes

∂W 0

∂t
= ‖∇W 0‖a−b�W 0 + 2b κ I ‖∇W 0‖a, (50)

with the mean curvature κ I (p, t) of level set

{
q ∈Md

∣∣ W 0(q, t) = W 0(p, t)
}

,

akin to [49, ch;3.2], and with (possibly hypo-elliptic) Lapla-
cian � = div ◦ ∇.
Remark 13 (Lack of regularity and weak solutions) ForMCF
and TVF smooth solutions to PDE (49) exist only under spe-
cial circumstances. This lack of regularity is an advantage
in image processing to preserve step edges and plateaus in
images, yet it forces us to define a concept of weak solutions.
Here, we distinguish between MCF and TVF.

For MCF one relies on viscosity solution theory devel-
oped by Evans–Spruck [26], see also [32,50] for the case of
MCF with Neumann boundary conditions. In [13, Thm 3.6]
existence of C1-viscosity solutions is shown for d = 2.

For TVF we will rely on gradient flow theory by Brezis–
Komura [2,9].

Remark 14 In this article we do not address convergence of
our PDE solutions toward the sub-Riemannian setting e ↓ 0,
and we only focus on convergence results for ε ↓ 0. In pre-
vious work (by others) convergence to the sub-Riemannian
setting is addressed for special cases. For the special case
(a, b) = (0, 0) convergence of the solutions with respect
to e ↓ 0 is clear from the exact solutions see [43, ch:2.7].
For such convergence in the challenging case (a, b) = (1, 1)
(MCF), see Citti et al. [4,13]. For Eikonal PDEs convergence
of viscosity solutions toward the sub-Riemannian setting
holds as well, see [24, Thm.2]. It is therefore interesting to
see whether convergence results toward the sub-Riemannian
setting hold for the general case including the TVF case, but
this falls outside the scope of this article. In Sect. 4 we only
focus on convergence results for ε ↓ 0 for e > 0 fixed.

3.2 Numerics

We implemented PDE system (49) by Euler forward time
discretization, relying on standard B-spline or linear interpo-
lation techniques for derivatives in the underlying tools on
Md given in Table 2. For details see [17,30]. Also, the explicit
upperbounds for stable choices of stepsizes can be derived
by the Gershgorin circle theorem [17,30].

For d = 2 the discretization is straightforward [30], for
d = 3 we discretized per [17] in the software package Lie
Analysis for Mathematica developed by Martin et al. [37], to
our PDEs of interest (49) on M3.

Table 3 Relative computational time needed by our methods relative
to spatial Perona–Malik for the denoising results in Fig. 11

Method Relative computational time

Perona–Malik 2D 1.0

Left-invariant MCF 88.8

Left-invariant TVF 60.4

Gauge MCF 149.1

Gauge TVF 123.6

The Euler-forward discretizations are not unconditionally
stable. For a = b = 0, the Gershgorin circle theorem [17,
ch.4.2] gives the stability bound

�t ≤ (�t)crit :=
(

(d − 1)DA + DS

2h2
+ (d − 1)DA

2h2a

)−1
,

when using linear interpolation with spatial stepsize h and
angular stepsize ha . In our experiments, for d = 2 we set
h = 1 and for d = 3 we took ha = π

25 using an almost
uniform spherical sampling from a tessellated icosahedron
with NA = 162 points. TVF required smaller times steps
when ε decreases. Keeping in mind (50) but then applying
product rule (42) to the case 0 < ε  1, we concentrate on
the first term as it is of order ε−1 when the gradient vanishes.
Then we find �t ≤ ε · (�t)crit for TVF. For MCF we do not
have this limitation.

While both the quantitative and qualitative results of
our proposed methods are encouraging we have to end
our numerics section mentioning the computational cost. In
Table 3 we summarize the relative computational time of
our methods versus spatial Perona–Malik, and this summary
shows ourmethods being several orders ofmagnitude slower.
In the interest of fairness we need to add that benchmarking
our prototypeMathematica implementation against the built-
in Perona–Malik implementation is not a fair comparison, we
are confident that an optimized native implementation would
fare much better in a performance comparison.

4 Gradient Flow and Convergence

In this section we provide a gradient flow formulation that
we will use to prove the convergence of our regularization
scheme for TVF. The reader who is more interested in the
experimental results than the technical convergence results
can safely choose to skip this section and continue reading
Sect. 5.
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4.1 Preliminaries

The total variation flow can be seen as a gradient flow of a
lower-semicontinuous, convex functional in a Hilbert space,
as we explain next.

