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Abstract
This article focuses on the classical problem of the control of information loss during the digitization step. The properties
proposed in the literature rely on smoothness hypotheses that are not satisfied by the curves including angular points. The
notion of turn introduced by Milnor in the article On the Total Curvature of Knots generalizes the notion of integral curvature
to continuous curves. Thanks to the turn, we are able to define the local turn-boundedness. This promising property of curves
does not require smoothness hypotheses and shares several properties with the par(r )-regularity, in particular well-composed
digitizations. Besides, the local turn-boundedness enables to constrain spatially the continuous curve as a function of its
digitization.

Keywords Discrete geometry · Local turn-boundedness · Par-regularity · Well-composedness · 4-Connected · Digitization ·
Curvature

1 Introduction

The loss of information caused by a digitization process is
inevitable. Therefore a fundamental point concerns the con-
trol of this information loss. This is the starting point for our
study.More precisely,wewant to determine conditions under
which the discretization of a shape preserves—in a sense to
be specified—some of the geometric and topological prop-
erties of the original continuous shape. Then, we focus on
a geometric criterion, the control of the Hausdorff distance
between a shape and its digitization and a topological crite-
rion, the preservation of the manifoldness of a shape.

Several hypotheses on the shape have been proposed in the
literature to obtain such faithful digitizations. These hypothe-
ses are detailed hereafter and compared in Table 1 for a set
of properties. In the rest of the paper, S stands for a shape of
the Euclidean plane whose border C is a Jordan curve.

One of the most used hypotheses, called par(r )-regularity,
was independently introduced in 1982 by Pavlidis in [13]
and in 1984 by Serra in [14] in order to study the preserva-
tion of the topology by the Gauss digitization. It demands
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that any point c ∈ C has an interior osculating disk entirely
included in the interior of C except for the point c and an
exterior osculating disk entirely included in the exterior of C
except for the point c (see Definition 10). It has been used to
prove some topology preservation properties [5,8,13]. The
par(r )-regularity encompasses two ideas: the border of the
shape has a curvature bounded from above, and the shape
has a positive minimal thickness. But par(r )-regularity fails
to include non-regular shapes having corners as polygons
(see Proposition 10). That is why there exists in the literature
many notions generalizing par(r )-regularity. For instance,
Stelldinger et al. suggest in [15,16] a regularization to trans-
form someclass of shapes (half-regular shapes) having spikes
into par(r )-regular shapes. The half-regularity is a more gen-
eral version than par-regularity. Indeed, it only demands that
each point on the border of the shape has one of the two
osculating disks modulo the exclusion of a kind of defects in
the regularization process. In [10], Meine et al. introduced a
generalization of half(r )-regularity: the r -stability. A shape
is r -stable if its boundary can be dilated with a closed disk of
radius s without changing its homotopy type for any s ≤ r .
Sadly, these two latest notions give no guarantee about the
well-composedness of the digitization but only about the
homotopy equivalence between the object and its reconstruc-
tion anddonot provide a control of the geometry. Indeed, they
allow the continuous shape to be arbitrarily far from its digiti-
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Table 1 This table sums up the notions mentioned in the introduction

Notion Digitization
well-
composed

Digitization
4-connected

Distance to the
digitization

Same homotopy
tree with a
reconstruction

Homotopy
equivalence with
a reconstruction

Homotopy
equivalence with
the dilation of an
approximation

Par-regularity Theorem 7.1 [13] Theorem 7.1 [13] Theorem 1 [7]

Half-regularity No No Theorem 14 [16]

r -stability No No Theorem 11 [10]

μ-reach Theorem 4.6 [3]

Quasi-regularity Proposition 3 [12] Proposition 3 [12]
Local turn-
boundedness

Proposition 9 Proposition 5 Proposition 6

Notice that in the fourth and fifth column the reconstruction depends on each notion

zation. More controlled generalizations of par(r )-regularity
under digitization have been developed. For instance, Ngo
et al. [12] define the notion of quasi(r )-regularity allowing
irregularities of the border of the shape S to lie in a mar-
gin of magnitude (

√
2 − 1)r around the erosion of S by

a centered ball of radius r . The quasi-regularity has been
introduced in order to guarantee the preservation under rigid
transformation of the well-composedness. But the definition
of quasi(r )-regularity uses both local and global properties
as connectedness. Moreover, given explicitly a shape S, it
can be hard to determine whether it is quasi(r )-regular. In
[10], in addition to r -stability, Meine et al. also defined the
(θ, d)-spikes as arcs delimited by two points x1 and x2 at
distance at most d from each other, such that there exists a
point y in this arc forming an angle x̂1yx2 strictly less than θ .
Alone, the notion of curve without (θ, d)-spike can only give
a bound on the distance between a shape S and its digitiza-
tion. The classical notion of reach [4] which is the minimal
distance between the boundary of a shape and its medial axis
also makes it possible to control the thickness and the curva-
ture. Indeed, it was proven in [7] that par-regularity amounts
to asking a positive reach. But having positive reach requires
continuous differentiability of the boundary. In [3], Chazal et
al. defined theμreach that just requires that all the projections
on the curve of a medial axis point close to the curve are seen
under some tight angle.Nevertheless, theμ-reach seems hard
to compute and does not guarantee the well-composedness
of the digitization but only the homotopy equivalence.

In this article, we introduce a notion that requires the shape
to be thick enough and not to have small artifacts in com-
parison with the grid step. In other words, the border of S
should be locally flat. We propose a new wide class of Jor-
dan curves whose interior fulfill the previous requirements.
We call them locally turn-bounded curves. By wide class,
we mean a class that encompasses both regular curves and
polygons. The thickness part of the definition is based on the
distortion thickness of Kusner and Sullivan [6]. Their idea is
to consider the minimal distance between two points of the

curve sufficiently far from each other for the geodesic dis-
tance. The locally flatness part of the definition of the locally
turn-boundedness relies on the notion of turn adapted to both
regular curves and polygons. The turn was firstly introduced
by Milnor [11] to study the geometry of knots. We get the
local turn-boundedness by replacing the geodesic distance
with the total curvature in the definition of the distortion
thickness. Indeed, local turn-boundedness allows us a more
acute control on the curve. For instance, instead of bounding
one arc delimited by two fixed points in an ellipse whose foci
are the two points, we bound the arc in a disk whose diameter
is the segment delimited by the two points.

This article is an extended version of the conference arti-
cle [9]. The additions are the following: a stronger result
about well-composedness (Proposition 9), the digitization
of a locally turn-bounded curve is 4-connected (Corollary 5)
and a proof that a par(r )-regular curve is locally turn-bounded
(Sect. 5). In order to prove these results, technical lemmas,
propositions and definitions have been introduced.

The article is organized as follows. First, we recall the
main properties and definitions about the notion of turn
(Sect. 2). Then, we present the class of locally turn-bounded
curves and we give their basic properties (Sect. 3). Section 4
is devoted to the proof of our first main result, Theorem 1:
the digitization of a shape bounded by a locally turn-bounded
curve is well-composed and 4-connected under a “compati-
bility hypothesis” related to the grid step. In Sect. 5, we prove
our second main result, Theorem 3: local turn-boundedness
is a generalization of par-regularity (and thus, of having pos-
itive reach).

2 Turn of a Simple Curve

Although the notion was introduced by Milnor in [11], the
definitions and properties given in this section come from
the book of Alexandrov and Reshetnyak [1]. As presented
in Proposition 2, the turn extends to continuous curves
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the notion of integral curvature already defined for regular
curves.
Terminology and notations In this paragraph, some necessary
notions on oriented curves are recalled.

– Let c ∈ R

2 and r ≥ 0. We denote by B(c, r) the open
disk of center c and radius r and by B̄(c, r) the close disk
of center c and radius r .

– A parametrized curve is a continuous application γ from
an interval [t0, t1] of R, t0 < t1, to R

2. It is simple if
it is injective on [t0, t1) and closed if γ (t0) = γ (t1). A
(geometric) curve is the image of a parametrized curve.
A Jordan curve is a simple closed curve.

– For a simple parametrized curve γ , an order is defined
on the points of the associated curve C by:

γ (α) ≤γ γ (β) ⇔ α ≤ β

and≤γ is denoted by≤ if there is no ambiguity. A simple
curve γ with such an order is called oriented curve.

– A polygonal line with vertices x0,…, xN is denoted by
[x0, x1 . . . , xN ] (if xN = x0, the polygonal line is a poly-
gon). A polygonal line L is inscribed into an oriented
curve C if the vertices of the polygonal line L form an
increasing sequence for the order relationship defined by
some simple parametrization of C. For a Jordan curve, a
polygonal line L is inscribed if its first and its last vertex
are equal and all its vertices but the last form an increas-
ing sequence for the order relationship defined by some
simple parametrization of C.

– Let N be a positive integer and x0, x1, . . . , xN points
of R

2. The polygonal line PL = [x0, x1, . . . , xN ] can be
considered as the image of the parametrized curve pl :
[0, N ] �→ R

2 such that pl(t) = x	t
(t − 	t
) + (1− t +
	t
)x	t
+1 where for r ∈ R, 	r
 in the integer part of the
real r . In other words, for any integer i between 0 and N ,
if t ∈ [i, i + 1), then pl(t) = (t − i)xi + (1− t + i)xi+1,
and thus pl([i, i + 1]) is the segment [xi , xi+1] of R

2. A
polygonal line is simple if it is simple for the previous
parametrization and thus a simple polygon is a Jordan
curve.

