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Abstract
Geometric priors have been shown to be useful in image segmentation to regularize the results. For example, the classical
Mumford–Shah functional uses region perimeter as prior. This has inspired much research in the last few decades, with
classical approaches like the Rudin–Osher–Fatemi and most graph-cut formulations, which all use a weighted or binary
perimeter prior. It has been observed that this prior is not suitable in many applications, for example for segmenting thin
objects or some textures, which may have high perimeter/surface ratio. Mumford observed that an interesting prior for natural
objects is the Euler elastical model, which involves the squared curvature. In other areas of science, researchers have noticed
that some physical binarization processes, like emulsion unmixing, can be well-approximated by curvature-related flow
like the Willmore flow. However, curvature-related flows are not easy to compute because curvature is difficult to estimate
accurately, and the underlying optimization processes are not convex. In this article, we propose to formulate a digital flow
that approximates an Elastica-related flow using a multigrid-convergent curvature estimator, within a discrete variational
framework. We also present an application of this model as a post-processing step to a segmentation framework.

Keywords Multigrid convergence · Digital estimator · Curvature · Shape optimization · Image segmentation

1 Introduction

Geometric quantities are particularly useful as regulariz-
ers in low-level image analysis, especially when little prior
information is known about the shape of interest. Length
penalization is a well-behaved, general-purpose regularizer,
and many models in the literature make use of it, from
active contours [8] to level-set formulations [26,27]. Dis-
crete graph-based variational models have been particularly
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successful to incorporate length penalization as a penalizer
while keeping the ability to extract a global optimum [2,5].

However, length regularization shows limitations when
segmenting small or thin and elongated objects, as it tends
to shrink solutions or yields disconnected solutions. Such
drawbacks can be problematic in image segmentation, image
restoration or image inpainting. It is thus rather natural to
consider curvature (especially squared curvature) as a poten-
tial regularizer. Energies involving both length and squared
curvature are often called the Elasticamodel (that dates back
to Euler). The Willmore energy is its n-dimensional exten-
sion. These were brought to attention in computer vision
by Mumford [31]. A similar concept is also present in the
second-order regularizer of the original snake model [20].
Indeed, an explicit curvature term was often employed in
early level-set methods, like [3,26,27] for segmentation or
inpainting. However, Caselles et al. in [8] observed that these
terms as employed were not geometric, in the sense that they
depend on the discretization parameters.
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1.1 Existing works

The use of curvature for surface regularization in the case of
the Willmore energy was studied in [4]. Although the results
lookpromising, the authors used an inexact linearizedversion
of the square curvature at every step.

One of the first successful uses of curvature in image pro-
cessing is the inpainting algorithm described in [30], where
authors evaluate the absolute curvature along the level lines
of a simply connected image to reconstruct its occluded parts.
The non-intersection property of level lines induces the con-
struction of an efficient dynamic programming algorithm.
The curvature energy is nevertheless only coarsely approx-
imated. We may quote [9] as another geometric inpainting
method involvingElastica,which is optimizedwith level sets.

In image segmentation, Zehiry and Grady have shown
that injecting curvature as a regularizer can help recover thin
and elongated objects [15]. Similarly, Schoenemann et al.
[38] have considered the Elastica energy in their ratio-based
image segmentation approach. In [39], Schoenemann et al.
extend ratio-cut approaches to segmentation with a curvature
term. Their global optimization framework shows the con-
siderable advantages of using such regularizer in common
binary image segmentation tasks. However, the time com-
plexity of their algorithm is prohibitive, even if curvature is
again coarsely approximated. In a more recent work, Lim et
al. propose an edge-weighted Willmore-like flow to segment
vertebra [25] using a level-set formulation. They observe the
improved results compared to [8] and other perimeter-based
priors, but observe that a shape prior and a close-enough ini-
tialization must also be provided to achieve good results.

In fact, it is still a very challenging task to efficiently
handle curvature in the context of image segmentation. State-
of-the-art methods are in practice difficult to optimize and
do not scale easily [15,32,38,40]. In order to achieve rea-
sonable running times, such approaches make use of coarse
curvature estimations for which the approximation error is
often unknown. In the segmentation method of [38], for
example, the curvature is estimated by a simple formula
involving angles and edge lengths at polygon vertices. The
quality of the estimation is highly influenced by the number
of vertices and where they are located along the curve. More
importantly, in this estimator, the curve representation lies
in the continuous domain and the properties of such estima-
tor are not immediately valid when the curve is translated to
the digital domain. In particular, it is not straightforward to
include an image data term in thismodelwithout adding extra
assumptions about the curve representation. One could use a
spline approximation with exact curvature information, and
the same kind of approach would have the same pros and
cons. Improving the quality of the curvature estimator has
an important impact on the accuracy of the results, but we
should use the appropriate tools to evaluate its quality. In the

context of measurements in digital data, this tool is multigrid
convergence.

