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Abstract
A set S ⊂ Z

2 of integer points is digital convex if conv(S) ∩ Z
2 = S, where conv(S) denotes the convex hull of S. In

this paper, we consider the following two problems. The first one is to test whether a given set S of n lattice points is
digital convex. If the answer to the first problem is positive, then the second problem is to find a polygon P ⊂ Z

2 with
minimum number of edges and whose intersection with the lattice P ∩ Z

2 is exactly S. We provide linear-time algorithms
for these two problems. The algorithm is based on the well-known quickhull algorithm. The time to solve both problems is
O(n + h log r) = O(n + n1/3 log r), where h = min(| conv(S)|, n1/3) and r is the diameter of S.

Keywords Digital geometry · Digital convexity · Convex · Digital polyhedron · Digital polyhedron recognition · Quickhull ·
Polygonal separation

1 Introduction

Digital geometry is the field of mathematics that studies the
geometry of points with integer coordinates, also known as
lattice points [1]. Although the subsets of Zd are not convex
in the usualmeaning of the term, a simple notion of convexity
is induced by the convexity of Rd [2]. A set of lattice points
S ⊂ Z

d is digital convex if conv(S)∩Z
d = S, where conv(S)

denotes the convex hull of S in R
d . In other words, S is

digital convex if it is the intersection of a convex subset of
R
d with the lattice Z

d (Fig. 1). Digital convex lattice sets
are then directly related to the lattice polytopes investigated
in geometry of numbers since the works of Minkowski [3].
Digital convexity is preserved by homeomorphisms of Zd .

Let us remark that a digital convex lattice set S is not
necessarily connected while the convex sets of Rd are arc-
connected or simply connected. In Z

2 and Z
3, the lack of

connectivity has led to the introduction of some alterna-
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tive definitions of digital convexity that we will not consider
[4–8].

Herein, we consider the following two problems in the
plane.

1.1 Testing Convexity

The first problem is to determinewhether a given finite lattice
set S is convex.

Problem TestConvexity
Input: Set S ⊂ Z

2 of n lattice points given by their coor-
dinates.

Output: Determine whether S is digital convex.
The input of TestConvexity is an unstructured finite

lattice set (without repeating elements). Related work con-
sidered more structured data, in which S is assumed to be
connected. The contour of a connected set S of lattice points
is the ordered list of the points of S having a grid neighbor (a
lattice point whose Chebyshev distance to the point is one)
not belonging to S. When S is connected, it is possible to
represent S by its contour, either directly as in [9] or encoded
by its Freeman chains code [10]. The algorithms presented
in [9,10] test digital convexity in linear time on the respective
input representations.

Our work, however, does not make any assumption on S
being connected, or any particular ordering of the input. In
this setting, a naive approach to test the digital convexity is:
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Convex

Not convex

Fig. 1 Digital convexity. The first set is digital convex, while the second
set is not because of the red lattice points that are inside the convex hull
of the set but not in the set itself (Color figure online)

1. Compute the convex hull conv(S) of the n lattice points
of S.

2. Compute the number n′ of lattice points inside the convex
hull of S.

3. If n = n′, then S is convex. Otherwise, it is not.

Step 1 consists in computing the convex hull of n points.
The field of computational geometry provides a plethora of
algorithms for computing the convex hull of a finite set S ⊂
R
2 of n points [11]. The fastest algorithms take O(n log n)

time [12], which matches the lower bound in the algebraic
decision tree model of computation [13]. If we also take into
consideration the output size h, i.e., the number of vertices of
the convex hull, then the fastest algorithms take O(n log h)

time [14,15].
Step 2 consists in computing the number of lattice points

inside a convex polygon (represented by its vertices), which
is a well studied problem. In dimension 2, it can be solved
using Pick’s formula [16]. In higher dimension, the ques-
tion has been widely investigated in the framework of the
geometry of numbers, from Ehrhart theory [17] to Barvi-
nok’s algorithm [18]. The currently best-known algorithms
have a complexity of O(nO(d)) for fixed dimension d [19].
Overall, the time complexity of this naive approach is at least
that of the computation of the convex hull.

1.2 Digital Convex PolygonMinimization

In the case where the set S is convex, the second problem
is to determine a convex polygon P having as few edges as
possible and whose intersection P ∩ Z

d with the lattice is
exactly S (Fig. 2).

Problem Minimization
Input: Set S ⊂ Z

2 of n lattice points given by their coor-
dinates.