– Given a curve C and two points a, b on C (a �= b), we
write Cba for the arc ending at a and b if C is not closed. If C
is closed, Cba and Cab stand for the two arcs of C delimited
by a and b. Since these two arcs are hard to distinguish
formally, the latter notation is defined up to permutation
of the two arcs.

– The angle between two vectors u and v is denoted by
(u, v) ((u, v) ∈ R/2πZ). The geometric angle between
two vectors u and v, denoted by � (u, v), or two directed
straight lines oriented by u and v, is the absolute value
of the reference angle taken in (−π, π ] between the two
vectors. Thus, � (u, v) ∈ [0, π ]. Given three points x , y,

z, we also write x̂ yz for the geometric angle between the
vectors x − y and z − y.

Remark 1 Every geometric curve is a compact set. Hence,
the straight lines are not geometric curves.

Definition 1 (Turn)

– The turn κ(L) of a polygonal line L = [xi ]Ni=0 is defined
by:

κ(L) :=
N−1
∑

i=1

� (xi − xi−1, xi+1 − xi ).

– The turn κ(P) of a polygon P = [xi ]Ni=0 (where xN = x0
and xN+1 = x1) is defined by (Fig. 1):

κ(P) :=
N

∑

i=1

� (xi − xi−1, xi+1 − xi ).

– The turn κ(C) of a simple curve C (respectively, of a Jor-
dan curve) is the upper bound of the turn of its inscribed
polygonal lines (respectively, of its inscribed polygons).

Since the turn of a polygon equals the upper bound of the
turn of the polygons inscribed in it [1, Corollary p. 119], the
turn of the polygon seen as a closed curve is equal to the turn
of the polygon. Hence, the turn is well defined.

It should be noticed that the turn does not depend on
the orientation of the curve. Indeed, it is well-known that
(u, v) = −(−v,−u), then � (u, v) = � (−u,−v). Thus,
κ

([xi ]Ni=0

) = κ
([xi ]0i=N

)

.

Remark 2 The turn is stable under homothetic maps. Indeed,
obviously, the turn is invariant by any conformal map, in
particular by the homotheties.

Like the length of a curve, the turn can be calculated thanks
to multiscale samplings. This is the object of Property 1
where we denote by L(C) the length of the curve C.

Property 1 (Convergenceof the length and turnof a sequence
of polygonal lines [1], p. 23, 30, 121, 122) Let C be a simple
curve and (Lm)m∈N a sequence of polygonal lines inscribed
in C and with same endpoints as C. If limm→+∞ λm = 0,
where λm is the maximum length of a side of the polygonal
line Lm, then

lim
m→+∞L(Lm) = L(C)

and

lim
m→+∞ κ(Lm) = κ(C).
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Fig. 1 The turn of the polygon is the sum of the green angles (Color
figure online)

Moreover, if κ(C) is finite, then L(C) is also finite (i. e. C is
rectifiable).

In Property 1, if we assume that the sequence (Lm) is
increasing (Lm is inscribed in Lm+1), then the sequences
(L(Lm)) and (κ(Lm)) are both increasing [1, Lemma 5.1.1].

Property 2 (Turn for regular curves [1], p. 133) Let
γ : [0, 	] → R

2 be a parametrization by arc length of a
simple curve C. Assume that γ is of class C2 and let k(s) be
its curvature at the point γ (s). Then,

κ(γ ) =
∫ 	

0
|k(s)| ds.

For regular curves, therefore, the turn corresponds to
the integral of the curvature (with respect to an arc-length
parametrization).

The following property gives a lower bound of the turn
for closed curves.

Property 3 (Fenchel’s Theorem: [1], Theorem 5.1.5) For
any Jordan curve C, κ(C) ≥ 2π . Moreover, κ(C) = 2π if
and only if the interior of C is convex.

The interior of a Jordan curve is defined by the Jordan’s curve
Theorem: the interior of a Jordan curve C is the bounded
connected component of R

2 \ C.
The next property, known as Schur’s Comparison Theo-

rem, states that the distance between the ends of an arc is
greater than the distance between the ends of another arc
having same length but a greater turn. This property is useful
for our purpose of defining local turns.

Property 4 (Schur’s Comparison Theorem: [2], p. 150) Let
γ and γ̄ be two simple curves parametrized by arc length on
[0, L] such that:

– [γ̄ (0), γ̄ (L)] ∪ γ̄ ([0, L]) is a convex Jordan curve,

Fig. 2 The turn of the arcs Cca
and Cbc is zero, but the turn of
the arc Cba is nonzero. Hence,
triangle inequality fails with
turns

– for each subinterval I ⊂ [0, L],

κ(γ (I )) ≤ κ(γ̄ (I )).

Then,

‖γ̄ (L) − γ̄ (0)‖ ≤ ‖γ (L) − γ (0)‖.

Turn calculations sometimes require a kind of triangle
inequality but in presence of angular points a strict statement
of triangle inequality fails with turns as shown in Fig. 2.

Nevertheless, a loose version of the inequality can be
derived from the following properties thanks to the existence
of left and right tangents everywhere on a curve with finite
turn.

We use a geometric definition of the left and right unit
tangent vectors.

Definition 2 ([1], section 3.1) Let (C,≤) be a geometric
oriented curve.

– The unit vector el(x) is the left unit tangent vector at x
if:

∀ε > 0, ∃y0 ∈ C, y0 < x,∀y ∈ C, y0 < y ≤ x,
� (x − y, el(x)) < ε.

– The unit vector er (x) is the right unit tangent vector at x
if:

∀ε > 0, ∃y0 ∈ C, y0 > x,∀y ∈ C, x ≤ y < y0,
� (y − x, er (x)) < ε.

– A curve having a right and a left unit tangent vector at
each of its point is called one-sidedly smooth.

Property 5 ([1], Theorem 2.1.4, Theorem 3.1.1, Theorem
3.3.3 and Theorem 3.4.2) Let C be a one-sidedly smooth
curve. Then, the set of angular points of C is countable, C
is rectifiable and any arc-length parametrization γ has both
left-hand and right-hand derivatives γ ′

l and γ ′
r . Moreover,

for any s ∈ [0,L(C)], ‖γ ′
l (s)‖ = ‖γ ′

r (s)‖ = 1.

Property 6 (Theorem 5.1.2 [1]) Every curve of finite turn is
one-sidedly smooth.
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The existence of left and right tangent vectors makes it
possible to split a curve into several parts using turns and
tangent vectors.

Property 7 [Theorem 3.3.3 p. 53 and Theorem 5.1.3 p. 122
[1]] Let Cba be an arc of C and c be a point on Cba . Let denote
by el(c) and er (c) the left and right unit tangent vectors at c.
The turn of Cba is finite if and only if the turns of Cca and Cbc
are both finite. In this case,

κ(Cba ) = κ(Cca) + � (el(c), er (c)) + κ(Cbc ). (1)

In the case where a = b (C is closed), the previous equality
becomes as follows.

κ(C) = � (el(c), er (c)) + κ(C \ {c}).

We immediately derive Corollary 1 (which is also valid if
κ(C \ {c}) = ∞).

Corollary 1 Let C be a Jordan curve and c be a point in C.
Then, κ(C \ {c}) > π .

Proof The large inequality derives fromFenchel’sTheorem3
and the definition of geometric angles ( � (u, v) ∈ [0, π ]).
The strict inequality is due to the fact that we cannot have
both κ(C) = 2π and � (el(c), er (c)) = π . Indeed, from
Fenchel’s Theorem, the former equality implies that C is the
boundary of a convex body. Then, C has no cusp, that is
� (el(c), er (c)) < π . As we did not find in the literature a
proof of this last assertion, we propose one in “Appendix A.”

��

From Property 7, adding κ(Cdc ) in the right-hand side of
Eq. 1 (d ∈ Cbc ), we easily derive the following corollary that
will be used in the sequel.

Corollary 2 Let C be an oriented simple curve from a to b. Let
Cda and Cbc be two arcs of C that overlap with a < c < d < b.
Then,

κ(Cba ) ≤ κ(Cda ) + κ(Cbc ).

We end this section with a property linking the turn of a
limit and the limit of the turns.

Property 8 ([1], Theorem 5.1.1 p. 120) If the curves (Cm)

converge to the curve C, then κ(C) ≤ lim inf κ(Cm).

In Property 8, “(Cm) converge to C” means that there exist
parametrizations of the curves Cm that uniformly converge
to a parametrization of C (see Section 1.4 in [1]).

3 Locally Turn-Bounded Curves

Thanks to the notion of turn presented in Sect. 2, we
define hereafter a new class of curves whose turn is locally
bounded. Bounding the turn has the advantage of spatially
constraining the curve with respect to any sufficiently tight
sampling without imposing smoothness. Firstly, we will give
some definitions (Definitions 3, 4, 5) and a few examples
(Proposition 1) in order to help the reader to figure out
the consequences of local constraints on turn. The impa-
tient reader can skip this introduction to go to Proposition 2
which gives the operational characterization of the notion of
locally turn-bounded curve. Afterward, Sect. 3 continues by
establishing three easy propositions (Propositions 3–5) and
a corollary (Corollary 4) that provide basic properties of the
locally turn-bounded curves. We end Sect. 3 by a lemma and
a definition (Lemma 2 and Definition 6) that make it possible
to distinguish the arcs Cba and Cab under some assumptions.

