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Abstract
Watershed is a well-established clustering and segmentation method. In this article, we aim to achieve a better theoretical
understanding of the hierarchical version of the watershed operator. More precisely, we propose a characterization of hierar-
chical watersheds in the framework of edge-weighted graphs. The proposed characterization leads to an efficient algorithm
to recognize hierarchical watersheds.

Keywords Hierarchical watersheds on edge-weighted graphs · Recognition of hierarchical watersheds · Binary partition
hierarchy

1 Introduction

Hierarchical clustering has a long history in data process-
ing [11]. In image processing, it is called hierarchical image
segmentation [32]. Given an initial partition, a hierarchy
is created by successively merging neighbouring regions
together. In practice, a common way to create the initial
partition is often to use the watershed operator [4,8,23,24],
whether we are dealing with data [5] or images. When merg-
ing the regions (called catchment basins in this context) of
an initial watershed segmentation in a sequence provided by
a given total ordering (such as for instance [34]), we obtain
a hierarchical watershed [3,7,22,28]. The watershed oper-
ator is still widely used in today’s deep learning era as a
pre-processing [13] or post-processing step [1], achieving
state-of-the-art results.

In the framework of edge-weighted graphs, hierarchical
watersheds benefit from many interesting theoretical and
practical properties [6,9]. In particular, they globally opti-
mize a well-defined cost function, both for the original graph
and for every partition of the hierarchy, and they can be
computed by efficient algorithms such as the ones proposed
in [6,26], whose time complexity is the same as minimum
spanning tree algorithms. In order to leverage from those
properties in a practical context, we study in this paper the
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problem of recognizing hierarchical watersheds. More pre-
cisely, we aim to solve the following problem:

(P) given a weighted graph and a hierarchy of partitions H,
determine ifH is a hierarchical watershed of this graph.

Solving this problem has a strong potential impact on
the practice. It can help us, for example, in designing an
algorithm to transform any hierarchy of partitions into a hier-
archical watershed [17].

The problem of recognizing hierarchical watersheds is
related to the one studied in [2,12]. In [2,12], the authors
search for a minimum set of markers which lead to a given
watershed segmentation. In our case, given a hierarchy, we
investigate if, for every partition P of this hierarchy, there is a
subsetM of the set of the minima of the graph such that P is
the watershed segmentation forM (Sect. 2.3). In the affirma-
tive case, the given hierarchy is a hierarchical watershed or
at least a hierarchy composed of partitions of a hierarchical
watershed, which we call a flattened hierarchical watershed
(Sect. 5).

This article is an extension of the conference paper [16].
Our main contributions are the following: (1) a characteriza-
tion of hierarchical watersheds in the framework of weighted
graphs (Theorem 5); (2) an efficient algorithm to recognize
hierarchical watersheds (Algorithm 1); (3) the study of the
notion of flattened hierarchical watersheds and an algorithm
to recognize such hierarchies (Algorithm 2); and (4) exper-
imental results with the proposed algorithms applied to the
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combinations of hierarchical watersheds assessed in [14]. To
ease the reading of the paper, proofs of the various properties
and theorems are postponed to “Appendix”.

In Sect. 2, we present the basic notions for handling hier-
archies with graphs. In Sect. 3, we formally state the problem
of recognizing hierarchicalwatersheds andwepresent a char-
acterization of hierarchical watersheds on arbitrary graphs.
In Sect. 4, we present an efficient algorithm to recognize
hierarchical watersheds. In Sect. 5, we introduce the notion
of flattened hierarchical watersheds, which are hierarchies
composed of a subset of the partitions of a hierarchical water-
shed. Then, we propose an algorithm that recognizes this
type of hierarchy. In Sect. 6, we present some experimental
results using the proposed algorithms. Finally, we conclude
the paper, in particular, by providing a glimpse on a possi-
ble extension of this work in the design of a watersheding
operator [17].

2 Background Notions

In this section, we first introduce hierarchies of parti-
tions. Then, we review the definition of graphs, connected
hierarchies and saliency maps. Subsequently, we define hier-
archical watersheds.

2.1 Hierarchies of Partitions

Let V be a set. A partition (of V ) is a set P of non empty
disjoint subsets of V whose union is V . Any element of a
partition P is called a region of P. Let P1 and P2 be two par-
titions. We say that P1 is a refinement of P2 if every element
of P1 is included in an element of P2. A hierarchy (of par-
titions) is a sequence H = (P0, . . . ,P�) of partitions such
that Pi−1 is a refinement of Pi , for any i in {1, . . . , �} and
such that Pn = {V }. LetH = (P0, . . . ,P�) be a hierarchy of
partitions. Any region of a partition P ofH is called a region
of H.

A hierarchy of partitions can be represented as a tree
whose nodes correspond to regions, as shown in Fig. 1a.
Given a hierarchyH and two regions X and Y ofH, we say
that X is a parent of Y (or that Y is a child of X ) if Y ⊂ X
and X is minimal for this property, i.e. if there is a region Z
such that Y ⊆ Z ⊂ X , then we have Y = Z . It can be seen
that any region X �= V of H has exactly one parent. For
any region X such that X �= V , we write parent(X) = Y
where Y is the unique parent of X . For any region R of H,
if R is not the parent of any region of H, we say that R is
a leaf region (of H). Otherwise, we say that R is a non-leaf
region (of H).

In Fig. 1a, the regions of a hierarchyH are linked to their
parents (and to their children) by straight lines.

(a)

(b)

Fig. 1 a A representation of a hierarchy of partitions H =
(P0,P1,P2,P3) on the set {a, b, c, d, e, f , g, h}. b A weighted graph
(G, w)

2.2 Graphs, Connected Hierarchies and Saliency
Maps

A graph is a pair G = (V , E), where V is a finite set and E
is a set of pairs of distinct elements of V , i.e. E ⊆ {{x, y} ⊆
V | x �= y}. Each element of V is called a vertex (of G), and
each element of E is called an edge (of G). To simplify the
notation, the set of vertices and edges of a graph G will be
also denoted by V (G) and E(G), respectively.

Let G = (V , E) be a graph, and let X be a subset of V .
A sequence π = (x0, . . . , xn) of elements of X is a path
(in X ) from x0 to xn if {xi−1, xi } is an edge of G for any i
in {1, . . . , n}. Given a path π = (x0, . . . , xn), for any i
in {1, . . . , n}, we say that u = {xi−1, xi } is an edge in π

and that u is in π . The subset X of V is said to be connected
if, for any x and y in X , there exists a path from x to y. The
subset X is a connected component of G if X is connected
and maximal. In the following, we denote by CC(G) the set
of all connected components of G. This set CC(G) of all
connected components of G is a partition of the set V .

Let G = (V , E) be a graph. A partition of V is connected
for G if each of its regions is connected, and a hierarchy
on V is connected (for G) if every one of its partitions is
connected. For example, the hierarchy of Fig. 1a is connected
for the graph of Fig. 1b.

Let G be a graph. If w is a map from the edge set of G
to the set R of real numbers, then the pair (G, w) is called
an (edge) weighted graph. If (G, w) is a weighted graph, for
any edge u of G, the value w(u) is called the weight of u
(for w).
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Important notation in the remaining part of this article,
the symbol (G, w) denotes a weighted graph whose vertex
set is connected. To shorten the notation, the vertex set of G
is denoted by V and its edge set is denoted by E . With-
out loss of generality, we also assume that the range of w

is included in the set E of all integers from 0 to |E | − 1.
(Otherwise, one could always consider an increasing one-to-
one correspondence from the set {w(u) | u ∈ E} into the
subset {0, ..., |{w(u) | u ∈ E}| − 1} of E.)

Let λ be any element inR. The λ-level set of (G, w) is the
graph (V , Eλ(G)) such that Eλ(G) = {u ∈ E(G) | w(u) ≤
λ}. The sequence

QFZ(w) = (CC(Gλ,w) | λ ∈ E) (1)

where Gλ,w is the λ-level set of (G, w), is a hierarchy called
the quasi-flat zones (QFZ) hierarchy (of w) [6,20,25,33].

As established in [9], a connected hierarchy can be equiv-
alently treated by means of a weighted graph through the
notion of a (contour) saliency map. Given a hierarchy H =
(P0, . . . ,P�) which is connected for G, the saliency map
of H is the map from E into {0, . . . , �}, denoted by Φ(H),
such that, for any edge u = {x, y} in E , the value Φ(H)(u)

is the lowest value i in {0, . . . , �} such that x and y belong to
a same region of Pi . It follows that any connected hierarchy
has a unique saliency map. Moreover, any hierarchyH con-
nected for G is precisely the quasi-flat zones hierarchy of its
own saliency map: H = QFZ(Φ(H)).

For instance, the map depicted in Fig. 1b is the saliency
map of the hierarchy of Fig. 1a.

Saliency maps are closely related to the notion of ultra-
metric distances [1,27]. LetH be a hierarchy on V . Let d be
a map from V ×V intoR such that, for any pair (x, y) of ver-
tices in V ×V , the value d(x, y) is the greatest edge weight λ
in a path π from x to y (resp. y to x) in (G, Φ(H)) such that,
for any other path π ′ from x to y (resp. y to x), the greatest
edge weight in π ′ is greater than or equal to λ. We can affirm
that (V , d) is an ultrametric space. Moreover, for any two
vertices x and y in V , by the definition of saliency maps, we
may say that d(x, y) is the lowest value λ such that x and y
belong to a same region of the partitionPλ ofH. Furthermore,
if G is a complete graph, we can conclude that (V , Φ(H)) is
an ultrametric space.