If F : H → [0,∞] is a proper (i.e., not everywhere equal
to infinity), lower semicontinuous, convex functional on a
Hilbert space H (not to be confused with the subgroup H
above, as we will not need the subgroup anymore we will
stick with convention and use H for the Hilbert space from
now on), the subdifferential of F in a point u in the finiteness
domain of F is defined as

∂F(u) := {z ∈ H | (z, v − u) ≤ F(v)− F(u) for all v ∈ H} .

The subdifferential is closed and convex, and thereby it has
an element of minimal norm, called “the gradient of F in
u” denoted by gradF(u). Let u0 be in the closure of the
finiteness domain of F . By Brezis–Komura theory, [9], [2,
Thm 2.4.15] there is a unique locally absolutely continuous
curve u : [0,∞)→ H such that

−u′(t) = gradF(u(t)) for a.e. t > 0 and lim
t↓0 u(t) = u0.

We call u : [0,∞) → H the gradient flow of F starting at
u0.

Recall the definition of � in (1), then the function TVε :
L2(�) → [0,∞] is lower-semicontinuous and convex for
every ε ≥ 0. This allows us to generalize solutions to PDE
(49) as follows:

Definition 8 Let U ∈ � := BV (�) ∩ L2(�). We define by
t �→ W ε(·, t) the gradient flow of TVε starting at U .

Remark 15 (Smooth solutions) A smooth solutionW ε to (49)
with (a, b) = (0, 1) is a gradient flow.

A functional � : H → (−∞,∞] is said to be λ-convex
for some λ ∈ R if

u �→ �(u)− λ

2
‖u‖2

is convex. In that case, the functional

u �→ �(u)− λ

2
‖u − v‖2

is convex as well, for arbitrary v ∈ H , because the latter
functional deviates from the first by an affine functional.

We first prove a stability estimate for the minimization of
1/τ -convex functionals.

Lemma 2 Let τ > 0. If a functional � : H → (−∞,∞] on
H is 1/τ -convex, and u∗ is its unique minimizer, then for all
u ∈ H,

1

2τ
‖u − u∗‖2 ≤ �(u)−�(u∗).

This lemma is an extension of a standard result regard-
ing strongly convex functionals (see, e.g., [41, Thm. 2.1.7])
but with no assumptions on differentiability. We include the
proof in “Appendix B.”

For a proper (i.e., not everywhere equal to ∞), lower
semicontinuous, convex functional F , and τ > 0, define
the so-called [48] proximal operator J F

τ : H → H by

J F
τ [u0] := argminu∈H

(
1

2τ
‖u − u0‖2 + F(u)

)
.

Proposition 1 Let δ > 0 and let F,G : H → [0,∞] be two
nonnegative, proper, lower semicontinuous, convex function-
als on a Hilbert space H, such that for all u ∈ H,

F(u)− δ ≤ G(u) ≤ F(u)+ δ. (51)

Let u0, v0 ∈ H, such that

|∂F |(u0) ≤ L and |∂G|(v0) ≤ L. (52)

Then, we have the following estimate for the gradient flow
u : [0,∞) → H of F starting at u0 and the gradient flow
v : [0,∞)→ H of G starting at v0:

‖u(t)− v(t)‖ ≤
{
4
√

δt + ‖u0 − v0‖ for 0 ≤ t ≤ δ
L2

8 3
√
Lδt2 + ‖u0 − v0‖ for t > δ

L2 .

We provide the proof in “Appendix C.” The idea is that
the stability estimate in Lemma 2 will allow us to conclude
that J F

τ [u0] and JGτ [v0] are close when u0 and v0 are close.
By iterating the operators J F

τ and JGτ , we approximate the
gradient flows of F and G, respectively, and from slope esti-
mate (51) we will derive that this approximation is uniform.
This will allow us to derive bounds for the gradient flows
from the bounds for J F

τ and JGτ .
We now know that the gradient flows of F and G are

close when the slopes |∂F |(u0) and |∂G|(v0) are bounded.
This assumption can be rather stringent. We will relax it and
merely require that F(u0) and G(v0) are bounded by some
constant E > 0, in exchange for a bound between gradient
flows that is slightly worse. Our approach will be to run the
gradient flow for a small time s from u0 and v0 and use the
regularizing property of the gradient flow to conclude a slope
bound. On the other hand, if s is small, u(s) and v(s) will be
close to u0 and v0. We will then choose s (almost) optimally
to derive a bound between the gradient flows.
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4.2 StrongL2-Convergence of TV Flows

We prove the convergence, stability, and accuracy of TV
flows by considering them as the gradient flows of the family
of functionals TVε. The theory of contraction semigroups [2,
Ch. 4] will allow us to show that as ε→ 0 the gradient flow
of TVε converges to the gradient flow of TV0 in theL2 sense.