Definition 3 (Turn-neighborhood) A point b in C is in the
turn-neighborhood of a point a on a simple geometric curve
(or on a Jordan curve) with angle θ , if one of the arcs of C
from a to b has a turn that is less than, or equal to θ . The
turn-neighborhood of the point a on the geometric curve C
with angle θ is denoted by VC(a, θ).

Figure 3 shows how the turn-neighborhood VC(a, θ) varies
when changing the angle θ and the position of the point a.

Definition 4 (Turn-step function) The turn-step function
θ �→ σ(θ) is defined by

σ(θ) := inf
a∈C

d
(

a, C \ VC(a, θ)
)

.

Fig. 3 The red arc is the turn-neighborhood VC(a, θ) of a at different
positions on the regular hexagon for the indicated θ . On the circle, the
turn-neighborhood remains the same, up to rotation, when changing the
position of the point a (Color figure online)
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where d denotes the Euclidean distance.

The turn-step function θ �→ σ(θ) is increasing. Indeed,
for any a ∈ C, the set VC(a, θ) increases (for the inclusion
order) in function of θ . Then, the distance from a to the
complement of VC(a, θ) increases too. If the turn of C is
finite, there exists a value above which the turn-step function
has an infinite value for VC(a, θ) equals C.

Proposition 1 (Examples)

1. The turn-step function of a Jordan curve at 0 is 0.
2. The turn-step function of a convex Jordan curve at π is

+∞.
3. The turn-step function of a circle with radius r at θ is

2r sin(θ/2) if θ < π and is infinite for θ ≥ π . (see
Figs. 4 and 5).

4. The turn-step function on a polygonal curve is a step
function.

5. The turn-step function on a regular n-gon Pn inscribed
in a circle of radius r is

Fig. 4 For the chosen value of θ , the corresponding θ-turn-step σ(θ).
On the hexagon, the distance between a point and one end of its θ-
neighborhood depends on the position of the point. This distance is
asymptotically achieved by a sequence of points (ai ) lying on one side
which tends to a corner of the hexagon. The end of the θ-neighborhood
of each ai is the point b. Notice that the θ-turn-step is not always the
distance between a point and the end of the θ-neighborhood. The third
curve is a counterexample to this wrong assumption

σPn (θ) =
{

2r sin
(⌊ nθ

2π

⌋

π
n

)

ifθ < π

+∞ otherwise
.

(see Figs. 4 and 5).

Proof 1. Firstly, observe that, ifC is a polygon, taking points
a arbitrarily closed to a vertex, we have d(a, C\VC(a, 0))
arbitrarily small, that is σ(0) = 0. By contradiction, now
assume that σ(0) = c > 0 for some Jordan curve C.
Then, thanks to the compacity of C, we can cover the
whole curve C with a finite set of balls B(ai , c), 1 ≤ i ≤
n. By definition of c, the turns κ(C∩B(ai , c)) are reduced
to the angles between the left and right tangent vectors at
ai : C is a polygon. Contradiction.

2. According to Fenchel’s Theorem 3 and Property 7, for
any point on a convex Jordan curve, the π -neighborhood
is the whole curve.

Fig. 5 On the top (red), the graph of the turn-step function σ for a
regular n-gon inscribed in a circle of radius r , on the bottom (blue), the
graph of the turn-step function σ for a circle circle (Color figure online)
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3. The θ -neighborhood of any point a of a circle of radius r
is an arc of circle of length θr centered in a. The distance
between the pointa and the rest of the circle is 2r sin(θ/2)
(see Fig. 4).

4. The turn between two points on a polygonal curve is a
finite sum of geometric angles.

5. The θ -neighborhood is described in Fig. 3. The θ -
neighborhood of a vertex a of Pn is made of the 2(	 nθ

2π 
+
1) nearest sides of Pn . The θ -neighborhood of a point a
on an open edge of Pn is made of the 2	 nθ

2π 
 + 1 nearest
sides of Pn . Then, the distance between a and a point
outside VPn (a, θ) is minimal when a lies in an open side.
Observe that, in this latter case, the θ -neighborhood does
not depend on the position of a in the open side. Then,
a can be arbitrarily close to a vertex (see Fig. 4). Hence,
for θ < π ,

σ(θ) = 2r sin

(⌊

θ

2π/n

⌋

π

n

)

.

��
Figure 4 illustrates the definition of the turn step with

different curves. In Fig. 5, we plot the turn-step functions of
circles and regular polygons.

Definition 5 (Locally turn-bounded curves) Let θ ≥ 0, δ ≥
0. A Jordan curve C is (θ, δ)-locally turn-bounded if, for any
a ∈ C, the Euclidean distance from a to C\VC(a, θ) is greater
than, or equal to δ:

σ(θ) ≥ δ.

In the rest of the article, we will shorten (θ, δ)-locally turn-
bounded curve by (θ, δ)-LTB curve.

Remark 3 Local turn-boundedness is scale invariant: let C be
a (θ, δ)-LTB Jordan curve. Then, the curve k C, k > 0, is
(θ, kδ)-LTB. It is a direct consequence of Remark 2.

The following proposition explains how to apply the
notion of local turn-boundedness to a concrete geometric
configuration.

Proof This property is just a contrapositive statement of Def-
inition 5. Indeed,

C is (θ, δ)-LTB ⇐⇒∀a ∈ C, δ ≤ d(a, C \ VC(a, θ))

⇐⇒∀a ∈ C,∀b /∈ VC(a, θ), δ ≤ d(a, b)

⇐⇒∀a ∈ C,∀b ∈ C,

κ(Cba ) > θ and κ(Cab ) > θ�⇒δ ≤ d(a, b)

⇐⇒∀a ∈ C,∀b ∈ C,

d(a, b) < δ�⇒κ(Cba ) ≤ θ or κ(Cab ) ≤ θ.

��

Using the previous characteristic property, let us nowshow
that the class of LTB curves contains the smooth curves of
class C2.

Corollary 3 Jordan curves of class C2 are (θ, 2rC sin(θ/2))-
LTB for any θ ≤ π , rC being theminimumradius of curvature
of C.

Proof Let C be a Jordan curve of class C2. Then, C has an
arc-length parametrization γ and the absolute value of its
curvature is bounded from above by the real 1/rC . By Prop-
erty 2, the turn of C between two points is bounded by s

rC
where s is the geodesic distance between the two points. Con-
sidering a circle D of radius rC , we derive that the turn of
C between two points a, b at geodesic distance 	 less than
rCπ is less than the turn of D between two points c, d at
geodesic distance 	. Hence, Schur’s Comparison Theorem
applies: ‖a − b‖ ≥ ‖c − d‖ and since

‖c − d‖ = 2rC sin
(

l

2rC

)

≥ 2rC sin
(

κ(Cba )
2

)

(for 	/(2rC) ≤ π/2), it follows that, for any θ ∈ (0, π ],
κ(Cba ) ≤ θ whenever ‖a−b‖ < 2rC sin(θ/2). Then, accord-
ing to Proposition 2, the result holds. ��
Proposition 2 (Characteristic property of local turn
-boundedness) The curve C is (θ, δ)-LTB if and only if, for
any two points a and b in C such that d(a, b) < δ, the turn
of one of the arcs of the curve C delimited by a and b is less
than or equal to θ .

Intuitively, local turn-boundednessmust also be a punctual
turn-boundedness. This is verified just hereafter.

Proposition 3 Let C be a (θ, δ)-LTB curve where θ < π .
Then, for any point p ∈ C, one has � (el(p), er (p)) ≤ θ

where el(p) and er (p) denote, respectively, the left and right
tangent vectors at point p.

Proof The notations of the proof are summed up in Fig. 6. Let
C be a (θ, δ)-LTB curve where θ < π and p be a point in C.
Let q �= p ∈ C and (am), resp. (bm) be a sequence of points
in C such that (am) → p, (bm) → p and am ∈ Cqp while
bm ∈ C p

q for anym. Then, from Corollary 1, κ(C \ {p}) > π .
Moreover, fromProperty 8,κ(C\{p}) ≤ lim inf κ(Cm)where
Cm is the arc between am and bm included in C \ {p}. Thus,
on the one hand, there exists m0 such that, for any m > m0,
κ(Cm) > π . On the other hand, there clearly existsm1 > m0

such that d(am, bm) < δ for anym > m1. Letm > m1. As C
is (θ, δ)-LTB and κ(Cm) > π , we derive that κ(C \ Cm) ≤ θ .
We conclude, thanks to Property 7, that � (el(p), er (p)) ≤ θ .
��

From Proposition 3, we derive that a (θ, δ)-LTB polygon
has inner angles greater than or equal to π − θ . Provided
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Fig. 6 The sequences of points of C, (am) and (bm) tends to the point
p on both sides of p. The curve (Cm) is drawn in orange orange (Color
figure online)

that δ is not greater than any edge of the polygon and any
distance between non-consecutive edges, this last property is
a sufficient condition as well. Indeed, with such a value for δ,
points at distance less than δ belong to the same edge or to two
consecutive edges. Thereby, they are linked by an arc whose
turn is at most θ . Proposition 3 also shows that LTBcurves fill
a gap between smooth curves and unconstrained polygons:
they may have angular points but not too much sharp.

The next propositionmakes it possible to localize a locally
turn-bounded curve from a sufficiently tight sampling. Fig-
ure 7 illustrates the proposition.

