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Abstract
High-order data are modeled using matrices whose entries are numerical arrays of a fixed size. These arrays, called t-scalars,
form a commutative ring under the convolution product. Matrices with elements in the ring of t-scalars are referred to
as t-matrices. The t-matrices can be scaled, added and multiplied in the usual way. There are t-matrix generalizations of
positive matrices, orthogonal matrices and Hermitian symmetric matrices. With the t-matrix model, it is possible to generalize
many well-known matrix algorithms. In particular, the t-matrices are used to generalize the singular value decomposition
(SVD), high-order SVD (HOSVD), principal component analysis (PCA), two-dimensional PCA (2DPCA) and Grassmannian
component analysis (GCA). The generalized t-matrix algorithms, namely TSVD, THOSVD, TPCA, T2DPCA and TGCA,
are applied to low-rank approximation, reconstruction and supervised classification of images. Experiments show that the
t-matrix algorithms compare favorably with standard matrix algorithms.
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1 Introduction

In data analysis, machine learning and computer vision, the
data are often given in the form of multi-dimensional arrays
of numbers. For example, an RGB image has three dimen-
sions, namely two for the pixel array and a third dimension
for the values of the pixels. An RGB image is said to be an
array of order three. Alternatively, the RGB image is said to
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have three modes or to be three-way. A video sequence of
images is of order four, with two dimensions for the pixel
array, one dimension for time and a fourth dimension for the
pixel values.

Oneway of analyzingmulti-dimensional data is to remove
the array structure by flattening, to obtain a vector. A set of
vectors obtained in this way can be analyzed using standard
matrix-vector algorithms such as the singular value decom-
position (SVD) and principal component analysis (PCA). An
alternative to flattening is to use algorithms that preserve
the multi-dimensional structure. In these algorithms, the ele-
ments ofmatrices and vectors are entire arrays rather than real
numbers in R or complex numbers in C. Multi-dimensional
arrays with the same dimensions can be added in the usual
way, but there is no definition of multiplication which sat-
isfies the requirements for a field such as R or C. However,
multiplication based on the convolution product hasmany but
not all of the properties of a field. Convolution multiplication
differs from themultiplication in a field in thatmany elements
have nomultiplicative inverse. The multi-dimensional arrays
with given dimensions form a commutative ring under the
convolution product. The elements of this ring are referred
to as t-scalars.

An application of the Fourier transform shows that each
ring of t-scalars under the convolution product is isomorphic
to a ring of arrays in which the Hadamard product defines
themultiplication. In effect, the ring obtained by applying the
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Fourier transform splits into a product of copies of C. It is
this splittingwhich allows the construction of newalgorithms
for analyzing tensorial data without flattening. The so-called
t-matrices with t-scalar entries have many of the properties
of matrices with elements inR or C. In particular, t-matrices
can be scaled, added and multiplied. There is an additive
identity and a multiplicative identity. The determinant of a
t-matrix is defined, and a given t-matrix is invertible if and
only if it has an invertible determinant. The t-matrices include
generalizations of positive matrices, orthogonal matrices and
symmetric matrices.

A tensorial version, TSVD, of the SVD is described in
[18] and [41]. The TSVD expresses a t-matrix as the product
of three t-matrices, of which two are generalizations of the
orthogonal matrices and one is a diagonal matrix with posi-
tive t-scalars on the diagonal. The TSVD is used to define
tensorial versions of principal component analysis (PCA)
and two-dimensional PCA (2DPCA). A tensorial version
of Grassmannian component analysis is also defined. These
tensorial algorithms are tested by experiments that include
low-rank approximations to tensors, reconstruction of ten-
sors and terrain classification using hyperspectral images.
The different algorithms are compared using the peak signal-
to-noise ratio and Cohen’s kappa.

The t-scalars are described in Sect. 2, and the t-matrices
are described in Sect. 3. The TSVD is described in Sect. 4. A
tensorial version of principal component analysis (TPCA) is
obtained from the TSVD in Sect. 5 and then generalized to
tensorial two-dimensional PCA (T2DPCA). A tensorial ver-
sion of Grassmannian components analysis is also defined.
The tensorial algorithms are tested experimentally in Sect. 6.
Some concluding remarks are made in Sect. 7.

1.1 RelatedWork

A tensor of order two or more can be simplified using the so-
called N -mode singular value decomposition (SVD). The
three-mode case is described by Tucker in [30]. The multi-
modal case is discussed in detail by De Lathauwer et al. [6].
Eachmode of the tensor has an associated set of vectors, each
one of which is obtained by varying the index for the given
mode while keeping the indices of the other modes fixed. In
the N -mode SVD, an orthonormal basis is obtained for the
space spanned by these vectors. In the two-mode case, the
result is the usual SVD. The resulting decomposition of a ten-
sor is referred to as the higher-order SVD (HOSVD). Surveys
of tensor decompositions can be found in Kolda and Bader
[19] and Sidiropoulos et al. [27]. De Lathauwer et al. [6]
describe a higher-order eigenvalue decomposition. Vasilescu
and Terzopoulos [34] use the N -mode SVD to simplify a
fifth-order tensor constructed from face images taken under
varying conditions and with varying expressions. A tensor

version of the singular value decomposition is described in
[18,41], and [17].

He et al. [15] sample a hyperspectral data cube to yield ten-
sors of order three of which two orders are for the pixel array
and one order is for the hyperspectral bands. A training set of
samples is used to produce a dictionary for sparse classifica-
tion. Lu et al. [23] use N -mode analysis to obtain projections
of tensors to a lower-dimensional space. The resulting mul-
tilinear PCA is applied to the classification of gait images.
Vannieuwenhoven et al. [32] describe a newmethod for trun-
cating the higher-order SVD, to obtain low-rank multilinear
approximations to tensors. The method is tested on the clas-
sification of handwritten digits and the compression of a
database of face images.

Many authors have studied algebras of matrices in which
the elements are tensors of order one, equipped with a convo-
lution multiplication, under which they form a commutative
ring R with a multiplicative identity. In particular, Gleich et
al. [11] describe the generalized eigenvalues and eigenvectors
of matrices with elements in R and show how the standard
power method for finding an eigenvector and the standard
Arnoldi method for constructing an orthogonal basis for a
Krylov subspace can both be generalized. Braman [3] shows
that the t-vectors with a given dimension form a free mod-
ule over R. Kilmer and Martin [18] show that many of the
properties and structures of canonical matrices and vectors
can be generalized. Their examples include transposition,
orthogonality and the singular value decomposition (SVD).
The tensor SVD is used to compress tensors. A tensor-based
method for image de-blurring is also described. Kilmer et al.
[17] generalize the inner product of two vectors, suggest a
notion of the angle between two vectors with elements in R
and define a notion of orthogonality for two vectors. A gen-
eralization of the Gram–Schmidt method for generating an
orthonormal set of vectors is also described in [17].

Zhang et al. [41] use the tensor SVD to store video
sequences efficiently and also to fill in missing entries in
video sequences. Zhang et al. [39] use a randomized version
of the tensor SVD to produce low-rank approximations to
matrices. Ren et al. [28] define a tensor version of princi-
pal component analysis and use it to extract features from
hyperspectral images. The features are classified using stan-
dard methods such as support vector machines and nearest
neighbors. Liao et al. [20] generalize a sparse representation
classifier to tensor data and apply the generalized classifier
to image data such as numerals and faces. Chen et al. [4]
use a four-dimensional HOSVD to detect changes in a time
sequence of hyperspectral images. The K-means clustering
algorithm is used to classify the pixel values as changed or
unchanged. Fan et al. [8] model a hyperspectral image as the
sum of an ideal image, a sparse noise term and a Gaussian
noise term. A product of two low-rank tensors models the
ideal image. The low-rank tensors are estimated by minimiz-
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ing a penalty function obtained by adding the squared errors
in a fit of the hyperspectral image to penalty terms for the
sparse noise and the sizes of the two low-rank tensors. Lu
et al. [22] approximate a third-order tensor using the sum of
a low-rank tensor and a sparse tensor. Under suitable condi-
tions, the low-rank tensor and the sparse tensor are recovered
exactly.

2 T-Scalars

The notations for t-scalars are summarized in Sect. 2.1. Basic
definitions are given in Sect. 2.2. The Fourier transform of a
t-scalar is defined in Sect. 2.3. Properties of t-scalars and the
Fourier transform of a t-scalar are described in Sect. 2.4. A
generalization of the t-scalars is described in Sect. 3.5.

2.1 Notations and Preliminaries

An array of order N over the complex numbers C is an ele-
ment of the set C defined by C ≡ C

I1×···×IN , where the In
for 1 ≤ n ≤ N are strictly positive integers. Similarly, an
array of order N over the real numbers is an element of the
set R defined by R ≡ R

I1×···×IN . The sets R and C have
the structure of commutative rings, in which the product is
defined by circular convolution. The elements of C and R
are referred to as t-scalars.

Elements of R and C are denoted by lower-case letters
and tensorial data are denoted by upper-case letters. The t-
scalars are identified using the subscript T , for example XT .
Lower-case subscripts such as i , j , α, β are indices or lists
of indices.

All indices begin from 1 rather than 0. Given an array of
any order N , namely X ∈ C

I1×I2×···×IN (N � 1), Xi1,i2,...,iN
or (X)i1,i2,...,iN denote its (i1, i2, . . . , iN )th entry in C. The
notation Xi , or (X)i , is also used, where i is a multi-index
defined by i = (i1, . . . , iN ). Let I = (I1, I2, . . . , IN ) and
let i be a multi-index. The notation 1 ≤ i ≤ I specifies the
range of values of i such that 1 ≤ in ≤ In for 1 ≤ n ≤ N . It
is often convenient to extend the indexing beyond the range
specified by I . Let j be a general multi-index. Then, X j

is defined by X j = Xi , where i is the multi-index such
that each component in is in the range 1 ≤ in ≤ In and
in − jn is divisible by In . A multi-index such as i − j +1 has
components in − jn + 1 for 1 ≤ n ≤ N . The sum

∑I
i=1(·)

is an abbreviation for
∑I1

i1=1 · · · ∑IN
iN=1(·).

2.2 Definitions

The following definitions are for t-scalars in C . Similar def-
initions can be made for t-scalars in R.

Definition 1 T-scalar addition. Given t-scalars XT and YT
in C , the addition of XT and YT denoted by DT

.= XT + YT
is element-wise:

DT ,i = XT ,i + YT ,i , 1 ≤ i ≤ I . (1)

Definition 2 T-scalar multiplication. Given t-scalars XT and
YT in C , their product, denoted by DT = XT ◦ YT , is a
t-scalar in C defined by the circular convolution

DT ,i =
I∑

j=1

XT ,i− j+1YT , j , 1 ≤ i ≤ I . (2)

Definitions 1 and 2 reduce to complex number addition
and multiplication when N = 1 and I1 = 1.

Definition 3 Zero t-scalar. The zero t-scalar ZT is the array
in C defined by

ZT ,i = 0, 1 ≤ i ≤ I . (3)

For all t-scalars XT , XT + ZT = XT and XT ◦ ZT = ZT .

Definition 4 Identity t-scalar. The identity t-scalar ET in C
has the first entry equal to 1 and all other entries equal to 0,
namely ET ,i = 1 if i = (1, . . . , 1) and ET ,i = 0 otherwise.