Fig. 2 Recognition. The input of the Minimization problem is a
finite lattice set. The question is to find a convex polygon P with the
smallest number of edges P ∩ Z

2 = S and whose intersection with Z2

is exactly S

Output: Find a convex polygon P withminimum number
q of edges verifying P ∩ Z

2 = S.
The problem Minimization has been mentioned in

a survey of open questions in Digital geometry [20]. Con-
trary to what is claimed, a minimal decomposition of the
boundary of the set in digital straight segments (Min-DSS)
as in [21] does not yield a solution.We disprove the reduction
of Minimization to Min-DSSwith the counter-example
provided in Fig. 3. A weaker form of the problem, assuming
8-connectivity of the input set, has been studied in [22].

The problem Minimization is a fundamental problem
in geometry, related for instance to combinatorial optimiza-
tion. In this field, solutions are often characterized by an
exponential number of linear constraints, and the reduction
of the number of linear inequalities characterizing them is a
major concern. It is related to the question that we address but
in our framework the set of integer points is explicitly given
through the list of the coordinates of the points. Even with
the assumption that the lattice set is given, the state of the
art about Minimization is restricted to a few results. The
problem Minimization is decidable in dimensions d = 2
and 3. In arbitrary dimensions, the problem is only known
to be decidable if S is a non-hollow convex polytope (non-
hollow means that there is some lattice points in the interior
of its convex hull) [23–25]. These questions of decidability
have been investigated without focus on the efficiency of the
algorithms. Providing algorithms of low complexity for solv-
ing Minimization remained a fully open question, which
we solve in this paper in dimension 2.

1.3 Our Results

In Sect. 2, we consider the problem of testing the digital
convexity of a given lattice set S. We recall the linear time
solution already presented in the conference version [26].
Our main result is an algorithm to solve TestConvexity
in O(n + h log r) = O(n + n1/3 log r) time, where h is the
number of edges of the convex hull and r is the diameter of S.
Furthermore, when the set S is digital convex, the algorithm
returns the convex hull of S.
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(a)

(b)

(c)

Fig. 3 Min-DSS fails to solveMinimization. According to [20], the
problem Minimization can be solved by a technique decomposing
the contour of a 4-connected shape in a minimal number of digital seg-
ments. The above example disproves it. Themin-DSS decomposition of
the boundary of the lattice set is done with only 3 digital segments while
the set cannot be separated from its complement in Z

2 by a triangle. It
can be seen by considering the four exterior colored points in c. No pair
of colored points can be separated from the lattice set by a line, which
proves that the problem Minimization admits only a solution with
at least q = 4 edges and not 3 as in Min-DSS (Color figure online)

In Sect. 3, we consider the problem Minimization.We
present the first linear-time algorithm to recognize a digital
convex polygon. This algorithm uses the convex hull of S
computed in TestConvexity for digital convex sets and
then solves Minimization in O(h log r) time.

For a given number of edges h, the number of points n and
thediameter r are not bounded (consider for instance large tri-
angles). Similarly, for a given n, the diameter r is not bounded
(consider the pair of points (0, 0) and (1, r)), however the
number of vertices or edges h is bounded by O(n1/3) [27].
At last, given the diameter r , the number of points n is clearly
at most O(r2) and h is at most O(r2/3) [28]. Expressed only
with n and r , our algorithm for solving TestConvexity
takes O(n + n1/3 log r) time while a post-processing step in
O(n1/3 log r) time allows us to solve Minimization.

2 Digital Convexity

The purpose of this section is to provide an algorithm to test
the convexity of a finite lattice S ⊂ Z

2 in linear time in n.

�

Fig. 4 Quickhull initialization. Points inside the partial hull (light
brown) are discarded. The remaining points are potentially part of the
hull (Color figure online)

To achieve this goal, we first show that the convex hull of a
digital convex set S can be computed in linear time using the
well-known quickhull algorithm [29].

Quickhull is one of the many early algorithms to com-
pute the convex hull in dimension 2. Its worst-case time is
O(n2). However, for some inputs and variations of the algo-
rithm, the average time complexity is reduced to O(n log n)

or O(n) [11,30].
The quickhull algorithm starts by initializing a convex

polygon in the following manner. First it computes the top-
most and bottom-most points of the set. Let � be the line
defined by these two points. Then, the algorithm computes
the farthest point from �, on each side of �. The (at most) four
points we computed describe a convex polygon that we call
a partial hull, which is a subset of the vertices of the convex
hull of S. All points contained in the interior of the partial hull
are discarded from S. Furthermore, horizontal lines and lines
parallel to the top-most to bottom-most line passing through
these points define an outlying bounding box containing the
convex hull (Fig. 4).