Proposition 4 Let C be a simple (θ, δ)-LTB curve. Let a, b
be two points on C such that d(a, b) < δ. Then, the arc of C
delimited by a and b of smallest turn is included in the union
of the two truncated closed diskswhere the line segment [a, b]
is seen from an angle greater than or equal to π − θ .

Proof Since d(a, b) < δ, by Proposition 2, the turn of one of
the arcs of C between a and b is less than or equal to θ . Denote
by C0 such an arc. Let c be a point on C0. By definition, the
turn of the polygonal line [a, c, b] is less than or equal to
the turn of C0. Then, the geometric angle ̂acb is greater than
or equal to π − θ . We conclude the proof by invoking the
inscribed angle theorem. ��

In Fig. 8, we use Proposition 4 to localize a (π/2, δ)-LTB
curve from a sufficiently tight sampling of the curve with
respect to δ.

Proposition 5 states that LTB curves for angles θ ≤ π/2
are locally path-connected subsets of the Euclidean plane.
Locally path-connectedness can be seen as a thickness prop-
erty. Indeed, locally path-connectedness implies that dilating
a LTB curve by a sufficiently small ball (here, with radius less
than δ/2) does not change the homotopy type of the curve

Fig. 7 Illustration of Proposition 4 for three values of the parameter θ :
π/3, π/2, 2π/3. Given two points a, b ∈ C such that d(a, b) < σ(θ),
then one of the arc of C between a and b belongs to the gray area

Fig. 8 Any (π/2, δ)-LTB curve sampled by the set of red points is
localized in the gray region delimited by the two orange curves provided
that the distance between two consecutive sampling points is less than
δ (Color figure online)

(no connected component of the interior or the exterior of the
curve is created).

Proposition 5 Let C be a (θ, δ)-LTB Jordan curve with θ ∈
(0, π/2] and a ∈ C. Then, for any ε ≤ δ, the intersection of C
with the open disk B(a, ε) is path-connected and is therefore
an arc of C. Furthermore, the turn of this arc is less than or
equal to 3θ .

Proof The notations of the proof are summed up in Fig. 9. Let
a ∈ C. Let b1, b2 ∈ C ∩ B(a, ε). Then, by Proposition 2, the
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Fig. 9 In blue, the arc Cqp which is the intersection between C and
the disk B(a, ε). The arc Cba is included in the disk of diameter [a, b]
delimited by the dashed circle (Color figure online)

turn of one of the arcs of C between a and b1, resp. between
a and b2, is less than or equal to θ . This arc is denoted by Cb1a ,
resp. Cb2a . So, from Proposition 4 and for θ ≤ π/2, this arc
is included in the disk with diameter [a, b1], resp. [a, b2],
which is itself included in B(a, ε). Hence, C ∩ B(a, ε) is
path-connected.

Furthermore, we derive from Property 7 that

κ(Cb2b1 ) ≤ κ(Cab1) + κ(Cb2a ) + � (el(a), er (a))

≤ 2θ + � (el(a), er (a)).

By Proposition 3, � (el(a), er (a)) ≤ θ , then κ(Cb2b1 ) ≤ 3θ .
��

Observe that for π/2 < θ < π , in particular for polygons
with acute angles, Proposition 5 does not hold (the intersec-
tion of the curve with a ball near an acute angle may have
two connected components).

The rectifiability of a (θ, δ)-LTB curve is a consequence
of Proposition 5.

Corollary 4 A (θ, δ)-LTB curve with θ ∈ (0, π/2] has a finite
turn and is thus rectifiable.

Proof Let C be a (θ, δ)-locally turn-bounded curve. The
open balls B(a, δ/2), a ∈ C, cover the compact set C.
Then, there exists a finite subset of C, {a0, . . . , am} such
that

⋃m
i=0 B(ai , δ/2) covers C. By Proposition 5, for each

i , C ∩ B(ai , δ/2) is an arc of C whose turn is less than, or
equal to 3θ .

Since the balls are open and thus overlap, by Corollary 2,
κ(C) ≤ ∑m

i=0 κ(C ∩ B(ai , δ/2)). Therefore, κ(C) ≤ (m +
1)(3θ). ��

From Corollary 4, we derive that LTB curves are one-
sidedly smooth (Property 6) and contain at most countably
many angular points (Property 5). We also deduce from

Corollary 4 that the class of LTB curves contains no fractal
curve. This is not satisfactory in a multi-resolution con-
text. Nevertheless, local turn-boundedness is a step between
smooth and fully realistic models in multi-resolution envi-
ronments.

Because of the strict inequality (d(a, b) < δ) in the char-
acteristic property of local turn-boundedness (Proposition 2),
it could be necessary to deal with parameters δ greater than
the diameter1 of the curve. The next lemma shows that it
is actually not necessary (the proof, somewhat technical, is
given in “Appendix B”).

Lemma 1 Let C be a (θ, δ)-LTB curve with θ < 2π/3. Then,

δ ≤ diam(C),

where diam denotes the diameter.

Using the characteristic property stated in Proposition 2,
one of the main difficulties is that there is no way to know
which of the two arcs between two points at distance less
than δ has its turn less than θ .

When θ ≤ π
2 , the next lemma removes any ambiguity.

Lemma 2 Let θ ∈ (0, π/2] and C be a (θ, δ)-LTB curve.
For any a, b ∈ C such that 0 < d(a, b) < δ, there exists a

unique arc of C from a to b whose turn is less than or equal
to π

2 .

Proof We prove a contrapositive statement. Let C be a (θ, δ)-
LTB curve where θ ∈ (0, π/2] and let a, b be two points in
C such that 0 < d(a, b) < δ and Cba , Cab both have a turn
less than or equal to π

2 . By Proposition 4, Cba and Cab are
included in the disk of diameter [a, b] which then contains
the whole curve C. Thus, the diameter of C is smaller than δ.
Contradiction with Lemma 1. ��

Thanks to Lemma 2, we can now define the straightest
arc between two close points of a (θ, δ)-LTB curve when
θ ≤ π/2.

Definition 6 [Straightest arc between two points] Let θ ∈
(0, π/2] and C be a (θ, δ)-LTB curve. Between two distinct
points at distance less than δ, the unique arc whose turn is
less than or equal to θ is called the straightest arc between a
and b.

4 Properties of Locally Turn-Bounded Curves
Related to the Gauss Digitization

The aim of this section is to establish the following theorem
aboutGauss digitization ofLTBJordan curves onfine enough
grids.

1 Diameter of a set S: supremum of the set of all distances between
pairs of points in S.
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Fig. 10 Gauss digitizations in red of continuous shape delimited by a Jordan curve C in blue . Left and center: well-composed. Right: non
well-composed (Color figure online)

Theorem 1 Let C be (θ, δ)-LTB curve with θ ≤ π/2 and h be
a grid step compatible with C. Then, the Gauss digitization
of C for the grid step h is a Jordan curve whose interior is
4-connected.

Firstly, we will recall what is the Gauss digitization of
a set and how we define the Gauss digitization of a Jordan
curve. We will also recall the notion of well-composedness
which expresses the manifoldness of a digitized shape, more
precisely, of an union of pixels. Pixels we are dealing with
are mainly squares. Nevertheless, when more general pixels
(regular tiles, or even compact tiles) can be used for free in the
proofs, we will give general statements in the propositions.
As afirst step toward the proof ofTheorem1,wewill describe
the intersection of a LTBcurve with a pixel. Actually, study-
ing straightest arcs starting and ending in a given tile, we will
show that such arcs are generally not entirely included in the
tile but in a swollen tile (Definition 7 and Proposition 6). The
next step will be to define and describe the supremum (for
the inclusion)—actually a maximum—of all the arcs start-
ing and ending in a given tile T . We will call it arc passing
through T (Definition 8 and Proposition 7). The assumptions
under which all the previous results are valid will be gathered
in the notion of grid step compatible with a given LTB curve
(Definition 9). The last step of this effort toward a topological
description of the manner the curve separates the grid points
will be accomplished by considering dual pixels, that is unit
squares whose vertices are grid points: the end points of the
arc passing through a dual pixel T determines the member-
ship of the vertices of T to the interior or the exterior of
the LTBcurve (Lemma 4 and Proposition 8). Finally, we will
state and prove Theorem 1 in two parts: well-composedness
(Proposition 9) and 4-connectedness (Corollary 5).

Let h > 0 be a sampling grid step, the Gauss digitization
of a shape S is defined as S ∩ (hZ)2. By abuse of language,
given a Jordan curve C which is the border of the compact
shape S, we define its Gauss digitization—we write ∂h(C)—
as the border of the union of the squares p⊕ ([−h/2, h/2]×
[−h/2, h/2]) where ⊕ denotes the Minkowski sum and p ∈
S ∩ (hZ)2. The Gauss digitization of C is well-composed if
it is a disjoint union of Jordan curves (see Fig. 10).

The information on the turn makes it possible to define a
domain where the arc of smallest turn of a (θ, δ)-LTB curve

passing through a tile of the grid is lying (Definition 7).
Before that, we need to prove a technical lemma that will
be used in the proofs of Propositions 6 and 9.

Lemma 3 Let C be a curve with endpoints a, b such that the
straight segment (a, b) does not intersect the curve C. Let P
be a polygonal line from a to b such that P \ {a, b} lies in
the interior of the Jordan curve C ∪ [a, b] and P ∪ [a, b] is
convex. Then, κ(C) > κ(P).