For all t-scalars XT ∈ C , XT ◦ ET ≡ XT .
The set of t-scalars satisfies the axioms of a commutative

ringwith ZT as an additive identity and ET as amultiplicative
identity. This ring of t-scalars is denoted by (C,+, ◦). The
ring (C,+, ◦) is a generalization of the field (C,+, ·) of
complex numbers. If the t-scalars are restricted to have real
number elements, then the ring (R,+, ◦) is obtained.

2.3 Fourier Transform of a T-Scalar

Let ζn be a primitive In th root of unity, for example,

ζn = exp
(
2π

√−1/In
)

, 1 ≤ n ≤ N .

Let ζ n be the complex conjugate of ζn , and let XT be a t-
scalar in the ring C . The Fourier transform F(XT ) of XT is
defined by

F(XT )i =
I∑

j=1

XT , j · ζ
(i1−1)( j1−1)
1 . . . ζ

(iN−1)( jN−1)
N

for all indices 1 ≤ i ≤ I .
The inverse of the Fourier transform is defined by

XT ,i =
∑I

j=1 F(XT ) j · ζ
(i1−1)( j1−1)
1 . . . ζ

(iN−1)( jN−1)
N

I1 . . . IN

for all indices 1 ≤ i ≤ I .
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Given t-scalars XT ∈ C and YT ∈ C and their t-scalar
product DT = XT ◦ YT , it follows that

F(DT ) = F(XT ) ∗ F(YT ), (4)

where ∗ denotes the Hadamard product in C . Equation (4)
is an extension of the convolution theorem [2]. The equation
can be equivalently rewritten as

F(DT )i = F(XT )i · F(YT )i , 1 ≤ i ≤ I , (5)

where · is multiplication in C.
An equivalent definition of theFourier transformof a high-

order array in the form of multi-mode tensor multiplication
and a diagram of the multiplication of two t-scalars, com-
puted in the Fourier domain, is given in a supplementary
file.

It is not difficult to prove that C is a commutative ring,
(C,+, ∗), under the Hadamard product. The Fourier trans-
form is a ring isomorphism from (C,+, ◦) to (C,+, ∗). The
identity element of (C,+, ∗) is JT = F(ET ). All the entries
of JT are equal to 1.

2.4 Properties of T-Scalars

The invertible t-scalars are defined as follows.

Definition 5 Invertible t-scalar: Given a t-scalar XT , if there
exists a t-scalar YT satisfying XT ◦ YT = ET , then XT is
said to be invertible. The t-scalar YT is the inverse of XT and
denoted by YT

.= X−1
T

.= ET /XT .

The zero t-scalar ZT is non-invertible. In addition, there
are an infinite number of t-scalars that are non-invertible. For
example, given a t-scalar XT ∈ C , if the entries of XT are
all equal, then XT is non-invertible. The existence of more
than one non-invertible element shows that C is not a field.

Definition 6 Scalar multiplication of a t-scalar. Given a
scalar λ ∈ C and a t-scalar XT ∈ C , their product, denoted
by YT = λ · XT ≡ XT · λ, is the t-scalar given by

YT ,i = λ · XT ,i , 1 ≤ i ≤ I . (6)

It can be shown that the set of t-scalars is a vector space over
C.

The following definition of the conjugate of a t-scalar gen-
eralizes the conjugate of a complex number.

Definition 7 Conjugate of a t-scalar. Given a t-scalar XT in
C , its conjugate, denoted by conj(XT ), is the t-scalar in C
such that

conj(XT )i = XT ,2−i , 1 ≤ i ≤ I , (7)

where XT ,2−i is the complex conjugate of XT ,2−i in C.

The conjugate of a t-scalar reduces to the conjugate of a
complex number when N = 1, I1 = 1. The relationship of
conj(XT ) and XT is much clearer if they aremapped onto the
Fourier domain—each entry of F(conj(XT )) is the complex
conjugate of the corresponding entry of F(XT ), namely

F(conj(XT ))i = F(XT )i , 1 ≤ i ≤ I . (8)

It follows from Eq. (7) that conj(conj(XT )) = XT for any
XT ∈ C .

Definition 8 Self-conjugate t-scalar: Given a t-scalar XT ∈
C , if XT = conj(XT ), then XT is said to be a self-conjugate
t-scalar.

If XT is self-conjugate, then

F(XT )i = F(conj(XT ))i = F(XT )i ∈ C , 1 ≤ i ≤ I . (9)

It follows from Eq. (9) that XT is self-conjugate if and only
if all the elements of F(XT ) are real numbers.

The t-scalars ZT and ET are both self-conjugate. Further-
more, the self-conjugate t-scalars form a ring denoted byCsc.
This ring is a subring of C .

Given any t-scalar XT ∈ C , let �(XT ) and 	(XT ) be
defined by

�(XT ) = 2−1(XT + conj(XT )), (10)

	(XT ) =
(
2
√−1

)−1
(XT − conj(XT )). (11)

It follows from Eq. (9) that �(XT ) and 	(XT ) are self-
conjugate. The t-scalars XT ∈ C and conj(XT ) ∈ C can
be expressed in the form

XT = �(XT ) + √−1	(XT ), (12)

conj(XT ) = �(XT ) − √−1	(XT ). (13)

In an analogy with the real and imaginary parts of a complex
number, �(XT ) is called the real part of XT and 	(XT ) is
called the imaginary part of XT .

Given two t-scalars XT and YT , Eq. (14) holds true and is
backward compatible with the corresponding equations for
complex numbers.

XT + YT ≡
(
�(XT ) + �(YT )

)
+ √−1 ·

(
	(XT ) + 	(YT )

)

XT ◦ YT ≡
(
�(XT ) ◦ �(YT ) − 	(XT ) ◦ 	(YT )

)

+√−1
(
	(XT ) ◦ �(YT ) + �(XT ) ◦ 	(YT )

)

conj(XT ) ◦ XT ≡ XT ◦ conj(XT ) ≡ �(XT )2 + 	(XT )2

(14)

Definition 9 Nonnegative t-scalar: The t-scalar XT is said
to be nonnegative if there exists a self-conjugate t-scalar YT
such that XT = YT ◦ YT

.= Y 2
T .
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If a t-scalar XT is nonnegative, it is also self-conjugate,
because themultiplication of any two self-conjugate t-scalars
is also a self-conjugate t-scalar. Thus, both ZT and ET are
nonnegative, since ZT and ET are self-conjugate t-scalars
and satisfy ZT = Z2

T and ET = E2
T . Furthermore, for all

XT ∈ C , the ring element�(XT )2+	(XT )2 is nonnegative.
The set Snonneg of nonnegative t-scalars is closed under

the t-scalar addition and multiplication. Since a nonnegative
t-scalar is also a self-conjugate t-scalar, Snonneg ⊂ Csc ⊂ C .

Theorem 1 For all t-scalars XT ∈ Snonneg, there exists a
unique t-scalar ST ∈ Snonneg satisfying XT = ST ◦ST .= S2T .
We call the nonnegative t-scalar ST the arithmetic square
root of the nonnegative t-scalar XT and denote it by

ST
.= √

XT
.= X1/2

T . (15)

Proof Let XT = YT ◦YT , such that YT is self-conjugate. On
applying the Fourier transform, it follows that

F(XT )i = F(YT )2i ≥ 0, 1 ≤ i ≤ I .

Let ST be defined such that

F(ST )i = (F(XT )i )
1/2, 1 ≤ i ≤ I ,

where the nonnegative square root is chosen for each value of
i . The Fourier components F(ST )i are real-valued; thus, ST
is self-conjugate. The equation XT = ST ◦ ST holds because
the Fourier transform is injective. �
Definition 10 A nonnegative t-scalar that is invertible under
multiplication is called a positive t-scalar. The set of positive
t-scalars is denoted by Spos.

The following inclusions are strict, Spos ⊂ Snonneg ⊂
Csc ⊂ C . The inverse and the arithmetic square root of a
positive t-scalar are positive.

The absolute t-value r(XT ) of XT is defined by

r(XT ) =
√

�(XT )2 + 	(XT )2. (16)

The t-scalars �(XT ) and 	(XT ) are both self-conjugate;
therefore, �(XT )2 and 	(XT )2 are both nonnegative. The
sum �(XT )2 + 	(XT )2 is nonnegative, and it has a nonneg-
ative arithmetical square root, namely r(XT ).

If r(XT ) is invertible, then let φ(XT ) be defined by

φ(XT )
.= r(XT )−1 ◦ XT . (17)

The ring element φ(XT ) is a generalized angle. The order
1 version of φ(XT ) is obtained by Gleich et al. [11]. Equa-
tion (17) generalizes the polar form of a complex number. It

can be shown that

φ(XT ) ◦ conj(φ(XT )) = ET .

The absolute t-value r(XT ) is used in Sect. 3 to define a
generalization of the Frobenius norm for t-matrices.

3 Matrices with T-Scalar Elements

It is shown that t-matrices, i.e., matrices with elements in the
rings C or R, are in many ways analogous to matrices with
elements in C or R.

3.1 Indexing

The t-matrices are order-two arrays of t-scalars. Since the
t-scalars are arrays of complex numbers, it is convenient to
organize t-matrices as hierarchical arrays of complex num-
bers.

Let XTM be a t-matrix with D1 rows and D2 columns.
Then, XTM is an element of CD1×D2 . The (α, β) entry of
XTM is the element ofC denoted by XTM,α,β for 1 ≤ α ≤ D1

and 1 ≤ β ≤ D2. Let i be a multi-index for elements of C .
Then, XTM,i,α,β is the element of C given as the i th entry of
the ring element XTM,α,β .

The t-matrix XTM can be interpreted as an element in
C

I1×···×IN×D1×D2 , or alternatively it can be interpreted as
an element in C

D1×D2×I1×···×IN . The only thing needed to
switch from one data structure to the other is a permutation
of indices. The data structure C

I1×···×IN×D1×D2 is chosen
unless otherwise indicated.

3.2 Properties of t-Matrices

(1) T-matrix addition: Given any t-matrices ATM ∈
CD1×D2 and BTM ∈ CD1×D2 , the addition, denoted
byCTM

.= ATM+BTM ∈ CD1×D2 , is entry-wise, such
that CTM,α,β = ATM,α,β + BTM,α,β , for 1 ≤ α ≤ D1

and 1 ≤ β ≤ D2.
(2) T-matrixmultiplication:Given any t-matrices ATM ∈

CD1×Q and BTM ∈ CQ×D2 , their product, denoted by
CTM

.= ATM◦BTM, is the t-matrix inCD1×D2 defined
by

CTM,α,β = ∑Q
γ=1 ATM,α,γ ◦ BTM,γ,β

for all indices 1 ≤ α ≤ D1, 1 ≤ β ≤ D2.
An example of t-matrix multiplication CTM = ATM ◦
BTM ∈ C2×1 ≡ C

3×3×2×1 where ATM ∈ C2×2 ≡
C
3×3×2×2 and BTM ∈ C2×1 ≡ C

3×3×2×1 is given in
a supplementary file.
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(3) Identity t-matrix: The identity t-matrix is the diago-
nal t-matrix, in which each diagonal entry is equal
to the identity t-scalar ET in Definition 4. The
D × D identity t-matrix is denoted by I (D)

TM
.=

diag(ET , · · · , ET︸ ︷︷ ︸
D

).