2.3 Hierarchical Minimum Spanning Forests and
Watersheds

The watershed segmentation, see, for example, [4,8,28],
derives from the topographic notion of watershed lines and
catchment basins. In [8], the authors formalize watersheds
in the framework of (edge) weighted graphs and show the
optimality of watersheds in the sense of minimum spanning
forests. In this section, we present hierarchical watersheds

following the definition of hierarchies of minimum spanning
forests presented in [6,7].

We say that the graph G = (V , E) is a forest if, for any
edge u in E , the number of connected components of the
graph (V , E\{u}) is greater than the number of connected
components of G. Given another graph Gs , we say that Gs is
a subgraph of G, denoted byGs � G, if V (Gs) is a subset of
V and if E(Gs) is a subset of E . Let G1 be a subgraph of G
and let G2 be a subgraph of G1. The graph G1 is a minimum
spanning forest (MSF) of G rooted in G2 if:

1. the graphs G and G1 have the same set of vertices, i.e.
V (G1) = V ; and

2. each connected component of G1 includes exactly one
connected component of G2; and

3. the sum of the weight of the edges of G1 is minimal
among all subgraphs ofG for which the above conditions
1 and 2 hold true.

Given a path (x0, . . . , xn) in G, we say that π is a cycle
if x0 and xn are equal and if the edges in π are pairwise
distinct. A MSF of (G, w) rooted in a single vertex of G and
which does not contain any cycles is a tree (connected forest)
called a minimum spanning tree (MST) of (G, w).

Let k be a value in R. A connected subgraph Gs of G is a
(regional) minimum (of w) at level k if:

1. the set of edges E(Gs) of Gs is not empty; and
2. for any edge u in E(Gs), the weight of u is equal to k;

and
3. for any edge {x, y} in E\E(Gs) such that |{x, y} ∩

V (Gs)| ≥ 1, theweight of {x, y} is strictly greater than k.

Important notation in the remaining part of this article,
we denote by n the number of minima of w. Every sequence
of minima of w considered in this article is a sequence of n
pairwise distinct minima of w and, therefore, for the sake of
simplicity, we use the term sequence of minima of w instead
of sequence of n pairwise distinct minima of w.

Let {G1, . . . ,G�} be a set of graphs. We denote by
�{G1, . . . ,G�} the graph (∪{V (G j ) | j ∈ {1, . . . , �}},
∪{E(G j ) | j ∈ {1, . . . , �}}). In the following, we define
hierarchical watersheds based onminimum spanning forests,
as done in [6,7].

Definition 1 (Hierarchical watershed [6,7]) Let S
= (M1, . . . , Mn)be a sequenceofminimaofw. Let (G0, . . . ,

Gn−1) be a sequence of subgraphs of G such that:

1. for any i in {0, . . . , n − 1}, the graph Gi is a MSF of G
rooted in �{Mj | j ∈ {i + 1, . . . , n}}; and

2. for any i in {1, . . . , n − 1}, Gi−1 is a subgraph of Gi .
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The sequence T = (CC(G0), . . . ,CC(Gn−1)) is called
a hierarchical watershed of (G, w) for S. Given a hierar-
chy H, we say that H is a hierarchical watershed of (G, w)

if there exists a sequence S of minima of w such thatH is a
hierarchical watershed of (G, w) for S.

For instance, let (G, w) and H be, respectively, the
weighted graph and the hierarchy shown in Fig. 2a, b, respec-
tively. We can see that H is the hierarchical watershed
of (G, w) for the sequence (C, A, B, D) of minima of w.

3 Characterization of Hierarchical
Watersheds

In this section, we solve the following recognition problem:

(P) given a weighted graph (G, w) and a hierarchy of par-
titions H, determine if H is a hierarchical watershed
of (G, w).

A naive approach to solve Problem (P) is to test if there is
a sequence S of minima of w such thatH is the hierarchical
watershed of (G, w) forS. However, there exist n! sequences
of minima ofw, which leads to an algorithm of factorial time
complexity.

To solve Problem (P) more efficiently, we propose
in Sect. 3.2 a characterization of hierarchical watersheds
(Lemma 4) based on the binary partition hierarchy by alti-
tude ordering (Sect. 3.1) which, as stated in [6], is known
to be closely related to hierarchical watersheds. Then, we
present a sketch of the proof of Lemma 4 by linking one-side
increasing maps to the notion of extinction values as defined
in [6]. Based on our proposed characterization of hierarchical
watersheds, we design an efficient algorithm (Algorithm 1)
to solve Problem (P).

3.1 Binary Partition Hierarchies by Altitude
Ordering

Binary partition trees [30] are widely used for hierarchical
image representation. In this section, we describe the case
where regions linked by the lowest edge weights are the first
regions to bemerged in the hierarchy [6]. As stated in [9], this
particular case is deeply connected to single-linkage cluster-
ing.

Let ≺ be a total ordering (on E), i.e. ≺ is a binary relation
that is transitive and trichotomous: for any u and v in E only
one of the relations u ≺ v, v ≺ u and v = u holds true.
We say that ≺ is an altitude ordering (on E) for w if, for
any u and v in E such that w(u) < w(v), we have u ≺ v.
Hence, given an altitude ordering ≺ for w and given any
two edges u and v such that w(u) = w(v), we can have

either u ≺ v or v ≺ u. Let ≺ be an altitude ordering for w.
Let k be any element in {1, . . . , |E |}. We denote by u≺

k the k-
th element of E with respect to≺.We setB0 = {{x} | x ∈ V }.
The k-partition of V (by the ordering ≺) is defined by Bk =
{By

k−1 ∪ Bx
k−1} ∪ (Bk−1\{Bx

k−1,B
y
k−1}) where u≺

k = {x, y}
and Bx

k−1 and By
k−1 are the regions of Bk−1 that contain x

and y, respectively. The sequence (Bi | i = 0 or Bi �=
Bi−1), denoted by B≺, is a hierarchy on V called the binary
partition hierarchy (by altitude ordering) of (G, w) by≺.We
can observe that successive k-partitions can be equal. In such
case, only one of the repeated partitions is in B≺.

Let B be a hierarchy on V . We say that B is a binary
partition hierarchy (by altitude ordering) of (G, w) if there
is an altitude ordering ≺ for w such that B is the binary
partition hierarchy of (G, w) by ≺.

Let ≺ be an altitude ordering for w. We can associate
any non-leaf region X of the binary partition hierarchy B≺
of (G, w) by ≺ to the lowest rank r such that Br contains X .
This rank is called the rank of X . Let X be a non-leaf region
of B≺ and let r be the rank of X . The building edge of X is
the r -th edge for≺. Given an edge u in E , if u is the building
edge of a region ofB≺, we say that u is a building edge for≺.
Given a building edge u for ≺, we denote the region of B≺
whose building edge is u by Ru . The set of all building edges
for ≺ is denoted by E≺.

Let (G, w) be the weighted graph illustrated in Fig. 2a and
let B be the binary partition hierarchy of (G, w) illustrated
in Fig. 2c. We can see that B is the binary partition hierar-
chy of (G, w) by the altitude ordering ≺ such that {a, b} ≺
{c, d} ≺ {e, f } ≺ {g, h} ≺ {a, c} ≺ {e, g} ≺ {c, e}. The
building edge of each non-leaf region R of B is shown above
the node that represents R.

Let B be a binary partition hierarchy of (G, w) and let X
and Y be two distinct regions of B. If the parent of X is equal
to the parent of Y , we say that X is a sibling of Y , that Y is
a sibling of X and that X and Y are siblings. It can be seen
that any region R �= V of B has exactly one sibling and we
denote this unique sibling of R by sibling(R).

Important remark by abuse of terminology, when no
confusion is possible, if M is a minimum of w, we call the
set V (M) of vertices of M as a minimum of w.

As established in [26], given an altitude ordering≺ forw,
the minima of w can be extracted from the binary partition
hierarchyB≺ aswell as thewatershed-cut edges for≺, whose
definition is given bellow.

Definition 2 (Watershed-cut edge) Let≺be an altitude order-
ing for w and let u be a building edge for ≺. We say that u is
a watershed-cut edge (of (G, w)) for ≺ if each child of the
region Ru of B≺ includes at least one minimum of w.
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(a) (b) (c)

Fig. 2 a A weighted graph (G, w) with four minima delimited by the dashed lines. b The hierarchical watershed of (G, w) for the sequence
(C, A, B, D) of minima of w. c The unique binary partition hierarchy B of (G, w)

3.2 Characterization of HierarchicalWatersheds

In [16], the authors propose a characterization of hierarchi-
cal watersheds in the following case: the given graph is a
tree with pairwise distinct edge weights. In this section, we
generalize the characterization of hierarchical watersheds
introduced in [16] to arbitrary graphs. To ease the reading
of this section, the proofs of the properties and theorems
stated here are delayed to “Appendix”.

Let ≺ be an altitude ordering for w and let f be a map
from E into R. The supremum descendant value of R for f
and ≺ is the supremum edge weight among the building
edges of the regions included in R: ∨{ f (v) | v ∈ E≺, Rv ⊆
R}, where∨maps any set of values into the supremum value
in this set, and the supremum of an empty set is zero.