Segmentation methods using Elastica or Willmore ener-
gies canbe formulated via the computation of the correspond-
ing flow, i.e., following its gradient. Well-founded level-set
methods involving Willmore energy [14] have been used in
medical image segmentation [25]. Another level-set formu-
lation similar to the Chan-Vese model was proposed in [42].
Willmore flow can also be carried out by phase-field models
(see [7]), but they are less suited to image segmentation since
interfaces are blurred in such models. Threshold dynamics
can also be considered for such energies [18] and has been
proposed for image disocclusion [17]. However, flow-based
methods will always deliver a local minimum, which heavily
depend on initialization for good results. A similar approach
is to formulate the Elastica as a regularization in a varia-
tional framework and use operator splitting to optimize it.
Tai et al. [41] and more recently Deng et al. [13] have pro-
posed this approach, which is well-suited to inverse problem
solving. The problem remains non-convex, and the nature of
the converged iterates is not studied, i.e., how close they are
to a global optimum.

In contrast, researchers have sought convex relaxation of
curvature-related formulation. In [19], Goldluecke and Cre-
mers introduce the Total Curvature, based on the Menger–
Melnikov curvature of a measure. The formulation is non-
convex but can be relaxed into a well-correlated but non-tight
convex one. The relaxed formulation can be used to solve
inverse problems including segmentation. However, com-
puting a solution is still expensive, requiring significant
parallelization efforts with a GPU to achieve acceptable
computing times. In [6], Bredies et al. study a convex approx-
imation of the Elastica energy, using a lifting scheme. Thanks
to the lifting, it is not restricted to binary sets. It shows the
promising results and can be used for image restoration in
addition to inpainting and segmentation. The scheme is, how-
ever, neither tight nor exact and required four dimensions for
a 2D approximation. In addition, it does not carry over to
nD. It also remains computationally expensive.

Discrete approaches have been used to tackle the Elastica
difficulties. As noted before, [38] have linearized a mesh-
based approach, which was expanded upon by [40], while
[15] haveused abinary solver for a non-submodular approach
on a regular square grid of pixels, which was expanded
in [16]. In [32], a specific solver is developed to yield a better
solution to an extension of the formulation in [15].

1.2 Motivation

In spite of the multiplicity of existing approaches, it seems
none is currently completely satisfactory. While the sought
solution is expected to be very smooth based on geometri-
cal expectations, the mathematical properties of the related
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operators make this smoothness elusive. Non-convexity and
the presence of high-order terms make Elastica difficult to
optimize and to approximate, let alone compute efficiently.
The computed solutions in the literature are rarely evaluated,
and the complexity of the proposed solution is often high.

Consequently, we are interested in studying purely dis-
crete variational segmentation models involving an Elastica
energy. Recently, new estimators of curvature along digital
contours have been proposed [11,36,37] with the desirable
multigrid convergence property. Thismotivates us to propose
models in which they can be used successfully.

In this paper, we propose to investigate the use of the
digital integral invariant curvature estimator [11] in a dis-
crete variational segmentation framework. More precisely,
we show how to incorporate it in a digital flow minimiz-
ing its squared curvature. This model is expressible as a
discrete combinatorial optimization model, which we solve
using a classical variant of QPBO algorithm [35]. Our solu-
tion does not compute a global solution to the whole domain
but a global solution to a band surrounding a given shape.
Our approach thus leads to a digital flow similar to contin-
uous Elastica, as shown by our experiments. We present an
application of this model as a post-processing step in a seg-
mentation framework and demonstrate how it can improve
the standard results. This paper is an extended version of
a previous work that appeared in [1]. We have included
a deeper discussion on our optimization method, and we
present a more thorough comparison of our segmentation
method with two other related works. Moreover, we have
included anew local combinatorial optimization approach for
Elasticaminimization,which shows that our discretemodel is
well-founded. Finally, the code related to this paper is freely
available on GitHub.1

1.3 Outline

Section 2 reviews the concept of multigrid convergence and
highlights its importance for the definition of digital esti-
mators. We describe two convergent estimators used in this
paper, one that approaches the length of elementary discrete
contour elements, and the other that approaches the curva-
ture of a discrete contour. They are used in the optimization
model and in the definition of the digital Elastica. Section 3
describes a local combinatorial optimization model suit-
able for several curvature estimators that presents interesting
results but is too costly in practice. Section 4 describes the
proposed Elastica-driven curvature evolution model along
with several illustrations of digital flows. Section 5 explains
how to use this evolution model as a post-processing step
in an image segmentation framework and compares it to two

1 https://www.github.com/danoan/BTools

related approaches.We conclude and draw someperspectives
to this work in Sect. 6.