Just like Lemma 1 and Proposition 1 the following the-
orem was already announced in [25] but similarly lacked a
proof, which we now include.

Theorem 1 Let F : H → [0,∞] and G : H → [0,∞] be
two proper, lower semicontinuous, convex functionals on a
Hilbert space H, such that

F(u)− δ ≤ G(u) ≤ F(u)+ δ

for all u ∈ H. Let u0, v0 ∈ H be such that F(u0) ≤ E and
G(v0) ≤ E and ‖u0 − u∗‖ ≤ M and ‖v0 − v∗‖ ≤ M, for
some constants E, M > 0, where u∗ and v∗ minimize F and
G, respectively.

Then the gradient flow u : [0,∞)→ H of F starting at
u0 and the gradient flow v : [0,∞) → H of G starting at
v0 satisfy

‖u(t)− v(t)‖ ≤ 16(MEδt2)1/5 + ‖u0 − v0‖

for all 0 ≤ t < E6M6/δ9.

Proof By the evolution variational inequality [2, Theorem
4.0.4, (iii)], we know that for all s > 0

‖u(s)− u0‖ ≤
√
2sF(u0) (53a)

and

‖v(s)− v0‖ ≤
√
2sG(v0). (53b)

By the regularizing property [2, Theorem 4.0.4, (ii)],

|∂F |(u(s)) ≤ 1

s
‖u0 − u∗‖ ≤ M

s
(54a)

and

|∂G|(v(s)) ≤ 1

s
‖v0 − v∗‖ ≤ M

s
(54b)

where u∗ minimizes F and v∗ minimizes G.
Because the gradient flow is a nonexpansive semigroup

[2, Theorem 4.0.4, (iv)], we obtain

‖u(t)− v(t)‖ ≤ ‖u(t + s)− v(t + s)‖ + ‖u(t + s)− u(t)‖
+‖v(t + s)− v(t)‖

Fig. 6 Isotropic (e = 1) evolution of relative L1 and L2 errors over
time of the collagen image with Gaussian noise benchmarked against
spatial Perona–Malik. Remaining parameters are DS = 1, DA = .01
and ε = .001

≤ ‖u(t + s)− v(t + s)‖ + ‖u(s)− u0‖
+‖v(s)− v0‖.

Now assume t < E6M6/δ9. We will want to choose s
(almost) optimally, depending on t . We choose

s = M2/5δ2/5t4/5

E3/5

and note that with L := M/s, we have

t ≥ δ

L2 .

By the slope estimates (54) we can apply Proposition 1 to the
gradient flows starting at u(s) and v(s), to obtain

‖u(t)− v(t)‖ ≤ 8M1/3s−1/3δ1/3t2/3 + ‖u(s)− v(s)‖
+‖u(s)− u0‖ + ‖v(s)− v0‖

≤ 8M1/3s−1/3δ1/3t2/3 + 2‖u(s)− u0‖
+ 2‖v(s)− v0‖ + ‖u0 − v0‖
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Fig. 7 Anisotropic (e = .25) evolution of relativeL1 andL2 errors over
time of the collagen image with Gaussian noise benchmarked against
spatial Perona–Malik. Run with parameters DS = 1, DA = .01 and
ε = .001. The resulting errors are slightly worse than the isotropic
setup from Fig. 6

(53)≤ 8M1/3s−1/3δ1/3t2/3 +√32sE + ‖u0 − v0‖
= 16M1/5δ1/5t2/5E1/5 + ‖u0 − v0‖.

��
If, for the general result of Theorem 1, we take F = TV0,

G = TVε and δ = ε |�| we obtain the following result.

Corollary 1 (Strong L2-convergence, stability and accuracy
of TV flows) Let U ∈ L2(�) and let W ε be the gradient flow
of TVε starting at U and ε, e ≥ 0. Let t ≥ 0. Let δ = ε|�|.
Then

lim
ε↓0 W ε(·, t) = W 0(·, t) in L2(�).

More precisely, for all U ∈ BV (�), E ≥ TV0(U ) + δ,
M ≥ ‖U‖ and 0 ≤ t < E6M6/δ9 we have that

‖W ε(·, t)−W 0(·, t)‖L2(�) ≤ 16
(
MEδt2

) 1
5
.

Fig. 8 Isotropic with coherence enhancement evolution of relative L1
and L2 errors over time of the collagen image with Gaussian noise
benchmarked against spatial Perona–Malik. Runwith parameters DS =
1, DA = .01, ε = .001 and c = .2

5 Experiments

In our experiments, we aim to enhance contour and fiber
trajectories in medical images and to remove noise. Lifting
the image f : Rd → R toward its orientation liftU :Md →
R defined on the space of positions and orientations M =
R
d

� Sd−1 preserves crossings [30] and avoids leakage of
wavefronts [24].