Proof We set P = [a, p1, . . . , pm, b]. Let c be any point
in (a, b) and Q = [a, q1, . . . , qm, b] be the polygonal line
obtained by projecting from the point c on the curve C the
polygon P (see Fig. 11). By projection of a point x , we mean
the first intersection point y between C and the half-line D
starting from c and directed by x −c. This intersection exists
and iswell defined for P\{a, b} lies in the interior ofC∪[a, b]
and C∩D is a compact set. Note that we do not assert that the
point qi is the projection of the point pi , but we claim that the
polyline P deprived of its endpoints lies in the interior of the
polygon Q∪[a, b] and the polyline Q is inscribed in C. Then,
κ(C) ≥ κ(Q) by definition of κ(C), κ(Q ∪ [b, a]) ≥ κ(P ∪
[b, a]) by Fenchel’s Theorem (Property 3) and � (a−b, p1−
a) > � (a−b, q1−a), � (a−b, b− pm) > � (a−b, b−qm)

for P is inside Q ∪ [a, b]. Since κ(P ∪ [b, a]) = κ(P) +
� (a − b, p1 − a) + � (a − b, b − pm) and κ(Q ∪ [b, a]) =
κ(Q) + � (a − b, q1 − a) + � (a − b, b − qm) by definition
of the turn of a polygon, the result holds. ��

Fig. 11 Blue: the curve C and the line segment [a, b]. Black: the
polygonal line P = [a, p1, p2, b]. Black, dashed: the projection of
p1 and p2 on C yields the points q1 and q2. Red: the polygonal line
Q = [a, q1, q2, b] (Color figure online)
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Let us now define the “swollen” tile in which lies an arc of
a LTB-curve passing through a tile of the plane under some
hypotheses.

Definition 7 (Swollen set) Let P be a polygon [p0, . . . , pN ]
with p0 = pN and A be the interior of P . The θ -swollen set
of P denoted by “Pθ is defined by:

“Pθ := P ∪ A ∪
N−1
⋃

k=0

Dk

with Dk the truncated closed disk outside P where the seg-
ment [pk, pk+1] is seen from an angle greater than or equal
to π − θ . Moreover, “P π

2
is shorten by “P.

The notion of swollen set is illustrated in Fig. 12 and in
Fig. 16.

Proposition 6 Assuming an n-regular tiling of the plane with
edge length h (n ∈ {3, 4, 6}), let C be a (θ, δ)-LTB Jordan
curve with θ ≤ 2π/n and δ > h

√
n − 2. Let T be a tile

crossed by C and a, b be two points of T ∩C. Then, the arc Cba
of C of smallest turn delimited by a and b lies in the θ -swollen
set of T . In particular, the maximum distance between a point
of Cba and T is bounded from above by h

2 tan( θ
2 ).

Proof Let Cba be the arc of C of smallest turn delimited by a
and b. As the diameter of T is h

√
n − 2, by the hypothesis

δ > h
√
n − 2 and since C is a (θ, δ)-LTB curve, one has

κ(Cba ) ≤ θ ≤ 2π/n. Let o be a point lying on Cba and outside
T , if any. Let Cdc be the closure of the connected component
of Cba \ T containing the point o. Notice that c and d are on
the border ∂T of T . Indeed if c or d is in the interior of T ,
then there exist points of Cdc inside T and if c or d are outside
T , there exists a connected component of Cba \ T properly
containing Cdc .

We claim that the point d belongs to the same edge as c.
Indeed, if it was not the case, one of the two polygonal lines
from c to d in the boundary of T would lie in the interior
of the Jordan curve Cdc ∪ [c, d] and would contain at least a
vertex of T . Then, according to Lemma 3, the turn of

Fig. 12 Gray: a tile T with edge length h. Blue, thick: a LTB curve arc
with ends in T . Red: the boundary of the swollen set “Tθ . The Hausdorff
distance between “Tθ and the tile T is e (Color figure online)

the subarc Cdc of Cba ,
would be greater than the turn at a vertex of T , that is

2π/n. A contradiction. Hence, c and d belong to the same
edge. By Proposition 4, we derive that Cdc lies in the union
of the two truncated disks where the segment [c, d] is seen
from an angle greater than or equal to π − θ . One of these
truncated disks is included in T while the other, exterior to T ,
is included in the swollen set “Tθ . Hence, o lies in the swollen
set “Tθ whose Hausdorff distance to T is h

2 tan( θ
2 ). ��

When θ < π/2, Proposition 6makes it possible to localize
the straightest arc between any two points of a a sufficiently
small tile. Nevertheless, we still need to define the minimal
straightest arc including the whole intersection between C
and T .

Definition 8 (Arc passing through T) Let θ ∈ (0, π/2] and C
be a (θ, δ)-LTB Jordan curve . Let T be a closed set whose
diameter is strictly less than δ. The arc of C passing through
T denoted by CT is defined by

CT :=
⋃

a,b∈T∩C
Cba (2)

where Cba is the straightest arc between a and b.

We now show some properties of the arc passing through
a tile provided this tile is sufficiently small compared to C: it
is a straightest arc between some points in T (hence, its turn
is less than or equal to π

2 ) and it is maximal for this property.
Furthermore, its complementary in C does not intersect T .

Proposition 7 Let θ ∈ (0, π/2]andC be a (θ, δ)-LTB Jordan
curve. Let d be the diameter of C. Let T be a closed set
included in an open disk B(c, r) with r less than or equal

to min( 12δ,
√
2
4 d). Then, the arc CT passing through T is the

unique arc of C of turn less than or equal to π
2 having its end

points in T and such that the straightest arc between any two
points of T is included in CT . Moreover,

(C \ CT ) ∩ T = ∅.

Proof Since the proof is somewhat long and tedious, we put
it in “Appendix D.” ��

Going back to the main case where pixels are square tiles,
we propose the following definition that corresponds to the
hypotheses of Proposition 7.

Definition 9 (Compatibility hypothesis) A grid with step h
or a square of side length h is said to be compatible with the
curve C if the following conditions are fulfilled:

1. the curve C is (θ, δ)-locally turn-bounded with θ ∈
(0, π

2 ],
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2. h is strictly smaller than min(
√
2
2 δ, 1

2 diam(C)).

Lemma 4 and Proposition 8 investigate the positions of the
vertices of a square pixel relatively to the arc passing through
this pixel.

Lemma 4 Let C be a (θ, δ)-LTB Jordan curve with θ ≤ π
2

and T be a square compatible with C. If C contains a vertex
v of T then either this vertex v is an end point of the arc
passing through T , or the arc CT is wholly included in the
two sides of T having v for ends.

Proof Denote by a and b the ends of the arc passing through
T , CT . From Proposition 7, κ(CT ) ≤ π

2 . Assume that p ∈
CT \ {a, b} is a vertex of T . Then, the geometric anglêapb
is less than or equal to π

2 . Actually, it is equal to π/2 for

π/2 ≥ κ(CT ) ≥ π −̂apb. Then, on the one hand, a and
b lie on two adjacent edges of T that intersect in v. On the
other hand, we have κ(CT ) = κ(Cba ) = κ([a, p, b]). Let c be
point in C in between a and p. From the very definition of
the turn, we derive that κ([a, c, p, b]) = κ([a, p, b]), that is
c ∈ [a, p]. Alike, any point of C in between p and b lie in
the segment [p, b]: CT is included in [a, p] ∪ [p, b]. ��

Some point configurations cannot occur in the Gauss dig-
itization of a curve compatible with the grid. Proposition 8
makes it possible to exclude some of these configurations.
Indeed, we show that whether or not two 8-adjacent points in
hZ

2 are in the same connected component of R

2 \ C can be
locally decided by considering the arc CT passing through a
unit square T having these points as vertices. Better, know-
ing the edges of T on which lie the ends of CT is sufficient to
make the decision. Hence, instead of considering infinitely
many cases (number of all possible LTB curves separating or
not two 8-adjacent points), we only have to consider finitely
many cases (i.e. all possible positions of the ends of the arc
passing through T ).

Proposition 8 Let C be (θ, δ)-LTB Jordan curve, T be a
square compatible with the curve and a, b be the end points
of the arc passing through T . Two vertices of T are in the
same connected component of R

2 \ C if and only if they are
in the same connected component of T \ [a, b] and they do
not lie on C.

Proof Let consider the curve C′ = (C \ CT ) ∪ [a, b] and
the compact set K delimited by the closed (non necessarily
simple) curve CT ∪[a, b]. The proof is divided in three steps.
In the first step, we prove that C′ is a Jordan curve. In the
second step, we prove that if a vertex of T is in K , then this
vertex is on C. In the third step, we prove that if two vertices
of T are in the same connected component of R

2 \ C, then
they are in the same connected component of T \ [a, b].

– Step 1. The set C′ is a Jordan curve for a and b are the
end points of C \ CT and C \ CT does not intersect T
(Proposition 7) while the segment [a, b] is included in T .

– Step 2. By Propositions 6 and 7, CT is included in Tπ/2,
the π/2-swollen set of T . In particular, the vertices of T
lying in the compact set K , if any, belong to CT .

– Step 3. Two vertices of T are in the same connected
component of R

2 \ C if and only if they are in the same
connected component of R

2 \ C′ and they do not lie in
C (for, from Step 2., we know that they cannot lie in the
interior of K ), or, equivalently (since C \ CT does not
intersect T ), they are in the same component of T \[a, b]
and they do not lie on C.

��
We shall now prove that the Gauss digitization of a LTB

curve is well-composed provided the grid step is small
enough.