2 Multigrid Convergent Estimators

Our objective is to delineate shapes within digital images
with some priors related to continuous geometry. The goal
of this section is to introduce the concept ofmultigrid conver-
gence and its potential when analyzing digital images with
variational models involving geometric quantities, with the
constraint that only digitized shapes are observed.

A digital shape is the result of some quantization process
over anobject X lying in somecontinuous spaceof dimension
2 (here). For example, the Gauss digitization of a continuous
subset X of the Euclidean plane R

2 with grid step h > 0 is
defined as

Dh(X) = X ∩ (hZ)2.

Given a shape X and its digitization Dh(X), a digital esti-
mator û for some geometric quantity u is intended to compute
u(X) by using only the digitization. This problem is not well-
posed, as the same digital object could be the digitization of
infinitely many objects very different from X . Therefore, a
characterization of what constitutes a good estimator is nec-
essary.

Let u be some geometric quantity of X (e.g., tangent, cur-
vature). We wish to devise a digital estimator û for u. It is
reasonable to state that û is a good estimator if û(Dh(X))

converges to u(X) as we refine our grid. For example, count-
ing pixels is a convergent estimator for area (with a rescale
of h2), but counting boundary pixels (with a rescale of h)
is not a convergent estimator for perimeter. Multigrid con-
vergence is the mathematical tool that makes this definition
precise. Given any subset Z of (hZ)2, we can represent it as
a union of axis-aligned squares with edge length h centered
on the point of Z . The topological boundary of this union of
cubes is called h-frontier of Z . When Z = Dh(X), we call
it h-boundary of X and denote it by ∂h X .

Definition 1 (Multigrid convergence for local geometric
quantites) A local discrete geometric estimator û of some
geometric quantity u is (uniformly) multigrid convergent for
the family X if and only if, for any X ∈ X, there exists a grid
step hX > 0 such that the estimate û(Dh(X), p, h) is defined
for all p ∈ ∂h X with 0 < h < hX , and for any x ∈ ∂X ,

∀p ∈ ∂h X with ‖p − x‖∞
≤ h, ‖û(Dh(X), p, h) − u(X , x)‖ ≤ τX (h),

where τX : R
+ \ {0} → R

+ has null limit at 0. This function
defines the speed of convergence of û toward u for X .
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For a global geometric quantity (e.g., perimeter, area,
volume), the definition remains the same, except that the
mapping between ∂X and ∂h X is no longer necessary.

Multigrid convergent estimators provide a quality guar-
antee and should be preferred over non-multigrid convergent
ones. In the next section, we describe two estimators that are
important for our purpose.

2.1 Tangent and Perimeter Estimators

The literature presents several perimeter estimators that are
multigrid convergent (see [10,12] for a review), but in order to
define the digital Elasticawe need a local estimation of length
and we wish that integration over these local length elements
gives a multigrid convergent estimator for the perimeter.

Definition 2 (Elementary Length) Let a digital curve C be
represented as a sequence of grid vertices in a grid cell rep-
resentation of digital objects (in a grid with step h). Further,
let v̂ be a multigrid convergent estimator for the unit tangent
vector. The elementary length ŝ(e) at some oriented grid edge
e ∈ C is defined as

ŝ(e) = h v̂(e) · e.

The integration of the elementary length along the digital
curve is a multigrid convergent estimator for perimeter if
one uses the λ-MST [24] tangent estimator (see [23]).

2.2 Integral Invariant Curvature Estimator

Generally speaking, an invariant is a function whose value
is unaffected by the action of some group on the elements of
the domain.

Perimeter and curvature are examples of invariants for
shapes on R

2 with respect to the Euclidean group of rigid
transformations. Definition of integral area invariant and its
link with curvature is proven in [28].