After the initial step, the algorithm adds vertices one by
one to the partial hull until it obtains the entire convex hull.
For each edge of the partial hull, we apply the following
steps. Let v denote the edge’s outwards normal vector. The
algorithm searches for the extreme point in direction v. If
this point distance from the edge is 0, then the edge is part
of the convex hull. Otherwise, we add to the convex hull
the farthest point found, discarding the points that are inside
the new partial hull. Throughout this paper, we call a step
of the quickhull algorithm the computation of the farthest
point of every edge for a given partial hull. When adding
new vertices to the partial hull, the region inside the partial
hull expands. Points inside that expansion are discarded by
quickhull and herein we call this region discarded region.
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The points not belonging to the partial hull are preserved,
and are the elements of the preserved region (Fig. 5).

We show that quickhull steps take linear time for any dig-
ital convex lattice set and that, in this case, at each step half
of the remaining input points are discarded. Therefore, the
total running time remains linear, as in standard decimation
algorithms (see for example [31]). In Sect. 2.2, we explain
how to use this algorithm to test the digital convexity of any
lattice set in linear time in n.

Theorem 1 If the input is a digital convex set of n points,
then quickhull has O(n) time and space complexities.

2.1 Proof of Theorem 1

We prove Theorem 1 as follows.

Proof During quickhull algorithm, we discard from S the
points that become useless for the next computation and add
someof themas vertices of the partial hull. The algorithmdis-
cards all the points that are in the interior or on the boundary
of the current partial hull. The theorem is a consequence of
the following two propositions, which we prove next: (i) At
each step, the running time is linear in the number of points
remaining in S. (ii) At least half of the remaining points are
discarded at each iteration. We start by proving proposition
(ii).

Consider one step of the algorithm. Let ab be the edge
defining the step. When a was added to the hull, it was as the
farthest point in a given direction. Hence, there is no point
beyond the line orthogonal to this direction going through a
(Fig. 5b). The same holds for b. Let c be the intersection point
of these two lines going through a and b. We know that any
remaining point of S is in the interior of such a triangle�abc
towhich it is allocated.We proceedwith the remaining points
of S in �abc as follows. We are looking for the point that
is the farthest from the supporting line of ab in the triangle
�abc (Fig. 6). Three cases might occur. If the triangle �abc
does not contain any remaining point, then ab is an edge of
the partial hull and we stop the computation for this edge in
the following steps. If there is a unique remaining point of
the triangle �abc which is the farthest from the line ab, then
we denote it d. If there are multiple points which are farthest
from ab in the interior of the triangle �abc, we denote the
two extreme points of S on this segment d and d ′.

Let us consider the case where the point d is the unique
farthest point from the line ab. Let e and f be the intersec-
tions between the line parallel to ab going through d, and
respectively, ac and bc. The point d is the unique remaining
point in the triangle �ce f . Adding d to the partial hull cre-
ates two other edges to be further processed: One is ad and
the other is bd. Then, we insert the vertex d in the partial
hull and remove from S all the points which are neither in
the interior of the triangles �ade nor �bd f . The points of

(a)

(b)

a c

d

b

f

e

Fig. 5 Quickhull regions. The preserved region (region in which we
look for the next vertex to be added to the partial hull) is a triangle. This
stays true when adding new vertices to the hull (as shown here in the
bottom right corner). The partial hull (whose interior is shown in light
brown) grows at each vertex insertion to the partial hull. The points in
or on the boundary of the new region of the partial hull are discarded
(Color figure online)

S in the interior of the triangle �abc that we do not discard
are allocated either to �ade or to �bd f according to their
positions.

We denote, respectively, c1 and c2 themidpoints of ad and
bd. All the lattice points in the interior of the triangles �ade
and �db f have different symmetric lattice points toward c1
and c2 in the interior the triangle �ade. Since S is digital
convex, those lattice points are in S, they also are discarded
due to their positions. (Fig. 6a). In other words, at this step,
for each remaining points of S, one point of S is discarded.
It proves (ii). This proposition also holds in the case where
there are two extreme points d and d ′ from S on the line
e f . In this case, we insert the two vertices d and d ′ in the
partial hull. We discard from S all the points of the triangle
�abc which are not in the interiors of the triangles �ade
and �d ′b f . As previously, any of the remaining points has
a different symmetric point which is discarded (Fig. 6b). It
proves (ii) in this case. In both cases, our initial assumption
is preserved: All the remaining points are in the interior of
the triangle to which they are allocated. At last, we can easily
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(a)

(b)

Fig. 6 Symmetrical regions. At each step, we discard from S all the
points of the triangle �abc which are not in the interior of �ade or
of �db f (�d ′b f in b). By considering the symmetries through c1 and
c2, any of these remaining points has a symmetric lattice point in the
interior of �abd which is discarded

provide an initialization of the partial hull and of the set of
remaining points satisfying this condition.