Proposition 9 Let C be (θ, δ)-LTB curve with θ ≤ π/2 and h
be a grid step compatible with C. Then, theGauss digitization
of C for the grid step h is well-composed.

Proof The proof is made by contradiction. So, let a be a
double point on ∂h(C). The point a is the center of a square
T := [I1, E1, I2, E2] whose vertices are points of (hZ)2,
the points E1 and E2 lying outside C while I1, I2 lie inside
or on C. Then, by discriminating vertices strictly inside C
of vertices in C, there are only three possible configurations
modulo rotations and symmetries depicted in Fig. 13. Let Cqp
be the arc passing through T .

– First configuration. By Proposition 8, the segment [p, q]
separates the square T into two polylines, the first con-
taining the vertices E1 and E2 (outside C) and the second
(possibly empty) containing the vertices I1 and I2 (inside
C). The reader can check that this separating property
does not hold for the first configuration of Fig. 13.

– Second configuration. In the one hand, by Lemma 4, p or
q lies in the open polyline (E1, I1, E2) and, in the other
hand, from Proposition 8, p and q lie in the open polyline
(E1, I2, E2).

Fig. 13 The three possible configurations for a double point a of the
Gauss digitization of a Jordan curve
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– Third configuration. From Lemma 4, {a, b} = {I1, I2}.
Thus, the segment [I1, I2] separates E1 from E2 in con-
tradiction with Proposition 8.

Hence, none of the three configurations can occur. ��
Notice that the bounds θ ≤ π

2 and
√
2h < δ are tight: see

Figs. 14 and 15 for counterexamples.

Corollary 5 Let C be (θ, δ)-LTB curve with θ ≤ π/2 and h
be a grid step compatible with C. Then, theGauss digitization
of the closure of the interior of C is 4-connected.

Proof Figure 16 illustrates the proof. Let C be a Jordan curve
bounding a shape S and h > 0. Let D be a connected
component of the digitization of C (specifically, D is the
border of a connected component of the digitization of the

Fig. 14 The blue spike with vertex at the origin is locally turn-bounded
for any θ ≥ θ0 and any δ > 0. Nevertheless, its digitization is not
well-composed (whatever the grid step) (Color figure online)

Fig. 15 The digitization of the blue rectangle is not well-composed
though its boundary is (π/2, δ)-locally turn-bounded (Color figure
online)

shape S). Making a dilation of D by the structuring element
h[−1/2, 1/2]×h[−1/2, 1/2] centered in (0, 0) yields a new
polygonal border D′ whose vertices are integer points and
edges are grid line segments. By the definition of D andwell-
composedness (Proposition 9), no grid point in D′ belongs
to the digitization of the shape S.

Consider the collection T of all those unit squares sharing
edges with D′: T = {Ti | 1 ≤ i ≤ ND}. Each unit square Ti
has at least a vertex outside C. Moreover, by Proposition 9,
there are exactly two edges of Ti joining a vertex outside C
to a vertex inside C or in C. We claim that on each of these
edges, there is an end of CTi , the arc through Ti . Indeed, if
there was not an end on an edge of Ti joining a vertex ve
outside C and a vertex inside ve C, by Proposition 8, these
two vertices would be in the same connected component of
R

2 \C. And if there was not an end on an edge of Ti joining a
vertex ve outside C and a vertex vb on C, by Lemma 4, either
the vertex vb is an end of CTi , either CTi is wholly included
in the two edges of Ti having vb for edges, and CTi has one
end on [ve, vb].

Let T1 and T2 be two elements ofT sharing an edge joining
inside vertices to outside vertices. This edge contains an end
point of the arc passing through T1, denoted by p1, and an
end point of the arc passing through T2, denoted by p2. By
Definition 8, p1 belongs to CT2 and p2 belongs to CT1 . Then,
CT1 ∪CT2 is an arc of C whose ends are, respectively, the ends
of CT1 and CT2 distinct from p1 and p2. Eventually, going
through T , we build a closed arc

⋃ND
i=1 CTi included in C and

in the swollen set of
⋃

T . As C is a Jordan curve, we derive
that C = ⋃ND

i=1 CTi : D is unique. ��
Eventually, thanks to Proposition 9 and Corollary 5, we

can now state the result announced at the beginning of this
section.

Theorem 1 Let C be (θ, δ)-LTB curve with θ ≤ π/2 and h be
a grid step compatible with C. Then, the Gauss digitization
of C for the grid step h is a Jordan curve whose interior is
4-connected.

In this section, we have proved that the hypothesis of local
turn-boundedness guarantees the well-composedness for a
small enough grid step. The well-composedness of the digiti-
zation is also obtained under the hypothesis of par-regularity.
In the next section, we will show that local turn-boundedness
is a relaxation of the par-regularity.

5 Par-regularity and Local Turns

Let usfirst give the statement of themain result of this section.
Afterward, we will recall the definition of par-regularity and
give the outline of the proof.

Theorem 2 Let C be a par(r)-regular curve of class C1 and
θ ∈ (0, π). Then, C is (θ, 2r sin(θ/2))-LTB.
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Fig. 16 Proof of Corollary 5 (see text). Triangles: integer points of a
connected component of the Gauss digitization of the shape S. Squares:
integer points outside this component. Red thick line: the Gauss digiti-

zation D of the curve C. Dashed thin line: the border D′ of the dilation
of theGauss digitization. Orange thick line: the border ofU , the swollen
set of D′. Green: the collection of squares T (Color figure online)

To introduce the notion of regularity, we use the same
definition as in [7] and [8].

Definition 10 [par(r )-regularity] Let C be a Jordan curve of
interior K.

– Aclosed ball B̄(ci , r) is an inside osculating ball of radius
r to C at point a ∈ C if C∩ B̄(ci , r) = {a} and B̄(ci , r) ⊂
K ∪ {a}.

– A closed ball B̄(ce, r) is an outside osculating ball of
radius r to C at point a ∈ C if C ∩ B̄(ce, r) = {a} and
B̄(ce, r) ⊂ R

2 \ (C ∪ K ∪ {a}.
– A curve C or a set K is par(r )-regular if there exist inside
and outside osculating balls of radius r at each a ∈ C
(Fig. 17).

The proof of Theorem 3 is divided into three steps. The
first two steps are independent. In the first step, we show
that the turn of a par(r )-regular curve is a 1

r -Lipschitz func-
tion of its length (Lemma 5). In the second step, we show
that the distance between the ends of a small arc of a
par(r )-regular curve is an increasing function of its length
(Lemma 6). In the last step, applying Schur’s Compari-
son Theorem to a par(r )-regular arc of length θr and a
circle arc of radius r and turn θ , we show that the dis-
tance between the end points of the par(r )-regular arc is
greater than 2r sin( θ

2 ). Since this distance is an increas-
ing function of the length (Lemma 6), we derive that the
length of the par(r )-regular arc between points at dis-
tance 2r sin( θ

2 ) is smaller than θr (Proposition 11). Then,
thanks to Lemma 5 —the turn of a par(r )-regular curve
is a 1

r -Lipschitz function of its length— we conclude the
proof.
Step 1: the turn of a par(r )-regular arc is a 1

r -Lipschitz
function of its length.

Some elementary lemmae used in this paragraph are stated
in “Appendix E.”

The following lemma shows that the turn of a par(r )-
regular curve is a 1

r -Lipschitz function of the length.

Lemma 5 Let C be a par(r)-regular curve. Then, the length
of any arc A of C is greater than, or equal to the length of a
circle arc with radius r and turn κ(A). In other words, for
each arc A of C,

rκ(A) ≤ L(A).

Proof We denote by a and b the endpoints of the arc A. For
each m ∈ N

∗, let (am,i )i∈�0,Nm� be the ordered sequence
of vertices of a polygonal line Lm inscribed in A such that
am,0 = a, am,Nm = b and

∀i ∈ �0, Nm − 2�, ‖am,i+1 − am,i‖ = 1

m
< 2r .

and ‖am,Nm − am,Nm−1‖ ≤ 1
m . Then, from Lemma 9

(“Appendix E”) and since the function arcsine is increasing,

κ(Lm) ≤ 2(�L(Lm)

1/m
� − 1) arcsin

(

1/m

2r

)

,

≤ 2
L(Lm)

1/m
arcsin

(

1/m

2r

)

.

Moreover, by Property 1,

lim
1/m→0

L(Lm) = L(A) and,

lim
1/m→0

κ(Lm) = κ(A).

Furthermore,

lim
1/m→0

2r

1/m
arcsin

(

1/m

2r

)

= 1.

Hence,

κ(A) ≤ 1

r
L(A).

��
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Fig. 17 The par(r )-regularity demands that at each point of the bound-
ary of the shape, there exist inside and outside osculating balls of
radius r

Step 2: Par-regular curves have a local quasiconvex behav-
ior.

This step uses the derivative of a par-regular curve. This
is possible because par-regularity was indirectly proven to
imply continuous differentiability. Indeed, in [7], Lachaud
and Thibert show that par-regularity is equivalent to having
positive reach which was proven by Federer [4] to be equiv-
alent to being of class C1,1 (C1 with Lipschitz derivative).
We give below a proof based on the work of Alexandrov and
Reshetnyak [1].

Proposition 10 Every par(r)-regular curve C is of class C1.

