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Abstract
In this paper, we study three basic novel measures of convexity for shape analysis. The convexity considered here is the
so-called Q-convexity, that is, convexity by quadrants. The measures are based on the geometrical properties of Q-convex
shapes and have the following features: (1) their values range from 0 to 1; (2) their values equal 1 if and only if the binary image
is Q-convex; and (3) they are invariant by translation, reflection, and rotation by 90 degrees. We design a new algorithm for
the computation of the measures whose time complexity is linear in the size of the binary image representation.We investigate
the properties of our measures by solving object ranking problems and give an illustrative example of how these convexity
descriptors can be utilized in classification problems.

Keywords Shape descriptor · Shape analysis · Convexity measure · Q-convexity · Algorithms

1 Introduction

Techniques of shape analysis are widely applied in various
fields of computer vision, e.g., in object classification, image
segmentation, and simplification. The use of shape descrip-
tors and the development of new measures for descriptors
in shape analysis is a current topic of broad interest [15].
Recentworks develop sophisticated recognitionmethods and
powerful machine learning approaches for dealing with the
challenge of classification of deformation, occlusion and
view variation of the images [1,26]. Differently from these
approaches, in this paper, we propose a very easy shape rep-
resentation by a scalar convexity measure. The advantage of
this approach is that it is computationally extremely efficient.
Our method can be used for classification of suitable datasets
as well as a basic step of solving more complex issues.

Convexity measures and their applications are studied in
several paperswhich canbegrouped into different categories:
area-based measures form one popular category [8,24,25],
while boundary-based ones [27] are also frequently used.
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Other methods use simplification of the contour [19], a
probabilistic approach [22,23] or fuzzy set theory and math-
ematical morphology [21] to measure convexity. In discrete
geometry, and especially in discrete tomography, a natural
notion of convexity is provided by the horizontal and verti-
cal convexity (shortly, hv-convexity), arising inherently from
the pixel-based representation (and the notion of neighbor-
hood) of the digital image (see, e.g., [6,12]). A first attempt
to define a measure of directional (horizontal or vertical)
convexity was studied in detail in [2]. Independently, the
authors of [16,17] came to the same idea, to use the degree of
directional convexity as a shape prior in image segmentation.
However, in [2], the authors showed also that the aggregation
of the horizontal and vertical convexity measures to obtain a
combined hv-convexity measure is challenging. On the other
hand, a one-dimensional measure can be derived easily from
a two-dimensional convexity measure, being the former a
special case of the latter.

A fruitful approach, introduced in [3], was to define an
immediate “two-dimensional” convexity measure, based on
the concept of Q-convexity (see, e.g., [11]). Mostly stud-
ied in discrete tomography, this kind of convexity permits to
generalize hv-convexity to any two directions. Moreover, for
the class of Q-convex binary images analogue properties and
results can be proven to those of the class of convex binary
images. In [3], the basic idea to define Q-convexity estima-
tors was to exploit the geometrical description of the binary
image provided by so-called salient and generalized salient
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points [13,14], and the notion of “Q-convex hull.” Then, in
[4], the authors extended their work by including weighting
of the generalized salient points, while in [5] they investigate
a vector descriptor for the hierarchy of generalized salient
points.

In this paper, we define four descriptors based on [3], and
we focus on the algorithmic aspects. Based on a better under-
standing of the properties of (generalized) salient points (see
Sect. 3), we design a new one-scan algorithm (implemen-
tation details are given in Sect. 4) to compute the measure
of Q-convexity with respect to the horizontal and vertical
directions, which runs in linear time in the size of the image
and thus outperforms the algorithm in [3] and speeds up also
the computation of the descriptor in [4] and [5]. In addi-
tion, we generalize the algorithm to compute measures of
Q-convexity with respect to any couple of directions.

In Sect. 5, we test our shape descriptors on the datasets
in [23]. This choice allows us to evaluate our shape descrip-
tors in view of another one measuring similar characteristics,
since that of [23] is based on a (total) convexity measure. In
particular, we assess sensitivity using a set of synthetic poly-
gons with rotation and translation of intrusions/protrusions
and global skew; we investigate a ranking issue using a vari-
ety of shapes; and finally, we conduct an image classification
experiment using a dataset of 43 algae (taxon Micrasterias).
In these experiments, our shape measures correctly incorpo-
rate the Q-convexity property (even if the rankings present
some differences) and they are sensitive to small details of
the shape, robust to noise, and, except one of them, they
are also scale tolerant. In the small-scale classification task,
we first preprocess the images to align principal axes of the
original images to the coordinate axes. This step allows us
to deal with possible rotations of the shapes. Results confirm
a good performance of the proposed measures, and a com-
bination of these shape descriptors reaches an accuracy of
76.74% in this illustrative example. Moreover, we show that
the combination of the proposed shape descriptors together
with an additional couple of directions can permit to improve
the performance of our approach.

2 Notation and Definitions

In this section, we introduce the necessary notations and
recall main definitions from [3,13] for the reader conve-
nience. We restrict the treatment to two dimensions, since
we consider (non-empty) 2D-objects. The definitions can be
easily extended to higher dimensions. Any binary image F
is an m × n binary matrix and can be represented by a set
of black (foreground) and white (background) cells/pixels
(unit squares) (see Fig. 1 left). Equivalently, black pixels can
be regarded as points of Z2; thus, any binary image F can
be viewed as a finite lattice set, denoted by F , delimited

Fig. 1 [5] A binary image F represented as black and white pixels
(left) and by a lattice set (right). The binary image F is Q-convex. For
example, all the four quadrants around M contain points of F , and in
the same time M ∈ F . Salient points are marked with red borders

by its minimum bounding rectangle R (see Fig. 1 right).
Throughout the paper, we will use both representations,
since the set notation is more suitable to describe geomet-
rical properties. Images are illustrated as sets of black and
white pixels. For our convenience, we use F for both the
image and its representation when not confusing. In this con-
text, the complement of F (denoted by Fc) is defined as
the complement of its pixel values reversing foreground and
background pixels and corresponds in the lattice representa-
tion to Fc = R \ F .

Even if our results hold for any pair of lattice directions,
in order to simplify our explanation, let us consider the hor-
izontal and vertical directions, and denote the coordinates of
any point M of Z2 by (xM , yM ). Then, M and the directions
determine the following four quadrants (see Fig. 1):

Z0(M) ={N ∈ Z
2 : xN ≤ xM , yN ≤ yM } ,

Z1(M) ={N ∈ Z
2 : xM ≤ xN , yN ≤ yM } ,

Z2(M) ={N ∈ Z
2 : xM ≤ xN , yM ≤ yN } ,

Z3(M) ={N ∈ Z
2 : xN ≤ xM , yM ≤ yN } .