For proving (i), the computation of the farthest point from
the line ab among the remaining points of S in the triangle

�abc takes linear time. For all points in the triangle, we
test if they are in the interior of either the triangles �ade
or �db f (or �d ′b f in the second case). We allocate them
to their containing triangle or discard them. The operation
takes a constant time per point. In the second case, where we
have two extreme points d and d ′, these two points are also
computed in linear time; This proves (i). Consequently, the
number of operations is proportional to n

∑∞
i=0(

1
2 )

i = 2n
and quickhull takes linear time for digital convex sets. ��

2.2 Testing Digital Convexity

By running quickhull on any given set S, and stopping the
computation if any step of the algorithm discards less than
half of the remaining points, we ensure both that the running
time is linear, and that if S is digital convex, quickhull fin-
ishes and returns the convex hull of S. If the computation
finishes for S, we still need to test its digital convexity. To
do so, we use the previously computed convex hull and com-
pute | conv(S) ∩ Z

2| using Pick’s formula [16]. The set S is
digital convex if | conv(S) ∩ Z

2| = |S|. Hence, the resulting
Algorithm 1.

Algorithm 1 isDigitalConvex(S)
Require: S a set of points
Ensure: true if S is digital convex, false if not.
1: while S is not empty do
2: Run one step of the quickhull algorithm on S
3: if quickhull discarded less than half the remaining points of S

then
4: return false
5: Compute | conv(S) ∩ Z

2|
6: if | conv(S) ∩ Z

2| > |S| then
7: return false
8: return true

Theorem 2 Algorithm 1 tests digital convexity of S in
O(n + h log r) = O(n + n1/3 log r) time, where h =
min(| conv(S)|, n1/3) and r is the diameter of S.
Proof As Algorithm 1 runs quickhull, but stops as soon as
less than half the remaining points have been removed, the
running time of the quickhull part is bounded by the series
n

∑∞
i=0(

1
2 )

i = 2n, and is hence linear. Thanks to Theorem 1
we know that the computation of quickhull will be com-
pleted for any digital convex set. Computing | conv(S)∩Z

2|
using Pick’s formula requires the computation of both the
area of conv(S) in O(h) and the number of lattice points on
its boundary, which requires the computation of a greatest
common divisor. Hence, this takes O(h log r) timewhere h is
the number of edges of conv(S) and r is the diameter of S. As
S is digital convex if and only if |S| = | conv(S)∩Z

2|, Algo-
rithm 1 effectively tests digital convexity in O(n + h log r)
time. ��
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3 MinimumDigital Convex Polygon

In this section, we consider a fundamental question of pat-
tern recognition: the recognition of digital convex polygons,
namely problem Minimization from Sect. 1.2. In this
problem, we are given a set S ⊂ Z

2 of n points and the goal
is to find a convex polygon P withminimumnumber of edges
such that P ∩ Z

2 = S. Notice that the vertices of P are not
necessarily lattice points. We prove the following theorem:

Theorem 3 Given a finite lattice set S ⊂ Z
2 of n points,

the Algorithm 3 solves the problem Minimization. The
running time is O(n + h log r) = O(n + n1/3 log r), where
h = min(| conv(S)|, n1/3) and r is the diameter of S.

3.1 Strategy

The problem Minimization can be rephrased as the fol-
lowing polygonal separation problem with the set IN = S
and its complement OUT = Z

2 \ S.
Problem: Polygonal Separation
Input: A set IN ⊂ Z

2 of inliers and a set OUT ⊂ Z
2 of

outliers.
Output: A convex polygon P ⊂ R

2 with as few edges
as possible and such that all points of IN and none of OUT
are inside P .

Polygonal separability has been widely investigated in the
literature. An optimal algorithm for Polygonal
Separation that takes O((|IN | + |OUT |) log(|IN | +
|OUT |)) time is presented in [32]. However, it cannot be
applied to Minimization since the set of outliersOUT =
Z
2 \ S is not finite.
The strategy to solve Minimization is as follows: We

start by testing the digital convexity of S in linear time using
Theorem2. If S is not digital convex, then there is no solution.
Otherwise, the algorithm quickhull computes the convex hull
of S in linear time and we can proceed to the second step.

The second step of the algorithm is to reduce the set of
outliers OUT = Z

2 \ S to a finite subset OUT ′ ⊆ OUT of
O(n) points. In fact, we do not explicitly compute OUT ′.
Instead, we compute an implicit description of OUT ′ of size
O(h) in O(h log r) time, where h is the number of edges of
conv(S).