For our experiments for d = 3 the initial condition U :
M3 → R

+ is a fiber orientation density function (FODF)
obtained from DW-MRI data [44].

For our experiments for d = 2 the initial condition U is
an invertible orientation score (OS) that we sampled on 8
equidistant orientations.

For both d = 2 (Sect. 5.1) and d = 3 (Sect. 5.4), we
show advantages of TVF and MCF over crossing-preserving
diffusion flows [17,30] on Md .

Finally, we include denoising experiments wherewe show
qualitative and quantitative results where comparison with
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Fig. 9 Qualitative comparison of over-smoothed collagen images starting from a noisy image with σ = .2 Gaussian noise. Images are smoothed
for twice the time needed to reach their minimal L2 error per Fig. 8. We use isotropic processing with coherence enhancement

the well-known denoising technique BM3D [18] shows
advantages and good results.

5.1 Image Enhancement/Denoising

In accordance with the workflow in Fig. 1 we go through the
following steps:

f �→Wψ f �→ �t ◦Wψ f �→ f at :=W∗
ψ ◦�t ◦Wψ f

≈
∫

S1
�t (Wψ f )(·,n) dμS1(n). (55)

for t ≥ 0. With respect to the final step we recall that we use
cake wavelets that allow for sharp approximate reconstruc-
tion by integration over angles only. Here U �→ W (·, t) =
�t (U )denotes theflowoperator onM2 (49).Hence the initial
condition for our TVF/MCF-PDE (49) is set by an orientation
score of image f : R2 → R given by (2).

By the invertibility of the orientation score one has f =
f a0 , so all flows depart from the original image.
We refer to the different methods we experimented with,

by the following terms.

– MCF: we set (a, b) = (1, 1).
– TVF: we set (a, b) = (0, 1).
– Left invariant: we use the left-invariant geometry per the
first column of Table 1.

– Gauge: we use the locally adaptive-frames geometry per
the second column of Table 1.

– Isotropic: we set e = 1.

Fig. 10 Isotropic (e = 1) evolution of relative L1 and L2 errors over
time of the collagen image with correlated noise (σ = 0.2 Gaussian
noise with r = 2 and σ = 1 Gaussian filter) benchmarked against
spatial Perona–Malik. Remaining parameters are DS = 1, DA = .01
and ε = .001
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Fig. 11 Isotropic with coherence enhancement evolution of relative L1
and L2 errors over time of the collagen image with correlated noise
(σ = 0.2 Gaussian noise with r = 2 Gaussian filter) benchmarked
against spatial Perona–Malik. Runwith parameters DS = 1, DA = .01,
ε = .001 and c = .2

– Anisotropic: we set e = 0.25.
– With coherence enhancement: we use the PDE with the

E operator per (49).

So that Isotropic Gauge TVF with coherence enhancement
for example would equate to setting (a, b) = (0, 1), e =
1, includes the E operator in the PDE and uses the second
column of Table 1 to define our geometric objects.

For quantitative comparison we will look at relative L1

and L2 errors, meaning if we have a (clean) source image
fsource and a denoised image ft that has been processed to
time t we calculate the relative error as:

‖ ft − fsource‖
‖ fsource‖ , (56)

with the corresponding L1 or L2 norm.
We will test against two types of noise: Gaussian and cor-

related.

5.2 Gaussian Noise

We apply Gaussian noise with standard deviation 0.2 to our
normalized (to [0, 1]) source image; the original and noisy
images are shown in Fig. 9a, respectively, Fig. 9b.

In Fig. 6 we show how the errors progress with t ≥ 0 for
the isotropic (e = 1) case without coherence enhancement
(i.e., without E). For comparison we plot the same error with
spatial Perona–Malik. While Perona–Malik is clearly more
stable and resilient to over-smoothing, both our proposed
methods have much smaller minimal errors.

Remark 16 (Interpretation of timescales) The differentmeth-
ods work on different timescales, we scale these to be able to
plot the results together, but no meaning should be attributed
to onemethod obtaining aminimum earlier than another. The
error graphs just show:

– how large the minimal error is and
– how fast the image deteriorates after this minimum has
been reached.

In our next experiment we increase anisotropy by set-
ting e = .25, the resulting errors are plotted in Fig. 7. We
gain no improvement in minimal error while requiring more
computational cycles to reach the minimum, from which we
conclude that for this application isotropic processing ismore
desirable.

In Fig. 8 we show the errors for the isotropic setup with
coherence enhancement included (for c = .2). We get a very
minor improvement in minimal errors and a decent improve-
ment in over-smoothing stability, although still not on the
level of Perona–Malik. It is remarkable that with coher-
ence enhancement included the data-adaptive geometry is
less stable than the left-invariant geometry, we observe that
combining two different methods of adapting to the data is
counter-productive in this instance.