Definition 1 [13] A binary image F is Q-convex if and only
if Z p(M) ∩ F �= ∅ for all p = 0, . . . , 3 implies M ∈ F .

By definition, if F is Q-convex and M /∈ F , a quadrant
Z p(M) exists such that Z p(M)∩ F = ∅. Figure 1 illustrates
the above concepts. There, the image F is Q-convex, while
removing point M from F , F \ {M} is no longer Q-convex,
as all four quadrants around M are then non-empty, and still
M /∈ F . Note that a Q-convex image is also convex along
the horizontal and vertical directions. On the other hand, if
CH(F) denotes the convex hull of a Q-convex lattice set F ,
then CH(F) ∩ Z

2 = F does not always hold, i.e., F (or
equivalently, F) is not necessarily digitally convex. For an
arbitrary point M , if Z p(M) ∩ F = ∅, we say that Z p(M) is
a background quadrant (in M) of F .
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2.1 AMeasure Based on theQ-convex Hull

The Q-convex hull of F can be found by studying the min-
imal set of points to be added to the lattice set F in order to
obtain a Q-convex image:

Definition 2 [13] The Q-convex hullQ(F) of a binary image
F is the set of points M ∈ Z

2 such that Z p(M) ∩ F �= ∅ for
all p = 0, . . . , 3.

Therefore, ifF is Q-convex then F = Q(F). On the other
hand, if F is not Q-convex, then Q(F) \ F �= ∅. Moreover,
if F ⊆ G ⊂ Z

2, then Q(F) ⊆ Q(G).
Denote the cardinality of F andQ(F) by αF and αQ(F),

respectively. Inspired by the classical area-based convexity
measure proposed in the literature, we can define a Q-
convexity measure as follows:

Definition 3 [3] For a given binary imageF , its Q-convexity
measure Θ(F) is defined to be Θ(F) = αF/αQ(F).

Figure 2a and b shows a binary image F and its Q-convex
hull, respectively. For this image Θ(F) = 32/40 = 0.8.

SinceΘ(F) equals 1, ifF is Q-convex, and αQ(F) ≥ αF ,
this measure ranges in (0, 1]. A major drawback of this area-
based measure is that it does not detect defects in the shape
which do not affect the size of αF and αQ(F). For example,
the images presenting intrusions in Fig. 16 receive the same
score since they have the same number of object points and
their Q-convex hulls are also of the same size. However,
the skew intrusion has a different impact from the viewpoint
of Q-convexity than other intrusions have. Therefore, we
define a newmeasure in between region- and boundary-based
measures.

2.2 Measures Based on Salient Points

Definition 4 [13] Let F be a binary image. A point M ∈ F
is a salient point of F if M /∈ Q(F \ {M}).
By definition, there follows that M is a salient point of
F if and only if there exists p ∈ {0, 1, 2, 3} such that
Z p(M) ∩ F = {M} (see [13]). Consequently, every salient
point M identifies background quadrants of Q(F) minus M
itself. Denote the set of salient points of F by S(F). Of
course S(F) = ∅ if and only if F = ∅. In particular, Daurat
proved in [13] that the salient points ofF are the salient points
of the Q-convex hull Q(F) of F , i.e., S(F) = S(Q(F)).
Therefore, if F is Q-convex, its salient points completely
characterize F [13]. If it is not, then there are points belong-
ing to the Q-convex hull of F but not to F that “track” the
non-Q-convexity of F . These points are called generalized
salient points (abbreviated by g.s.p.) [13]. The set of g.s.p.
Sg(F) of F is obtained by iterating the definition of salient
points on the sets obtained each time by discarding the points
of the set from its Q-convex hull, i.e., using the set notation:

Fig. 2 a A binary image F , b its Q-convex hull Q(F) as a set of dark
and light gray pixels, c the salient points S(F) of F colored red, and d
the set Sg(F) of the generalized salient points of F (see also Fig. 10)

Definition 5 [13] If F is a binary image, then the set of its
generalized salient points Sg(F) is defined by Sg(F) =
⋃kmax

k=1 S(Fk), where F1 = F , Fk+1 = Q(Fk) \ Fk , and kmax

is the smallest integer for which Q(Fkmax) \ Fkmax = ∅ (i.e.,
Fkmax is Q-convex).

Note that Q(Fk) ⊃ Q(Fk+1), since Q(Fk+1) = Q(Q(Fk) \
Fk) and S(Fk) = S(Q(Fk)). By definition, S(F) ⊆ Sg(F)

and equality holdswhen F is Q-convex.Moreover, the points
ofSg(F) are points of subsets ofQ(F), thusSg(F) ⊆ Q(F).

We now define two Q-convexity measures. The first one,
Ψ1(F), measures the Q-convexity of F in terms of propor-
tion between salient points and g.s.p.

Definition 6 [3] For a given binary imageF , its Q-convexity
measureΨ1(F) is definedbyΨ1(F) = αS(F)/αSg(F),where
S(F) andSg(F) denote the sets of its salient and generalized
salient points, respectively.

Figure 2 presents a binary image F togetherwith its salient
points and generalized salient points. In this case, Ψ1(F) =
8/20 = 0.4.

Note that the measure Ψ1 is purely qualitative, since it is
independent from the size of the image. For instance, con-
sider a framewhich is defined as a binarymatrix having items
equal to 1 in the first row and column, and in the last row and
column, and 0 elsewhere: it has always measure equal to
4/8 = 1/2, regardless its size. Moreover we will experimen-
tally show in Sect. 5 that it is scale invariant. If most of the
g.s.p. are also salient points, then F is close to be Q-convex.

The secondmeasure,Ψ2(F), takes salient points and g.s.p.
with respect to the Q-convex hull of the image into account.

Definition 7 [3] For a given binary imageF , its Q-convexity
measure Ψ2(F) is defined by

Ψ2(F) = αQ(F) − αSg(F)

αQ(F) − αS(F)

,

whereQ(F) denotes its Q-convex hull and S(F) and Sg(F)

denote the set of its salient points and g.s.p., respectively.

Taking again a look at Fig. 2, we can calculate that
Ψ2(F) = (40 − 20)/(40 − 8) = 0.625.
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The Q-convexity measure Ψ2(F) can be rewritten as

1 − αSg(F) − αS(F)

αQ(F) − αS(F)

that is, in fact it measures the defect of Q-convexity. We
point out that we must have S(F) ⊂ Q(F) in the definition
ofΨ2(F). Notice thatS(F) = Q(F) can hold only for binary
images of size 2× 2 or smaller and in these cases, evidently,
Sg(F) = Q(F); thus, Ψ2(F) would be undefined. In these
cases, the images are Q-convex; therefore, we set Ψ2(F) =
1.