The third step is to separateOUT ′ from S using the small-
est number of edges.We could use the polygonal separability
algorithm from [32], but that would lead to a running time of
O(n log r + n log n) = O(n log r). Instead, we provide an
algorithm that takes benefit of the lattice structure to achieve
a running time of O(h log r) after the convex hull compu-
tation and digital convexity tests of the first step, that takes
O(n + h log r) time.

a
b

Fig. 7 Jewel’s hull. In black, the set S, its convex hull is in dark red.
The point a is not a jewel because of the red point, any convex polygon
that includes both S and a also includes the red point. The point b is a
jewel because its union S ∩ {b} with S is still convex. In other words,
the convex hull of the union S ∩ {b} does not contain any other lattice
points (Color figure online)

As thefirst step, i.e., testing the digital convexity, is already
addressed in the previous section, we present the second and
third steps of the algorithm in the two following sections.

3.2 Reduction

In this section, we assume that the set S is digital convex and
show how to reduce the set of outliers OUT = Z

2 \ S to
a finite set of O(n) points. To do this, we use the notion of
jewels introduced in [23,33] for testing digital circularity and
recognizing digital polyhedra.We say that a point p ∈ Z

2 \ S
is a jewel of S if conv(S ∪ p) ∩ Z

2 = S ∪ p (Fig. 7). The
set of all the jewels of S is denoted Jewel(S) and it has the
property that a convex set separates S from Z

2 \ S if and
only if it separates separates S from Jewel(S) [23]. Hence,
the infinite set of the outliers of our problem of separability
can be reduced from OUT = Z

2 \ S to OUT ′ = Jewel(S).
The number of jewels is infinite if and only if S is the

intersection of a line segment and Z
2 [23]. In this case, it

is easy to see that the set S forms a digital triangle. A sim-
ple way to establish bounds on the number of jewels has
been discovered by French high school students during the
national contest TFJM2017. They presented the following
structure of the set of jewels: The jewels of the lattice set
S are the lattice points that lie on the edges of a polygon J
surrounding the convex hull of S. This surrounding polygon
J ⊃ conv(S) is the arithmetic dilation of conv(S) obtained
by moving the support lines of the edges of the conv(S) to
the next Diophantine lines toward the exterior (Fig. 8). We
define J as the jewel hull of S (Fig. 8) and define it more
formally as follows.

Given S, let E = {e1, e2, . . . eh} be the edges of conv(S).
For each i , let HPi : ai x + bi y + ci ≤ 0 (ai and bi co-prime
integers) be the closed supporting halfplane associated with
ei such that S ⊂ HPi . Notice that conv(S) = ⋂

i H Pi .
Consider the open halfplanes HP ′

i : ai x + bi y + ci < 1.
Notice that there is no integer point in HP ′

i \HPi . The jewel
hull of S is the closure of the intersection of the half-planes
HP ′

i (Fig. 8).
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Fig. 8 Jewels.In black, the set S, its convex hull is in dark red. The
halfplanes H ′

i are delimited by the dashed lines, and form the jewel hull
that surrounds the convex hull of S. The jewel hull has three properties:
Its edges are parallel to the ones of the convex hull of S, there are no
point between the convex hull and the jewel hull and all the jewels
(drawn in red are) on its boundary (Color figure online)

The jewel hull J of S has three main properties. (i) By
construction, its edges are parallel to the edges of conv(S).
(ii) It is easy to prove that there is no integer point between
conv(S) and the jewel hull J . Finally, (iii) the jewels of S are
a subset of J . This last property is in fact a corollary of the
first Lemma of [34] which is reformulated in the next lemma.

Lemma 1 For any three lattice points p1, p2, p3 such that
p1, p2 lie on the line ax+by+c = 0 (coefficients a and b are
coprime) and p3 does not, we have that the triangle p1 p2 p3
either contains a lattice point on the line ax+by+c+1 = 0
or on the line ax + by + c − 1 = 0.

Proof Up to a lattice preserving affine isomorphism, we can
assume p1 = (0, 0) and p2 = (0, u) while the images of
the two lines are x = −1 and x = 1. We assume p3 lies on
the right of p1 p2 (the other case is identical by symmetry).
Hence, there exists three integers u, v, w with u, v > 0 such
that p1 = (0, 0), p2 = (0, u), and p3 = (v,w) and we want
to prove that the triangle p1 p2 p3 contains an integer point
on the line x = 1. The lower and upper points of the triangle
in the line x = 1 are the two intersection points of x = 1
and each of the two segments p1 p3 and p2 p3. Their coordi-
nates are, respectively, (1, w

v
) and (1, u + w−u

v
). Then, the

intersection of the line x = 1 and the triangle p1 p2 p3 con-
tains an integer point if and only if the interval [w

v
, uv+w−u

v
]

contains an integer namely if the interval [w,w + u(v − 1)]
contains a multiple of v, which is trivially true since there
is necessarily a multiple of v in any interval [w,w + v[ and
then in [w,w + v − 1] ⊂ [w,w + u(v − 1)] as u ≥ 1. ��

The area of the jewel hull of S is finite unless all the points
of S are colinear. This case is easy to detect, and it is easy to
see that in this case there exists a triangle with vertices inR2

that separates S from Z
2 \ S.