Given any XTM ∈ CD1×D2 , it follows that I (D1)
TM ◦

XTM = XTM ◦ I (D2)
TM = XTM. The identity t-matrix

I (D)
TM is also denoted by ITM if the value of D can be
inferred from context.

(4) Scalar multiplication: Given any ATM ∈ CD1×D2

and λ ∈ C, their multiplication, denoted by BTM
.=

λ · ATM, is the t-matrix in CD1×D2 defined by

BTM,α,β = λ · ATM,α,β , 1 ≤ α ≤ D1, 1 ≤ β ≤ D2,

where the products with λ are computed as in Defini-
tion 6.

(5) T-scalar multiplication: Given any ATM ∈ CD1×D2

and λT ∈ C , their product, denoted by BTM
.= λT ◦

ATM, is the t-matrix in CD1×D2 defined by

BTM,α,β = λT ◦ ATM,α,β , 1 ≤ α ≤ D1, 1 ≤ β ≤ D2.

(6) Conjugate transpose of a t-matrix: Given any t-
matrix XTM ∈ CD1×D2 , its conjugate transpose,
denoted by XH

TM, is the t-matrix in CD2×D1 given by

XH
TM,β,α = conj(XTM,α,β) ∈ C,

1 ≤ α ≤ D1, 1 ≤ β ≤ D2.

A squarematrixUTM is said to be orthogonal ifUH
TM is

the inverse t-matrix ofUTM, i.e.,UH
TM ◦UTM = UTM ◦

UH
TM = ITM. The Fourier transform F is extended to

t-matrices element-wise, i.e., F(XTM) is the D1 × D2

t-matrix defined by

F(XTM)α,β = F(XTM,α,β) , (18)

for all indices 1 ≤ α ≤ D1 and 1 ≤ β ≤ D2.
It is not difficult to prove that

F(XH
TM)i,β,α = F(XTM)i,α,β ∈ C ,

for all indices 1 ≤ i ≤ I , 1 ≤ α ≤ D1, 1 ≤ β ≤ D2.
(7) T-vector dot product and the Frobenius norm:

Given any two t-vectors (i.e., two t-matrices, each hav-
ing only one column) XTV and YTV of the same length
D, their dot product is the t-scalar defined by

〈XTV,YTV〉 .=
D∑

α=1

conj(XTV,α) ◦ YTV,α .

If 〈XTV,YTV〉 = ZT , then XTV and YTV are said to be
orthogonal. The nonnegative t-scalar

√〈XTV, XTV〉 is
called the generalized norm of XTV and denoted by

‖XTV‖F .= √〈XTV, XTV〉 ≡
(

D∑

α=1

r(XTV,α)2

)1/2

,(19)

where r(·) is the absolute t-value as defined by
Eq. (16).ThegeneralizedFrobenius normof aD1×D2

t-matrix WTM is defined by

‖WTM‖F .=
⎛

⎝
D1∑

α=1

D2∑

β=1

r(WTM,α,β)2

⎞

⎠

1/2

. (20)

In order to have a mechanism to connect t-matrices
with matrices with elements in C or R, the slices of a
t-matrix are defined as follows.

(8) Slice of a t-matrix: Any t-matrix XTM ∈ CD1×D2 ,
organized as an array in C

I1×···×IN×D1×D2 , can be
sliced into

∏N
n=1 In matrices in C

D1×D2 , indexed by
the multi-index i . Let XTM(i) ∈ C

D1×D2 be the i th
slice. The entries of XTM(i) are complex numbers in
C given by

(XTM(i))α,β = XTM,i,α,β ∈ C

for all indices 1 ≤ i ≤ I , 1 ≤ α ≤ D1, 1 ≤ β ≤ D2.
The t-vectors with a given dimension form an alge-
braic structure called a module over the ring C [16].
Modules are generalizations of vector spaces [17]. The
t-vector whose entries are all equal to ZT is denoted
by ZTV and called the zero t-vector. The next step is
to define what is meant by a set of linearly indepen-
dent t-vectors and what is meant by a full column rank
t-matrix.

(9) Linear independence in t-vector module: The t-
vectors in a subset {XTV,1, XTV,2, . . . , XTV,K } of a
t-vector module are said to be linearly independent if
the equation

∑K
k=1 λT ,k ◦ XTV,k = ZTV holds true if

and only if λT ,k = ZT , 1 ≤ k ≤ K .
If the t-vectors XTV,i , 1 ≤ i ≤ K , are linearly inde-
pendent, then they are said to have a rank of K . If the
t-vectors YTV,i for 1 ≤ i ≤ K ′ are linearly indepen-
dent and span the same sub-module as the XTM,i , then
K = K ′. For further information, see [16].

(10) Full column rank t-matrix: A t-matrix is said to be of
full column rank if all its column t-vectors are linearly
independent.
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3.3 T-Matrix Analysis Via the Fourier Transform

The Fourier transform of the t-matrix XTM ∈ CD1×D2 is the
t-matrix in CD1×D2 given by Eq. (18).

Many t-matrix computations can be carried out efficiently
using the Fourier transform. For example, any multipli-
cation CTM = XTM ◦ YTM ∈ C

I1×···×IN×D1×D2 , where
XTM ∈ C

I1×···×IN×D1×Q , YTM ∈ C
I1×···×IN×Q×D2 , can be

decomposed to
∏N

n=1 In matrixmultiplications over the com-
plex numbers, namely

F(CTM)i,α,β =
∑Q

γ=1
F(XTM)i,α,γ · F(YTM)i,γ,β (21)

for all indices 1 ≤ i ≤ I , 1 ≤ α ≤ D1, 1 ≤ β ≤ D2.
The conjugate transpose XH

TM ∈C
I1×···×IN×D2×D1 of any

t-matrix XTM ∈ C
I1×···×IN×D1×D2 can be decomposed to∏N

n=1 In canonical conjugate transposes of matrices:

F(XH
TM)i,β,α = F(XTM)i,α,β (22)

for all indices 1 ≤ i ≤ I , 1 ≤ α ≤ D1, 1 ≤ β ≤ D2.

Each slice of F
(
I (D)
TM

)
is the canonical identity matrix with

elements in C.
The Fourier transform decomposes a t-matrix computa-

tion such as multiplication to
∏N

n=1 In independent complex
matrix computations in the Fourier domain. The i th (1 ≤ i ≤
I ) computation involves only the i th slices of the associated
t-matrices. This fact underlies an approach for speeding-up
t-matrix algorithms using parallel computations. This inde-
pendence of the data in the Fourier domain makes it possible
to implement parallel computing using the so-called vector-
ization programming (also known as array programming),
which is supported by many programming languages includ-
ing MATLAB, R, NumPy, Julia and Fortran.

3.4 Pooling

Sometimes, it is necessary to have a pooling mechanism to
transform t-scalars to scalars in R or C. Given any t-scalar
XT ∈ C , its pooling result P(XT ) ∈ C is defined by

P(XT ) = (I1 . . . IN )−1
I∑

i=1

XT ,i . (23)

The pooling operation for t-matrices transforms each t-
scalar entry to a scalar. More formally, given any t-matrix
YTM ∈ CD1×D2 , its pooling result P(YTM) is by definition
the matrix in C

D1×D2 given by

P(YTM)α,β = P(YTM,α,β), 1 ≤ α ≤ D1, 1 ≤ β ≤ D2.(24)

The pooling of t-vectors is a special case of Eq. (24).

3.5 Generalized Tensors

Generalized tensors, called g-tensors, generalize t-matrices
and canonical tensors. The generalized tensors defined in
this section are used to construct the higher-order TSVD in
Sect. 4.2.Ag-tensor, denotedby XGT ∈ CD1×D2×···×DM , is a
generalized tensorwith t-scalar entries (i.e., an order-M array
of t-scalars). Its t-scalar entries are indexedby (XGT )α1,...,αM .
Then, a generalized mode-k multiplication of XGT , denoted
by MGT

.= XGT ◦k YTM where YTM ∈ C J×Dk and 1 ≤ k ≤
M , is a g-tensor in CD1×···×Dk−1×J×Dk+1×···×DM defined as
follows:

(MGT )α1,...,αk−1,β,αk+1,...,αM

=
Dk∑

αk=1

(XGT )α1,...,αk−1,αk ,αk+1...,αM ◦ (YTM)β,αk .
(25)

The generalized mode-k flattening of a g-tensor XGT ∈
CD1×D2×···×DM is an (K1, K2)-reshaping where K1 = {k}
and K2 = {1, . . . , M} \ {k}. The result is a t-matrix in

CDk×D−1
k ·∏M

m=1 Dm . Each column of the matrix is obtained
by holding the indices in K2 fixed and varying the index in
K1.

The generalizedmode-kmultiplication defined in Eq. (25)
can also be expressed in terms of unfolded g-tensors:

MGT = XGT ◦k YTM ⇔ MGT (k) = YTM ◦ XGT (k),

where MGT (k) ∈ C J×(D1...Dk−1Dk+1...DM ) and XGT (k) ∈
CDk×(D1...Dk−1Dk+1...DM ) are, respectively, the generalized
mode-k flattening of the g-tensors MGT and XGT .

An example of a generalized tensor (g-tensor) XGT ∈
C2×3×2 ≡ C

3×3×2×3×2, its mode-k flattening and its mode-
2 multiplication with a t-matrix YTM ∈ C2×3 ≡ C

3×3×2×3

are given in a supplementary file.

4 Tensor Singular Value Decomposition

The singular value decomposition (SVD) is a well-known
factorization of real or complex matrices [12]. It general-
izes the eigendecomposition of positive semi-definite normal
matrices to non-square and non-normal matrices. The SVD
has a wide range of applications in data analytics, includ-
ing computing the pseudo-inverse of a matrix, solving linear
least square problems, low-rank approximation and linear
and multilinear component analysis. A tensor version TSVD
of the SVD is described in Sect. 4.1 and then applied in
Sect. 4.2 to obtain a tensor version, THOSVD, of the higher-
order SVD (HOSVD). Further information about the TSVD
can be found in [18] and [41].
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4.1 TSVD: Tensorial SVD

4.1.1 Algorithm

A tensor version, TSVD, of the singular value decomposition
is described in this section and then applied in Sect. 4.2 to
obtain a tensor version of the high-order SVD (HOSVD).
See [41] and [18].

Given a t-matrix XTM ∈ CD1×D2 , let Q
.= min(D1, D2).

The TSVD of XTM yields the following three t-matrices
UTM ∈ CD1×Q , STM ∈ CQ×Q and VTM ∈ CD2×Q , such
that

XTM = UTM ◦ STM ◦ VH
TM, (26)

where UH
TM ◦ UTM = VH

TM ◦ VTM = I (Q)
TM , STM =

diag(λT ,1, . . . , λT ,Q) and λT ,1, . . . , λT ,Q ∈ C are nonnega-
tive and satisfy F(λT ,1)i ≥ · · · ≥ F(λT ,Q)i ≥ 0 , 1 ≤ i ≤
I . The t-matrices UTM and VTM are generalizations of the
orthogonal matrices in the SVD of a matrix with elements in
R or C.