The next definition introduces the notion of one-side
increasing map. As established later in Lemma 4, the notion
of one-side increasing map is linked to the saliency maps of
hierarchical watersheds.

Definition 3 (One-side increasing map) Let ≺ be an altitude
ordering for w and let f be a map from E into R. We say
that f is one-side increasing for ≺ if:

1. { f (u) | u ∈ E≺} = {0, . . . , n − 1};
2. for any edge u in E≺, the weight f (u) is greater than zero

if and only if u is a watershed-cut edge for ≺; and
3. for any edge u in E≺, there exists a child R of Ru such

that f (u) is greater than or equal to the supremumdescen-
dant value of R for f and ≺.

The next lemma, whose proof is given in “Appendix F”,
states that hierarchical watersheds can be characterized as
the hierarchies whose saliency maps are one-side increasing
maps.

Lemma 4 Let H be a hierarchy on V . The hierarchy H is a
hierarchical watershed of (G, w) if and only if there is an

altitude ordering ≺ for w such that the saliency map Φ(H)

is one-side increasing for ≺.

LetH be the hierarchy of Fig. 3a, letΦ(H) be the saliency
map of H shown in Fig. 3b, and let B be the binary parti-
tion hierarchy of (G, w) (Fig. 2) shown in Fig. 3b. As the
edges of G have pairwise distinct weights forw, we can con-
clude thatB is the binary partition hierarchy of (G, w) by the
unique altitude ordering ≺ for w. We can verify that Φ(H)

is one-side increasing for ≺. By Lemma 4, we may affirm
that Φ(H) is the saliency map of a hierarchical watershed
of (G, w) and that, consequently, the hierarchy H is a hier-
archical watershed of (G, w).

Let us now consider the hierarchy H′ and the saliency
mapΦ(H′) of Fig. 3d, e, respectively.We can see thatΦ(H′)
is not one-side increasing for ≺. Indeed, the weight
Φ(H′)({c, e}) of the building edge of the region Y7 of B
is 1, which is lower than both ∨{Φ(H′)(v) | Rv ⊆ Y5} = 2
and ∨{Φ(H′)(v) | Rv ⊆ Y6} = 3. Hence, the condition 3 of
Definition 3 is not satisfied by Φ(H′). Thus, by Lemma 4,
as ≺ is the unique altitude ordering for w, we may deduce
that Φ(H′) is not the saliency map of a hierarchical water-
shed of (G, w) and that H′ is not a hierarchical watershed
of (G, w).

In the case where (G, w) has pairwise distinct edge
weights, there exists a unique altitude ordering forw. Hence,
we can use Lemma 4 to verify that a given map f is the
saliencymap of a hierarchical watershed of (G, w) by simply
checking if f is one-side increasing for the unique altitude
ordering for w. Otherwise, let us consider that (G, w) has
arbitrary edge weights. Thus, in order to test if a map f is
the saliency map of a hierarchical watershed of (G, w), we
need to test if there is an altitude ordering ≺ for w such
that f is one-side increasing for ≺. In the worst case, there
exist |E |! possible altitude orderings for w. Hence, the naive
approach to verify that f is one-side increasing for an altitude
ordering for w has a factorial time complexity, which is the
same time complexity as the algorithm to verify that f is the
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(a) (b) (c)

(d) (e) (f)

Fig. 3 a, d The hierarchies H and H′, respectively. b, e The weighted graphs (G, Φ(H)) and (G, Φ(H′)), respectively. c, f The maps Φ(H)

and Φ(H′) represented on the hierarchy B of Fig. 2c, where, for each edge u, the values Φ(H)(u) and Φ(H′)(u) are shown above the region Ru
of B

saliency map of a hierarchical watershed for a sequence of
minima of w. Actually, as we establish later in Theorem 5,
it is sufficient to test if f is one-side increasing for a sin-
gle altitude ordering for w, which is the key idea behind our
efficient algorithm (Algorithm 1) to recognize hierarchical
watersheds.

Let f and g be two maps from E into R. A lexicographic
ordering for ( f , g) is a total ordering ≺ on E such that, for
any two edges u and v in E , we have u ≺ v if f (u) < f (v)

or if f (u) = f (v) and g(u) ≤ g(v). We can note that any
lexicographic ordering for ( f , g) is an altitude ordering for f .

Theorem 5 Let H be a hierarchy on V and let ≺ be a lex-
icographic ordering for (w,Φ(H)). The hierarchy H is a
hierarchical watershed of (G, w) if and only if Φ(H) is one-
side increasing for ≺.

The following is a sketch of the proof of Theorem5,whose
formal proof is given in “Appendix B”. Given any hierar-
chy H and any altitude ordering ≺ for w, we can obtain a
lexicographic ordering for (w,Φ(H)) by iteratively reorder-
ing the pairs of edges (u, v) such that u ≺ v and such
that Φ(H)(u) ≥ Φ(H)(v), similar to the sorting steps of
the bubble sort algorithm. Let ≺′ be an altitude ordering
resulting from the reordering of two edges u and v such
that u ≺ v and such that Φ(H)(u) ≥ Φ(H)(v). To prove
Theorem 5, we prove that, if Φ(H) is one-side increasing

for≺, thenΦ(H) is also one-side increasing for≺′. For each
reordering, we prove that the three statements of Definition
3 for Φ(H) to be one-side increasing still hold true in the
following five cases: (a) neither u nor v is a building edge
for ≺ (Lemma 30); (b) both u and v are building edges for ≺
and Ru ∩ Rv = ∅ (Lemma 31); (c) both u and v are build-
ing edges for ≺ and Ru ⊂ Rv (Lemma 32); (d) only u is a
building edge for≺ (Lemma 33); and (e) only v is a building
edge for ≺ (Lemma 34).

In the remaining of this section, we present the building
blocks of the proof of Lemma 4. More precisely, we state the
link between the notions of one-side increasing map, hier-
archical watershed and the method to compute hierarchical
watersheds introduced in [6,26].

Let ≺ be an altitude ordering for w and let S =
(M1, . . . , Mn) be a sequence of minima of w. Let R be a
region of the binary partition hierarchy B≺ by ≺. Using the
terminology of [6], the extinction value of R (for ≺ and S)
is zero if there is no minimum of w included in R and, oth-
erwise, it is the maximum value i in {1, . . . , n} such that the
minimum Mi is included in R. Let ε be the map from the set
of regions ofB≺ intoR such that, for any region R ofB≺, the
value ε(R) is the extinction value of R. We say that ε is the
extinction map for≺ and S, that ε is an extinction map for≺
and that ε is an extinction map for S. The following prop-
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Fig. 4 An extinction map ε for the unique altitude ordering of (G, w)

of Fig. 2a

erty, whose proof is detailed in “Appendix C”, characterizes
extinction maps.

Property 6 Let≺ be an altitude ordering forw and let ε be a
map from the regions ofB≺ intoR. Themap ε is an extinction
map for ≺ if and only if the following statements hold true:

1. {ε(R) | R is a region of B≺} = {0, . . . , n};
2. for any two distinct minima M1 and M2 of w, we

have ε(M1) �= ε(M2); and
3. for any region R of B≺, we have that ε(R) is equal

to ∨{ε(M) such that M is a minimum of w included
in R}.

We provide an example of an extinction map in Fig. 4. We
can see that the map ε is the extinction map for the unique
altitude ordering for w (Fig. 2a) and for the sequence S =
(B, A, D,C) of minima of w.

The next property clarifies the relation between hierarchi-
cal watersheds and extinction maps. As established in [6],
given a sequence S of minima of w, we can compute the
saliency map of a hierarchical watershed for S by consid-
ering any extinction map for S. As the edge weights of w

are not necessarily pairwise distinct, given any sequence S
of minima of w, there might be several distinct hierarchical
watersheds of (G, w) for S. Let S be a sequence of minima
of w. As established in the following property, we can asso-
ciated any hierarchical watershedH of (G, w) for S with an
altitude ordering ≺ for w such that, for any building edge u
for ≺, the weight Φ(H)(u) is obtained from the extinction
map for ≺ and S.

Property 7 Let H be a hierarchy on V . The hierarchy H is
a hierarchical watershed of (G, w) if and only if there exists
an altitude ordering ≺ for w and an extinction map ε for ≺
such that:

1. (V , E≺) is a MST of (G, Φ(H)); and

2. for any edge u in E≺, the value Φ(H)(u) is equal
to min{ε(R) such that R is a child of Ru}.

The proof of Property 7 is detailed in “Appendix A”.
The intuition of the forward implication of Lemma 4 can
be obtained from the definition of hierarchical watersheds
(Definition 1) and from Property 7. Let H be a hierarchical
watershed of (G, w). By the definition of hierarchical water-
sheds, we can infer that H is a sequence (P0, . . . ,Pn−1)

of n partitions, and that only the vertices connected by
watershed-cut edges are in distinct regions of the partition P0

of H. Hence, we can infer that the range of Φ(H) is the
set {0, . . . , n − 1} and that only the watershed-cut edges
have nonzero weights for Φ(H), which correspond to the
conditions 1 and 2 of Definition 3 for Φ(H) to be one-side
increasing for an altitude ordering for w. By the statement
3 of the property on extinction maps (Property 6), we can
infer that any extinction map is increasing on the regions of
a binary partition hierarchy of (G, w). By Property 7, there
exist an altitude ordering ≺ for w and an extinction map ε

for ≺ such that, for any edge u in E≺, the value Φ(H)(u)

is equal to min{ε(R) such that R is a child of Ru}. As ε is
increasing on the regions of B≺, we may say that, for any
edge u in E≺, there is a child R of Ru such that Φ(H)(u) is
greater than the weight of any building edge of the regions
included in R. The latter statement corresponds to the condi-
tion 3 ofDefinition 3 forΦ(H) to be one-side increasing. The
reader can refer to “Appendix F” for a formal and complete
proof of the forward implication of Lemma 4.