Since S(F) ⊆ Sg(F) ⊆ Q(F), both Ψ1 and Ψ2 range
from0 to 1 and they are equal to1 if andonly ifF is Q-convex.
In particular, for Ψ1(F), there are examples where Sg(F) =
Q(F) (for instance in the chessboard configuration); thus, the
ratio decreases in inverse proportion of the size ofQ(F). For
Ψ2(F), in the same case, we get exactly 0. Moreover, since
αS(F), αSg(F), and αQ(F) are invariant under translation,
reflection, and rotation by 90 degrees for the horizontal and
vertical directions, the measures are also invariant.

In order to incorporate quantitative information involving
also the number of foreground pixels of the image, we pro-
pose in addition to make the previous measure dependent on
Θ(F). Among the possible ways to do this, we note that

Θ(F) − Θ(F)
αSg(F) − αS(F)

αQ(F) − αS(F)

is a defect measure on Θ . Therefore, we decided to
study Ψ ′

2(F) = Θ(F)Ψ2(F), and analogously, Ψ ′
1(F) =

Θ(F)Ψ1(F).

3 Properties

By definition, the set of generalized salient points is com-
puted by iterating the computation of salient points on
Q(Fk) \ Fk until the set reduces to the empty set. A naive
algorithm requires to compute the salient points of an image,
its Q-convex hull and set difference, to determine the succes-
siveFk . Fixed the iteration, this can be done in linear time in
the size of the image but using a storage of two-dimensional
arrays for each of the four quadrants Z p, for Sp, and for each
point of the image Fk (see Section 3 of [3]). Moreover the
number of iterations is bounded by the size ofQ(F), so that
the computation of generalized salient points is quadratic in
the worse case. In this section, we detect properties of the
Q-convex hull, not studied anywhere else before. Based on
these properties, we design a new algorithm that is efficient
in time and space.
LetF be a binary image. Let us recall that, by Definition 1,F
is Q-convex iff there exists at least one background quadrant

Z p(M) for every pixel M in the background of F (i.e., in
Fc).

Proposition 1 The Q-convex hull of a binary image F is the
complement of the union of the background quadrants of F .

Proof If P ∈ Q(F), then it cannot belong to any back-
ground quadrant of F . Indeed it is trivial if P ∈ F . Else
if P ∈ Q(F) \ F , by definition all the quadrants for P have
non-empty intersection with F . There follows that Q(F) is
contained in the complement of the union of the background
quadrants of F . Vice versa, if P /∈ Q(F), then P belongs
to Fc and there exists p ∈ {0, . . . , 3} such that Z p(P) is a
background quadrant. This implies that Q(F) contains the
complement of the union of the background quadrants. �


By Proposition 1, the Q-convex hull of a binary image can
be computed by looking at the background quadrants of the
image.

By definition of the quadrants, if N ∈ Z p(M), then
Z p(N ) ⊂ Z p(M) (p = 0, 1, 2, 3). In particular, we can
define the set of the two neighbors of M which maximize the
inclusion. More precisely, for p = 0, we define Neigh0(M)

as the set of points {(xM , yM − 1), (xM − 1, yM )}, where
M = (xM , yM ). Analogously, we can define Neigh1(M),
Neigh2(M), Neigh3(M). Denote Sp(F) = {M ∈ F :
Z p(M) ∩ F = {M}} (p = 0, 1, 2, 3).

Proposition 2 The point M ∈ F belongs toS0(F) if and only
if Z0(N1) ∩ F = ∅ and Z0(N2) ∩ F = ∅, where N1, N2 ∈
Neigh0(M).

Proof By definition, M is a salient point of F if and only if
Z0(M) ∩ F = {M}. Therefore, we have that M ∈ S0(F) if
and only if Z0(xM , yM −1)∩ F = ∅ and Z0(xM −1, yM )∩
F = ∅ with M ∈ F . Note that N1 = (xM , yM − 1) and
N2 = (xM − 1, yM ) are in Neigh0(M), i.e., the neighbors in
Neigh0(M) belong to background quadrants of F . �

Analogously, it can be proven that the set of salient points
Sp(F) = Sp(Q(F)) of a binary image F is constituted by
the points of F such that their neighbors in Neighp belong
to background quadrants of F (p = 0, 1, 2, 3). We get
S(F) = S0(F)∪S1(F)∪S2(F)∪S3(F). By Proposition 2
immediately follows:

Corollary 1 If M is a salient point in S0(F) (resp., S1(F)),
then Z0(xM , y) (resp., Z1(xM , y)) cannot be a background
quadrant of F for y > yM. Similarly, if M is a salient point
in S2(F) (resp., S3(F)), then Z2(xM , y) (resp., Z3(xM , y))
cannot be a background quadrant of F for y < yM.

Corollary 2 If M is a salient point in S0(F) (resp., S3(F)),
then Z0(x, yM ) (resp., Z3(x, yM )) cannot be a background
quadrant of F for x > xM. Similarly, if M is a salient point
in S1(F) (resp., S2(F)), then Z1(x, yM ) (resp., Z2(x, yM ))
cannot be a background quadrant of F for x < xM.
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In the next section, we will design a procedure to compute
salient points by means of background quadrants, processing
the image row by row, based on Proposition 2 andCorollary 1
(Corollary 2 could be used in case of processing the image
column by column).

In the rest of this section, we focus on the problem of
iterating the search of salient points on the successive Fk .

Proposition 3 Let Fk be defined as in Definition 5. The fol-
lowing two statements are equivalent:

1. The Q-convex hull of the foreground pixels ofFk contains
the Q-convex hull of the foreground pixels of Fk+1.

2. The union of the background quadrants of Fk are con-
tained in the union of background quadrants of Fk+1.

Proof Consider statement 1: the foreground pixels of Fk are
the black (resp., white) pixels, and its background pixels are
the white (resp., black) pixels, if k is odd (resp., even). There-
fore, passing to the lattice set representation, we have that
Q(Fk+1) = Q(Q(Fk) \ Fk) = Q(S(Q(Fk) \ Fk)). Since
S(Fk) = S(Q(Fk)), we deduce that Q(Fk) ⊃ Q(Fk+1), or,
equivalently, Q(Fk) ⊃ Q(Fk+1).

By Proposition 1, statement 2 follows. �

By Proposition 3 (2.), we can design an algorithm that

computes generalized salient points by scanningF just once
as illustrated in Fig. 10 (see next section). Indeed pixels of
the background quadrants of Fk visited at iteration k of the
algorithmare in the background ofFk+1 and can be discarded
by any further consideration.