The jewel hull consists of the intersection of a set of h
halfplanes. Computing the vertices of the intersection of half-
planes is the dual [11, Chapter 8] of the computation of the
convex hull of a given points set. In the general case, comput-
ing the intersection of h halfplanes takes O(h log h) time [11,
Chapter 4]. However, since we already have the h halfplanes

sorted by slope, we can use Graham Scan [11, Chapter 1] to
compute the jewel hull in O(h) time. Notice that not all h
halfplanes appear on the boundary of the jewel hull, which
is the dual of the fact that some points may be in the interior
of the convex hull.

3.3 Jewel Separation

The jewel separation is the final step to solve the
Minimization problem. The jewel hull J has been

computed and the problem is the polygonal separation of
IN = S and the jewel set OUT ′ = Jewel(S). The previous
step does not provide the set of jewels but the ordered list of
edges of the jewel hull J as a sequence of linear equalities �i :
ai x+bi y+ci = 1 with coprime integers ai and bi . An initial
lattice point di of each givenDiophantine straight lines �i can
be computed with the extended Euclid algorithm in O(log r)
time.We can go from this first point to the other integer points

of the line �i through translations of vectors k
−−−−−→
(−bi , ai )where

k ∈ Z. Nevertheless, J is a rational polytope. Its vertices are
the intersection point of consecutive Diophantine lines �i
but they are not necessarily integer points. It is even possible
that some edges of the jewel hull do not contain any integer
point. By computing the vertices of each edge ei we can
count all the jewels on �i and obtain a generating formula
for them in O(1) time and space for each edge. The jewels
on �i are:

⋃
k di + k(−bi , ai ). The computation of an integer

point di per line �i for each one of our at most h Diophantine
lines takes O(h log r). The computation of the vertices of J
takes O(h) time, and hence the computation of the formulas
generating the jewels takes O(h log r) time and O(h) space.

The jewels are determined in counterclockwise order
according to their order of appearance in the jewel hull. Their
cyclic index i goes from 0 to | jewel(S)| − 1. Furthermore,
any pair of indices i, j with i < j defines two intervals
of indices, the interval Ii→ j containing the indices of the
successors of i until j and the interval I j→i containing the
indices of the successors of j until i . We introduce now the
precise meaning of separation. We say that a real line � sep-
arates some jewels from S if S lies entirely on one side of
� while the jewels lie strictly on the other side. The fact that
all jewels lie on the boundary of a convex polygon leads to
the following simple lemma:

Lemma 2 If � is a line separating the jewels of indices i and
j from S, then the line � separates S from either the jewels
with indices in Ii→ j or the jewels with indices in I j→i .

A naive approach to solve the polygonal separation prob-
lemof the sorted set of jewels from S is the following:Choose
a starting jewel of index i0. Search for the index j0 such that
the jewels with indices in the interval Ii0→ j0 can be separated
from S and |Ii0→ j0 | is maximized. The method used to com-
pute j0 in constant time using our representation of the jewels
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Fig. 9 Turn algorithm. We start
from a chosen starting jewel pi0
and search for its last successor
p j0 that can be separated from S
simultaneously with pi0 by a
single line. We then take the
successor of p j0 as new starting
jewel pi1 and search for the last
successor p j1 of pi1 that can be
separated with pi1 ... We repeat
the process until reaching the
predecessor of pi0

pi0(a) (b)

(c) (d)

(e) (d)

pi0pj0

pi1

pj1

pi0

pi3

pj3pi0

pi2

pj2

pi0pi0 pi4

will be detailed later. We then define i1 as the successor of j0
and repeat the process: search for j1 such that Ii1→ j1 can be
separated from S and the number of jewels in the interval is
maximized. We repeat until we find an interval Iik→ jk which
contains the predecessor of i0. The number of lines of the
solution is the number k + 1 of intervals considered. This
algorithm is illustrated Fig. 9. We call this greedy algorithm
the turn routine since the strategy is to turn around the set
S from a starting jewel pi0 .

The difficulty of this approach is that different choices of
the starting point pi0 may lead to different numbers of sep-
arating lines (actually, they may differ by at most 1 line).
The strategy to find the minimum number of separating
lines is to test several starting jewels. Dynamic program-
ming approaches might be used to find an optimal solution
as in [21], but in the framework of our minimization
problem in the lattice, we are able to obtain a major simpli-
fication.