In order to present the intuitionbehind the backward impli-
cation of Lemma 4, we introduce the notion of approximated
extinctionmaps. To introduce approximated extinctionmaps,
we first present the auxiliary notions of non-leaf ordering and
dominant region.

Definition 8 (Non-leaf ordering) Let ≺ be an altitude order-
ing for w and let f be a map from E into R. The non-leaf
ordering for f and ≺ is the total ordering � on the building
edges for ≺, such that, for any two building edges u and v

for ≺, we have u � v if either the descendant value of Ru

(for f and ≺) is strictly lower than the descendant value
of Rv , or if the descendant values of Ru and Rv are equal
and u ≺ v.

Definition 9 (Dominant region) Let≺be an altitudeordering
for w and let f be a map from E into R. Let � be the non-
leaf ordering for f and ≺. Let R be a non-leaf region of B≺
different from V . Let u and v be the building edges of R and
of the sibling of R, respectively. We say that R is a dominant
region for f and ≺ if:

1. there is a minimum of w included in R; and
2. either:
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– v � u; or
– there is nominimumofw included in the sibling of R.

For instance, let (G, w) be the weighted graph shown in
Fig. 2a, let ≺ be the unique altitude ordering for w, let B
be the binary partition hierarchy by ≺ shown in Fig. 2c, and
letΦ(H) be the map illustrated in Fig. 3b. Let� be the non-
leaf ordering for Φ(H) and ≺ such that {a, b} � {c, d} �
{e, f } � {g, h} � {a, c} � {c, e} � {e, g}. The dominant
regions of B for Φ(H) and ≺ are the regions B, D and Y6.

Definition 10 (Approximated extinction map) Let ≺ be an
altitude ordering for w and let f be a map from E into R.
The approximated extinction map for f and ≺ is the map ξ

from the set of regions of B≺ into R such that:

1. ξ(R) = k + 1 if R is the vertex set V of G, where k is
the supremum descendant value of R for f and ≺; and

2. ξ(R) = ξ(parent(R)) if R is a dominant region for f
and ≺; and

3. ξ(R) = f (u), where u is the building edge of the parent
of R, otherwise.

The next lemma establishes that the approximated extinc-
tion map of any one-side increasing map is indeed an
extinction map.

Lemma 11 Let ≺ be an altitude ordering for w and let f
be a map from E into R such that f is one-side increasing
for ≺. The approximated extinction map for f and ≺ is an
extinction map for ≺.

For instance, let us consider the weighted graph (G, w) of
Fig. 2a and its unique altitude ordering ≺. We can verify that
the extinction map ε of Fig. 4 is precisely the approximated
extinction map for Φ(H) (Fig. 3b) and ≺.

The next lemma is the key result for establishing the back-
ward implication of Lemma 4.

Lemma 12 Let≺ be an altitude ordering forw and let f be a
map from E into R such that f is one-side increasing for ≺.
Let ξ be the approximated extinction map for f and≺. Then,
for any edge u in E≺, we have:

f (u) = min{ξ(R) such that R is a child of Ru}.

The proof of Lemmas 11 and 12 are presented in “Appen-
dices D and E”, respectively. The backward implication of
Lemma 4 is a consequence of Lemmas 11 and 12 and the
backward implication of Property 7. LetH be a hierarchy and
let≺ be an altitude ordering forw such thatΦ(H) is one-side
increasing for ≺. Let ξ be the approximated extinction map
for Φ(H) and ≺. By Lemma 12, for any edge u in E≺, we
haveΦ(H)(u) = min{ξ(R) such that R is a child of Ru}. By

Lemma11, themap ξ is an extinctionmap for≺. Then, by the
backward implication of Property 7, we conclude that Φ(H)

is the saliency map of a hierarchical watershed of (G, w) and
that H is a hierarchical watershed of (G, w).

Let (G, w) be the graph of Fig. 2a and let Φ(H) be the
saliencymap of Fig. 3b. Let≺ be the unique altitude ordering
ofw.As stated previously,Φ(H) is one-side increasing for≺.
To illustrate Lemma12,we can verify that the valueΦ(H)(u)

is equal to min{ε(R) such that R is a child of Ru} for any
edge u in E≺ where ε (shown in Fig. 4) is the approximated
extinction map for Φ(H) and ≺.

4 Recognition Algorithm for Hierarchical
Watersheds

In this section, we present an efficient algorithm to recog-
nize hierarchical watersheds based on Theorem 5. Given
any hierarchy H on V , to test if H is a hierarchical water-
shed of (G, w), it is sufficient to verify that the saliency
mapΦ(H)(u) ofH is one-side increasing for a lexicographic
ordering for (w, f ).

Algorithm1provides a description of our algorithm to rec-
ognize hierarchical watersheds. The inputs are a weighted
graph ((V , E), w) and a saliency map f of a hierarchy H
on V . The first step of Algorithm 1 is to compute a lexi-
cographic ordering ≺ for (w, f ). Then, the binary partition
hierarchy B by ≺ and the set of building edges E≺ for ≺ are
computed at lines 2–3 using the algorithm proposed in [26].
Subsequently, the minima of w and the watershed-cut edges
for ≺ are obtained at lines 4–5 using the method proposed
in [26]: the number of minima included in each region of B
is iteratively counted by browsing the regions of B from the
leaves to the root. At lines 6-7, we compute the supremum
descendant value for f and≺ of each region ofB. Finally, the
last for loop (lines 8-13) verifies that the three conditions of
Definition 3 for f to be one-side increasing for ≺ hold true.
The condition 1 of Definition 3 is verified by the two tests
between lines 9 and 10. The conditions 2 and 3 ofDefinition 3
are verified by the tests at lines 11 and 13, respectively. If any
of those three conditions is not satisfied, then the algorithm
halts and returns false and, otherwise, it returns true.

Let us now analyse the time complexity of Algorithm 1.
Given that the lexicographic ordering for (w, f ) can be
obtained through the merging sort algorithm, the time com-
plexity of this step is O(|E |log|E |). As established in [26],
any binary partition hierarchy can be computed in quasi-
linear time with respect to |E | provided that the edges in E
are already sorted or can be sorted in linear time.More specif-
ically, the time complexity to compute the binary partition
hierarchy B is O(|E | × α(|V |)), where α is a slowly grow-
ing inverse of the single-valuedAckermann function. Having
computed the binary partition hierarchy B, the computation
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Algorithm 1 Recognition of hierarchical watersheds
Data: ((V , E), w): a weighted graph

f : the saliency map of a hierarchy H on V
Result: true ifH is a hierarchical watershed of (G, w) and false otherwise

1: Compute a lexicographic ordering ≺ for (w, f ) � O(|E |log|E |)
2: Compute the binary partition hierarchy B by ≺ � O(|E | × α(|V |)) with [26]
3: Compute the set E≺ of building edges for ≺ � O(|V |)
4: Compute the minima of w � O(|V |) with [26]
5: Compute the watershed-cut edges for ≺ � O(|V |) with [26]
6: for each building edge u in increasing order for ≺ do � O(|V |)
7: ϕ(u) ← the supremum descendant value of Ru for f and ≺ � O(|1|)

// Testing of the conditions 1, 2 and 3 of Definition 3 for f to be one-side
increasing for ≺

8: for each building edge u in increasing order for ≺ do � O(|V |)
9: if f (u) /∈ {0, 1, . . . , k} then � O(|1|)

return false � O(|1|)
10: if f (u) �= 0 and ∃v ∈ E≺ such that v ≺ u and f (u) = f (v) then � O(|1|)

return false � O(|1|)
11: if u is a watershed-cut edge and f (u) = 0 or u is not a watershed-cut edge and f (u) �= 0 then � O(|1|)

return false � O(|1|)
12: X and Y ← children of Ru � O(|1|)
13: if ϕ(Ru) < ϕ(X) and ϕ(Ru) < ϕ(Y ) then � O(|1|)

return false � O(|1|)
return true

of the minima of w and of the watershed-cut edges for ≺
can be performed in linear time with respect to |V | as stated
in [26]. At lines 6 − 7, the supremum descendant values of
the building edges for ≺ are iteratively computed from the
leaves to the root in linear time O(V ). Finally, each instruc-
tion between lines 9 and 13 can be performed in constant
time, which implies that the last for loop has a linear time
complexity with respect to |V |. Therefore, the overall time
complexity of Algorithm 1 is O(|E |log|E |).