Proof Let a ∈ C and Bi , Be be, respectively, the interior
and exterior osculating balls of radius r at a. Let D be the
common tangent to Bi and Be at a. Since C \ {a} does not
intersect Bi and Be, it is easy to see that, for any ε > 0 and
any point b in the curve neighborhood C ∩ B(a, 2r cos(ε)),
the angle between the straight line ab and D is less than
ε. Also, observe that the definition of par-regularity forbids
cusps. Then, by Definition 2, C has left-hand and right-hand
tangents in a which are equal: C is a smooth curve whose
tangents everywhere coincide with those of its osculating
balls. Eventually, we derive from Property 5 that C is of class
C1. ��

The following lemma states that, for any injective
parametrization γ of a par-regular curve C, the distance func-
tion t �→ ‖γ (t) − γ (t0)‖ is quasiconvex near its minimum.

Lemma 6 Let C be a par(r)-regular curve and a a point on
C. LetA be the intersection of C with the ball B(a, 2r). Then,
A is path-connected and for any injective parametrization γ

the distance function t �→ ‖γ (t) − a‖ is quasiconvex.

Proof Let γ be an injective parametrization of C. By con-
tradiction, assume that there exists a local minimum c �=
γ −1(a) of the map φ : t �→ ‖γ (t) − a‖. By Proposition 10,
C is of class C1, then, φ′(c) = 0. Hence,

< γ ′(c), γ (c) − a >= 0,

that is, γ ′(c) is orthogonal to γ (c) − a. The osculating disks
of radius r at γ (c) are tangent to γ ′(c) and ‖γ (c) − a‖ ≤ r .
It follows that the point a is in one of the osculating disks at
γ (c) which contradicts the assumption of par(r )-regularity.
Moreover, assume that A is not path-connected. Let C1 be a
connected component which is not containing a. By Rolle’s
Theorem, there exists t0 such that φ′(t0) = 0 and γ (t0) ∈
B(a, 2r), which is impossible. ��

Wecan prove an equivalent statement of Lemma6 for LTB
curves; See “Appendix C”. These similar behaviors are not
surprising since we are showing that par-regularity implies
local turn-boundedness. Nevertheless, it is interesting to
compare the radii of the neighborhoods in which these local
properties hold: 2r in the one hand (par(r )-regularity), δ in the
other hand ((θ, δ)-local turn-boundedness) while Theorem 3
states that par(r )-regularity implies (θ, 2r sin(θ/2))-local
turn-boundedness where θ ∈ (0, π). Then, the radii coin-
cide in the limit case θ = π .
Step 3: Applying Schur’s Comparison Theorem

Proposition 11 Let C be a par(r)-regular curve and θ ∈
[0, π). Given two points a, b in C such that ‖b − a‖ ≤
2r sin( θ

2 ), the arc of C joining a to b in B(a, 2r) has its
length smaller than or equal to θr .

Proof Let γ be the parametrization by arc length of the arc
of C from a to b in B(a, 2r). Then, γ (0) = a and γ (s1) = b
for some s1 > 0. By contradiction, assume that s1 > θr and
put c = γ (θr).

Let γ̄ be the parametrization by arc length of some circle
of radius r . By Lemma 5, for any subinterval I of [0, θr ],

κ(γ (I )) ≤ 1

r
|I |.

In other words, for any subinterval I of [0, θr ],

κ(γ (I )) ≤ κ(γ̄ (I )).

Hence, Schur’s Comparison Theorem applies:

‖c − a‖ ≥ ‖γ̄ (θr) − γ̄ (0)‖
≥ 2r sin

(

θ

2

)

≥ ‖b − a‖.

The last inequality contradicts the quasi-convexity of s �→
‖γ (s) − γ (0)‖ (Lemma 6). ��
Theorem 3 Let C be a par(r)-regular curve of class C1 and
θ ∈ (0, π). Then, C is (θ, 2r sin(θ/2))-locally turn-bounded.

Proof By Proposition 11, the length of one of the arc of C
delimited by two points at distance less than 2r sin( θ

2 ) is at
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most θr . Hence, by Lemma 5 the turn of one of the arc of C
delimited by two points at distance less than 2r sin( θ

2 ) is at
most θ . ��

Notice that the circle is not (θ, δ)-LTB for δ greater than
2r sin( θ

2 ), hence, the value of δ given inTheorem3 is optimal.
Let us now compare our condition for well-composed-

ness of (θ, δ)-LTB curves with respect to the grid step h,√
2h < δ with θ ≤ π/2 (Definition 9), with the condi-

tion of Pavlidis [13, Definition 7.4] for par(r )-regular curves,√
2h < 2r . Using Theorem 3, the assumption

√
2h < δ

applied on a par(r )-regular curve becomes

√
2h < 2r sin

(

θ

2

)

.

Hence, our compatibility hypothesis, which also applies to
non-smooth curves, requires a smaller grid stepwhen applied
on smooth curves (for θ = π

2 ,
√
2 times smaller).

6 Conclusion

In this paper, the notion of local turn-boundedness, which
is adapted to both regular curves and polygons having large
enough interior angles, was developed to have control on
curves without smoothness assumption.

The LTB curves are a subset of curves of finite length
and finite turn. They have been designed to exclude curves
for which geometric estimation is not possible: they cannot
have small oscillations and the distance to their digitization is
bounded. They have their intrinsic properties: they are locally
connected, they cannot do small U-turns.

From these intrinsic properties, we have derived some
properties of their digitization. In particular, we were able to
precisely describe their behavior when passing through suffi-
ciently small pixels and how they separate grid points. Then,
topological properties as the well-composedness and 4-
connectedness of the curve Gauss digitization was deduced.
Finally, local turn-boundednesswas proven to generalize par-
regularity. Since par-regularity amounts to having positive
reach [7] and since the reach was relaxed by the notion of
μ-reach for use with non-smooth curves, we recently began
to compare the μ-reach [3] with the local turn-boundedness
and we hope to be able to present soon some results about
this comparison.

In a future work, using the results of this article, we
intend to define maps associating sampling points of a
Gauss digitization to near points on the continuous curve
without smoothness assumption. Moreover, the definition of
local turn seems to generalize without change to curves and
surfaces in a three-dimensional space. Nevertheless, some
properties like well-composedness cannot be extended to the
three-dimensional case (see counterexample in [15, Fig. 4])

and the extension of other properties has to be proven. In
the long term, we hope that local turn will provide a frame-
workmore general than the par-regularity, for both geometric
estimation and topology preservation.

A Proof of Corollary 1

Lemma 7 The boundary of a convex shape with nonempty
interior has no cusp.

Proof Let C be a Jordan curve whose interior is convex. Let
p ∈ C. Since C is a Jordan curve, there exist in C two points
q, r not colinear with p. Let P , Q, R be three straight lines
passing, respectively, by the points p, q, r and separating
C from one of the half planes they delimit (see Fig. 18).
The interior of the convex hull of {p, q, r} is included in the
interior of C. Then, the arc from q to r passing through p
is included in the half plane delimited by P and containing
pqr deprived of the triangle pqr . Then, if C has semi-tangent
vectors u and v in p, the angle � (u, v) is bounded from above
by π −α where α is the interior angle of the triangle [p, q, r ]
at p. ��

B Proof of Lemma 1

Lemma 1 Let C be a (θ, δ)-LTB curve with θ < 2π/3. Then,

δ ≤ diam(C),

where diam denotes the diameter.

Proof By contradiction, we assume δ > diam(C). Let 	 be
the length of C, a be a non-angular point of C and k < 1/2.
We prove by induction that, for any n, there exists an arc
Cn of C whose ends are non-angular points and containing a
whose turn is less than θ andwhose length is greater than (1−

Fig. 18 Bounding a convex curve (in blue) passing through three non-
colinear points (Color figure online)
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(1 − k)n)	. Furthermore, the sequence (Ci ) is increasing for
the inclusion. We initialize the induction by taking a smooth
point b of C such that the geodesic distance from a to b
is greater than k	 (recall that the set of angular points of a
LTBcurve is countable). Since δ > diam(C) and C is LTB,
one of the arcs from a to b, that we denote by C1, has a turn
less than or equal to θ . Assuming the property is true for some
i ≥ 1,wedenote byai andbi the endpoints ofCi . There exists
a smooth point c ∈ C\Ci such that the geodesic distance from
c to both ai and bi is greater than or equal to k(	−L(Ci )). If
the arc from ai to c not passing through bi has a turn less than
θ , we set ai+1 = c, bi+1 = bi and Ci+1 is the arc from ai+1

to bi+1 (that is from c to bi ) passing through ai . Indeed, the
other arc from ai+1 to bi+1 has a turn greater than 2π −2θ by
Fenchel’s Theorem (Property 3) and Property 7. So, since C
is (θ, δ)-LTB and d(ai+1, bi+1) ≤ diam(C) < δ, the turn of
Ci+1 is less than θ . Moreover, Ci ⊆ Ci+1. If the arc from ai to
c not passing through bi has a turn greater than θ , we define
Ci+1 as the arc from ai to c passing through bi since it has a
turn less than θ andwe set ai+1 = ai , bi+1 = c. In both cases,
we have Ci ⊆ Ci+1 and L(Ci+1) ≥ L(Ci ) + k(	 − L(Ci )),
and, since L(Ci ) ≥ (1− (1− k)i )	 by induction hypothesis,
we obtain L(Ci+1) ≥ (1 − (1 − k)i+1)	. This completes
the induction. Now, on the one hand, considering the arc
C∞ = ⋃

Ci , we claim that C∞ has a length greater than
(1− (1− k)i )	 for any positive integer i . Thus, L(C∞) = 	.
Then, C \ C∞ is reduced to a point. On the other hand, since
C∞ is the supremum of an increasing sequence of arcs whose
turns are bounded from above by θ , it also has a turn-bounded
from above by θ . This contradicts Corollary 1. ��

C Local Increase of the Distance for
(�,ı)-LTB Curves

We now show that, when θ ≤ π/2, the Euclidean distance
d(p, q) between two points p and q of a parameterized LTB
curve is locally monotonic in function of the parameter of
one of the two points p and q. Visually, Proposition 12 states
that (θ, δ)-LTB have no local U-turns (see Fig. 19).