Although it is possible to compute UTM, STM and VTM
in the spatial domain, it is preferable to organize the TSVD
algorithm in the Fourier domain, because of the observation
in Sect. 2.3 that the Fourier transform converts the convolu-
tion product to the Hadamard product. The TSVD of XTM

can be decomposed into
∏N

n=1 In SVDs of complex number
matrices givenby the slices of theFourier transform F(XTM).
The t-matrices UTM, STM and VTM in Eq. (26) are obtained
in Algorithm 1.

Algorithm 1 (UTM, STM, VTM) = tsvd(XTM)

Inputs: A t-matrix XTM ∈ CD1×D2 as in Eq. (26) and the t-scalar
dimensions I .

Outputs: The t-matrices UTM, STM and VTM as in Eq. (26)
1: Compute the Fourier transformation X̃TM ← F(XTM)

2: for all 1 ≤ i ≤ I do
3: Compute the canonical SVD of X̃TM(i) ∈ C

D1×D2 such that

X̃TM(i) = Umat · Smat · V H
mat

where Umat ∈ C
D1×Q , Smat ∈ C

Q×Q , Vmat ∈ C
D2×Q , Q

.=
min(D1, D2) and V H

mat denotes the conjugate transpose of the
complex matrix Vmat.

4: Assign the i th slices ŨTM ∈ CD1×Q , S̃TM ∈ CQ×Q and ṼTM ∈
CD2×Q in the Fourier domain

ŨTM(i) ← Umat, S̃TM(i) ← Smat, ṼTM(i) ← Vmat.

5: end for
6: Compute the inverse transforms to obtain UTM, STM and VTM

UTM ← F−1(ŨTM), STM ← F−1(S̃TM), VTM ← F−1(ṼTM).

7: return UTM, STM, VTM.

If XTM is defined over R, then UTM, STM and VTM can
be chosen such that they are defined over R. It is sufficient
to choose the slices ŨTM(i), S̃TM(i) and ṼTM(i) such that

ŨTM(i) = ŨTM(2− i), S̃TM(i) = S̃TM(2− i) and ṼTM(i) =
Ṽ TM(2− i). When the t-scalar dimensions are given by N =
1, I1 = 1, TSVD reduces to the canonical SVD of a matrix in
C

D1×D2 . The properties of the SVD can be used to show that
the t-matrix STM in Algorithm 1 is unique. The t-matrices
UTM and VTM are not unique.

4.1.2 TSVD Approximation

TSVD can be used to approximate data. Given a t-matrix
XTM ∈ CD1×D2 , let Q

.= min(D1, D2) and let the TSVD
of XTM be computed as in Eq. (26). The low-rank approxi-
mation X̂TM of XTM with rank of r (1 ≤ r ≤ Q) is defined
by

X̂TM = UTM ◦ ŜTM ◦ VH
TM , (27)

where ŜTM = diag(λT ,1, . . . , λT ,r , ZT , . . . , ZT︸ ︷︷ ︸
Q−r

) and λT ,1,

. . . , λT ,r �= ZT .
When the t-scalar dimensions are given by N = 1, I1 = 1,

Eq. (27) reduces to the SVD low-rank approximation to a
matrix in CD1×D2 .

Furthermore, we contend that the approximation X̂TM

computed as in Eq. (27) is the solution of the following opti-
mization problem:

X approx
TM = argminYTM∈CD1×D2 ‖XTM − YTM‖F
subject to rank(YTM) ≤ r · ET ,

(28)

where ‖ · ‖F denotes the generalized Frobenius norm of
a t-matrix, which is a nonnegative t-scalar, as defined in
Eq. (20). The result X approx

TM generalizes the Eckart–Young–
Mirsky theorem [7].

To have an optimization problem in the form of (28), the
notation rank(·), i.e., the rank of a t-matrix, and min(·), i.e.,
the minimization of a nonnegative t-scalar variable belong-
ing to a subset of Snonneg, and the ordering relationship ≤
between two nonnegative t-scalars need to be defined.

These definitions generalize their canonical counterparts.
The definitions and the generalized Eckart–Young–Mirsky
theorem are discussed in the Appendix.

4.2 THOSVD: Tensor Higher-Order SVD

Inmultilinear algebra, the higher-order singular valuedecom-
position (HOSVD), also known as the orthogonal Tucker
decomposition of a tensor, is a generalization of the SVD.
It is commonly used to extract directional information from
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Algorithm 2 THOSVD
Input: XGT ∈ CD1×D2×···×DM .
Outputs: UTM,1, UTM,2, . . . , UTM,M and SGT as in Eq. (29)
1: for all 1 ≤ k ≤ M do
2: Construct the generalized mode-k flattening XGT (k) ∈

CDk×D−1
k

∏M
m=1 Dm .

3: (UTM,k ,∼,∼) ← tsvd(XGT (k))

4: end for
5: SGT ← XGT ◦1 UH

TM,1 ◦2 UH
TM,2 · · · ◦M UH

TM,M
6: return UTM,1, UTM,2, . . . , UTM,M and SGT .

multi-way arrays [6,30]. The applications ofHOSVD include
data analytics [29,32], machine learning [23,33,34], DNA
and RNA analysis [25,26] and texture mapping in computer
graphics [35].

On using the t-scalar algebra, the HOSVD can be general-
ized further to obtain a tensorial HOSVD, called THOSVD.
The THOSVD is obtained by replacing the complex number
elements of eachmulti-way array by t-scalar elements. Based
on the definitions of g-tensors in Sect. 3.5, the THOSVD of
XGT ∈ CD1×D2×···×DM is given by the following general-
ized mode-k multiplications:

XGT = SGT ◦1 UTM,1 ◦2 UTM,2 · · · ◦M UTM,M , (29)

where SGT ∈ CQ1×Q2×···×QM is called the core g-tensor,
UTM,k ∈ CDk×Qk is the mode-k factor t-matrix and Qk

.=
min(Dk, D

−1
k

∏M
m=1 Dm) for 1 ≤ k ≤ M .

Given a g-tensor XGT ∈ CD1×D2×···×DM , the THOSVD
of XGT , as in Eq. (29), is obtained in Algorithm 2, using a
strategy analogous to that of Tucker [30] and De Lathauwer
et al. [6] for computing theHOSVDof a tensor with elements
in R or C.

Note that THOSVD generalizes the HOSVD for canon-
ical tensors, TSVD for t-matrices and SVD for canonical
matrices. Many SVD- and HOSVD-based algorithms can be
generalized by TSVD and THOSVD, respectively.

5 Tensor-Based Algorithms

Three tensor-based algorithms are proposed. They are ten-
sorial principal component analysis (TPCA), tensorial two-
dimensional principal component analysis (T2DPCA) and
tensorial Grassmannian component analysis (TGCA). TPCA
and T2DPCA are generalizations of the well-known algo-
rithms PCA and 2DPCA [37]. TGCA is a generalization of
the recent GCA algorithm [13,14]. It is possible to general-
ize many other linear or multilinear algorithms using similar
methods.

5.1 TPCA: Tensorial Principal Component Analysis

Principal component analysis (PCA) is a well-known algo-
rithm for extracting the prominent components of observed
vectors. PCA is generalized to TPCA in a straightforward
manner. Let XTV,1, . . . , XTV,K ∈ CD be K given t-vectors.
Then, the covariance-like t-matrix GTM ∈ CD×D is defined
by

GTM = 1

K − 1

K∑

k=1

(XTV,k − X̄TV) ◦ (XTV,k − X̄TV)H,

(30)

where X̄TV = (1/K )
∑K

k=1 XTV,k . It is not difficult to verify
that GTM is Hermitian, namely GH

TM = GTM.
The t-matrix UTM ∈ CD×D is computed from the TSVD

of GTM as in Algorithm 1. Then, given any t-vector YTV ∈
CD , its feature t-vector Y feat

TV ∈ CD is defined by

Y feat
TV = UH

TM ◦ (YTV − X̄TV) . (31)

To reduce Y feat
TV from a t-vector in CD to a t-vector in Cd

(D > d), simply discard the last (D − d) t-scalar entries of
Y feat
TV .
In algebraic terminology, the column t-vectors of UTM

span a linear sub-module of t-vectors, which is a generaliza-
tion of a vector subspace [3]. In this sense, each t-scalar entry
of Y feat

TV is a generalized coordinate of the projection of the
t-vector (YTV − X̄TV) onto the sub-module. The low-rank
reconstruction Y rec

TV ∈ CD with the parameter d is given by

Y rec
TV = (UTM):,1:d ◦ (Y feat

TV )1:d + X̄TV, (32)

where (UTM):,1:d ∈ CD×d denotes the t-matrix containing
the first d t-vector columns ofUTM ∈ CD×D and (Y feat

TV )1:d ∈
Cd denotes the t-vector containing the first d t-scalar entries
of Y feat

TV ∈ CD .
Note that PCA is a special case ofTPCA.When the t-scalar

dimensions are given by N = 1, I1 = 1, TPCA reduces to
PCA.

5.2 T2DPCA: Tensorial Two-Dimensional Principal
Component Analysis

The algorithm 2DPCA is an extension of PCA proposed
by Yang et al. [37] for analyzing the principal components
of matrices. Although 2DPA is written in a non-centered
row-vector-oriented form in the original paper [37], it is
rewritten here in a centered column-vector-oriented form,
which is consistent with the formulation of PCA. The
centered column-vector-oriented form of 2DPCA is cho-
sen for discussing its generalization to T2DPCA (Tensorial
2DPCA).
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Similar to TPCA, T2DPCA also finds sub-modules, but
they are obtained by analyzing t-matrices. Let XTM,1, . . . ,

XTM,K ∈ CD1×D2 be the K observed t-matrices. Then, the
Hermitian covariance-like t-matrix GTM ∈ CD1×D1 is given
by

GTM = 1

K − 1

K∑

k=1

(XTM,k − X̄TM) ◦ (XTM,k − X̄TM)H,

(33)

where X̄TM = (1/K )
∑K

k=1 XTM,k .
Then, the t-matrix UTM ∈ CD1×D1 is computed from the

TSVD of GTM as in Algorithm 1. Given any t-matrix YTM ∈
CD1×D2 , its feature t-matrix Y feat

TM ∈ CD1×D2 is a centered
t-matrix projection (i.e., a collection of centered column t-
vector projections) on the module spanned by UTM, namely

Y feat
TM = UH

TM ◦ (YTM − X̄TM) . (34)

To reduce Y feat
TM from a t-matrix in CD1×D2 to a t-matrix

in Cd×D2 (D1 > d), simply discard the last (D1 − d) row
t-vectors of Y feat

TM .
TheT2DPCA reconstructionwith the parameter d is given

by Y rec
TM ∈ CD1×D2 as follows:

Y rec
TM = UTM:,1:d ◦ (Y feat

TM )1:d,: + X̄TM, (35)

where (UTM):,1:d ∈ CD1×d denotes the t-matrix containing
the first d column t-vectors ofUTM and (Y feat

TM )1:d,: ∈ Cd×D2

denotes the t-matrix containing the first d row t-vectors of
Y feat
TM .
When the t-scalar dimensions are given by N = 1, I1 = 1,

T2DPCA reduces to 2DPCA. In addition, TPCA is a special
case ofT2DPCA.When D2 = 1, T2DPCAreduces toTPCA.
Furthermore, when N = 1, I1 = 1 and D2 = 1, T2DPCA
reduces to PCA.