4 The Algorithm

The binary imageF is represented by anm×n binary matrix
(F = ( fi j )). Therefore, in this section, we use the order of
the items in a matrix and 0 ≤ i ≤ m − 1 for indexing the
rows, and 0 ≤ j ≤ n − 1 for indexing the columns.1 The
algorithm outputs the g.s.p. of the image F and stores them
in them×n integer matrix S = (si j ) such that si j = k if and
only if the item fi j is a salient pixel of Fk .

4.1 Preliminaries

The row and column indices which limit the set of pixels of
F to be considered at a certain iteration are stored in up,
down, and le f t , right , respectively. Initially, they are set to
up = 0, down = m − 1, le f t = 0, and right = n − 1,

1 The different conventions used to indexing an item in the matrix rep-
resentation starting from the top left corner and a point in the Cartesian
coordinate system starting from the bottom left corner result in the dis-
crepancy in the indexing.

Fig. 3 Two examples of Q-convex hulls with the relative positions
of the four background quadrants. The arrows illustrate the order of
processing of the rows and columns for each quadrant

according to the size of the initial matrix F = F1. At each
iteration k, the algorithm determines the g.s.p. of the image
F by searching foreground pixels of Fk in order to compute
Sp(Fk) for p = 0, 1, 2, 3. This is performed by scanning
the matrix row by row. The boundary of Fk is described by
column indices for each row: they depend on p and are stored
in the vectors j pstart and j pend , i.e., j

p
start (i) is the start-column

index, and j pend(i) is the end-column index, for row i at the
current iteration. They are initialized as follows:

j 0start := j 3start := {0}; j 0end := j 3end := {n};
j 1start := j 2start := {n − 1}; j 1end := j 2end := {−1};

and updated in the procedures for the computation of salient
points in any row since they bound the searching region. At
the end of each iteration k, they are recalculated in the pro-
cedure SetNewLimits to provide the new boundary values
for the next iteration (see Fig. 10).

The order in which considering the rows and the items in
any row depends on the background quadrant taken into con-
sideration to compute Sp(Fk) and the order for processing
the latter is p = 0, 1, 2, 3 (see Fig. 3 and flowchart in Fig. 9).

4.2 Computation ofS

The computation of g.s.p. on row i is realized based onPropo-
sition 2. Let us focus on p = 0: rows are processed from the
bottom to the top. We are going to describe the main proce-
dure SearchRow_0 to compute S0(Fk) on row i . Proof of
correctness is shown in Theorem 1 at the end of the section.

The execution of the procedure is illustrated in Fig. 4.
The procedure SearchRow_0.

For a fixed iteration k, and row i , the procedure searches
the column index j0(i) of the first foreground pixel, with
j0start (i) ≤ j0(i) < j0end(i) (steps 3–5 of Procedure
SearchRow_0). By the inclusion property of the quadrants,
the search is performed by visiting pixels in the specified
interval from left to right until a foregroundpixel is reached—
and in this case, the corresponding item of S0 is set to k
(step 7 of Procedure SearchRow_0)—or no foreground
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1: procedure SearchRow_0( j 0start , j
0
end , i)

2: j := j 0start (i); count := count + 1; f ound :=FALSE
3: while fi j ! = k (mod 2) AND j + 1 < j 0end (i) do � search for g.s.p.
4: count := count + 1; j := j + 1
5: end while
6: if fi j ! = k (mod 2) then � g.s.p. found
7: si j := k; f ound :=TRUE; j 0end (i − 1) := j
8: else � g.s.p. not found
9: j 0end (i − 1) := j 0end (i)
10: end if
11: j 0start (i) := j + 1; � update the start-column index
12: if ( f ound AND left-top corner is reached) then � Stop condition: last g.s.p. has been found
13: return TRUE
14: end if
15: return FALSE
16: end procedure

Fig. 4 Illustrative example of the execution of the procedure
SearchRow_0 iterated in the pseudocode of Fig. 5. Each image shows
the configuration after processing row i : items visited at the current
iteration are drawn italic, and the identified g.s.p. are drawn bold; j p

start
and j p

end are colored with blue and red, respectively, green when they
coincide

pixel is found. Visited pixels are counted and their number is
stored in count2 (see step 4 of Procedure SearchRow_0).
Then, the new endpoints for the next processed row i − 1
are set using Corollary 1: If a foreground pixel is found,
j 0end(i − 1) := j0(i) (step 7 of Procedure SearchRow_0),
otherwise it remains the same as in the current row, i.e.,
j 0end(i −1) := j 0end(i) (step 9 of Procedure SearchRow_0).
In both cases, the procedure adds all the pixels on row i with
indices lower than or equal to j 0(i) to the background quad-
rant (step 11 of Procedure SearchRow_0): they have been
already visited and discarded by any further consideration
since, in the next iteration, the row will be scanned starting
from j 0start (i), leftmost column index on row i . Finally, if the
left-top corner of the boundary is reached and a foreground
pixel is found there, the procedure returns TRUE and the
algorithm proceeds by searching salient points in S1 (p = 1)
since no other g.s.p can be found in the successive rows by
Corollary 1. Figure 5 shows the fragment of pseudocode for
the computation of S0(Fk). After the call to the procedure
(step 4), j 1end and j 2end are updated at step 5, and, if the stop
condition is not satisfied, the procedure is called on the suc-
cessive row i − 1 (step 13) unless all the rows have been
already checked (i.e., i = up, step 2).

It remains to comment the case handled in steps 6–12 of
the pseudocode in Fig. 5. Indeed, because of the updating of
j 0end in the procedure (for a fixed iteration k), we can have
that j 0start (i) = j 0end(i). In this case, if a foreground pixel was
found so far (at the current iteration), the algorithm updates
j 0end(i−1) or sets STOP to true if a stop condition is satisfied.

4.2.1 Notes on the Computation ofS1,S2,S3

Procedures analogous to SearchRow_0 can be written
for computing S1(Fk), S2(Fk), and S3(Fk) in a row,
we refer to them as SearchRow_1, SearchRow_2 and

2 This number provides the condition of termination of the algorithm
(see Fig. 9)
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Fig. 5 Computation of S0(Fk)

Fig. 6 Possible cases for boundary stop conditions. In blue, the part
of two consecutive rows not already visited during the current step.
Left-top: the left-bottom corner has been reached in the search for S3;
Right-top: the right-bottom corner has been reached in the search for
S2; Left-bottom: the left-top corner has been reached in the search for
S0; Right-bottom: the right-top corner has been reached in the search
for S1

SearchRow_3, accordingly. We point out that if p =
1, 2 the search interval is j pend(i) < j p(i) ≤ j pstart (i),
visited from right to left, and the successor of row i
in the order of processing is i − 1 for p = 1 and
i + 1 for p = 2. If p = 3 the search interval is
j3start (i) ≤ j3(i) < j3end(i) scanned from left to right,
and the successor of row i in the order of processing is
i + 1.