The strategy to simplify the problem is the following.
There are two families of jewels: The ones which chosen as

Algorithm 2 turn(conv(S), Jewel(S),i0)
Require: the convex hull conv(S), the ordered list of its jewels

Jewel(S), and a starting jewel p of index i0.
Ensure: A separating polygon with S inside and Jewel(S) outside.
1: Initialize i0 as the index of the starting jewel, k = 0 and Ii−1→ j−1 as

an empty interval
2: while predecessor(i0) /∈ Iik−1→ jk−1 do
3: Compute jk such that the jewels with indices in the interval Iik→ jk

can be separated from S and |Iik→ jk | is maximized.
4: ik+1 ← successor( jk)
5: k = k + 1
6: return The polygon obtained from the separating lines

starting jewel in the turn routine provide a minimal num-
ber of lines, their indices are denoted IOPT , and the ones
that provide a non optimal number of lines. Notice that if
the index i0 is in IOPT , then all the indices ik computed dur-
ing the turn routine are also in IOPT since it can be easily
seen that they provide also optimal solutions. In the general
case of polygonal separability, a large set of starting points
has to be investigated until finding one leading to an optimal
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�1

�2

p1−1
p1−2

p2−1conv(S)

p2−2

�i

�i+1

conv(S)

�j

ei+1

(a) (b)

Fig. 10 Jewel separation. a If a single line separates both p1−2 and
p2−2, then the triangle�p1−1 p1−2 p2−2 is larger than�p1−1 p1−2 p2−1
and hence must contain a fourth lattice point, which is impossible. b
No jewels lie between ei+1 and �i+1 hence it is impossible to separate
simultaneously jewels from �i and jewels from � j

solution but in the framework of the separation of IN = S
and OUT ′ = Jewel(S), we can provide a subset of at most 4
jewels containing at least one in IOPT . It means that testing
these four jewels as starting points of the turn routine is
enough to find the optimal solution. The properties of the set
IOPT are presented in the next two lemmas.

The first lemma states that there is no line that simulta-
neously separates two jewels of a line �i and two jewels of
�i+1.

Lemma 3 Let �1 and �2 be two jewel lines. (i) If �1∩�2 /∈ Z
2

then there is no line that separates two jewels of �1 and two
jewels of �2. (ii) If �1 ∩ �2 ∈ Z

2 then there is no line that
separates three jewels of �1 and three jewels of �2.

Proof (i) Let order the jewels on �1: J1 = {p1−1, p1−2, . . .}
according to their distance to �2, and order the jewels
on �2: J2 = {p2−1, p2−2, . . .} according to their dis-
tance to �1. Assume that there is a line l such that l
separates two jewels of �1 and two jewels of �2 from
conv(S). Then, l separates p1−1, p1−2, p2−1 and p2−2

from conv(S). Hence, the triangle �p1−1 p1−2 p2−2 lies
inside the jewel hull and outside of conv(S) (Fig. 10a).
As the triangle �p1−1 p1−2 p2−1 is not degenerated we
have Area(�p1−1 p1−2 p2−1) ≥ 1

2 . Hence, the inequality
Area(�p1−1 p1−2 p2−2) > Area(�p1−1 p1−2 p2−1) leads
to Area(�p1−1 p1−2 p2−2) > 1

2 . Using Pick’s theorem we
can conclude that �p1−1 p1−2 p2−2 contains at least four lat-
tice points. However, since p1−1 p1−2 are two consecutive
lattice points of �1, this means that there is a lattice point
strictly inside the jewel hull and outside conv(S), which is
impossible. Hence, l does not exist. The proof of (ii) is the
same, we just have to consider p1−0 = p2−0 = �1 ∩ �2. ��

We complete Lemma 3 with a lemma about the separation
of jewels which are not in consecutive lines �i and �i+1.

Lemma 4 If �i and � j are two non-consecutive jewels lines:
j ≥ i + 2, then there is no line that separates any jewel that
belongs only to �i and any jewel that belongs only to � j .

Proof Consider �i+1 and its associated edge on conv(S):
ei+1. By construction, there is no lattice points between �i+1

and ei+1 (Fig. 10b). Assume that there is a line l that sep-
arates jewels of both �i and � j As all the jewels belonging
only to �i and all the jewels belonging only to � j lies on the
same side s j of ei+1 as S, l has to be in s j to separate jewels
of �i , then has to leave s j in order to not intersect conv(S),
and finally has to go back in s j to separate jewels of �i+1.
Hence, l intersects ei+1 twice which is impossible. ��

We now explain how to use Lemmas 3 and 4 to determine
at most four jewels such that at least one of them leads to an
optimal solution with the turn routine. In other words, we
provide four indices with the guarantee that at least one of
them is in IOPT . For convenience, the successor of the index
s is now simply denoted s + 1 and so on with the successor
of the successor denoted s + 2. In the same manner, we also
use s − 1, s − 2, . . . to denote the predecessors of s. When
looking for a jewel in IOPT , several cases might occur:

1. The jewel hull J has an edge ei which does not contain
any integer point. Ifwe denote s the index of thefirst jewel
after this edge, then IOPT contains s. It is a corollary of
Lemma 4. Considering an optimal solution, the vertex of
index s cannot be included in the interval Iir→ jr contain-
ing s − 1 because the interval would contain jewels of
the lines �i−1 and �i+1 which is excluded by Lemma 4.
Hence, the index s is a starting index, namely an index
of the form ir of the considered optimal solution. As the
indices ir of the intervals Iir→ jr computed from an opti-
mal starting index i0 are also optimal, s is included in
IOPT .