5.3 TGCA: Tensorial Grassmannian Component
Analysis

A t-matrix algorithm which generalizes the recent algorithm
for Grassmannian component analysis (GCA) is proposed.
An example of GCA can be found in [13], where it forms
part of an algorithm for sparse coding onGrassmannianman-
ifolds. In this section, GCA is extended to its generalized
version called TGCA (tensorial GCA).

In TGCA, each measurement is a set of t-vectors orga-
nized into a “thin” t-matrix, with the number of rows larger
than the number of columns. Let XTM,1, . . . , XTM,K ∈CD×d

(D > d) be the observed t-matrices. Then, the t-vector
columns of each t-matrix are first orthogonalized.Using the t-
scalar algebra, it is straightforward to generalize the classical

Algorithm 3 Generalized Gram–Schmidt orthogonalization

Input: YTM ∈ CD×d .
Outputs: ẎTM ∈ CD×d satisfying ẎH

TM ◦ ẎTM = I (d)
TM.

1: (ẎTM):,1 ← ‖(YTM):,1‖−1
F ◦ (YTM):,1

2: for all 2 ≤ k ≤ d do
3: (ẎTM):,k ← (YTM):,k
4: for all 1 ≤ j ≤ k − 1 do
5: (ẎTM):,k ← (ẎTM):,k − 〈(ẎTM):,k , (ẎTM):, j 〉 ◦ (ẎTM):, j
6: end for
7: (ẎTM):,k ← ‖(ẎTM):,k‖−1

F ◦ (ẎTM):,k
8: end for
9: return ẎTM

Gram–Schmidt orthogonalization process for t-vectors. The
TSVD can also be used to orthogonalize a set of t-vectors. In
GCA and TGCA, the choice of orthogonalization algorithm
does not matter as long as the algorithm is consistent for all
sets of vectors and t-vectors.

Given a t-matrix YTM ∈ CD×d , let ẎTM ∈ CD×d be
the corresponding unitary orthogonalized t-matrix (namely,
ẎH
TM ◦ ẎTM = I (d)

TM ) computed from YTM. Let (YTM):,k be
the kth column t-vector of YTM, and let (ẎTM):,k be the kth
column t-vector of ẎTM for 1 ≤ k ≤ d. The generalized
Gram–Schmidt orthogonalization is given by Algorithm 3.

Let ẊTM,k ∈ CD×d be the unitary orthogonalized t-
matrices computed from XTM,k for 1 ≤ k ≤ K . Then, for
1 ≤ k, k′ ≤ K , the (k, k′) t-scalar entry of the symmetric
t-matrix GTM ∈ CK×K is nonnegative and given by

(GTM)k,k′ = ‖ẊH
TM,k ◦ ẊTM,k′ ‖2F , 1 ≤ k, k′ ≤ K , (36)

where ‖ · ‖F is the generalized Frobenius norm of a t-matrix,
as defined by Eq. (20).

Given any query t-matrix sample YTM ∈ CD×d , let ẎTM ∈
CD×d be the corresponding unitary orthogonalized t-matrix
computed from YTM. Then, the kth t-scalar entry of KTV ∈
CK is computed as follows:

(KTV)k = ‖ẎH
TM ◦ ẊTM,k‖2F , 1 ≤ k ≤ K . (37)

Since GTM, computed as in Eq. (36), is symmetric, the
TSVD of GTM has the following form:

GTM = UTM ◦ STM ◦UH
TM . (38)

Furthermore, if it is assumed that the diagonal entries
STM

.= diag(λT ,1, · · · , λT ,K ) are all strictly positive, then
the multiplicative inverse of λT ,k exists for 1 ≤ k ≤ K .
The t-matrix S1/2TM

.= diag(
√

λT ,1, · · · ,
√

λT ,K ) is called

the t-matrix square root of STM, and the t-matrix S−1/2
TM

.=
diag( ET√

λT ,1
, · · · , ET√

λT ,K
) is called the inverse t-matrix of

S1/2TM.
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Thus, the features of the t-matrix sample YTM ∈ CD×d

are given by the t-vector Y feat
TV ∈ CK as

Y feat
TV = S−1/2

TM ◦UH
TM ◦ KTV (39)

and the features of the kth measurement XTM,k are given by
the t-vector X feat

TV,k as follows:

X feat
TV,k = S−1/2

TM ◦UH
TM ◦ (GTM):,k , 1 ≤ k ≤ K , (40)

where (GTM):,k denotes the kth t-vector column ofGTM. It is
not difficult to verify that S−1/2

TM ◦UH
TM ◦GTM ≡ S1/2TM ◦UH

TM.
This yields the following compact form for X feat

TV,k .

X feat
TV,k = (S1/2TM ◦UH

TM):,k , 1 ≤ k ≤ K , (41)

where (S1/2TM ◦ UH
TM):,k denotes the kth t-vector column of

the t-matrix (S1/2TM ◦UH
TM). Equation (41) is more efficient in

computations than Eq. (40).
The dimension of aTGCA feature t-vector is reduced from

K to K ′ (K > K ′) by discarding the last (K − K ′) t-scalar
entries. It is noted that GCA is a special case of TGCA when
the dimensions of the t-scalars are given by N = 1, I1 = 1.

6 Experiments

The results obtained from TSVD, THOSVD, TPCA,
T2DPCA, TGCA and their precursors are compared in
applications to low-rank approximation in Sect. 6.1, recon-
struction in Sect. 6.2 and supervised classification of images
in Sect. 6.3.

In these experiments, “vertical” and “horizontal” compar-
isons between generalized algorithms and the corresponding
canonical algorithms are made.

In a “vertical” experiment, tensorized data are obtained
from the canonical data in 3× 3 neighborhoods. The associ-
ated t-scalar is a 3×3 array. Tomake the vertical comparison
fair, the central slices of a generalized result are put into the
original canonical form and then compared with the result of
the associated canonical algorithm.

In a “horizontal” comparison, a generalized order-N array
of order-two t-scalars is equivalent to a canonical order-(N+
2) array of scalars. Therefore, a generalized algorithm based
on order-N arrays of order-two t-scalars is compared with a
canonical algorithmbased on order-(N+2) arrays of scalars.

6.1 Low-Rank Approximation

TSVD approximation is computed as in Eq. (27). THOSVD
approximationgeneralizes low-rank approximationbyTSVD
and low-rank approximation by HOSVD. To simplify the
calculations, the approximation is obtained for a g-tensor

XGT in CD1×D2×D3 . Let Qk
.= min(Dk, D

−1
k D1D2D3) for

k = 1, 2, 3. The THOSVD of XGT yields

XGT = SGT ◦1 UTM,1 ◦2 UTM,2 ◦3 UTM,3, (42)

where UTM,k ∈ CDk×Qk for k = 1, 2, 3 and STM ∈
CQ1×Q2×Q3 .

The low-rank approximation X̂GT ∈ CD1×D2×D3 to
XGT and with multilinear rank tuple (r1, r2, r3), (1 ≤
rk ≤ Qk for all k = 1, 2, 3), is computed as in Eq. (43),
where (UTM,k):,1:rk denotes the t-matrix containing the
first rk t-vector columns of UTM,k for k = 1, 2, 3 and
(SGT )1:r1,1:r2,1:r3 ∈ Cr1×r2×r3 denotes the g-tensor contain-
ing the first r1 × r2 × r3 t-scalar entries of SGT .

X̂GT = (SGT )1:r1,1:r2,1:r3 ◦1 (UTM,1):,1:r1
◦2 (UTM,2):,1:r2 ◦3 (UTM,3):,1:r3 .

(43)

When the t-scalar dimensions are given by N = 1, I1 = 1,
Eq. (43) reduces to the HOSVD low-rank approximation of a
tensor inCD1×D2×D3 .When the g-tensor dimension D3 = 1,
Eq. (43) reduces to the SVD low-rank approximation of a
canonical matrix in CD1×D2 .

6.1.1 TSVD Versus SVD—A “Vertical” Comparison

The low-rank approximation performances of TSVD and
SVD are compared. In the experiment, the test sample is
the 512 × 512 × 3 RBG Lena image downloaded from
Wikipedia.1

For the SVD low-rank approximations, the RGB Lena
image is split into three 512×512monochrome images. Each
monochrome image is analyzed using the SVD. The three
extracted monochrome Lena images are order-two arrays
in R

512×512. Each monochrome Lena image is tensorized
to produce a t-image (a generalized monochrome image) in
R512×512 ≡ R

3×3×512×512. In the tensorized version of the
image, each pixel value is replaced by a 3×3 square of values
obtained from the 3 × 3 neighborhood of the pixel. Padding
with 0 is used where necessary at the boundary of the image.

To evaluate the TSVD approximations in a manner
relevant to the SVD approximations, upon obtaining a
t-image approximation X̂TM ∈ R

3×3×512×512, the part
X̂MT (i)|i=(2,2) ∈ R

512×512, i.e., the central slice of the
TSVD approximation, is used for comparisons.

Given an array X of any order over the real numbersR, let
X̂ be an approximation to X . Then, the PSNR (peak signal-
to-noise ratio) for X̂ is defined as in [1] by

PSNR = 20 log10
MAX · √

N entry

‖X − X̂‖F
, (44)

1 https://en.wikipedia.org/wiki/Lenna.
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Fig. 1 A “vertical” comparison
of low-rank approximations by
SVD and TSVD for each
monochrome Lena image. First
column: monochrome images
extracted from the RGB Lena
image. Second column: PSNR
curves of SVD/TSVD
approximation on/for each
monochrome image
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where N entry denotes the number of real number entries of X ,
‖X− X̂‖F is the canonical Frobenius norm of the array (X−
X̂) and MAX is the maximum possible value of the entries
of X . In all the experiments, MAX=255. In this experiment
comparing TSVD and SVD, N entry = 512×512 = 262144.

Figure 1 shows the PSNR curves of the SVD and TSVD
approximations as functions of the rank of X̂ . It is clear that
the PSNR of the TSVD approximation is consistently higher
than that of SVD approximation. When the rank r = 500,
the PSNRs of TSVD and SVD differ by more than 37dBs.

6.1.2 TSVD Versus HOSVD—A “Horizontal” Comparison

Given a monochrome Lena image as an order-two array
in R

512×512 and its tensorized form as an order-four array
in R

3×3×512×512, TSVD yields an approximation array in
R
3×3×512×512. Since the HOSVD is applicable to order-four

arrays in R
3×3×512×512, we give a “horizontal” comparison

of the performances of TSVD and HOSVD.

More specifically, given a generalized monochrome Lena
image XTM ≡ X ∈ C512×512 ≡ R

3×3×512×512 and a
specified rank r , the TSVD approximation yields a t-matrix
X̂TM ∈ C512×512 ≡ R

3×3×512×512, which is computed as in
Eq. (27) with D1 = 512 and D2 = 512.

Let the HOSVD of X ∈ R
3×3×512×512 be X =

S ×1 U1 ×2 U2 ×3 U3 ×4 U4 where S ∈ R
3×3×512×512

denotes the core tensor, and U1 ∈ R
3×3, U2 ∈ R

3×3,
U3 ∈ R

512×512, U4 ∈ R
512×512 are all orthogonal matri-

ces. Then, to give a “horizontal” comparison with the TSVD
approximation X̂TM with rank r , the HOSVD approximation
X̂ ∈ R

3×3×512×512 is given by the multi-mode product

X̂ = (S):,:,1:r ,1:r ×1 U1 ×2 U2 ×3 (U3):,1:r
×4 (U4):,1:r .