For a qualitative comparison of the different isotropic
methods with coherence enhancement we over-smooth the
collagen image past the time of its lowest L2 error with a
factor of two, the corresponding qualitative results are shown
in Fig. 9.

5.3 Correlated Noise

For correlated noise we apply a Gaussian filter with σ = 1.0
to Gaussian noise with σ = 0.2. The error evolution for the
isotropic methods is plotted in Fig. 10.We observe that MCF
performs worse in this setting against correlated noise; both
in minimal error and in stability it does not do as well as
spatial Perona–Malik. TVF on the other hand has a better
minimal error than Perona–Malik at the cost of stability. The
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Fig. 12 Qualitative comparison of over-smoothed collagen images
starting from a noisy image with correlated noise (σ = 0.2 Gaussian
noise with r = 2 Gaussian filter). Images are smoothed for twice the

time needed to reach theirminimalL2 error per Fig. 11.We use isotropic
processing with coherence enhancement

Fig. 13 Comparison of left-invariant TVF with coherence enhancement against BM3D. The BM3D image is denoised at σ = 0.12 (1.5× optimal
L2) and the left-invariant TVF denoised for 1.5× optimal L2 time. Pay particular attention to the diagonal edges where TVF exhibits superior
performance

Fig. 14 A spiral test image and a monochrome Mona Lisa that were
used for the PSNR experiments in Table 4

stability does somewhat improve if we turn on the locally
adaptive frames.

The error evolution of the experiment including the use
of coherence enhancement is displayed in Fig. 11. Overall
this improves the results, but MCF still exhibits an inferior
performance in this setting. TVF sees both an improvement
in minimal error and stability. As with the Gaussian noise
experiment we see that turning on both coherence enhance-
ment and locally adaptive frames is counterproductive.

A qualitative comparison of the methods against corre-
lated noise is shown in Fig. 12, where again we smooth twice
the optimal time. We observe the same general trend as in
Fig. 9; all methods do a good job of preserving edges, but
TVF stands out in clearing the plateaus.

As a final method to compare against we look at BM3D
[18]. Both BM3D and our methods share a dependence
on some prior knowledge for optimal performance: BM3D
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Table 4 Comparing peak signal-to-noise ratio (dB) for the coherence-
enhanced methods against BM3D and spatial Perona–Malik at the
minimal L2 error

Collagen Spiral Mona Lisa

Gaussian noise

Noisy image 14.1 15.5 14.1

Perona–Malik 20.1 19.5 20.5

BM3D 23.1 21.4 23.9

Left inv. MCF 21.7 19.5 23.3

Gauge MCF 21.7 19.8 23.7

Left inv. TVF 22.4 20.9 26.0

Gauge TVF 23.0 21.2 26.1

Correlated noise

Noisy image 23.9 25.3 23.9

Perona–Malik 24.2 25.3 25.1

BM3D 24.0 21.4 26.3

Left inv. MCF 23.8 24.3 26.2

Gauge MCF 23.9 24.2 26.2

Left inv. TVF 24.7 25.7 26.8

Gauge TVF 24.9 25.9 26.9

Bold values indicate the best result per image/noise combination
Three images were tested, the first being the collagen image we have
been using, second a spiral test image and third a grayscale Mona Lisa.
Note that all these measurements depend on some ground-truth knowl-
edge, knowing the standard deviation of the noise in the case of BM3D
and knowing the optimal processing time in case of the others

requires us to know the standard deviation of the noise, and
our method requires us to know the optimal processing time.

Wemake a qualitative comparison of removing correlated
noise between BM3D and left-invariant TVF by smoothing
1.5× past the optimal L2 error: 1.5× the optimal standard
deviation in case of BM3D and 1.5× the processing time in
case of TVF. The resulting images are shown in Fig. 13.

For a broader comparison, we compute peak signal-to-
noise ratios for the collagen image we already saw and for
two additional images of different styles shown in Fig. 14.
Results are summarized in Table 4.

As the gauge TVF method compares favorably against
correlated noise according to the PSNR value in Table 4,
we will look at its qualitative result and compare it against
BM3D in Fig. 15.

5.4 Denoising and Fiber Enhancement on FODFs in
DW-MRI

In DW-MRI image processing one obtains a field of angu-
lar diffusivity profiles (orientation density function) of water
molecules. A high diffusivity in particular orientation cor-
relates to biological fibers structure, in brain white matter,
along that same direction. Crossing-preserving enhancement
of FODF fieldsU :M3→ R

+ helps to better identify struc-

tural pathways in brain white matter, which is relevant for
surgery planning, see for example [38,44].