We illustrate Algorithm 1 in Figs. 5 and 6. Let us first
explain the example of Fig. 5. The inputs are the weighted
graph (G, w) and the saliencymap f of Fig. 5.Wefirst obtain
a lexicographic ordering ≺ for (w, f ) such that {a, b} ≺
{c, d} ≺ {e, f } ≺ {g, h} ≺ {i, j} ≺ {a, c} ≺ {g, i} ≺
{c, e} ≺ {d, f } ≺ {e, g} ≺ {b, d} ≺ { f , h} ≺ {h, j}. Then,
we obtain the binary partition hierarchy B by ≺, the min-
ima of w (in red) and the four watershed-cut edges for ≺
(underlined) illustrated in Fig. 5c. Subsequently, we compute
the supremum descendant values (for f and ≺) illustrated in
Fig. 5e. For each edgeu ofG, the supremumdescendant value
of u is the greatest value in the set { f (v) | Rv ⊆ Ru}. We can
verify that the range of f is {0, 1, 2, 3, 4} and that, among the
building edges for ≺, all (and only) the watershed-cut edges
for ≺ have nonzero weights in f . Therefore, the conditions
1 and 2 of Definition 3 for f to be one-side increasing for ≺
hold true. Finally, we test the condition 3 of Definition 3. For

eachwatershed-cut edgeu ofG, we test if f (u) is greater than
the supremum descendant value of at least one child of Ru .
For the building edges of the regions Y6, Y7 and Y8 the con-
dition 3 holds true, but this is not the case for the region Y9.
Consequently, the map f is not one-side increasing for ≺
and Algorithm 1 returns false.

We will now explain the example of Fig. 6. The inputs
are the weighted graph (G, w) and the saliency map g of
Fig. 6. We first obtain a lexicographic ordering≺′ for (w,G)

such that {a, b} ≺′ {c, d} ≺′ {e, f } ≺′ {g, h} ≺′ {i, j} ≺′
{a, c} ≺′ {g, i} ≺′ {e, g} ≺′ {c, e} ≺′ {d, f } ≺′ {b, d} ≺′
{ f , h} ≺′ {h, j}. Then, we obtain the binary partition hier-
archy B by ≺′, the minima of w (in red) and the four
watershed-cut edges for≺′ (underlined) illustrated in Fig. 6c.
Subsequently, we compute the supremum descendant val-
ues (for g and ≺). We can verify that the range of g
is {0, 1, 2, 3, 4} and that, among the building edges for ≺′,
all (and only) the watershed-cut edges for ≺′ have nonzero
weights. Therefore, the conditions 1 and 2 of Definition 3
for g to be one-side increasing for ≺′ hold true. Moreover,
for each building edge u for ≺′, the supremum descendant
value of Ru is greater than the supremum descendant value
of at least one of the children of Ru . Hence, the condition 3
for g to be one-side increasing for ≺′ also holds true. There-
fore, the map g is one-side increasing for≺′ and Algorithm 1
returns true.
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(a) (b) (c)

(d)
(e)

(f)

Fig. 5 Illustration of Algorithm 1 applied to a saliency map which is
not the saliency map of a hierarchical watershed of the input graph
(G, w). Given the weighted graph (G, w) and the saliency map f , we
test if f is the saliency map of a hierarchical watershed of (G, w).
We first compute the lexicographic ordering ≺ for (w, f ) such that
{a, b} ≺ {c, d} ≺ {e, f } ≺ {g, h} ≺ {i, j} ≺ {a, c} ≺ {g, i} ≺
{c, e} ≺ {d, f } ≺ {e, g} ≺ {b, d} ≺ { f , h} ≺ {h, j}. Then, we obtain

the binary partition hierarchy B by ≺, along with the minima of w (in
red) and the watershed-cut edges for ≺ (underlined). Subsequently, we
obtain the supremum descendant values for g and ≺. We may conclude
that conditions 1 and 2 of Definition 3 hold true for f , but not the con-
dition 3. Hence, f is not the saliency map of a hierarchical watershed
of (G, w)) (Color figure online)

5 Flattened Hierarchical Watersheds

In order to compute a hierarchical watershed of (G, w), a
sequence of minima of w is often defined by extinction val-
ues [34].When distinctminima ofw have the same extinction
value, the order between those minima is defined arbitrarily.
Given a watershed segmentation of (G, w), we may say that
a hierarchical watershed of (G, w) can be obtained by fil-
tering, one by one, the regions of this segmentation. Now,
let us consider a framework in which the minima with equal
extinction values are treated in parallel. In this new frame-
work, the regions of the watershed segmentation containing
minima of w with equal extinction values are filtered out
simultaneously. We can affirm that the resulting partitions of
this framework are a subset of the partitions of a hierarchical
watershed of (G, w), and hence a simplified or “flattened”
hierarchical watershed.

Definition 13 (Flattening of hierarchies [15]) LetH andH′
be two hierarchies on V such that any partition of H is a
partition of H′. We say that H is a flattening of H′.

Let H and H′ be two hierarchies on V such that H is a
flattening ofH′. IfH′ is a hierarchical watershed of (G, w),
then we say that H is a flattened hierarchical watershed of
(G, w).

In a hierarchical watershed H = (P0, . . . ,Pn−1) of
(G, w), every partition Pi , for i in {1, . . . , n − 1}, includes
exactly one region R such that R is the union of two regions
of the partition Pi−1. However, given a flattened hierarchi-
cal watershed H′ of H, there can be partitions of H′ which
includes regions that are the union of several regions of the
previous partition in the sequence. Therefore, some subsets
of partitions of H are “flattened” into a single partition of
H′. The ultimate flattening of any hierarchical watershed of
(G, w) is the hierarchy ({V }) composed of a single partition
in which all vertices belong to the same region.
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(a) (b) (c)

(d)
(e)

(f)

Fig. 6 Illustration of Algorithm 1 applied to a saliency map which is
the saliency map of a hierarchical watershed of the input graph (G, w).
Given the map (G, w) and the saliency map g, we test if g is the
saliency map of a hierarchical watershed of (G, w). We first compute
the lexicographic ordering ≺′ for (w, g) such that {a, b} ≺′ {c, d} ≺′
{e, f } ≺′ {g, h} ≺′ {i, j} ≺′ {a, c} ≺′ {g, i} ≺′ {e, g} ≺′ {c, e} ≺′
{d, f } ≺′ {b, d} ≺′ { f , h} ≺′ {h, j}. Then, we obtain the binary par-

tition hierarchy B by ≺′, along with the minima of w (in red) and the
watershed-cut edges for ≺′ (underlined). Subsequently, we obtain the
supremum descendant values for f and ≺. We may conclude that three
statements of Definition 3 hold true for f . Hence, g is one-side increas-
ing for≺′. By Theorem 5, themap g is the saliencymap of a hierarchical
watershed of (G, w)) (Color figure online)

We can see that the notion of flattened hierarchical water-
sheds, even though not formally defined previously, arise
naturally in the context of marker-based watershed segmen-
tation. It is noteworthy that, like a hierarchical watershed,
all partitions of a flattened hierarchical watershed are opti-
mal in the sense ofminima spanning forests. Hence, based on
our proposed characterization of hierarchical watersheds, we
derive a characterization of flattened hierarchicalwatersheds.

The following property characterizes flattened hierarchi-
cal watersheds.

Property 14 LetH be a hierarchy on V . The hierarchyH is
a flattened hierarchical watershed of (G, w) if and only if
there is an altitude ordering ≺ for w such that:

1. (V , E≺) is a MST of (G, Φ(H)); and
2. for any edge u in E≺, if u is not a watershed-cut edge

for ≺, then Φ(H)(u) is zero; and

3. for any edge u in E≺, there exists a child R of Ru

such that f (u) is greater than or equal to the supremum
descendant value of R for Φ(H) and ≺.

We can remark the similarity between Property 14 and
Lemma 4, which links hierarchical watersheds to the notion
of one-side increasing maps. LetH be a hierarchy and let f
be the saliency map ofH. To test ifH is a flattened hierarchi-
cal watershed of (G, w), the first condition of Property 14,
which is an implication of the first statement of Definition 3,
makes sure that we take into account the range of f and not
only a subset of the range of f . The second condition of
Property 14, which is the forward implication of the second
statement of Definition 3, guarantees that the lowest level
of H is equal or coarser than the lowest level of a hierar-
chical watershed of (G, w). Finally, the third condition of
Property 14 is equivalent to the third statement of Defini-
tion 3 and, allied to the second condition of Property 14, it
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ensures that each partition ofH is induced by a MSF rooted
in a subset of the set of minima of (G, w).

Algorithm2describes our algorithm to recognize flattened
hierarchical watersheds, which is very similar to the algo-
rithm to recognize hierarchical watersheds (Algorithm 1).
The only difference between Algorithms 2 and 1 is that, in
Algorithm 2, we do not test if the first condition of Def-
inition 3 holds true, and we test if (V , E≺) is a MST of
the input map ((V , E), f ), where E≺ is the set of building
edges for≺. The verification that (V , E≺) is aMSTof (G, f )
can be done in time O(|E |log|E |) by checking if the sum
of the edge weights of a MST of ((V , E), f ) is equal to
the sum of the edge weights of ((V , E≺), f ). Hence, the
overall time complexity of Algorithm 2 is the same of Algo-
rithm 1: O(|E |log|E |).

6 Experimental Results

In this section, we present an immediate application of the
recognition of (flattened) hierarchical watersheds on the
combinations of hierarchical watersheds assessed in [14].
In [14], the authors showed that combining hierarchies is
a good alternative method to outperform individual hierar-
chical watersheds, which raises the question of whether the
resulting combinations are hierarchical watersheds or flat-
tened hierarchicalwatersheds. This problemhas already been
tackled in our companion paper [18], where we study if,
and which, combinations of hierarchical watersheds result in
flattened hierarchical watersheds. In [18], we concluded that
combinations of hierarchical watersheds are not hierarchical
watersheds in general. However, when the input hierarchi-
cal watersheds are one-side increasing for the same altitude
ordering, then their combination by infimum is a flattened
hierarchical watershed. The experiments presented in this
section reinforce those theoretical results.