Definition 3 (Integral area invariant)Let X ⊂ R
2 and Br (p)

the ball of radius r centered at point p. Further, let 1X (·) be
the characteristic function of X . The integral area invariant
σX ,r (·) is defined as

∀p ∈ ∂X , σX ,r (p) =
∫
Br (p)

1X (x)dx .

The value σX ,r (p) is the area of the intersection of the
ball Br (p) with shape X . By approaching the shape at point
p ∈ ∂X , one can rewrite the intersection area σX ,r (p) in the
form of the Taylor expansion [33]:

σX ,r (p) = π

2
r2 − κ(X , p)

3
r3 + O(r4),

where κ(X , p) is the curvature of X at point p. By isolating
κ , we can define a curvature estimator

κ̃(p) := 3

r3

(
πr2

2
− σX ,r (p)

)
, (1)

Such an approximation is convenient as one can simply
devise a multigrid convergent estimator for the area.

Definition 4 Given a digital shape D ⊂ (hZ)2, the area esti-
mator Ârea(D, h) is defined as

Ârea(D, h) := h2Card (D) . (2)

It is well known that this area estimator is multigrid con-
vergent (e.g., see [21]). In [11], the authors combine the
approximation(1) and digital estimator (2) to define a multi-
grid convergent estimator for the curvature.

Definition 5 (Integral Invariant Curvature Estimator) Let
D ⊂ (hZ)2 a digital shape. The integral invariant curvature
estimator is defined as

κ̂r (D, p, h) := 3

r3

(
πr2

2
− Ârea (Br (p) ∩ D, h)

)
.

This estimator is multigrid convergent with speed O(h
1
3 )

for radii chosen as r = Θ(h
1
3 ). This estimator is also robust

to noise and can be extended to estimate the mean curvature
of three dimensional shapes.

2.3 Elastica Energy Estimator

In the remaining of this article, we are considering the mini-
mization of the Elastica energy. Given a Euclidean shape X
with smooth enough boundary, the Elastica is defined as

E(X) =
∫

∂X
(α + βκ2)ds, for α ≥ 0, β ≥ 0. (3)

The digital version of Elastica energy approaching the
continuous Elastica energy is defined as follows (it uses
multigrid convergent estimators):

Ê(Dh(X)) =
∑

e∈∂Dh(X)

ŝ(e)
(

α + βκ̂2
r (Dh(X), ė, h)

)
, (4)

where ė denotes the center of the edge e. In the expression
above,wewill substitute an arbitrary subset S ofZ2 to Dh(X)

since the continuous shape X is unknown. In the following,
we omit the grid step h to simplify expressions (or, putting it
differently, we assume that the shape of interest is rescaled
by 1/h and we set h = 1).
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Fig. 1 Flower shape in (a) and
the cellular-grid model
representation in (b) of the
rectangle-bounded region. In
(b), pixels are colored in gray,
linels in green and pointels in
blue

(a) (b)

Fig. 2 Blue pixels in (a)
illustrates a 3-ring set. In (b), we
highlight the contour of an
element of set N11

(a) (b)

3 Local Combinatorial Optimization

The objectives of this section are to show both the potential
of minimizing a purely digital Elastica energy but also to
underline the difficulties of using it in a global combinatorial
optimization framework.

Given a digital shape S(0), we describe a process that gen-
erates a sequence S(i) of shapes with non-increasing Elastica
energy. The idea is to define a neighborhood of shapes N (i)

to the shape S(i) and choose the element of N (i) with the
lowest energy. The process is suited for the integral invariant
estimator but also for other curvature estimators, for exam-
ple, MDCA [36]. As a matter of fact, our experiments have
shown that either estimator induce similar results.

Let S be a two-dimensional digital shape embedded in a
domain Ω ⊂ Z

2. We adopt the cellular-grid model to rep-
resent S, i.e., pixels and its lower dimensional counterparts,
linels and pointels, are part of S (see Fig. 1). In particular,
we denote by ∂S the topological boundary of S, i.e., the con-
nected sequence of linels, such that for each linel we have
one of its incident pixels in S and the other not in S.

Let dS : Ω → R be the signed Euclidean distance trans-
formation with respect to shape S. The value dS(p) gives the
Euclidean distance between p /∈ S and the closest pixel in S.

For points p ∈ S, dS(p) gives the negative distance between
p and the closest pixel not in S.