(45)

The PSNRs TSVD and HOSVD are computed as in
Eq. (44) withMAX = 255 and N entry = 3×3×512×512 =
2359296.
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Fig. 2 A “horizontal”
comparison of low-rank
approximations by HOSVD and
TSVD on each generalized
monochrome Lena image, as a
fourth-order real number array
in R

3×3×512×512. First column:
PSNR curves, over rank r , of
HOSVD/TSVD approximations
on each generalized
monochrome Lena
image. Second column: some
quantitative PSNRs of
HOSVD/TSVD approximations
with rank r

20 100 200 300 400 500

25.11

60.84

83.06
101.44

128.43

approximation rank
P
SN

R
(d
B
)

Approximation comparison of
HOSVD and TSVD on same

fourth-order data for channel red

HOSVD on same fourth-order data
TSVD on same fourth-order data

20 100 200 300 400 500

23.46

56.92

79.43

97.77

123.36

approximation rank

P
SN

R
(d
B
)

Approximation comparison of
HOSVD and TSVD on same

fourth-order data for channel green

HOSVD on same fourth-order data
TSVD on same fourth-order data

20 100 200 300 400 500

25.63

54.29

77.75

95.31

119.69

approximation rank

P
SN

R
(d
B
)

Approximation comparison of
HOSVD and TSVD on same

fourth-order data for channel blue

HOSVD on same fourth-order data
TSVD on same fourth-order data

channel rank PSNR (dB)
type r HOSVD TSVD

20 25.11 26.44
60 30.37 34.18
100 33.42 39.73
140 35.92 44.42
180 37.96 48.37
220 39.72 51.98

red 260 41.33 55.57
300 42.94 59.51
340 44.65 64.14
380 46.62 69.89
420 49.08 77.68
460 52.62 90.29
500 60.84 128.43

20 23.46 24.62
60 27.76 31.55
100 30.44 36.71
140 32.69 41.19
180 34.61 45.11
220 36.31 48.75

green 260 37.90 52.38
300 39.48 56.31
340 41.17 60.88
380 43.09 66.56
420 45.49 74.18
460 48.94 86.58
500 56.92 123.36

20 25.63 26.88
60 28.77 32.71
100 30.61 36.93
140 32.13 40.69
180 33.48 44.23
220 34.74 47.74

blue 260 36.03 51.32
300 37.41 55.18
340 38.96 59.66
380 40.77 65.16
420 43.08 72.64
460 46.43 84.56
500 54.29 119.69

PSNRs of HOSVD/TSVD
approximations (on same fourth-order data)

with different approximation rank r

For each of the generalized monochrome Lena images
(respectively marked by the channel type “red,” “green”
and “blue”), as a 3 × 3 × 512 × 512 real number array, the
PSNRs of TSVD and HOSVD are shown in Fig. 2.

As rank r is varied, the PSNR of TSVD approximation
is always higher than that of the corresponding HOSVD
approximation. When rank r is equal to 500, the PSNRs of
TSVD and HOSVD approximations differ significantly.

6.1.3 THOSVD Versus HOSVD—A “Vertical” Comparison

The low-rank approximation performances of THOSVD and
HOSVD are compared. For the HOSVD approximations, the
RGB Lena image, which is a tensor inR512×512×3, is used as
the test sample. For the THOSVD, the 3 × 3 neighborhood
(with zero-padding) strategy is used to tensorize each real
number entry of the RGB Lena image. The obtained t-image

XGT is a g-tensor in R512×512×3, i.e., an order-five array in
R
3×3×512×512×3.
To give a “vertical” comparison, on obtaining an approxi-

mation X̂GT ∈R
3×3×512×512×3, X̂GT (i)|i=(2,2) ∈R

512×512×3,
i.e., the central slice of the THOSVD approximation, is com-
pared with the HOSVD approximation on the RGB Lena
image.

Figure 3 shows a “vertical” comparison of the PSNR
maps of THOSVD and HOSVD approximations and the
tabulated PSNRs for some representative multilinear rank
tuples (r1, r2, r3). It shows that the PSNR of the THOSVD
approximation is consistently higher than the PSNR of the
HOSVD approximation. When (r1, r2, r3) = (500, 500, 3),
the approximations obtained by THOSVD and HOSVD dif-
fer by 30.29 dB in their PSNR values.
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PSNR of HOSVD approximation
(on third-order data) with

rank r3 = 1

PSNR of THOSVD approximation
(for third-order central slice) with

rank r3 = 1
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60 60 3 29.46 31.78
100 100 3 32.51 35.93
140 140 3 34.75 39.22
180 180 3 36.52 42.03
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300 300 3 40.79 50.03
340 340 3 42.34 52.86
380 380 3 44.14 56.17
420 420 3 46.44 60.68
460 460 3 49.82 68.09
500 500 3 58.22 88.51

PSNRs of HOSVD/THOSVD
approximations (on/for third-order data/slice)

with different multilinear
rank tuple (r1, r2, r3)

Fig. 3 A “vertical” comparison of THOSVD approximations
and HOSVD approximations with the multilinear rank tuple
(r1, r2, r3). First column: PSNR maps of HOSVD approximation
on the RGB Lena image. Second column: PSNR maps of THOSVD

approximation for the RGB Lena image (i.e., third-order central slice
of THOSVD approximation). Third column: some quantitative PSNRs
of HOSVD/THOSVD approximations with representative multilinear
rank tuples

6.1.4 THOSVD Versus HOSVD—A “Horizontal Comparison”

Given a fifth-order array X ∈ R
3×3×512×512×5 tensorized

from the RGB Lena image, which is a third-order array in
R
512×512×3, both THOSVD and HOSVD can be applied to

the same data X .
THOSVD takes X as a g-tensor XGT ∈ C512×512×3 ≡

R
3×3×512×512×3, while HOSVD takes X merely as a canon-

ical fifth-order array in R3×3×512×512×3.
Then, given a rank tuple (r1, r2, r3) subject to 1 ≤ r1 ≤

512, 1 ≤ r2 ≤ 512 and 1 ≤ r3 ≤ 3, the THOSVD approxi-
mation X̂GT ∈ C512×512×3 is computed as in Eq. (43).

Let the HOSVD of X ∈ R
3×3×512×512×3 be X =

S ×1 U1 ×2 U2 ×3 U3 ×4 U4 ×5 U5 where

S ∈ R
3×3×512×512×3 is the core tensor and U1 ∈ R

3×3,
U2 ∈ R

3×3, U3 ∈ R
512×512, U4 ∈ R

512×512, U5 ∈ R
3×3 are

all orthogonal matrices.
Then, to give a “horizontal” comparisonwith theTHOSVD

approximation X̂GT ∈ C512×512×3 with a rank tuple
(r1, r2, r3), theHOSVDapproximation X̂ ∈ R

3×3×512×512×3

is given by the following multi-mode product:

X̂ = (S):,:,1:r1,1:r2,1:r3 ×1 U1 ×2 U2 ×3 (U3):,1:r1
×4 (U4):,1:r2 ×5 (U5):,1:r3 .

(46)

Figure 4 shows the “horizontal” comparison of THOSV
approximations and HOSVD approximations on the same
array with different rank tuples (r1, r2, r3). Albeit somewhat
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PSNR of HOSVD approximation
(on same fifth-order data) with rank r3 = 1

PSNR of THOSVD approximation
(on same fifth-order data) with rank r3 = 1

100 200 300 400 500

100

200

300

400

500

rank r1

ra
nk

r 2

100 200 300 400 500

100

200

300

400

500

rank r1

ra
nk

r 2

20.49

20.77

21.06

21.35

21.63

21.92

22.21

22.49

P
SN

R
(d
B
)

PSNR of HOSVD approximation
(on same fifth-order data) with rank r3 = 2

PSNR of THOSVD approximation
(on same fifth-order data) with rank r3 = 2

100 200 300 400 500

100

200

300

400

500

rank r1

ra
nk

r 2

100 200 300 400 500

100

200

300

400

500

rank r1

ra
nk

r 2

22.49

23.27

24.06

24.84

25.62

26.40

27.18

27.97

P
SN

R
(d
B
)

PSNR of HOSVD approximation
(on same fifth-order data) with rank r3 = 3

PSNR of THOSVD approximation
(on same fifth-order data) with rank r3 = 3

100 200 300 400 500

100

200

300

400

500

rank r1

ra
nk

r 2

100 200 300 400 500

100

200

300

400

500

rank r1

ra
nk

r 2

23.64

32.48

41.33

50.17

59.02

67.86

76.71

85.56

P
SN

R
(d
B
)

Multilinear Rank PSNR (dB)
r1 r2 r3 HOSVD THOSVD

20 20 1 20.49 20.88
60 60 1 21.68 22.11
100 100 1 22.01 22.36
140 140 1 22.17 22.44
180 180 1 22.26 22.46
220 220 1 22.30 22.48
260 260 1 22.33 22.48
300 300 1 22.35 22.49
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460 460 2 27.80 27.97
500 500 2 27.83 27.97

20 20 3 23.64 24.59
60 60 3 28.11 30.71
100 100 3 30.61 34.51
140 140 3 32.62 37.48
180 180 3 34.29 39.93
220 220 3 35.75 42.20
260 260 3 37.09 44.48
300 300 3 38.40 46.92
340 340 3 39.81 49.71
380 380 3 41.44 53.11
420 420 3 43.50 57.69
460 460 3 46.55 65.10
500 500 3 53.96 85.56

PSNRs of HOSVD/THOSVD
approximations (on same fifth-order data)

with different multilinear
rank tuple (r1, r2, r3)

Fig. 4 A “horizontal” comparison of THOSVD approximations and
HOSVD approximations with multilinear rank tuple (r1, r2, r3). First
column:PSNRmapsofHOSVDapproximation. Second column:PSNR

maps of THOSVD approximation. Third column: some PSNRs of
HOSVD/THOSVD approximations on the same fifth-order data with
representative multilinear rank tuples (r1, r2, r3)

smaller in PSNRs, the results in Fig. 4 are similar to the
results in Fig. 3 (a “vertical” comparison), corroborating the
claim that a THOSVD approximation outperforms, in terms
of PSNR, the corresponding HOSVD approximation on the
same data.

6.2 Reconstruction

The qualities of the low-rank reconstructions produced by
TPCA and PCA and by T2DPCA and 2DPCA, as described
by Eqs. (32) and (35), are compared.

The effectiveness of PCA, 2DPCA, TPCA and T2DPCA
for reconstruction is assessed using the ORL dataset. The
dataset contains 400 face images in 40 classes, i.e., 10

images/class × 40 classes. Each image has 112 × 92 pix-
els.2 The first 200 images (5 images/class × 40 classes) are
used as the observed images, and the remaining 200 images
are the query images.