Wefirst present the set-up of our experiments.We consider
hierarchical watersheds for sequences of minima ordered
by their extinction values [34]. Such extinction values are
based on the following attributes: area [21,34], diagonal of
bounding box [31], dynamics [22], (topological) height [31],
number of descendants, number of minima, volume [34] and
number of parent nodes [29]. In the combination of hier-
archical watersheds, we consider the following functions:
infimum, supremum and linear combination (average). The
experiments were performed on the 200 images of the test set
of the Berkeley Segmentation Dataset and Benchmark 500
[19].

As established in [18], combinations of hierarchicalwater-
sheds with the aforementioned combining functions are
not hierarchical watersheds in general. Indeed, by applying
Algorithm 1 to the combinations of hierarchical watersheds
by infimum, supremum and average, we verified that the

first condition of the definition of one-side increasing maps
(Definition 3) is not satisfied by any combination. Hence,
by Theorem 5, none of those combinations is a hierarchi-
cal watershed. In fact, combining hierarchies often act by
simplifying the input hierarchies in the sense that, from a
level i to a level i + 1 of the resulting combination, zero or
more than one pair of regions are merged, which suggests
that some combinations may result in flattened hierarchical
watersheds.

To test how many combinations result in flattened hierar-
chical watersheds, we consider two hierarchical watershed
algorithms:

1. Non-deterministic algorithm:when there are ties between
edges of equalweights, an arbitrary choice ismade.Using
this algorithm, two hierarchical watersheds computed
from the same graph are not necessarily one-side increas-
ing for the same altitude ordering.

2. Deterministic algorithm: when there are ties between
edges of equal weights, a deterministic choice is made.
In this case, any two hierarchical watersheds computed
from the same graph are one-side increasing for the same
altitude ordering.

We appliedAlgorithm2 to combinations of pairs of hierar-
chical watersheds which were computed using each of those
algorithms.The results using the non-deterministic algorithm
are shown in Table 1. In each cell of Table 1, we present the
number of combinations by average, by supremum and by
infimum (among 200) that are flattened hierarchical water-
sheds. We can observe that the majority of the combinations,
nearly two-thirds, are flattened hierarchical watersheds.

We now consider the second algorithm, in which ties
between edge weights are treated deterministically. In this
case, all hierarchical watersheds of a given weighted graph
are one-side increasing for the same altitude ordering. Con-
sequently, any combination with infimum is a flattened
hierarchical watershed, as established by Property 7 of [18].
By applying Algorithm 2 to combinations of hierarchies
obtained through the deterministic algorithm, we observed
that all combinations with infimum are flattened hierarchical
watersheds, as expected. Interestingly, this was also the case
for the combinations with average. Regarding the combina-
tionswith supremum, amongall 5600combinations, onlyone
combination with volume and diagonal of bounding box, and
three combinations with volume and height are not flattened
hierarchical watersheds.

Our experimental results suggest that most of the com-
binations of hierarchical watersheds assessed in [14] are
“approximations” of flattened hierarchical watersheds in the
sense that, by swapping the weight of a few edges in the
combinations of saliency maps, we could obtain a flattened
hierarchical watershed. This speculative conclusion may be
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Algorithm 2 Recognition of flattened hierarchical watersheds
Data: ((V , E), w): a weighted graph

f : the saliency map of a hierarchy H on V
Result: true ifH is a flattened hierarchical watershed of (G, w) and false otherwise

/* Lines 1 − 8 of Algorithm 1 */ � O(|E |log|E |)
// Testing of the conditions 1, 2 and 3 of Property 14 for f to be a flattened
hierarchical watershed of ((V , E), w)

17: if (V , E≺) is not a MST of ((V , E), f ) then � O(|E |log|E |)
return false

18: for each building edge u in increasing order for ≺ do � O(|V |)
19: if u is not a watershed-cut edge and f (u) �= 0 then � O(|1|)

return false � O(|1|)
20: X and Y ← children of Ru � O(|1|)
21: if ϕ(Ru) < ϕ(X) and ϕ(Ru) < ϕ(Y ) then � O(|1|)

return false � O(|1|)
return true

Table 1 In each cell, we show the number of combinations of pairs of
hierarchical watersheds by average (bold), by supremum (italic) and by
infimum (bold italic) among 200 that are flattened hierarchical water-

sheds. In those results, we consider hierarchies obtained through the
non-deterministic hierarchical watershed algorithm

Area Diagonal of
bounding box

Dynamics Height Number of
descendants

Number of min-
ima

Volume Number of parent
nodes

Area – 138 125 135 152 59 113 79

– 200 194 194 200 183 198 182

– 119 113 124 127 47 60 62

Diagonal of bounding box – – 127 134 136 62 119 82

– – 195 197 200 184 198 183

– – 115 122 113 48 102 65

Dynamics – – – 117 124 104 126 105

– – – 195 195 189 196 192

– – – 91 111 96 112 100

Height – – – – 134 108 128 110

– – – – 195 185 194 186

– – – – 123 99 106 97

Number of descendants – – – – – 63 114 83

– – – – – 185 199 180

– – – – – 52 98 65

Number of minima – – – – – – 66 171

– – – – – – 179 199

– – – – – – 53 158

Volume – – – – – – – 80

– – – – – – – 177

– – – – – – – 66

Number of parent nodes – – – – – – – –

– – – – – – – –

– – – – – – – –
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Fig. 7 a An image I . b The gradient G of I computed with the edge
detector introduced in [10]. c From left to right: the saliency map of
a circularity based hierarchy Hcc, and three partitions of Hcc contain-

ing 20, 30 and 40 regions, respectively. d The watersheding Hw of the
saliency map ofHcc (for Grad), and three partitions ofHw containing
20, 30 and 40 regions, respectively

investigated in future research linking the results established
here with our method to convert any hierarchy into a hierar-
chical watershed introduced in [17].

7 Conclusion and Perspectives

We believe that having a better understanding of hierarchi-
cal watersheds may help to develop new image processing
tools. For example, this is the case of the watersheding oper-
ator introduced in [17], which converts any hierarchy into a
hierarchical watershed and which is deeply connected to the
characterization of hierarchical watersheds introduced in this
article. In Fig. 7, we illustrate a result of this operator. We
present an image, a gradient Grad of this image, and two
hierarchies Hcc and Hw both computed from Grad. Each
hierarchy is represented by its saliency map, in which the
darkest boundaries represent the contours that persist at the
highest levels of the hierarchy. The hierarchyHcc highlights
the circular regions of Grad and, using Algorithm 1, we
verified that Hcc is not a hierarchical watershed of Grad.
The hierarchy Hw is a hierarchical watershed of Grad and
was obtained using the watersheding operator [17] applied to

Hcc. We can observe that both hierarchies include the most
circular regions of the original image, but the hierarchical
watershedHw also brings to the fore the region covering the
arm, which is a perceptually significant region highlighted
by the gradient Grad.

Acknowledgements Funding was provided by Labex Bézout (Grant
No. ANR-10-LABX-58).

A Proof of Property 7

Property 7 LetH be a hierarchy on V . The hierarchyH is a
hierarchical watershed of (G, w) if and only if there exists
an altitude ordering ≺ for w and an extinction map ε for ≺
such that

1. (V , E≺) is a MST of (G, Φ(H)); and
2. for any edge u in E≺, we have: Φ(H)(u) = min{ε(R)

such that R is a child of Ru}.

To prove Property 7, we first present a result established
in [6] and other auxiliary lemmas.
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Let ≺ be an altitude ordering for w, let B≺ be the binary
partition hierarchy by ≺ and let S = (M1, . . . , Mn) be a
sequence of minima of w. Let u be a building edge for ≺
and let X be the region of B≺ whose building edge is u. The
persistence value of u (for ≺ and S) is the minimum of the
extinction values of the children of X . Let ρ be the map from
the building edges for ≺ into R such that, for any building
edge u for ≺, ρ(u) is the persistence value of u. We say that
ρ is the persistence map (for ≺ and S). We denote by Bi the
set of building edges for ≺ whose persistence value is lower
than or equal to i .

Definition 15 (Hierarchy induced by an altitude ordering
and a sequence of minima [6]) Let ≺ be an altitude ordering
for w, let S = (M1, . . . , Mn) be a sequence of minima of w,
and let ρ be the persistence map for ≺ and S. The sequence
of partitions (CC(V , B0), . . . ,CC(V , Bn−1)) is a hierarchy
called the hierarchy induced by ≺ and S.

Lemma 16 (Property 12 of [6]) Let S = (M1, . . . , Mn) be
a sequence of minima of w and let H be a hierarchy on V .
The hierarchyH is a hierarchical watershed of (G, w) for S
if and only if there exists an altitude ordering ≺ such thatH
is the hierarchy induced by ≺ and S.

Lemma 17 Let ≺ be an altitude ordering for w and let ε be
an extinction map for ≺. Let X and Y be two regions of B≺.
If X ⊆ Y , then ε(X) ≤ ε(Y ).

Proof Since B≺ is a hierarchy, we can affirm that, for any
two regions Y and Z of B≺, if Y ⊆ Z , then all minima
of w included in Y are also included in Z and, therefore,
ε(Y ) ≤ ε(Z). ��

From the results established in [26], we can state the fol-
lowing lemma.