Definition 6 (m-Ring Set) Given a digital shape S ∈ Ω , its
signed distance transformation dS and natural number m �=
0, the m-ring set of S is defined as

Rm(S) := Lm ∪ L−m,

where

Lm(S) :=
{ {p ∈ Ω | m − 1 < dS(p) ≤ m} , m > 0

{p ∈ Ω | m + 1 > dS(p) ≥ m} , m < 0

Consider the following set of neighbor candidates to S:

U(S) = {D |D ⊂ R1(S) ∪ S and D is connected}.

Such set can be extremely large, and its complete exhaus-
tion is prohibitively expensive. Instead, we are going to use
a subset of it (Fig. 2).

Definition 7 (n-neighborhood) Given a digital shape S ∈
Ω , its n-neighborhood Nn(S) is defined as the set of digital
shapes that can be built from S by adding or removing a
sequence of k ∈ [0, n] connected pixels in R1(S).
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Fig. 3 Local combinatorial
optimization process results
using II estimator with radius 5
for the square and flower shapes.
Shapes are displayed at every 5
iterations

Algorithm 1 describes the local combinatorial process,
andFig. 3 presents the digital curve evolutionwhen executing
this algorithm for two different shapes with n = 50.

input : A digital set S; the neighborhood parameter n; the
maximum number of iterations maxIt; and a stop
condition tolerance

1 delta ←− tolerance +1;
2 i ←− 0;
3 while i < maxIt and delta > tolerance do
4 for X ∈ Nn(S(i)) do
5 if Ê(X) < Ê(X�) then
6 X� ←− X
7 end
8 end
9 i ←− i +1;

10 S(i) ←− X�;

11 delta ←− Ê(S(i−1)) − Ê(S(i));
12 end

Algorithm 1: Local combinatorial optimization for
Elastica minimization.

The running time of algorithm 1 is summarized in Table
1. All the experiments in this paper were executed on a 32-
core 2.4Ghz CPU, and the number of pixels in the square
and flower shapes is, respectively, 841, 1641 for grid step
h = 1.0. Although its use in practical applications is limited,
we demonstrate that digital estimators are effective in their
measurements and the flows evolve as expected. In partic-
ular, the digital Elastica energy for the experiments in Fig.
3 approaches the global optimum (Fig. 4). We observe that
it is a complete digital approach, and we do not suffer from
discretization and rounding problems, a common issue in
continuous models. Furthermore, we have checked that this
approach works indifferently with integral invariant curva-

Table 1 Running times for the
local combinatorial optimization
algorithm with n = 50

Square Flower

h = 1.0 4 s 124 s

h = 0.5 77 s 1924,s

h = 0.25 1886 s 28,445 s

Thirty two threads were used

ture estimator and Maximal Digital Circular Arc curvature
estimator. So the convergence of the digital curvature estima-
tor seems to be the cornerstone to get a digital curve behaving
like a continuous Elastica. In the next section, we explore a
more efficient approach.

4 Digital Curvature Flow

Given a digital shape S ⊂ Ω ⊂ Z
2, the goal is to compute a

flow S(i) where S(i+1) has lower digital Elastica than S(i).
We observe that the integral invariant estimator (1) is orig-

inally designed to be evaluated on the digital boundary of
the shape, which is the unknown of our problem. Injecting
contour information leads to a third-order model, which we
prefer to avoid. Instead, we are going to exploit the II estima-
tor definition to compute a flow that evolves proportionally
to the squared curvature of the current shape.

4.1 Discrete Variational Model for Discrete Curve
Evolution

We assume an ordering in Ω , i.e., there exists a bijective
function ω : Ω → {1 · · · |Ω|}. Moreover, we associate with
any subset P ⊂ Ω the set of binary variables X(P) defined

123



Journal of Mathematical Imaging and Vision (2021) 63:1–17 7

Fig. 4 Digital Elastica
computation along iterations of
algorithm 1. The final shape has
energy value close to the
optimal value 2π/5 (thin
horizontal dashed line)

(a) (b)

as

X(P) := {
xω(p) ∈ {0, 1} | p ∈ P

}
.

In order to guarantee connectivity, we limit the optimiza-
tion region to a subset ofΩ , namely the inner pixel boundary
of S(i). We also use the notation |S| to denote the cardinal of
a digital set S.

Definition 8 (Inner pixel boundary) Given a digital shape S
embedded in a domainΩ , we define its inner pixel boundary
set I (S) as

I (S) := { p | p ∈ S, |N4(x) ∩ S| < 4 } ,

whereN4(p) denotes the 4-adjacent neighbor set of p (with-
out p).