The stop conditions, for every case, are illustrated in Fig. 6
and the pseudocodes are listed in Fig. 7. For example, in
the case of the computation of S0, the left-top corner of the
boundaryFk is reached when the configuration shown in the
left-bottom hand happens: rows i − 1 and i are illustrated
and the arrow links the two considered items of column j .
Indeed no salient pixels can be found on the right of j , i.e.,
if j 0start (i − 1) > j 0end(i) for j = j 0end(i), or si j = k AND
j = le f t , by Corollary 1. Similarly the other cases can be
explained.

Fig. 7 Stop conditions to the search of a forward pixel in any row. Left-
top: instructions used in the computation of S0; right-top: instructions
used in the computation of S1; left-bottom: instructions used in the
computation of S2; right-bottom: instructions used in the computation
of S3

Fig. 8 Update end-limits for row i during the current iteration k. First
instruction is used in the computation of S0, second in the computation
of S1, third in the computation of S2, and fourth in the computation of
S3

For completeness, we report the updating of the end-limits
for row i during the current iteration k in Fig. 8. We can rec-
ognize the instruction at step 5 of the pseudocode in Fig. 5
for the computation of S0(Fk).

Finally, let us focus on the conditions of the while-loop
iterating the procedure SearchRow_p, for p = 1, 2, 3. In
case of p = 0, the condition is i ≥ up (see Fig. 5 step
2). Same condition holds for the procedure SearchRow_1,
since rows are considered from down to up. Differently,
rows are considered in the opposite order for the com-
putation of S2 and S3. So, in these cases i ≤ down.
Actually, since the computation of S2 and S3, follow the
computation of S0 and S1 (see the flowchart in Fig. 9),
rows already visited provide an upper bound to the rep-
etition of the calls of the procedure SearchRow_2 and
SearchRow_3. To this aim, row-indices i0, i1 store the
index of the last g.s.p. found at the current iteration k
during the computation of S0 and S1, respectively. There-
fore, the conditions of the while-loops are i > i1 for the
repetition of SearchRow_2, and i > i0 for the repeti-
tion of SearchRow_3. Indices i2, i3 store the index of
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Fig. 9 Flowchart of the
algorithm

the last row already visited during the last computation of
S2, S3, respectively, with the constraint that i3 < i0 and
i2 < i1.

4.3 Setting New Limits

At the end of each iteration, the algorithm sets the new limits
for the next iteration.

During a current iteration k, the case in which all the items
in a row have been visited can arise. The indices of the afore-
mentioned rows are in correspondence with the indices of
a Boolean vector empty_row such that empty_rowi=TRUE
if and only if all the items of row i have been visited.
This permits to easily compute the row-limits up and
down of Fk+1 since if empty_row(up)=TRUE, then up is
increased, and if empty_row(down)=TRUE, then down is
decreased.

Then, the algorithm sets the endpoints boundingQ(Fk+1)

⊂ Q(Fk \S(Fk)) by j pstart and j pend .More precisely, leftmost
items are indexed by columns:

j3start (i), with up ≤ i ≤ i3,
le f t , with i3 < i < i0, possibly empty,
j0start (i), with i0 ≤ i ≤ down;

while rightmost items are indexed by columns:

Fig. 10 Illustrative example of the algorithm for finding g.s.p. in the
iterations (k = 0, 1, 2, 3, 4, 5) in case of the image shown in Fig. 2a.
Each image shows the configuration at the end of iteration k: identified
g.s.p. in the current iteration are drawn bold; j p

start and j p
end are colored

with blue and red, respectively, and they provide the boundary for next
iteration (k + 1)

j2start (i), with up ≤ i ≤ i2,
right , with i2 < i < i1 possibly empty,
j1start (i), with i1 ≤ i ≤ down,

since i3 < i0 and i2 < i1. The procedure SetNewLim-
its assigns the values of j pstart (i) in the whole interval,
i.e., j0start (i) = j3start (i), and j1start (i) = j2start (i), and
sets j0end(i) = j3end(i) = j1start (i) + 1 and j1end(i) =
j2end(i) = j0start (i) + 1, up ≤ i ≤ down, and reset values
for i0, i1, i2, , i3 for next iteration k + 1. This is necessary,
since the end-limits must be set for every row in between
[up, down].
As a summary, we report in Fig. 9 the flowchart of the algo-
rithm described: after the initialization step, the algorithm
iteratively performs the search of g.s.p. in Sp(Fk) in the
order p = 0, 1, 2, 3 until all the items of F have been vis-
ited (count = mn). Figure 10 illustrates the execution of the
algorithm.
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Fig. 11 Binary image constituted by one row. The g.s.p. are marked
by red borders, the iteration step they are found in are given under the
pixels

4.4 A Toy Example

For a complete toy example of a binary image of size 1× 22
consider Fig. 11. We use the notation j k,pstart (i), j k,pend (i),
j k,p(i) to follow the evolution for k and p. In the first iter-
ation (k = 1), the algorithm starts with p = 0, and sets
j 1,0start (i) = 0, and j 1,0end (i) = 22. In this case, i = down =
up = 0, and the procedure SearchRow_0 determines
j 1,0(0) = 2 (corresponding to the first g.s.p. found in the
row), and sets j 2,0start (0) = j 1,0(0)+1 = 3 (step 11). Then the
algorithm updates the end-limit j 1,1end (0) = j 2,0start (0)− 1 = 2
(step 5 in Fig. 5, or Fig. 8). Since there is only one row,
the while-loop of Fig. 5 stops with i = −1 < up = 0,
and the algorithm proceeds by processing p = 1: we have
j 1,1start (0) = 21 and the procedure SearchRow_1 finds
j 1,1(0) = 20, and sets j 2,1start (0) = j 1,1(0) − 1 = 19.
Then, the end-limit is updated j 2,0end (0) = j 2,1start (0) + 1 = 20
(Fig. 8). Since the image is constituted by just one row,
i3 < i0 = 0 and i2 < i1 = 0, so that the algorithm skips the
blocks for the computation of S2 and S3, and then updates
le f t = 2 and right = 20. In the next iteration (k = 2),
j 2,0(0) = 3 and j 2,1(0) = 19, and so on, until all the pix-
els have been visited. We point out that the algorithm does
not execute the while-instructions for p = 2, 3 (on the same
row) to avoid visiting the same pixels twice.