Lemma 18 Let B be a binary partition hierarchy of (G, w).
Then, any minimum of w is a region of B.

Lemma 19 Let ≺ be an altitude ordering on the edges of G
for w, let S = (M1, . . . , Mn) be a sequence of minima of w
and let ρ be the persistence map for ≺ and S. The range of
ρ is {0, . . . , n − 1}.
Proof Let ε be the extinctionmap for≺ and S. Wewill prove
that (1) for anybuilding edgeu for≺,ρ(u) is in {0, . . . , n−1},
and that, (2) for any i in {0, . . . , n − 1}, there is a building
edge u for ≺ such that ρ(u) = i .

1. {0, . . . , n − 1} ⊆ range(ρ). First, we prove that 0 is in
range(ρ). By Property 6, there is a region X ofB≺ whose
extinction value is zero. Therefore, the persistence value
of the building edge u of the parent of X is equal to zero:
ρ(u) = 0. Now, we will prove that any i in {1, . . . , n−1}

is in range(ρ). Let i be a value in {1, . . . , n − 1}. By
Lemma 18, the minimum Mi is a region of B≺. Then,
there is a region of B≺ whose extinction value is i . Let
X be the largest region of B≺ whose extinction value is
i . We can say that X �= V because Mn is included in V
and, therefore, ε(V ) = n. Let Z be the parent of X . We
can infer that the extinction value ε(Z) of Z is strictly
greater than i . Therefore, there is a minimum Mj with
j > i included in the sibling of X . Hence, the extinction
value of sibling(X) is also strictly greater than i . Then,
the persistence value of the building edge of Z , being the
minimum of the extinction value of its children, is i .

2. range(ρ) ⊆ {0, . . . , n − 1}. Let u be an edge in
E≺. By Property 6 (statement 1), and as the persis-
tence value of u is equal to the extinction value of a
child of Ru , we have that ρ(u) is in {0, . . . , n}. More-
over, the persistence value ρ(u) of u is lower than n
because, if the extinction value of one child X of Ru

is n, then the minimum Mn is included in X and Mn

is not included in sibling(X), which implies that the
extinction value of sibling(X) is strictly lower than n.
Therefore, since ρ(u) = min{ε(X), ε(sibling(X))}, the
persistence value of u is strictly lower than n. Thus, we
have that range(ρ) ⊆ {0, . . . , n − 1}. ��

Lemma 20 Let ≺ be an altitude ordering for w, let S =
(M1, . . . , Mn) be a sequence of minima ofw and let ρ be the
persistence map for≺ and S. LetH be the hierarchy induced
by≺ andS. For any edge u in E≺, we haveΦ(H)(u) = ρ(u).

Proof By Definition 15, the hierarchy H is the sequence
(CC(V , B0), . . . ,CC(V , Bn−1)) such that, for any i in
{0, . . . , n − 1}, Bi is the set of building edges for ≺ whose
persistence values are lower than or equal to i . Let u = {x, y}
be a building edge for≺ and let i be the persistence value of u.
We can say that x and y are in the same region ofCC(V , Bi )
but in distinct regions of CC(V , Bi−1) if i �= 0. Therefore,
since CC(V , Bi ) is the i-th partition of H, by the definition
of saliency maps, we have Φ(H)(u) = i . ��

The following lemma, established in [9], links MSTs and
QFZ hierarchies.

Lemma 21 (Theorem 4 of [9]) A subgraph G ′ of G is a MST
of (G, w) if and only if:

1. the QFZ hierarchy of G ′ and G are the same; and
2. the graph G ′ is minimal for statement 1, i.e. for any sub-

graph G ′′ of G ′, if the quasi-flat zone hierarchy of G ′′ for
w is the one of G for w, then we have G ′′ = G ′.

Lemma 22 Let ≺ be an altitude ordering for w and let S =
(M1, . . . , Mn) be a sequence of minima of w. Let H be the
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hierarchy induced by ≺ and S. Then, (V , E≺) is a MST of
(G, Φ(H)).

Proof Let α denote the sum of the weight of the edges in E≺
in the map Φ(H): α = ∑

e∈E≺ Φ(H)(e). Let ρ be the per-
sistence map for ≺ and S. By Lemma 20, we can affirm that,
for any edge u in E≺, we have Φ(H)(u) = ρ(u). Hence, we
have α = ∑

e∈E≺ ρ(e). We will first prove that α is precisely
0 + 1 + . . . + n − 1. We know that, for any edge u in E≺:

1. if u is a watershed-cut edge for ≺, then each child of
Ru contains at least one minimum of w. Therefore, the
extinction values of both children of Ru is nonzero, and,
consequently, the persistence value ρ(u) of u is nonzero.

2. otherwise, if u is not a watershed-cut edge for ≺, then
there exists a child X of Ru such that there is nominimum
ofw included in X . Therefore, the extinction value of X is
zero. Since the extinction value of sibling(X) is at least
zero by Lemma 35 (statement 1), the persistence value
ρ(u) of u, being the minimum between the extinction
values of X and sibling(X), is also zero.

Hence, since there aren−1watershed-cut edges for≺, and
since only thewatershed-cut edges for≺have nonzero persis-
tence values, we can conclude that, for any i in {1, . . . , n−1},
there is exactly one edge u in E≺ such that ρ(u) = i . Hence,
α = ∑

e∈E≺ ρ(e) = 0 + 1 + . . . + n − 1.
Now, in order to prove that (V , E≺) is a MST of

(G, Φ(H)),wewill prove that, for anyMSTG ′ of (G, Φ(H)),
the sum of the weight of the edges in G ′ is greater than
or equal to α. Let G ′ be a MST of (G, Φ(H)). As G ′ is a
MST of (G, Φ(H)), by the condition 1 of Lemma 21, we
have that G and G ′ have the same quasi-flat zones hierar-
chies: QFZ(G, Φ(H)) = QFZ(G ′, Φ(H)). As Φ(H) is
the saliency map ofH, we have thatH = QFZ(G, Φ(H)).
Therefore, H = QFZ(G ′, Φ(H)). Let i be a value in
{1, . . . , n−1}. Since∑

e∈E≺ Φ(H)(e) = 0+1+ . . .+n−1,
we can say that {1, . . . , n − 1} is a subset of the range of
Φ(H). Therefore,H is composed of at least n distinct parti-
tions. Let H be the sequence (P0, . . . ,Pn−1, . . .). Since the
partitions Pi and Pi−1 are distinct, then there exists a region
in Pi which is not in Pi−1. Therefore, there is a region X
of Pi which is composed of several regions {R1, R2, . . .} of
Pi−1. Then, there are two adjacent vertices x and y such that
x and y are in distinct regions in {R1, R2, . . .}. Let x and
y be two adjacent vertices such that x and y are in distinct
regions in {R1, R2, . . .}. Hence, the lowest j such that x and
y belong to the same region of P j is i . Thus, there exists an
edge u = {x, y} in E≺ such that Φ(H)(u) = i . Hence, the
sum of the weight of the edges ofG ′ is at least 1+ . . .+n−1,
which is equal to α. Therefore, the graph (V , E≺) is a MST
of (G, Φ(H)). ��

Proof of Property 7 We first prove the forward implication of
this property. Let H be a hierarchical watershed of (G, w).
Then, there is a sequence S of minima of w such that H
is the hierarchical watershed of (G, w) for S. Let S be the
sequence of minima of w such that H is the hierarchical
watershed of (G, w) for S. By Lemma 16, there is an altitude
ordering ≺ such that H is the hierarchy induced by ≺ and
S. Let ≺ be an altitude ordering such thatH is the hierarchy
induced by≺ and S. Then, by Lemma 22, (V , E≺) is a MST
of (G, Φ(H)). We will now prove the second statement of
Property 7. By Lemma 20, for any edge u in E≺, Φ(H)(u)

is equal to the persistence value ρ(u) of u for ≺ and S.
By the definition of persistence values, for edge u in E≺, the
persistence value of u for≺ and S is the minimum extinction
value of the children of Ru . Therefore, we can conclude that,
for edge u in E≺, Φ(H)(u) = min{ε(R) such that R is a
child of Ru}, where ε is the extinction map for ≺ and S.
Hence, there exists an extinction map ε such that, for edge u
in E≺, Φ(H)(u) = min{ε(R) such that R is a child of Ru}.

Wewill nowprove thebackward implicationofProperty 7.
Let H be a hierarchy on V such that there exists an altitude
ordering ≺ for w and an extinction map ε for ≺ such that:

1. (V , E≺) is a MST of (G, Φ(H)); and
2. for any edge u in E≺, we have: Φ(H)(u) = min{ε(R)

such that R is a child of Ru}.