For the experiments with TPCA/T2DPCA, all ORL
images are tensorized to t-images in R112×92, namely order-
four arrays in R

3×3×112×92. Eigendecompositions and t-
eigendecompositions are computed on the observed images
and t-images, respectively. Reconstructions are computed for
the query images and t-images, respectively. The number of
PSNRs for the reconstructed images and t-images is 200. It

2 https://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.
html.
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Fig. 5 A “vertical” comparison
of PSNR averages and standard
deviations for PCA and TPCA
reconstructions
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reconstructions using different
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Averages and standard deviations
of PSNRs of PCA/TPCA reconstruction on the ORL dataset

d = the number of eigen-vectors/eigen-t-vectors A = Average (dB)
S = Standard deviation (dB).

d 20 40 60 80 100 120 140 160 180 199

A
PCA 21.63 22.73 23.40 23.84 24.19 24.45 24.68 24.88 25.04 25.19

TPCA 22.55 24.16 25.23 26.00 26.64 27.16 27.61 28.03 28.37 28.69

S
PCA 1.20 1.35 1.47 1.54 1.59 1.64 1.68 1.71 1.73 1.75

TPCA 1.27 1.44 1.58 1.65 1.73 1.79 1.81 1.83 1.84 1.84

A/S
PCA 5.55 5.96 6.30 6.45 6.58 6.69 6.79 6.86 6.90 6.93

TPCA 5.62 5.97 6.27 6.36 6.49 6.59 6.57 6.53 6.48 6.41

Standard deviations of PCA and TPCA

is convenient to use the average of the PSNRs (denoted by
A), the standard deviation of PSNRs (denoted by S) and the
ratio, A/S. A larger value of A with a smaller value of S
indicates a better quality of reconstruction.

6.2.1 TPCA Versus PCA—A “Vertical” Comparison

To make the TPCA and PCA reconstructions computation-
ally tractable, each image is resized to 56 × 46 pixels by
bi-cubic interpolation. The resized images are also ten-
sorized to t-images, i.e., order-four arrays in R

3×3×56×46.
The obtained images and t-images are then transformed to
vectors and t-vectors, respectively, by stacking their columns.
The central slices of the TPCA reconstructions are compared
with the PCA reconstructions.

Figure 5 shows graphs and some tabulated values of A, S
and A/S for a number of eigenvectors and eigen-t-vectors.
Note that K linearly independent observed vectors or t-
vectors yield at most (K −1) eigenvectors or eigen-t-vectors.
Thus, the maximum number of eigenvectors and eigen-t-
vectors in Fig. 5 is 199 (K = 200).

The average PSNR for TPCA is consistently higher than
the average PSNR for PCA. The PSNR standard deviation for
TPCA is slightly larger than the PSNR standard deviation for
PCA, but the ratio A/S for TPCA is generally smaller than
the ratio A/S for PCA.This indicates that TPCAoutperforms
PCA in terms of reconstruction quality.

6.2.2 T2DPCA Versus 2DPCA—A “Vertical” Comparison

The same observed samples from the ORL dataset (the first
200 images, 5 images/class × 40 classes) and query sam-
ples (the remaining 200 images) are used to compare the
reconstruction performances of T2DPCA and 2DPCA. The
central slices of the T2DPCA are compared with the 2DPCA
reconstructions.

Figure 6 shows the reconstruction curves and some tabu-
lated values yielded by T2PCA and 2DPCA as functions of
the number d of eigenvectors or eigen-t-vectors. The average
PSNR obtained by T2DPCA is consistently higher than the
average PSNR obtained by 2DPCA. When the parameter d
equals 111, the gap between the two average PSNRs is 31.98
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Fig. 6 A “vertical” comparison
of PSNR averages and standard
deviations for the 2DPCA and
T2DPCA reconstructions
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of PSNRs of 2DPCA/T2DPCA reconstruction on the ORL dataset
d = the number of eigen-vectors/eigen-t-vectors A = Average (dB)

S = Standard deviation (dB) R = Ratio of S to A (%)
d 5 10 20 30 40 50 60 70 80 90 100 111

A
2DPCA 21.24 24.08 27.75 30.58 33.04 35.11 37.06 38.99 41.11 43.70 47.28 60.09

T2DPCA 21.80 25.40 30.66 34.17 37.02 39.38 41.89 44.53 48.36 53.36 61.15 92.07

S
2DPCA 1.19 1.34 1.49 1.64 1.80 1.89 1.98 1.94 1.88 1.80 1.87 2.54

T2DPCA 1.18 1.22 1.36 1.52 1.65 1.76 1.78 1.95 1.90 1.98 1.91 1.98

A/S
2DPCA 5.62 5.56 5.36 5.35 5.43 5.37 5.33 4.99 4.58 4.13 3.96 4.24

T2DPCA 5.42 4.81 4.45 4.46 4.45 4.47 4.24 4.38 3.93 3.71 3.13 2.15

dBs. Furthermore, the PSNR standard deviation for T2DPCA
is also generally smaller than the PSNR standard deviation
for 2DPCA. In terms of reconstruction quality, T2DPCAout-
performs 2DPCA.

6.3 Classification

TGCA and GCA are applied to the classification of the pixel
values in hyperspectral images. Hyperspectral images have
hundreds of spectral bands, in contrast with RGB images
which have only three spectral bands. The multiple spec-
tral bands and high resolution make hyperspectral imagery
essential in remote sensing, target analysis, classification and
identification [10,15,21,24,36,38,40]. Twopublicly available
datasets are used to evaluate the effectiveness of TGCA and
GCA for supervised classification.

6.3.1 Datasets

The first hyperspectral image dataset is the Indian Pines cube
(Indian cube for short), which consists of 145 × 145 hyper-
spectral pixels (hyperpixels for short) and has 220 spectral

D2

D1

D

Canonical vector in
R D

t-vector in
C
D

←−−−−−−−−−−→

←−
−−

−−
−−

−−
→

←−−−−−−−−−→

Fig. 7 Tensorization of a canonical vector extracted from a hyperspec-
tral cube

bands, yielding an array of order three in R145×145×220. The
Indian cube comes with ground-truth labels for 16 classes
[31]. The second hyperspectral image dataset is the Pavia
University cube (Pavia cube for short), which consists of
610 × 340 hyperpixels with 103 spectral bands, yielding an
array of order three in R

610×340×103. The ground truth con-
tains 9 classes [31].
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6.3.2 Tensorization

Given a hyperspectral cube, let D1 be the number of rows, D2

the number of columns and D the number of spectral bands.
A hyperpixel is represented by a vector in RD . Each pixel is
tensorized by its 3× 3 neighborhood. The tensorized hyper-
spectral cube is represented by an array in R

3×3×D1×D2×D .
Each tensorized hyperpixel, called t-hyperpixel in this paper,
is represented by a t-vector in RD , i.e., an array in R

3×3×D .
Figure 7 shows the tensorization of a canonical vec-

tor extracted from a hyperspectral cube. The tensorization
of all vectors yields a tensorized hyperspectral cube in
R
3×3×D1×D2×D .

6.3.3 Input Matrices and T-Matrices

To classify a query hyperpixel, it is necessary to extract
features from the hyperpixel. A t-hyperpixel in TGCA is rep-
resented by a set of t-vectors in the 5×5 neighborhood of the
t-hyperpixel. These t-vectors are used to construct a t-matrix.
A similar construction is used for GCA.

In GCA for example, let the vectors in the 5×5 neighbor-
hood of a hyperpixel be Xvec,1, . . . , Xvec,25. The ordering
of the vectors should be the same for all hyperpixels. The
raw matrix Xmat representing the hyperpixel is given by
marshalling these vectors as the columns of Xmat, namely
Xmat

.= [Xvec,1, . . . , Xvec,25] ∈ R
D×25. The associated t-

matrix XTM ∈ CD×25 in TGCA is obtained by marshalling
the associated 25 t-vectors.

After obtaining each matrix and t-matrix, the columns
are orthogonalized. The resulting matrices and t-matrices are
input samples for GCA and TGCA, respectively.

6.3.4 Classification

To evaluate GCA, TGCA and the competing methods, the
overall accuracies (OA) and the Cohen’s κ indices of the
supervised classification of hyperpixels (i.e., prediction of
class labels of hyperpixels) are used. The overall accuracies
and κ indices are obtained for different component analyzers
and classifiers. Higher values of OA or κ indicate a higher
component analyzer performance [9]. Let K be the number
of query samples, and let K ′ be the number of correctly clas-
sified samples. The overall accuracy is simply defined by
OA = K

′
/K . The κ index is defined by [5]

κ = K · K ′ − ∑N class

j=1 a jb j

K 2 − ∑N class

j=1 a jb j

, (47)

where N class is the number of classes, a j is the number of
samples belonging to the j th class and b j is the number of
samples classified to the j th class.

Two classical component analyzers, namely PCA and
LDA, and four state-of-the-art component analyzers, namely
TDLA [40], LTDA [42], GCA [13] and TPCA (ours), are
evaluated against TGCA. As an evaluation baseline, the
results obtained with the original raw canonical vectors for
hyperpixels are given. These raw vectors are denoted as
the “original” (ORI for short) vectors. Three vector-oriented
classifiers, NN (nearest neighbor), SVM (support vector
machine) and RF (random forest), are employed to evaluate
the effectiveness of the features extracted by these compo-
nent analyzers.

In the experiments, the background hyperpixels are
excluded, because they do not have labels in the ground
truth. A total of 10% of the foreground hyperpixels are ran-
domly and uniformly chosen without replacement as the
observed samples (i.e., sampleswhose class labels are known
in advance). The rest of the foreground hyperpixels are cho-
sen as the query samples, that is, sampleswith the class labels
to be determined.

In order to use the vector-oriented classifiers NN, SVM
and RF, the t-vector results, generated by TGCA or TPCA,
are transformed by pooling them to yield canonical vectors.
For TGCA, the canonical vectors obtained by pooling are
referred to as TGCA-I features and the t-vectors without
pooling are referred to as the TGCA-II features.

To assess the effectiveness of the TGCA-II features, a
generalized classifier which deals with t-vectors is needed.
It is possible to generalize many canonical classifiers from
vector-oriented to t-vector-oriented; however, a comprehen-
sive discussion of these generalizations is outside the scope
of this paper.Nevertheless, it is very straightforward to gener-
alize NN. The d-dimensional t-vectors are not only elements
of the module Cd , but also the elements in the vector space
C
3×3×d . This enables the use of the canonical Frobenius

norm to measure the distance between two t-vectors, as the
elements in C

3×3×d . The canonical Frobenius norm should
not be confusedwith the generalized Frobenius norm defined
in Eq. (20).

Figure 8 shows the highest classification accuracies
obtained by each pair of component analyzer and classi-
fier on the two hyperspectral cubes. The highest accuracies
are obtained by traversing the set of feature dimensions
d ∈ {5, 10, . . . , Dm}, where Dm is the maximum dimension
valid for the associated component analyzer. Figure 8 shows
that the results obtained by the algorithms TPCA, TGCA-I
and TGCA-II are consistently better than those obtained by
their canonical counterparts. Even working with a relatively
weak classifier NN, TGCA achieves the highest accuracies
and highest κ indices in the experiments. Further results are
shown in Figs. 9 and 10. It is clear that the pair TGCA and
NN yield the best results, outperforming any other pair of
analyzer and classifier.
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Overall accuracies obtained on the Indian cube

κ indices obtained on the Indian cube

Overall accuracies obtained on the Pavia cube

κ indices obtained on the Pavia cube
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Fig. 8 Classification accuracies obtained on two hyperspectral cubes

6.3.5 TGCA Versus GCA

It is noted that the maximum dimension of the TGCA and
GCA features is equal to the number of observed training
samples and therefore ismuchhigher than the original dimen-
sion, which is equal to the number of spectral bands. Thus,
taking the original dimension as the baseline, one can employ
TGCA or GCA either for dimension reduction or dimension
increase. When the so-called curse of dimension is the con-
cern, one can discard the insignificant entries of the TGCA
and GCA features. When the accuracy is the primary con-
cern, one can use higher-dimensional features.