For a quantitative comparison we applied TVF, MCF, and
PM diffusion [17] to denoise a popular synthetic FODF U :
M3 → R

+ from the Fiberfox Tractometer challenge with
realistic noise profiles [40]. In Fig. 16, we can observe the
many crossing fibers in the dataset. Furthermore, we depicted
the absolute L2-error t �→ ‖U −�t (U )‖L2(M3) as a function
of the evolution parameter t , where �t (U ) = Wε(·, t) with
optimized ε = 0.02 in the case of TVF (in green), and MCF
(in blue), and where �t is the PM diffusion evolution [17]
on M3 with optimized PM parameter K = 0.2 (in red). We
also depict results for K = 0.1, 0.4 (with the dashed lines)
and ε = 0.01, 0.04. We see that the other parameter settings
provide on average worse results, justifying our optimized
parameter settings. We set DS = 1.0, DA = 0.001, �t =
0.01. We observe that:

– TVF can reach lower error values than MC flow with
adequate �t = 0.01,

– MCF provides more stable errors for all t > 0 than TV
flow with respect to ε > 0,

– TVF and MCF produce lower error values than PM dif-
fusion,

– PM diffusion provides the most variable results for all
t > 0.

For a qualitative comparison we applied TVF, MCF,
PM diffusion and linear diffusion to a FODF field U :
M3→ R

+ obtained from a standard DW-MRI dataset (with
b = 1000 s/mm2, 54 gradient directions) via constrained
spherical deconvolution (CSD) [19,52]. See Fig. 17, where
for eachmethod, we used the optimal parameter settingswith
the artificial dataset. We see that

– all methods perform well on the real datasets. Contex-
tual alignment of the angular profiles better reflects the
anatomical fiber bundles,

– MCF and TVF better preserve boundaries and angular
sharpness,

– MCFbetter preserves the amplitude at crossings at longer
times.

6 Conclusion

We have proposed a PDE system on the homogeneous space
Md = R

d
� Sd−1 of positions and orientations, for crossing-

preserving denoising and enhancement of (lifted) images
containing both complex-elongated structures and plateaus.

It includes TVF, MCF and diffusion flows as special cases
and includes (sub-)Riemannian geometry. Therebywegener-
alized recent related works by Citti et al. [13] and Chambolle
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Fig. 15 Comparing gauge TVFwith coherence enhancement andBM3Dagainst correlated noise, the standard deviation for BM3Dand the evolution
time for TVF were set at 1.5 times the number needed to reach the optimal L2 error

Fig. 16 Quantitative comparison of denoising a fiber orientation density function (FODF) obtained by (CSD) [19,52] from the benchmark DW-MRI
dataset Fiberfox [40]

and Pock [11] from 2D to 3D using a different numerical
scheme with new convergence results (Theorem 1) and sta-
bility bounds. We used the divergence and intrinsic gradient
on a (sub)-Riemannianmanifold aboveMd for a formalweak
formulation of total variation flows, which simplifies if the
lifted images are differentiable (Lemma 1).

For 2D image denoising and enhancement we have shown
that in all cases TVF on M2 has a better minimal error than
Perona–Malik andMCF at the cost of beingmore sensitive to

oversmoothing, recall Figs. 6, 7, 8, 9, 10, 11, and 12. The L1,
L2 and PSNRmeasures indicate the potential of our proposed
methods for denoising, and we manage to improve PSNR
results against methods such as BM3D against correlated
noise on some images, recall Figs. 13 and 15. Qualitatively
this is mainly reflected in better clearing of plateaus while
still preserving hard edges and crossings.

In 3D we compared to previous nonlinear crossing-
preserving diffusion methods on M3; we showed improve-
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Fig. 17 Qualitative comparison of denoising a FODF obtained by
(CSD) [19,52] from a standard DW-MRI dataset (with b = 1000 s/mm2

and 54 gradient directions). For the CSD we used up to 8th order

spherical harmonics, and the FODF is then spherically sampled on a
tessellation of the icosahedron with 162 orientations
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ments over Perona–Malik and improvements over contextual
fiber enhancement methods in DW-MRI processing [17,21]
on real medical image data. We observe that crossings and
boundaries (of bundles and plateaus) are better preserved
over time. We support this quantitatively by a denoising
experiment on a benchmark DW-MRI dataset, where MCF
performs better than TVF and both perform better than
Perona–Malik diffusions, in view of error reduction and sta-
bility.