4.5 Correctness and Complexity

Theorem 1 The algorithm computes Sg(F) in linear time in
the size of the binary image F .

Proof In a generic iteration k, the algorithm computes
S(Fk) = S(Q(Fk)). This can be done by determining, based
on Proposition 1, the background quadrants of Fk to get
Q(Fk). Background quadrants of Fk permit to get S(Q(Fk))
based on Proposition 2, since the salient points of Fk are the
foreground pixels with neighbors in Neighp which belong to
background quadrants of Fk . The algorithm computes them
by processing the matrix row by row. Let p = 0: we prove
that for every row i , if a foreground pixel is found on col-
umn j , then it is a g.s.p., i.e., Z0(i + 1, j) ∩ Fk = ∅, and
Z0(i, j − 1) ∩ Fk = ∅. We prove the statement by induction
on i .
Base step: consider the first processed row of index i =
down:

– If the procedure finds a foreground pixel in column j ,
Z0(down, j −1) is a background quadrant since it is the
interval [ j0start (down), j) of row down which contains
only items in the background (as j is the first foreground
pixel). In this case Z0(down + 1, j) = ∅, and there
follows that the item in position (down, j) is a g.s.p. of
Fk .

– If no foregroundpixel is found, Z0(down, j0end(down))∩
Fk = ∅.

By induction hypothesis, consider row i = h:

– If a foreground pixel is found in column j , it is a g.s.p.
and Z0(h+1, j)∩Fk = ∅, and Z0(h, j−1)∩Fk = ∅. By
j0end(h−1) = j , we get Z0(h, j0end(h−1)−1)∩Fk = ∅.

– If no foreground pixel is found, j0end(h − 1) = j0end(h),
and so Z0(h, j0end(h − 1) − 1) ∩ Fk = Z0(h, j0end(h) −
1) ∩ Fk = ∅.

Consider now the successive row i = h − 1: If a fore-
ground pixel is found in column j < j0end(h − 1) we have
for its neighbors in Neigh0: Z0(h, j − 1) ⊂ Z0(h, j) ⊂
Z0(h, j0end(h − 1) − 1) that is a background quadrant by the
induction assumption, and Z0(h − 1, j − 1) \ Z0(h, j −
1) = [ j0start (h − 1), j − 1) contains only items in the
background (since j is the first foreground pixel) so that
Z0(h − 1, j − 1) ∩ Fk = ∅. There follows that the item in
position (h − 1, j) is a g.s.p. of Fk .

Moreover notice that for every row i we can easily show
that, by Corollary 1, no g.s.p. in S0 can exist in the columns
with indices greater than j (if j is the foreground pixel found
on row i) or j0end(i) (if no foreground pixel is found in the
given interval) for all row i ′ < i , so that all the g.s.p. are
determined.

Analogously, it can be proven that the algorithm computes
correctly S1(Fk), S2(Fk), and S3(Fk).

At the end of each iteration k, by Proposition 1, the sub-
set of items not already visited constitute the Q-convex set
Q(Fk) \ S(Fk) bounded by the row- and column-limits up,
down, le f t and right , and by the column-indices in vectors
j pstart (p = 0, 1, 2, 3). By Proposition 3, the search proceeds
visiting the items in Q(Fk) \ S(Fk) ⊃ Fk+1 so that, in the
next iteration k+1, the algorithm computes the salient points
of Fk+1. Finally, the algorithm stops when all the items have
been visited (count = mn) corresponding to Fk+1 = ∅.

By the previous description, the algorithm is correct.
The time complexity of the algorithm is linear in the image
size. Indeed, the algorithm iteratively executes the blocks
for the computations of Sp(Fk) until count < mn (see the
flowchart in Fig. 9). The complexity of each block is given by
the complexity of the procedure for searching forward pixels
in any row, that, in turn, depends on the visited pixels. The
key point is that for each visited item a fixed number of oper-
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ation is done, and it is sufficient to scan the image just once.
To see that each pixel is investigated only once, fix p, and for
any row index i , starting from j pstart (i), the column index j is
incremented for p = 0, 3 (resp., decremented for p = 1, 2)
until a g.s.p is found, i.e., j ′ = j p(i) or j ′ = j pend(i) − 1
(resp., j ′ = j pend(i) + 1) is reached; then j pstart (i) is updated
to j ′ so that, in the next iteration, items with column index
j > j ′ (resp., j < j ′) are considered. Since count is incre-
mented in the procedures computing salient points and never
decremented, the algorithm runs in linear time in the size
of the binary image. Note that the procedure SetNewLimits
scans consecutive items in [up, down]of amonodimensional
array so that globally the complexity is also bound byO(mn).
�

There follows that the measures Ψ1 and Ψ2 can be computed
in the same time complexity.

4.6 General Directions

Here, we treat the general case of measuring Q-convexity
along two arbitrary prescribed lattice directions r = λr x +
μr y and q = λq x +μq y. Let us denote by 〈i, j〉r ,q the point
M which satisfies r(M) = i and q(M) = j . We point out
that if δ = | det(r , q)| = |λrμq−λqμr | �= 1, the intersection
of an r -line and a q-line is not always in Z

2 so that 〈i, j〉r ,q
may be a point of Q2. The definition of the four quadrants
for the two directions r and q in M = 〈i, j〉 becomes the
following:

Z0(〈i, j〉) ={〈i ′, j ′〉 ∈ Z
2 : i ′ ≤ i and j ′ ≤ j)} ,

Z1(〈i, j〉) ={〈i ′, j ′〉 ∈ Z
2 : i ′ ≥ i and j ′ ≤ j} ,

Z2(〈i, j〉) ={〈i ′, j ′〉 ∈ Z
2 : i ′ ≥ i and j ′ ≥ j} ,

Z3(〈i, j〉) ={〈i ′, j ′〉 ∈ Z
2 : i ′ ≤ i and j ′ ≥ j} .

Let us define

rmin =min{i : r(M) = i, M ∈ F} ,

rmax =max{i : r(M) = i, M ∈ F} ,

qmin =min{ j : q(M) = j, M ∈ F} ,

qmax =max{ j : q(M) = j, M ∈ F} .

Then, F is contained in

{〈i, j〉r ,q ∈ Z
2 : pmin ≤ i ≤ pmax, qmin ≤ j ≤ qmax}.

Let m′ = rmax − rmin + 1, n′ = qmax − qmin + 1.
We implement the binary image as an enhanced matrix of
size m′ × n′, where r -lines and q-lines are the rows and the
columns of the matrix, the foreground pixels are 1 items, the

backgroundpixels are 0 items and all the other items are−1’s.
Note that −1 items correspond to points not in Z

2 which,
in turn, do not correspond to any pixel of the image. Thus,
they can be simply omitted during the processing. This trick
permits to extend the previous algorithms in a straightforward
way.