2. The jewel hull J has an edge ei with only one jewel s,
hence IOPT contains either s or s + 1. Considering an
optimal solution, it follows from Lemma 4 that s−1 and
s + 1 cannot be in an interval of the form Iir→ jr since
they are on distant lines �i−1 and �i+1. Hence, there exist
either an index ir equal to s or to s +1. It proves that one
of these two indices s or s + 1 is in IOPT .

3. The jewel hull has an edge with only two jewels. Their
indices are s and s + 1. Considering an optimal solution,
according to Lemma 4 the indices s−1 and s+2 cannot
be in the same interval Iir→ jr because they belong to
the distant lines �i−1 and �i+1. Hence, there is at least a
beginning of interval in s, s + 1 or s + 2. One of these
three indices s, s + 1, s + 2 is in IOPT

4. The edges of the jewel hull all contain at least three jew-
els. We choose any edge ei and denote s, s + 1, s + 2 the
indices of its three firsts jewels. According to Lemma 3,
the indices s +2 and s −2 cannot be in the same interval
Iir→ jr . Hence, there is at least a beginning of interval in
s − 1, s, s + 1 or s + 2. One of these four indices s − 1,
s, s + 1, s + 2 is in IOPT .
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In any case, we can determine a set of at most four starting
jewels with the guarantee that the turn algorithm provides
an optimal solution for at least one of them. We now explain
how, in the turn algorithm 2, for a given jewel pi we compute
its last successor p j that can be separated alongside himwith
a single line. Let pi beon the jewel line �i , and letvi be the end
vertex of the edge of the convex hull parallel to �i . Consider
the line pivi . S lies on one side of pivi , all the jewels that
lies strictly on the other side can be separated alongside pi
(Fig. 9). It is clear that all jewels locatedon �i canbe separated
with pi , and using Lemma 4 we know that the jewels located
on �i+2 cannot. Hence, all we have to do is determine the last
jewel of �i+1 that lies on the correct side of pivi . This is easily
done by computing the intersection point q of pivi and �i+1

and expressing q as di+1 + λ(−bi+1, ai+1) (We remind that
the jewels on �i+1 are expressed as:

⋃
k di + k(−bi , ai )).

From there a separating line can be computed by rotating
slightly pivi around any points in between pi and vi .

The time complexity of the turn algorithm 2 is hence
O(h) = O(n1/3). This follows from the fact that h is an
upper bound to the number of edges of the solution of the
Minimization problem and h = O(n1/3). Starting from
any jewel, the algorithm computes a polygon that has at most
one edge more than the optimal solution and each edge is
computed in O(1) time.

As the jewel hull is computed O(h log r) time, the set of
O(1) starting jewels can be computed in constant time, and
the turn algorithm 2 runs in O(h) time. The minimization
algorithm, once provided with the convex hull of S runs in
O(h log r) time, which proves Theorem 3.

Algorithm 3 recognition(S)
Require: S a set of points.
Ensure: A minimal separating polygon if S is digital convex.
1: Test the digital convexity of S and compute conv(S) using quickhull

2: Compute the jewel hull of S using Graham Scan
3: Compute at most four starting jewels
4: for all starting jewels do
5: Compute the minimal separating polygon using the given starting

jewel using algorithm 2
6: return The minimal separating polygon

4 Perspectives

We showed that the convex hull of a digital convex set in
dimension 2 can be computed in linear time, and we can
determine the minimum digital convex polygon in the same
complexity. Can the convex hull of digital convex sets be
computed in linear time in dimension 3, or more generally,
what is the complexity of convex hull computation of a dig-

ital convex set in any fixed dimension? We note that the
number of faces of any digital convex set in d dimensions
is O(V (d−1)/(d+1)), where V is the volume of the poly-
tope [35,36]. Therefore, the lower bound of �(n�(d−1)/2�)
for the complexity of the convex hull of arbitrary polytopes
does not hold for digital convex sets. The decidability of the
polygon minimization problem has been proven in dimen-
sion 3 [25], but no polynomial-time algorithm have been
presented yet. Even the decidability of the problem remains
an open problem for dimensions higher than 3.
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