Proposition 12 Let θ ∈ (0, π/2] and C be a (θ, δ)-LTB
curve. Let γ : [0, tM ] → C be an injective parametrization of
the curve C and tm ∈ (0, tM ) be such that the arc γ ([0, tm]) is
included in B(γ (0), δ

2 ). Then, the restriction of the function
t �→ ‖γ (t) − γ (0)‖ on [0, tm] is increasing.
Proof We prove a contrapositive statement. Let φ : t ∈
[0, tm] �→ ‖γ (t) − γ (0)‖. Suppose that φ is not mono-
tonic. Then, there exists t1, t2 in (0, tm) such that t1 < t2
and φ(t1) > φ(t2). Therefore, the turn of the polygonal
line [γ (0), γ (t1), γ (t2)] is strictly greater than π/2. Hence,
the turn of the arc γ ([0, t2]) is a fortiori greater than π/2.
Since C is (θ, δ)-LTB for some θ < π/2, the turn of the arc

Fig. 19 This configuration cannot occur in a (θ, δ)-LTB since the dis-
tance to the point c is not locally increasing (d1 < d2)

γ ([t2, tM ]) is strictly less than π/2 and, according to Propo-
sition 4, the arc γ ([t2, tM ]) is therefore included in the disk
of diameter [γ (t2), γ (tM )]which is itself included in the ball

B(γ (0), δ/2) (for γ (tM ) = γ (0)). We conclude that the
whole curve C is included in the ball B(γ (0), δ

2 ). Then,
the diameter of C is strictly less than δ which contradicts
Lemma 1. ��

D Proof of Proposition 7

Proposition 7 1 Let θ ∈ (0, π/2] and C be a (θ, δ)-LTB Jor-
dan curve. Let d be the diameter of C . Let T be a closed set
included in an open disk B(c, r) with r less than or equal

to min( 12δ,
√
2
4 d). Then, the arc CT passing through T is the

unique arc of C of turn less than or equal to π
2 having its end

points in T and such that the straightest arc between any two
points of T is included in CT . Moreover,

(C \ CT ) ∩ T = ∅.

Proof Observe that, obviously, any straightest arc between
two points of C ∩ T is included in CT . Furthermore,

C ∩ T =
⋃

a∈C∩T
Caa ⊂ CT ,

where Caa = {a} is the straightest arc from a to a. Thus,

(C \ CT ) ∩ T = ∅.

The proof is divided into six steps. In the first step, we
show that CT is an arc of C. In the second step, we show
that the ends of CT , q1 and q2 are in T . In the third step,
we show that CT is the straightest arc between q1 and q2.
In the fourth step, we show that CT is included in the open
disk B(c,

√
2r) (see Fig. 20). In the fifth step, we show that

CT is not the whole curve C. In the sixth step, we show that
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CT is the unique arc of C with turn less than or equal to
π/2 and including any straightest arc of C between points of
T .

Step 1. Let p1 and p2 be two points of CT . By Defi-
nition 6, there exist four points a1, b1, a2, b2 in T such
that p1 lies in the straightest arc Cb1a1 and p2 lies in the
straightest arc Cb2a2 . Hence, the straightest arc between a1
and a2, which is included in CT , connects the arcs Cb1a1
and Cb2a2 . Thereby, p1 and p2 are connected by a path in
CT . We derive that CT is path-connected: CT is an arc of
C.

Step 2. The ends of CT , q1 and q2 are limits of points
that are the ends of straightest arcs between two points in
T . Indeed, for any ε > 0, there exists a point q ′

1 of CT
such that the length of the subarc of CT , C

q ′
1

q1 is less than
ε. The point q ′

1 belongs to a straightest arc between two

points in T , one of these two points is on the arc Cq
′
1

q1 , hence
at geodesic distance from q1 less than ε and a fortiori at
Euclidean distance from q1 less than ε. The same holds for
q2. Since T is a closed set, CT has its end points q1 and q2 in
T .

Step 3. The straightest arc between q1 and q2 is included
in CT (by definition of CT ). Then, CT is the straightest arc
between q1 and q2.

Step 4. (Figure 20) From Step 3 and Proposition 4, we
derive that CT is included in the disk of diameter [q1, q2]. By
the hypotheses, the segment [q1, q2] is included in B(c, r).
Then, the arc CT is included in the open ball B(c, (sin φ

2 +

Fig. 20 Step 4 of the proof of Proposition 7: the points q1 and q2 are in
the ball of center c and of radius r . Then, the ball of diameter [q1, q2]
is included in the ball B(c,

√
2r) for sin φ

2 + cos φ
2 ≤ √

2

cos φ
2 )r) ⊆ B(c,

√
2r) where φ is the geometric angle

q̂1cq2.
Step 5. By hypothesis, the diameter of C is greater than

or equal to 2
√
2r . Since CT is included in the open disk

B(c,
√
2r), CT cannot be the whole curve C.

Step 6. If there exits another arc C′ of curvature less than
or equal to π

2 having its ends in T such that each other arc
having its ends in T and of turn less than or equal to π

2 is
included in C′, then C′ ⊂ CT and CT ⊂ C′ hence C′ =
CT . ��

E Turn of a Polygonal Line Inscribed in a
Par-regular Curve

We establish two results allowing us to control the turn of a
polygonal line inscribed in a par(r )-regular curve (Lemma 8
and Lemma 9). The first of these two lemmas is an easy
consequence of the inscribed angle theorem. It is illustrated
in Fig. 21. Its proof is left to the reader.

Lemma 8 Let P be a polygonal line [ai ]Ni=0. Then,

κ(P) = 1

2

N−1
∑

i=1

θi

=
N−1
∑

i=1

arcsin

(‖ai − ai−1‖
2ri

)

+ arcsin

(‖ai+1 − ai‖
2ri

)

,

where, for any i ∈ �1, N − 1�, ri is the radius of the cir-
cumcircle Ci of the triangle ai−1aiai+1 and θi is the central
angle of Ci subtended by the arc [ai−1, ai , ai+1].

Fig. 21 Thick: the polygonal line P = [a0, a1, a2, a3, a4, a5]. The
four angles θ1 θ2, θ3 and θ4 are subtended by the circle arcs defined,
respectively, by the triples (a0, a1, a2), (a1, a2, a3), (a2, a3, a4) and
(a3, a4, a5). Then, the turn of P is half the sum of the θi : κ(P) =
1
2

∑4
i=1 θi
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Fig. 22 Thick, black: a polygonal line [ai−1, ai , ai+1] inscribed in a
par(r )-regular curve (not depicted). The circles of par(r)-regularity are
drawn in red. Thin, orange: a polygonal line [a′

i−1, a
′
i , a

′
i+1] inscribed

in a circle with radius r (the circle is the osculating circle that is on
the side of the turn of the oriented polygonal line [ai−1, ai , ai+1]).
The polygonal lines have the same edge length sequence (Color figure
online)

Lemma 9 Let P = [ai ]Ni=0 be a polygonal line inscribed in
a par(r)-regular curve. If the maximal edge length of P is
less than 2r , then the turn of P is less than the turn of a
polygonal line which has the same edge length sequence and
is inscribed in a circle of radius r . In other words,

κ(P) ≤ arcsin

(‖a1 − a0‖
2r

)

+ 2
N−2
∑

i=1

arcsin

(‖ai+1 − ai‖
2r

)

+ arcsin

(‖aN − aN−1‖
2r

)

.

Proof Figure 22 illustrates the main argument of the proof.
Let C be a par(r )-regular curve and P = [ai ]Ni=0 be a polyg-
onal line inscribed in C. For any i ∈ �0, N − 1�, we set
	i = ‖ai+1 − ai‖ and we assume 	i ≤ 2r . Let P ′ = [a′

i ]Ni=0
be a polygonal line inscribed in a circle with radius 2r such
that 	i = ‖a′

i+1 − a′
i‖ for any i ∈ �0, N − 1�.

For each i ∈ �1, N − 1�, let us denote, respectively, by
κi and κ ′

i the turn of the polygonal lines [ai−1, ai , ai+1]
and [a′

i−1, a
′
i , a

′
i+1]. On the one hand, from Lemma 8

(“Appendix E”, we have κ ′
i = arcsin

(

	i−1
2r

)

+ arcsin
(

	i+1
2r

)

.

On the other hand, the turns κ([ai−1, ai , ai+1]) and
κ([a′

i−1, a
′
i , a

′
i+1]) are, respectively, the supplementary

angles of ̂ai−1aiai+1 and ̂a′
i−1a

′
i a

′
i+1. Then, from the defini-

tion 10 of the par-regularity, κ([ai−1, ai , ai+1])
≤ κ([a′

i−1, a
′
i , a

′
i+1]) (see Fig. 22). As κ(P) = ∑N

i=1 κi

and κ(P ′) = ∑N
i=1 κ ′

i , we conclude straightforwardly. ��
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