To simplify notation, the inner pixel boundary of S(i) is
simply denoted I (i). At each iteration, the set X (i) of opti-
mization variables is defined as

X (i) := X(I (i)).

In other words, each flow iteration decides which pixels
in the inner boundary are to be removed from S(i) and which
are to be kept in S(i). We recall the definition of the II digital
curvature estimator:

κ̂2(p) = c1
(
c2 − |Br (p) ∩ S(i)|

)2
, (5)

where c1 = 9/r6 and c2 = πr2/2.
The following sets are important in the expansion of (5).

F (i) := S(i) \ I (i)

F (i)
r (p) := F (i) ∩ Br (p)

I (i)
r (p) := I (i) ∩ Br (p)

X (i)
r (p) := X

(
I (i)
r (p)

)
.

Expanding (5), we get

κ̂2(p) = c1
(
c2 − |F (i)

r (p)| −
∑

x j∈X (i)
r (p)

x j
)2

= c1
(
C + 2

(
|F (i)

r (p)| − c2
) ∑

x j∈X (i)
r (p)

x j

+
∑

x j∈X (i)
r (p)

x2j +
∑

x j ,xk∈X (i)
r (p)

j<k

2x j xk
)
,

where C = c22 − 2c2 · |F (i)
r (p)| + |F (i)

r (p)|2 is a constant.
By ignoring constants and multiplication factors and using
the binary character of the variables, we define the following
family of energies for given parameters α, β, γ ≥ 0.

Em(X (i), S(i)) =
∑

x∈X (i)

αs(x)

+
∑
p∈

Rm (S(i))

2c1β
(
(1/2 + |F (i)

r (p)| − c2)

·
∑
x j∈

X (i)
r (p)

x j +
∑
j<k,

x j ,xk∈
X (i)
r (p)

x j xk
)

+
∑

x∈X (i)

γ g(S(i), x), (6)

where g(S, x) denotes a data term (e.g., distance to initial
shape S or fidelity to data) and s(x) denotes a length penal-
ization term. Each choice of m generates a different flow,
which is generally described in the digital curve evolution
(DCE) algorithm 2.

We emphasize that the minimization of (6) for S(i) is not
sufficient to derive the next shape S(i+1) because contour
information is not included in the model (see Fig. 5). Recall
that the integral invariant estimator approaches curvature by
computing the difference between half of the area of a cho-
sen ball and the area of the intersection of this ball with the
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Fig. 5 Directly using the
optimization result of (6) does
not decrease squared curvature
because contour information is
not present in the energy

input : A digital set S; The ring number m; Length(α),
curvature(β) and data(γ ) coefficients; the maximum
number of iterationsmaxIt;

1 S(0) ←− S;
2 i ←− 1;
3 while i < maxIt do
4 //Expansion mode
5 if i is odd then
6 X (i) ←− argminX Em(X , S(i−1));

7 S(i) ←− F (i−1)
S

+ X (i);

8 end
9 //Shrinking mode

10 else
11 X (i) ←− argminX Em(X , S(i−1));

12 S(i) ←− F (i−1)
S + X (i);

13 end
14 i ←− i +1;
15 end

Algorithm 2: Digital curvature evolution algorithm
(DCE).

shape. In particular, regions of positive curvature have fewer
pixels in their intersection set than on its complementw.r.t the
estimation ball. This implies that variables in such regions
are labeled with 1, as the unbalance grows otherwise. We
attenuate curvature if we shift the center of the estimation
ball toward the interior of the shape, which means removing
the 1-labeled pixels. That is why we take the complement of
the optimization solution.

The same reasoning applies for non-convex parts. Indeed,
concave regions are convex in the shape complement. In the
expansion mode, we apply the same reasoning on the image
complement, and by doing this we are able to handle concav-
ities. It is called expansion mode because the optimization
region, in this case, is the outer pixel boundary of the original
shape. Table 2 sums up these arguments.

Length and data terms should be properly defined in order
to comply with the complement step of the DCE algorithm.