5 Experimental Results

We implemented the algorithm in C language. The pro-
gram is available at http://www.inf.u-szeged.hu/~pbalazs/
ImageAnalysis/Q-convexity.htm.

To investigate the properties of our measures, we con-
ducted different kinds of experiments following tests and
datasets in [23]. We refer to [23] because our measures
present similar properties to the descriptors proposed by
Rosin and Žunić, and in that way, similar experiments are
suitable for testing and comparison. In all the experiments,
we used the images with original sizes, however, we rescaled
them in the figures for better presentation quality. The con-
vexity values were calculated up to six digits. In the figures
and tables, these are rounded to four digits.

For a ranking problem and to investigate scale invariance
and robustness to noise, we used the 14 shapes in Fig. 12.
These images have varying sizes in both dimensions between
100 and 500 pixels. In the second experiment, we used the 9
synthetic shapes of Fig. 16 presenting rotation and transla-
tion of intrusions/protrusions and global skew for assessing
sensitivity. The shapes are of sizes between 315 × 315 and
315× 555, except the skew image (last shape in the first row
of Fig. 16) which is of size 734 × 1095. Finally, we used a
dataset of 43 algae (taxon Micrasterias) images with vary-
ing squared sizes between 258 × 258 and 957 × 957, for a
classification problem (see Fig. 17).

5.1 Sensitivity, Robustness, Scale Invariance

In this experiment, we computed the directional convexity
measures (see Fig. 12) and the (two dimensional) Q-
convexity measures (see Fig. 13) to a variety of shapes.
The directional convexity measures can be directly obtained
restricting the measures to lines and dividing by the number
of lines for normalization.We ranked the shapes into ascend-
ing order to highlight the behavior of themeasures.As clearly
shown in the figures, the Q-convexity measures do not just
average the values of the directional measures. Indeed, they
yield a more complex combination of them.

Let us notice that all the measures assign correctly value 1
to the rectangle and leg images, even if there are some differ-
ences in the ranking.Thewiggle rectangle image (12-th shape
in the first row of Fig. 12)—which is horizontally convex but
vertically not—receives a high (1) or lower score accord-
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Fig. 12 Shapes ranked into ascending order by the horizontal (Ψ h
1 and Ψ h

2 ) and vertical (Ψ v
1 and Ψ v

2 ) directional convexity measures, from top to
bottom, respectively

Fig. 13 Shapes ranked into ascending order by the Q-convexity measures Ψ1, Ψ ′
1, Ψ2, and Ψ ′

2, from top to bottom, respectively

ingly, and lower values also in Fig. 13 where Q-convexity
is evaluated. In general, since the measures are based on the
boundary and the interior of the image, they are sensitive to
deep intrusions (see also next subsection) by assigning lower
values to them (see first and second shapes in the first row of
Fig. 13). Finally, note thatΨ ′

1 andΨ ′
2 depend on the quantita-

tive factor Θ . This is less evident (in this case) for Ψ ′
1 as the

corresponding order consists in a small rearrangement of the
shapes with respect to Ψ1, whereas for Ψ ′

2 this results clearly
in the corresponding order (see, e.g., the second image in the
last row of Fig. 13).

For investigating robustness to noise, we also generated
distorted versions of the original images following exactly
the same strategy as in [22], for the same size of images. We
added salt-and-pepper noise to the images where a param-
eter p controlled the probability an image pixel is inverted.
Then, we kept only the largest connected black component
and filled all the white components (holes) having area less
than 20 pixels. In this way, there is only a very low proba-
bility of changing the interior of the object or creating small
components in the background. Thus,with a high probability,
only the boundary of the object is affected (see Fig. 14).
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Fig. 14 The spiral image of Fig. 12 with a moderate (p = 0.05, left)
and a high amount (p = 0.25, right) of noise

Table 1 Spearman ranks of the different Q-convexitymeasures accord-
ing to the noise level

Noise level Ψ1 Ψ ′
1 Ψ2 Ψ ′

2

p = 0.01 0.9912 0.9956 0.9956 0.9912

p = 0.02 0.9868 0.9956 0.9868 0.9956

p = 0.03 0.9824 0.9912 0.9780 0.9956

p = 0.04 0.8857 0.9692 0.9692 0.9956

p = 0.05 0.8109 0.9385 0.9429 0.9956

p = 0.10 0.8065 0.9077 0.8989 0.9912

p = 0.15 0.7582 0.8945 0.7143 0.9868

p = 0.20 0.7714 0.8198 0.7978 0.9780

p = 0.25 0.7187 0.7934 0.6396 0.9297

We ranked the images according to theQ-convexity values
of their noisy versions. To compare the rankings achieved in
different ways, we used the Spearman rank defined as

1 −
∑ 6(ro(X) − rd(X))2

n(n2 − 1)
,

where ro(X) and rd(X) are the rank of the original and
distorted image, respectively. Spearman rank is always a
value in [−1, 1] and it is close to 1 when the two com-
pared rankings are similar. Table 1 reports the results.
We found all four measures to be robust against a mod-
erate amount of noise. Especially, Ψ ′

2 turned out to be
extremely tolerant of even a high amount of noise. The
reason that Ψ ′

1 and Ψ ′
2 achieved in this test better values

than Ψ1 and Ψ2, respectively, is that the former measures
take into account also the area of the object, thus they
are less sensitive to perturbations on the border of the
object.

We also investigated scale invariance. This time, we omit-
ted the two fully convex images (they are clearly scaleable
without loosing convexity). Taking the vectorized versions
of the remaining 12 original images, we digitized them on
different scales (64× 64, 128× 128, 256× 256, 512× 512,
and 1024 × 1024). Then, for each image, we computed
the Q-convexity values. Figure 15 shows the trends of the

convexity values for each image. The trend lines belong-
ing to the measures Ψ1 and Ψ ′

1 are close to horizontal
from which we deduce scale invariance of these measures.
Indeed, their definition is based on the ratio of salient
and generalized salient points of an image (calculated by
quadrants) which does not significantly change during scal-
ing.

Taking a look at the graph of Ψ2, we observe that the
trend is not horizontal, in higher resolutions the values
are generally close to 1. The reason is that, by definition,
Ψ2 is affected by the ratio of the size of the Q-convex
hull, and the number of (generalized) salient points. The
higher the resolution is, the bigger (in terms of number
of points) the Q-convex hull is, whereas the number of
(generalized) salient points do not drastically change. By
definition, Ψ2 provides small values for images such that
the number of pixels of the Q-convex hull and the number of
g.s.p. are close. This happens for configurations like chess-
board (Ψ2 = 0), and for example, for salt-and-pepper noisy
images.