Altogether, we conclude that our TVF and MCF methods
on Md work well for denoising and enhancement for both
d = 2 and d = 3. In general we see clear benefits of the
inclusion of locally adaptive frames and of limited inclusion
of coherence enhancement. The code from our experiments
is available as a Mathematica notebook at https://bmnsmets.
com/files/tvf_mcf_denoising_jmiv.nb.

Future work While we have shown the potential of our
PDE system on Md as a denoising/enhancement method
some challenges remain for future work:

– Determining stopping time, ourmethods show goodmin-
imal errors but are prone to degrading the image if left
running for too long. For general applications a robust
automatic stopping method would be helpful. Spectral
analysis of nonlinear operators [10,16] may apply here.

– Coherence enhancement [54] was not originally con-
ceived for denoising. It is therefore interesting to see
how edge enhancing diffusion [27] (EED) performs
when generalized to Md , i.e., we would reformulate our
enhancement operator E as:

E :=
∫

Sd
c⊗ c e

|∇U ·c|2
2κ2 dμ(c),

and test its performance.
– In this article we obtained convergence results of our
PDE solutions for ε ↓ 0 while keeping e > 0 fixed. It is
interesting to study the full limiting case (ε, e)→ (0, 0),
for the general setting covering total variation flow.
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Appendix A Left-Invariant Vector Field Basis
for SE(3)

Two charts are required to cover SO(3), when using ZYZ-
Euler angles:

g = (
x, y, z, Rez ,γ Rey ,β Rez ,α

)
, (57)

where β ∈ (0, π) and α, γ ∈ [0, 2π), the left-invariant vec-
tor field basis is given by:

A1
∣∣
g = (cosα cosβ cos γ − sin α sin γ ) ∂x

+ (sin α cos γ + cosα cosβ sin γ ) ∂y

− cosα sin β ∂z,

A2
∣∣
g = (− sin α cosβ cos γ − cosα sin γ ) ∂x

(cosα cos γ − sin α cosβ sin γ ) ∂y

+ sin α sin β ∂z,

A3
∣∣
g = sin β cos γ ∂x + sin β sin γ ∂y + cosβ ∂z,

−A5
∣∣
g = cosα cot β ∂α + sin α ∂β − cosα

sin β
∂γ ,

A4
∣∣
g = − sin α cot β ∂α + cosα ∂β + sin α

sin β
∂γ ,

A6
∣∣
g = ∂α.

Recall that in this article we take the convention that Ad+i is
the in-planar rotation from axis a = (0, 0, 1) to Ai for i =
1, . . . d − 1. Thereby −A5 is the counterclockwise rotation
about axis A1, whereas A4 is the counterclockwise rotation
about axis A2. Recall Fig. 3.

The above set of expressions is not valid for β = 0 or
β = π ; in that case, we can switch to XYZ-Euler angles:

g = (
x, y, z, Rex ,γ ′Rey ,β ′Rez ,α′

)
, (58)

with α′ ∈ [0, 2π), β ′ ∈ [−π, π) and γ ′ ∈ (−π/2, π/2).
The basis vector fields are then given by:

A1
∣
∣
g = cosα′ cosβ ′ ∂x

+ (
cos γ ′ sin α′ + cosα′ sin β ′ sin γ ′

)
∂y

+ (
sin α′ sin γ ′ − cosα′ sin β ′ cos γ ′

)
∂z,

A2
∣∣
g = − sin α′ cosβ ′ ∂x

+ (
cosα′ cos γ ′ − sin α′ sin β ′ sin γ ′

)
∂y

+ (
sin α′ sin β ′ cos γ ′ + cosα′ sin γ ′

)
∂z,

A3
∣∣
g = sin β ′ ∂x − cosβ ′ sin γ ′ ∂y + cosβ ′ cos γ ′ ∂z,

−A5
∣∣
g = − cosα′ tan β ′ ∂α′ + sin α′ ∂β ′ + cosα′

cosβ ′
∂γ ′ ,

A4
∣∣
g = sin α′ tan β ′ ∂α′ + cosα′ ∂β ′ − sin α′

cosβ ′
∂γ ′ ,
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A6
∣
∣
g = ∂α′ ,

for
∣∣β ′

∣∣ �= π/2.

Appendix B Proof of Lemma 2

We recall the lemma and give a proof.
Lemma 2 Let τ > 0. If a functional � : H → (−∞,∞] on
H is 1/τ -convex, and u∗ is its unique minimizer, then for all
u ∈ H ,

1

2τ
‖u − u∗‖2 ≤ �(u)−�(u∗).