Table 2 Since the curvature is negated when reversing the curve (i.e.,
κ̄ = −κ), this process can only shrink convex parts in shrink mode and
expand concave parts in expansion mode

shrink mode κ � 0 κ ≥ 0 κ < 0

X xk = 1 xk ∈ {0, 1} xk = 0

S(i+1) ← S(i) \ X eroded prob. eroded unchanged

expansion mode κ̄ � 0 κ̄ ≥ 0 κ̄ < 0

X̄ x̄k = 1 x̄k ∈ {0, 1} x̄k = 0

S(i+1) ← S̄(i) \ X̄ dilated prob. dilated unchanged

The length penalization is defined as

s(xw(p)) =
∑

q∈N4(p)

t(q), where t(q)

=
⎧⎨
⎩

(xw(p) − xw(q))
2, if q ∈ I (i)

(xw(p) − 0), if q ∈ F (i)

(xw(p) − 1), otherwise
(7)

We do not use data terms in this section, thus, we post-
pone the definition of such terms until later in this article,
with the description of how DCE can be used in an image
segmentation framework.

In Fig. 6, we see some results for the DCE algorithm with
m = 1.Weobserve a global evolution toward rounder shapes,
but with several artifacts. We minimize the effects of a jaggy
boundary by setting α > 0. Nonetheless, a higher radius of
the estimation ball creates unstable shapes. In fact, the esti-
mator is very sensitive in regions of low squared curvature,
and it is precisely in those regions that spurious pixels are
created.

4.2 AMore Stable Model

In the previous section, we noticed that the algorithm pro-
duces shapes with many artifacts due to the small uncertain-
ties of the estimator along regions of low squared curvature.
We argue that, by evaluating the estimation ball along outer
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Fig. 6 Algorithm is very
sensitive to the little variations
in the estimator, which are
particularly important in regions
of low squared curvature.
Artifacts are somewhat reduced
with a length penalization but
increases if we use a higher ball
radius

(a) (b) (c)

Fig. 7 By positioning the
estimation ball on farther rings,
we minimize artifacts creation

(a) (b) (c)

ring sets, we avoid those sensitive areas by focusing the
optimization process only on regions with highest squared
curvature value.

In our experiments, the best results are obtained by exe-
cuting DCE algorithm with m equal to r , where r is the
estimation ball radius (see Fig. 7). We observe that digital
Elastica may increase after some iterations if chosen radius
is too large, as in the case of the triangle in Fig. 8 in which
the flow converges to a single point. We conjecture that an
appropriated value for the radius should be given by the
shape reach. The produced flow has no difficulties in han-
dling changes on topology, and it presents different speeds
for regions with low and high curvature values, as illustrated
in Fig. 9.

4.3 Optimizationmethod

Let f be a function of n binary variables with unary and
pairwise terms, i.e.,

f (y1, · · · , yn) =
∑
j

f j (y j ) +
∑
j<k

f j,k(y j , yk).

The function f is submodular if and only if the following
inequality holds for each pairwise term f j,k [22]:

f j,k(0, 0) + f j,k(1, 1) ≤ f j,k(0, 1) + f j,k(1, 0).

The energy Em is non-submodular, and optimizing it
is a difficult problem, which constrains us to use heuris-
tics and approximation algorithms. The QPBO method [35]

transforms the original problem in a max-flow/min-cut for-
mulation and yields a full optimal labeling for submodular
energies. For non-submodular energies, the method is guar-
anteed to return a partial labeling with the property that the
set of labeled variables is part of an optimal solution. That
property is called partial optimality.

In practice, QPBOcan leavemany pixels unlabeled. There
exist two extensions to QPBO that alleviate this limita-
tion: QPBOI (improve) and QPBOP (probe). The first is
an approximation method that is guaranteed to not increase
the energy, but loses the property of partial optimality. The
second is an exact method which is reported to label more
variables than QPBO.

The percentage of unlabeled pixels by QPBOP for E1 is
quite high, but the percentage decreases to zero as we set
m equal to r . Therefore, we are more confident in taking
the solution for values of m close to r . However, the way it
varies across values of m differs from shape to shape, as is
illustrated in Fig. 11. We also noticed that, for m = r , all the
pixels were labeled, which may indicate that Er is an easy
instance of the general non-submodular energy Em , but this
remains to be proved. The number of pairwise terms in Er is
roughly half of those in E1 (see Fig. 10).