Thus, in general, Ψ2 is not scale-invariant. However, this
property can be even beneficial as it allows us to mea-
sure convexity on different scales, and thus to distinguish
between images by using image pyramids. Nevertheless,
Ψ ′
2 can compensate scale-sensitivity, by taking also the

area of shape into account, and, in the same time, it also
mitigates the problem that the values of Ψ2 are close to
1.

5.2 Sensitivity to Rotation, Translation of
Intrusions/Protrusions

In this experiment, we use the set of synthetic polygons to
show how the measures behave in case of rotation, transla-
tion of intrusions/protrusions and global skew. Results are
illustrated in Fig. 16 and give evidence that the measures are
invariant under translation of intrusions and protrusions (see,
e.g., the third and fourth images, and the sixth and seventh
images, with respect to Ψ1), and are sensitive to rotations
of angles different from 90 degrees (compare, e.g., the first
image to the third one, and the sixth image to the eighth one,
with respect to Ψ1).

Concerning Ψ2, we may notice in addition that the val-
ues are close to each other so that just a small difference may
change the order. TheΘ descriptor gives a quantitative infor-
mation of the images and assigns the same value to all the
intrusions images, since they have same sizes and also their
Q-convex hulls are of the same size. Although the measures
rank differently the shapes, we can observe that they assign
in general a low value to images with intrusions and higher
values to images with protrusions.

For this dataset, the ranking obtained by Ψ ′
1 is the same as

that for Ψ1. Measure Ψ ′
2 gives also the same ranking as Ψ1,
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Fig. 15 Trends of convexity values of images in Fig. 12 as they depend on the resolution of the image

Fig. 16 Synthetic shapes ranked into ascending order by shape mea-
sures Ψ1, Ψ2, and Θ (from top to bottom, respectively)

except that it swaps the fifth and eight image of the first row
of Fig. 16.

Fig. 17 Some of the 43 desmids, one for each class, ordered by Ψ1

5.3 A Classification Problem

In the last experiment, we illustrate how to use the shape
measures to perform an image classification task, on the
dataset of images in [23] constituted by 43 types of algae,
called desmids (taxon Micrasterias) with 4–7 drawings for
each of eight classes. In this small-scale classification task,
the desmid images present several narrow indentations to
show the sensitivity and effectiveness of our descriptors. One
shape for each class is illustrated in Fig. 17. We use again
the images in their original sizes and preprocess them to deal
with rotation dependency: first we compute the orientation
of the principal axis by the second central moment, and then
we rotate the image accordingly to obtain an image having
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Table 2 Classification accuracy for 43 desmids

Measures Accuracy

Ψ2 39.53%

Ψ2, Ψ ′
2 48.83%

Ψ1, Ψ2, Ψ ′
2 51.16%

Ψ ′
1, Ψ ′

1(d1, d2) 48.83%

Ψ ′
1, Ψ ′

2, Ψ ′
1(d1, d2), Ψ ′

2(d1, d2) 65.11%

Ψ ′
1, Ψ2, Ψ ′

2, Ψ ′
1(d1, d2), Ψ2(d1, d2), Ψ ′

2(d1, d2) 69.76%

Ψ1, Ψ1(d1, d2), Ψ ′
1(d1, d2), Ψ2(d1, d2), Ψ ′

2(d1, d2) 76.74%

Ψh 30.23%

Ψv 53.48%

Ψh, Ψv 58.13%

Area ratio 32.55%

Circularity 34.88%

Hu 1st 32.55%

Area ratio, circularity, Hu 1st, Hu 2nd 69.76%

C0,0 [23] 55.81%

the coordinate axes as principal axes. After, we extract one
or more convexity measures as features from the image and
form a feature vector of them.

Following the same strategy as in [23], for evaluating
shape classification performance we applied a nearest neigh-
bor (1NN) classifier on the feature vectors with Mahalanobis
distance. To avoid overfitting, we used leave-one-out cross
validation: for each image, we use the current one for testing
and the rest for training. We report the average classification
accuracies giving the best results for a single measure, or a
combination of twoor three descriptors (rows 1–3ofTable 2).
In addition, we computed the measures with respect to the
diagonal directions d1 = (1, 1), d2 = (1,−1) as in Sect. 4.6,
denoted by Ψ1(d1, d2), Ψ ′

1(d1, d2), Ψ2(d1, d2), Ψ ′
2(d1, d2).

Best results combining the measures in the horizontal, verti-
cal, and the diagonal directions are reported in rows 4–6 of
Table 2.

We observe that increasing the number of descriptors used
in the combination results in a better worst case accuracy.
By an exhaustive search, we also computed all combina-
tions of the above 8 shape measures w.r.t. the two couple
of directions, and we found the best combination to ensure
76.74% classification accuracy (see row 7 of Table 2, for one
of them).

We repeated the classification task with the horizontal
and vertical convexity measures given in [2] (rows 8–10
of Table 2), as well as with some conventional low-level
shape descriptors: the area ratio of the shape and its con-
vex hull, the shape circularity measure, and the first moment
invariant of Hu [18]. With a combination of these latter three
descriptors and the second Hu moment, we could reach an
accuracy of 69.76% (see rows 11–14 of Table 2). No combi-

nations including also any (or even all) of the 7 Hu moments
could outperform this result. We also point out that the accu-
racy of the descriptor C0,0 in [23] was 55.81% (row 15 of
Table 2), on the same classification problem. Finally, the
best accuracy in this test reached in [5] (see Table 4, there)
is 58.48%.

This illustrative example reveals that using a combination
of the proposed shape descriptors and additional couple of
directions could be a good strategy to improve classification
accuracy. Of course, the best set of measures (including also
the best directions) depends on the classification issue, and
can be found, e.g., by feature selection methods, like those
of [20].

6 Conclusion

In this paper, we studied new shape descriptors based on the
notion of Q-convexity. The descriptors incorporate region-
based information and are sensitive to intrusions in the
images as shown in the experiments. In addition, we stud-
ied robustness to noise and scale invariance. The small-scale
classification task we conducted showed that a combination
of these descriptors seems to be appropriate for solving clas-
sification issues.

The designed algorithm runs in linear time in the size
of the image, and it is suitable for a parallel implementa-
tion. Furthermore, it works also if the image is constituted
by disconnected parts, whereas, as far as we know, in other
approaches like for example those based on combinatorics on
words (see for successful examples [7,9,10]), images are sup-
posed to be 8-connected or 4-connected. Finally, the shape
descriptors can be easily generalized and implemented to any
couple of lattice directions.
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