Proof The functional � : H → (−∞,∞] given by

�(u) := �(u)−�(u∗)− 1

2τ
‖u − u∗‖2

is convex. It is sufficient to show that � is nonnegative. If it
were not, there would exist a v ∈ H such that �(v) < 0. We
will show that then, for t small enough, �(tv+ (1− t)u∗) <

�(u∗), contradicting that u∗ is a minimizer. We first have by
definition that, for t ∈ (0, 1),

�(tv + (1− t)u∗) − �(u∗)− t2

2τ
‖v − u∗‖2

= �(tv + (1− t)u∗).

By the convexity of �,

�(tv + (1− t)u∗) ≤ t�(v)+ (1− t)�(u∗)
= t�(v).

Combining the two inequalities, we find

�(tv + (1− t)u∗)−�(u∗) ≤ t�(v)+ O(t2),

so that indeed, for t small enough, �(tv + (1 − t)u∗) <

�(u∗), leading to the announced contradiction.
Therefore, � is nonnegative, which means that

1

2τ
‖u − u∗‖2 ≤ �(u)−�(u∗)

for all u ∈ H . ��

Appendix C Proof of Proposition 1

We recall the proposition and give a proof.

Proposition 1 Let F,G : H → [0,∞] be two nonnega-
tive, proper, lower semicontinuous, convex functionals on a
Hilbert space H, such that for all u ∈ H ,

F(u)− δ ≤ G(u) ≤ F(u)+ δ. (59)

Let u0, v0 ∈ H, such that

|∂F |(u0) ≤ L and |∂G|(v0) ≤ L. (60)

Then, we have the following estimate for the gradient flow
u : [0,∞) → H of F starting at u0 and the gradient flow
v : [0,∞)→ H of G starting at v0:

‖u(t)− v(t)‖ ≤
{
4
√

δt + ‖u0 − v0‖ for 0 ≤ t ≤ δ
L2

8 3
√
Lδt2 + ‖u0 − v0‖ for t > δ

L2 .

Proof Let τ > 0 and let uF
1 := J F

τ [u0] and vG1 := JGτ [v0].
Set also vF

1 := J F
τ [v0] and uG1 := JGτ [u0]. Then, using the

definition of vF
1 in the second inequality below, we find

1

2τ
‖vF

1 − v0‖2 + G(vF
1 )

(59)≤ 1

2τ
‖vF

1 − v0‖2 + F(vF
1 )+ δ

≤ 1

2τ
‖vG1 − v0‖2 + F(vG1 )+ δ

(59)≤ 1

2τ
‖vG1 − v0‖2 + G(vG1 )+ 2δ.

Because the functional

v �→ 1

2τ
‖v − v0‖2 + G(v)

is 1/τ -convex, it follows by Lemma 2 that

1

2τ
‖vF

1 − vG1 ‖2 ≤ 2δ.

Now we use that J F
τ is nonexpansive [2, Eq. (4.0.2)], so

‖uF
1 − vF

1 ‖ = ‖J F
τ (u0)− J F

τ (v0)‖ ≤ ‖u0 − v0‖.

We conclude that

‖uF
1 − vG1 ‖ ≤ ‖u0 − v0‖ + 2

√
δτ .

By iterating this estimate, we derive

‖(J F
τ )n[u0] − (JGτ )n[v0]‖ ≤ ‖u0 − v0‖ + 2n

√
δτ . (61)

The a priori estimate [2, Theorem 4.0.4, (v)] yields that the
gradient flows u and v of F and G, respectively, are approx-
imated well by (J F

t/n)
n[u0] and (JGt/n)

n[v0]. More precisely,
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for t > 0 and n > 0, the a priori estimate gives

∥∥∥u(t)− (J F
τ )n

∥∥∥ ≤ Lt√
2n

and
∥∥∥v(t)− (JGτ )n

∥∥∥ ≤ Lt√
2n

.

By these a priori estimates and the estimate for discrete flows
(61), we see that

‖u(t)− v(t)‖ ≤ ‖u(t)− (J F
t/n)

n[u0]‖ + ‖v(t)− (J F
t/n)

n[v0]‖
+ ‖(J F

t/n)
n[u0] − (JGt/n)

n[v0]‖

≤ √2L t

n
+ 2n

√
δt

n
+ ‖u0 − v0‖.

To derive the final estimates, we need to make good choices
for n. If 0 ≤ t ≤ δ/L2, we take n = 1 and obtain

‖u(t)− v(t)‖ ≤ √2Lt + 2
√

δt + ‖u0 − v0‖
≤ 4
√

δt + ‖u0 − v0‖.

If t > δ/L2, we choose n = !L2/3(t/δ)1/3", which is larger
than or equal to 2. In that case,

n/2 ≤ n − 1 < L2/3(t/δ)1/3 ≤ n.

We then obtain

‖u(t)− v(t)‖ ≤ 8L1/3δ1/3t2/3 + ‖u0 − v0‖.

��
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