We have used QPBOI to solve Em . Naturally, in the case
where all pixels are labeled by QPBOP, QPBOI returns the
same labeling as QPBOP.
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Fig. 8 Choice of radius impacts
the flow. In the figures, the flow
ceases to evolve for all shapes
when r = 3 (a). In (b), for
r = 5, the triangle evolves to a
single point, while the others
stop in an intermediate shape, as
in (a). In (c), we observe that for
a given choice of radius, the
digital Elastica may increase
after a certain number of
iterations

(a)

(b)

(c)

5 Application to Image Segmentation

Wepresent an application of our digital curve evolution algo-
rithm to supervised image segmentation. The DCE acts as a
contour correction method. Here, we use a data fidelity term
in order to characterize the object of interest. Given fore-
ground and background seeds selected by the user, we derive
mixedGaussian distributions of color intensitiesG f ,Gb, and
we define the data fidelity term as the cross-entropy, i.e.,

g(xw(p)) = −(1 − xw(p)) logG f (p) − xw(p) logGb(p).
(8)

We use the DCE algorithm to regularize an initial contour
output by some segmentation algorithm or delineated by the
user. In this application, the data term of the DCE is set to
the data fidelity term (8).

The algorithmcan be initialized by a collection of compact
sets, or with the result of a third-party segmentation algo-
rithm, as GrabCut [34]. We include an additional parameter
d that dilates the initial sets using a square of side one before
executing the flow.

We evaluate our method using the BSD300 database [29].
All images contain the same number of pixels, the resolution
being 321×481(481×321) in portrait (landscape)mode.We
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(a)

(b)

Fig. 9 High curvature regions evolves faster than lower ones (a). The
flow can handle topological changes (b)

Fig. 10 We plot the ratio of pairwise terms among all
(|X (i)|

2

)
combina-

tions. The highest ring has roughly half the number of pairwise terms
as the lowest ring

input : An image I ; seed mask M ; the estimation ball radius r ;
length (α), squared curvature (β) and data fidelity (γ )

coefficients; initial dilation d; stop condition value
tolerance; the maximum number of iterationsmaxIt;

1 S ←− GrabCut(I , M);
2 S(0) ←− dilate(S,d);
3 delta ←− +∞;
4 i ←− 0;
5 while i < maxIt and delta > tolerance do
6 S(i+1) ←− DCE(S(i), r , α, β, γ, 2);
7 delta ←− |S(i) − S(i+1)|;
8 i ←− i +1;
9 end

Algorithm 3: Contour correction algorithm.

compare the results of our method with segmentations given
by GrabCut and Schoenemanns’s method [38]. We report an
average of 3s per flow iteration and an average of 30 iterations
per image. While GrabCut executes in less than one second,
Schoenemann’s method may take several hours to complete.

In Fig. 12, we can observe the results of a curvature reg-
ularization in comparison with a pure length regularization.
The curvature can fill gaps and is smoother than the one
produced by length only, resulting in more pleasant segmen-
tations. In Figs. 13 and 14, we list several results of our
method and we compare them with segmentation produced
by GrabCut and Schoenemann’s method. Our method is suc-
cessful in producing curvature regularized segmentations and
demonstrates the completion property of curvature. More-
over, it does not suffer from over-segmentation, it is much
faster than Schoenemann’s, and in several cases produces
better segmentations than GrabCut.

6 Conclusion

Wehave studied in depth several digital curve evolutionmod-
els based on a digital version of the Elastica energy, and we
have presented an application to image segmentation. The
processes we have described are completely digital and do
not suffer from issues that typically arise in models that pass
through a discretization stage, such as rounding. Moreover,
the model can handle changes in topology and its results are
competitive with similar approaches while achieving reason-
able running times.
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Fig. 11 For each plot, we first
produce shapes

{
S(i)

}
executing

DCE with m = r . Then, for each
shape in

{
S(i)

}
, we execute one

iteration of DCE for different
values of m and we count the
unlabeled pixels. The number of
unlabeled pixels by QPBOP
remains high for lower values of
m and goes to zero when m = r .
We observe the same behavior
for varying radius values

(a)

(b)

(c)

(d)

(e)

(f)

Future developments of this work will include extending
the DCE algorithm to 3d, as the integral invariant estimator
is available in higher dimensions. As a result, a denoising

application may be derived by lifting the flow to 3d with a
data fidelity defined by image intensities or by distance to
initial position.
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Fig. 12 Comparison of squared
curvature regularization (first
row) and length regularization
(second row)
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Fig. 13 Proposed method
regularizes GrabCut [34]
contours and returns the
meaningful results. We can
observe the completion feature
of curvature in the second row,
and we do not suffer from
over-segmentation issues as
Schoenemann’s method [38].
However, our flow may stop in a
local optimum as in the fourth
row, while Schoenemann’s is
able to extrapolate such
solutions
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Fig. 14 Additional comparison
results between GrabCut [34],
Schoenemman [38] and Contour
correction segmentation
methods
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