The performances of TGCA and GCA for varying feature
dimension are compared using accuracy curves generated by
TGCA (i.e., TGCA-I and TGCA-II) and GCA, as shown in
Fig. 11. The results are obtained for low feature dimensions
and for high feature dimensions. It is clear that the classi-
fication accuracies obtained using TGCA and TGCA-II are
consistently higher than the accuracies obtained using GCA.

6.3.6 TPCA Versus PCA

The classification accuracies of TPCA and PCA are com-
pared, although the highest classification accuracies are not
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Fig. 9 Some visual results obtained on the Indian cube. a Pseudo-
colored 2D scene of Indian Pines b class ground truth of hyperpixels
c ORI with RF d LDA with RF e TDLA with RF f LTDA with RF g

PCA with RF h TPCA with RF i GCA with NN j TGCA-I with NN
k TGCA-II with NN (Color figure online)

Fig. 10 Some visual results obtained on the Pavia cube. a Pseudo-
colored 2D scene of the Pavia University b class ground truth of
hyperpixels c ORI with RF d LDA with RF e TDLA with RF f

LTDA with RF g PCA with RF h TPCA with RF i GCA with NN j
TGCA-I with NN k TGCA-II with NN (Color figure online)
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Fig. 11 Accuracy curves
obtained by TGCA/GCA (with
NN) on the Indian/Pavia cube

Accuracy curves by TGCA/GCA
on the Indian cube (with low dimensions)

Accuracy curves by TGCA/GCA
on the Pavia cube (with low dimensions)

Accuracy curves by TGCA/GCA
on the Indian cube (with high dimensions)

Accuracy curves by TGCA/GCA
on the Pavia cube (with high dimensions)
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Fig. 12 Accuracy curves
obtained by TPCA/PCA and
different classifiers on the
Indian/Pavia cube. First column:
results on the Indian cube.
Second column: results on the
Pavia cube
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(I1, I2) (1, 1) (4, 4) (8, 8) (12, 12) (16, 16) (20, 20) (24, 24) (28, 28) (32, 32)
addition 0.009 1.278 4.371 11.075 19.906 32.610 51.206 67.237 83.592

conjugate transpose 0.012 1.434 4.462 11.297 19.630 33.012 51.696 65.216 82.747
multiplication 0.047 1.846 6.730 15.786 28.253 59.813 72.874 95.064 118.535

TSVD 2.341 18.837 77.587 177.804 321.547 503.543 740.465 1 002.679 1 314.483
† When (I1, I2) = (1, 1), the manipulation is equivalent to a canonical matrix manipulation and the reported time
does not include the time spent on the Fourier transform and its inverse transform.

Fig. 13 Run time of some t-matrix manipulations with different t-scalar sizes

obtained from TPCA or PCA. The classification accuracy
curves obtained by TPCA and PCA (with classifiers NN,
SVM and RF) are shown in Fig. 12. It is clear that, no matter
which classifier and feature dimension are chosen, the accu-
racy using TPCA is consistently higher than the accuracy
using PCA.3

6.4 Computational Cost

The run times of t-matrix manipulations with different t-
scalar sizes I1 × I2 are shown in Fig. 13. The size of
t-scalars ranges from 1 ≤ I1, I2 ≤ 32. The evaluated

3 To use the same classifiers, pooling is used to transform the t-vectors
by TPCA to canonical vectors.

t-matrix manipulations include addition, conjugate transpo-
sition, multiplication and TSVD. The run time is evaluated
using MATLAB R2018B on a notebook PC with Intel i7-
4700MQ CPU at 2.40 GHz and 16 GB memory.

Each time point in the figure is obtained by averaging 100
manipulations on random t-matrices in R

I1×I2×64×64. Each
t-matrix with (I1, I2) �= (1, 1) is transformed to the Fourier
domain and manipulated via its I1 · I2 slices. The results are
transferred back to the original domain by the inverse Fourier
transform. Note that when (I1, I2) = (1, 1), a t-matrix
manipulation is reduced to canonical matrix manipulation.
The reported run time of a canonical matrix manipulation
does not include the time spent on the Fourier transform and
its inverse transform.
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From Fig. 13, it can be seen that the run time is essentially
an increasing linear function of the number of slices, i.e.,
I1 · I2.

7 Conclusion

An algebraic framework of tensorial matrices is proposed
for generalized visual information analysis. The algebraic
framework generalizes the canonical matrix algebra, com-
bining the “multi-way” merits of high-order arrays and the
“two-way” intuition of matrices. In the algebraic framework,
scalars are extended to t-scalars, which are implemented as
high-order numerical arrays of a fixed size. With appropriate
operations, the t-scalars are trinitarian in the following sense.
(1) T-scalars are generalized complex numbers. (2) T-scalars
are elements of an algebraic ring. (3) T-scalars are elements
of a linear space.

Tensorial matrices, called t-matrices, are constructed
with t-scalar elements. The resulting t-matrix algebra is
backward compatible with the canonical matrix algebra.
Using this t-algebra framework, it is possible to generalize
many canonical matrix and vector constructions and algo-
rithms.

To demonstrate the “multi-way” merits and “two-way”
matrix intuition of the proposed tensorial algebra and
its applications to generalized visual information analy-
sis, the canonical matrix algorithms SVD, HOSVD, PCA,
2DPCA and GCA are generalized. Experiments with low-
rank approximation, reconstruction and supervised clas-
sification show that the generalized algorithms compare
favorably with their canonical counterparts on visual infor-
mation analysis.
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Appendix

Before giving a proof of the equivalence of Eqs. (27) and
(28), namely the generalized Eckart–Young–Mirsky theo-
rem, some notations need to be defined.

First, rank(·) denotes the rank of a t-matrix, which gener-
alizes the rank of a canonicalmatrix and is defined as follows.
Definition I, rank of a t-matrix. Given a t-matrix, the rank
YT

.= rank(XTM) is a nonnegative t-scalar such that

F(YT )i = rank(F(XTM)(i)) ≥ 0 , 1 ≤ i ≤ I , (48)

where F(XTM)(i) denotes the i th slice of the Fourier trans-
form F(XTM).
Definition II, partial ordering of nonnegative t-scalars.
Given two nonnegative t-scalars XT and YT , the notation
XT ≤ YT is equivalent to the following condition:

F(XT )i ≤ F(YT )i , 1 ≤ i ≤ I . (49)

Definition III, minimization of nonnegative t-scalar variable.
For a nonnegative t-scalar variable XT varying in a subset of
Snonneg, YT

.= min(XT ) is the nonnegative t-scalar infimum
of the subset, satisfying the following condition:

F(YT )i = min (F(XT )i ) ≥ 0 , 1 ≤ i ≤ I , (50)

where F(YT ) and F(XT ), respectively, denote the Fourier
transforms of YT and XT .

Given two nonnegative t-scalars XT and YT , letMT be the
nonnegative t-scalar defined byMT = min(XT ,YT ), namely

F(MT )i = min(F(XT )i , F(YT )i ) ≥ 0 , i ≤ i ≤ I . (51)

The above definitions are not casual ones. Following the
above definitions, it is not difficult to verify that many gen-
eralized rank properties hold in the analogous form of their
canonical counterparts.

For examples, given any t-matrices XTM ∈ CD1×D2 and
YTM ∈ CD1×D2 or YTM ∈ CD2×D3 , the following inequali-
ties hold:

ZT ≤ rank(XTM) ≤ min(D1, D2) · ET . (52)

ZT ≤ rank(XTM + YTM)

≤ rank(XTM) + rank(YTM) . (53)

rank(XTM) + rank(YTM) − D2 · ET

≤ rank(XTM ◦ YTM)

≤ min
(
rank(XTM), rank(YTM)

)
. (54)

Since a t-scalar is a t-matrix of one row and one column,
the rank of a t-scalar can be obtained.

Given any t-scalar XT , let GT
.= rank(XT ) be the rank of

XT . Then, following Eq. (48), it is not difficult to prove the
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i th entry of the Fourier transform F(GT ) which is given as
follows:

F(GT )i =
{
1, if XT ,i �= 0

0, otherwise
, 1 ≤ i ≤ I . (55)

Following the partial ordering given as in (49) and
Eq. (48), it is not difficult to prove that the following propo-
sitions hold:

ZT ≤ rank(XT ) ≤ ET , for all t-scalars

ZT = rank(XT ) iff XT = ZT

ET = rank(XT ) iff XT is invertible.

(56)

It follows from (56) that ZT < rank(XT ) < ET iff the
t-scalar XT is nonzero and non-invertible.4

Generalized rank from a TSVD perspective. Given any
t-matrix XTM = UTM ◦ STM ◦ VH

TM where STM
.=

diag(λT ,1, . . . , λT ,k, . . . λT ,Q) and λT ,k ∈ C is a t-scalar
for all k, then the following equation holds and generalizes
its canonical counterpart:

ZT ≤ rank(XTM) ≡ ∑Q
k=1 rank(λT ,k) ≤ Q · ET . (57)

Let the approximation be X̂TM = UTM◦ ŜTM◦VH
TM where

ŜTM = diag(λT ,1, . . . , λT ,r , ZT , . . . , ZT︸ ︷︷ ︸
Q−r

). Then, X̂TM is a

low-rank approximation to XTM since the following rank
inequality holds:

rank(X̂TM) ≡ ∑r
k=1 rank(λT ,k) ≤ rank(XTM) . (58)

Furthermore, it is not difficult to verify that Eq. (28) is
equivalent to the following equation in the form of canonical
matrices (i.e., slices of Fourier-transformed t-matrices).

X̃ approx
TM (i) = argminYmat∈CD1×D2 ‖X̃TM(i) − Ymat‖F

subject to rank(Ymat) ≤ r , 1 ≤ i ≤ I ,
(59)

where X̃ approx
TM and X̃TM, respectively, denote the Fourier

transform of X approx
TM and XTM in Eq. (28), and rank(Ymat)

is the rank of a complex matrix Ymat in CD1×D2 .
On the other hand, by applying the Fourier transforms to

both sides ofEq. (27), Eq. (27) is transformed to the following
equation in the form of canonical matrices (i.e., slices of
Fourier-transformed t-matrices):

4 The partial order “<” is defined between nonnegative t-scalars. The
inequality ZT < rank(XT ) < ET means ZT ≤ rank(XT ) ≤ ET and
rank(XT ) �= ZT and rank(XT ) �= ET .

X̃ svd
TM(i) = ŨTM(i) · S̃approxTM (i) ·

(
ṼTM(i)

)H
, 1 ≤ i ≤ I ,

(60)

where X̃ svd
TM, ŨTM, S̃approxTM and Ṽ approx

TM , respectively, denote
the Fourier transforms of X̂TM, UTM, ŜTM and VTM in
Eq. (27).

The canonical Eckart–Young–Mirsky theorem guarantees
the equivalence of Eqs. (59) and (60).
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