Let G ′ denote the graph (V , E≺). By Lemma 21 (state-
ment 1), as G ′ is a MST of (G, Φ(H)), we have that
G ′ and G have the same quasi-flat zones hierarchies (for
Φ(H)): QFZ(G ′, Φ(H)) = QFZ(G, Φ(H)). Let ρ be
the persistence map for ≺ and S. By the definition of
persistence values, we can affirm that, for any edge u
in E≺, we have Φ(H)(u) = ρ(u). Hence, we can say
that QFZ(G ′, Φ(H)) = QFZ(G ′, ρ)). Let H′ be the
hierarchy induced by ≺ and S. By Lemma 22, G ′ is a
MST of (G, Φ(H′)). Hence, by Lemma 21, G ′ and G
have the same quasi-flat zones hierarchies (for Φ(H′)):
QFZ(G ′, Φ(H′)) = QFZ(G, Φ(H′)). By Lemma 20, for
edge u in E≺, we have Φ(H′)(u) = ρ(u), which is equal to
Φ(H)(u) as stated previously. Thus, QFZ(G ′, Φ(H′)) =
QFZ(G ′, Φ(H)) and, consequently, H and H′ are equal.
By Lemma 16, H′ is a hierarchical watershed of (G, w).
Therefore, H is a hierarchical watershed of (G, w). ��

B Proof of Theorem 5

Theorem 5 LetH be a hierarchy on V and let ≺ be a lexico-
graphic ordering for (w, f ). The hierarchyH is a hierarchical
watershed of (G, w) if and only if Φ(H) is one-side increas-
ing for ≺.
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Let H be a hierarchy on V . By Lemma 4, H is a hierar-
chical watershed of (G, w) if and only if there is an altitude
ordering forw such that the saliency mapΦ(H) ofH is one-
side increasing for ≺. In order to prove Theorem 5, we will
prove in the following lemma that, if the saliency mapΦ(H)

is one-side increasing for an altitude ordering for w, then
Φ(H) is one-side increasing for any lexicographic ordering
for (w,Φ(H)).

Given a map f from E into R, we say that f is a saliency
map if there is an hierarchyH on V such that f is the saliency
map of H.

Lemma 23 Let f be a saliency map and let ≺ f be a lex-
icographic ordering for (w, f ). If there exists an altitude
ordering ≺ for w such that f is one-side increasing for ≺,
then f is one-side increasing for ≺ f .

Let ≺ be an ordering on E and let (u1, . . . , u|E |) be the
sequence of edges in E such that, for any i in {1, . . . , |E |−1},
we have ui ≺ ui+1. This sequence (u1, . . . , u|E |) is called
the sequence (of edges) induced by ≺. In order to prove
Lemma 23, we first introduce the notion of critical rank and
the notion of switch in the context of lexicographic orderings,
and other auxiliary lemmas.

Definition 24 (Critical rank) Let f be a saliency map and
let ≺ be an altitude ordering for w. Let (u1, . . . , u|E |) be the
sequence induced by≺. Let k be a value such that uk ≺ uk+1

and such that w(uk) = w(uk+1) and f (uk) ≥ f (uk+1). We
say that k is a critical rank for f and ≺.

Definition 25 (Switch) Let f be a saliency map and let ≺ be
an altitude ordering forw. Let (u1, . . . , u|E |) be the sequence
induced by ≺. Let k be a critical rank for f and ≺, and let
≺k be the ordering such that (u1, . . . , uk+1, uk, . . . , u|E |) is
the sequence induced by ≺k . We say that ≺k is a switch of
≺ for f (and k).

Lemma 26 Let f be a saliency map, let ≺ be an altitude
ordering for w and let ≺′ be a switch of ≺ for f . Then, ≺′ is
an altitude ordering for w.

Proof Let ≺′ be the switch of ≺ for a critical rank k for f
and ≺. Let (u1, . . . , u|E |) be the sequence induced by ≺.
Then, (u1, . . . , uk+1, uk, . . . , u|E |) is the sequence induced
by ≺′. We may affirm that, for any edge v different from
uk+1, if v ≺ uk (resp. uk ≺ v) then v ≺′ uk (resp. uk ≺′ v).
Similarly, for any edge v different from uk , if v ≺ uk+1 (resp.
uk+1 ≺ v) then v ≺′ uk+1 (uk+1 ≺′ v). Finally, for any two
edges u and v such that {u, v} ∩ {uk, uk+1} = ∅, if u ≺ v

(resp. v ≺ u), then u ≺′ v (resp. v ≺′ u). Hence, for any
two edges u and v such that w(u) < w(v), by the definition
of critical rank, we may say that {u, v} �= {uk, uk+1} and,
consequently, as u ≺ v, then u ≺′ v. Hence, ≺′ is an altitude
ordering for w. ��

Lemma 27 Let ≺ be an altitude ordering for w and let f
be a saliency map. Let ≺′ be a lexicographic ordering for
(w, f ). There exists a sequence (≺0,≺1, . . . ,≺�) of altitude
orderings for w such that ≺0 is equal to ≺, ≺� is equal to ≺′
and, for any i in {1, . . . , �}, ≺i is a switch of ≺i−1.

Proof Let (u1, . . . , u|E |) be the sequence induced by ≺ and
let (u′

1, . . . , u
′|E |) be the sequence induced by ≺′. Let k be

the smallest value such that uk �= u′
k . In this case, there is an

i > k such that u′
k = ui . As ≺′ is a lexicographic ordering

for (w, f ), for any edge u j such that k < j ≤ i , we have
f (u j ) ≥ f (u j−1). Hence, there is a sequence S of switches
of≺ for critical ranks ranging from i−1 to k such that, in the
last ordering ≺∗ of the sequence S, the edge with rank k for
the ordering ≺∗ is precisely the edge u′

k . Let (u∗
1, . . . , u

∗|E |)
be the sequence induced by ≺∗. We conclude that, for any
q ≤ k, we have u∗

q = u′
q . Hence, the smallest value m

such that u∗
m �= u′

m is strictly greater than k. By performing
this procedure iteratively (like the bubble sort algorithm), the
resulting ordering converge to ≺′. ��
Lemma 28 Let ≺ be an altitude ordering for w and let f be
a saliency map such that f is one-side increasing for ≺. Let
v1 and v2 be two edges of E. If f (v1) is equal to f (v2), then
neither v1 nor v2 is a watershed-cut edge for ≺.

Proof Since f is one-side increasing for ≺, by Definition 3,
we have { f (u) | u ∈ E≺} = {0, . . . , n−1} and we have that,
for any edge u in E≺, f (u) is greater than 0 if and only if u is
a watershed-cut edge for ≺. Since w has n minima, there are
n − 1 watershed-cut edges for ≺. Hence, the watershed-cut
edges for≺ have pairwise distinct edgeweights ranging from
1 to n − 1. Therefore, neither v1 nor v2 is a watershed-cut
edge for ≺. ��

Let ≺ be an altitude ordering for w and let f be a
saliency map such that f is one-side increasing for ≺. By
Lemma 26, every switch of ≺ is an altitude ordering for w.
By Lemma 27, any lexicographic ordering for (w, f ) can be
obtained by a sequence of switches starting from ≺. Hence,
to prove Lemma 23, we can simply prove that f is one-side
increasing for any switch of ≺. Let (u1, . . . , u|E |) be the
sequence induced by ≺. Then, (u1, . . . , uk+1, uk, . . . , u|E |)
is the sequence induced by≺′. In order to prove that f is one-
side increasing for the switch ≺′ for k, we should consider
the following cases:

1. Neither uk nor uk+1 is a building edge for ≺;
2. Both uk and uk+1 are building edges for ≺ and Ruk ∩

Ruk+1 = ∅;
3. Both uk and uk+1 are building edges for ≺ and Ruk ⊂

Ruk+1 ;
4. Only uk+1 is a building edge for ≺; and
5. Only uk is a building edge for ≺.
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Lemmas 30, 31, 32, 33 and 34 prove that, for each of those
five cases, the saliency map f is one-side increasing for the
switch ≺′ for k. Before considering those five cases, we first
present the following auxiliary lemma.

Lemma 29 Let ≺ be an altitude ordering for w and let f be
a saliency map such that f is one-side increasing for ≺. Let
≺′ be an altitude ordering for w such that the set of building
edges for ≺′ is equal to the set of building edges for ≺ and
such that the set of regions of B≺ is equal to the set of regions
of B≺′ . Then, f is one-side increasing for ≺′.

Proof In the definition of one-side increasing maps (Defini-
tion 3), the three conditions for f to be one-side increasing
for ≺ take into consideration only the weight of the build-
ing edges for ≺ and the parenthood relationship between the
regions of ≺. Hence, as the set of building edges for ≺′ is
the same set of building edges for ≺ and as they have the
same set of regions, we can conclude that the three condi-
tions of Definition 3 for f to the one-side increasing for ≺′
are satisfied. ��
Lemma 30 Let ≺ be an altitude ordering for w and let f
be a saliency map such that f is one-side increasing for ≺.
Let (u1, . . . , u|E |) be the sequence induced by ≺. Let k be a
critical rank for f and ≺ such that neither uk nor uk+1 is a
building edge for ≺. Then, f is one-side increasing for the
switch ≺′ for k.

Proof Let (B0,B1, . . . ,B|E |) be the sequence of partitions
(of V ) such that, for any i in {1, . . . , |E |}, the partition Bi is
the i-partition by the ordering≺ (as defined in Sect. 3.1). Let
(B′

0,B
′
1, . . . ,B

′|E |) be the sequence of partitions such that,
for any i in {1, . . . , |E |}, the partition B′

i is the i-partition by
the ordering ≺′. We will prove that neither uk nor uk+1 is a
building edge for ≺′.

We first prove that uk+1 is not a building edge for ≺′. By
the definition of binary partition hierarchy and, as neither uk
nor uk+1 is a building edge for ≺, we may say that:

I the partition Bk is equal to the partition Bk−1, and
II the partition Bk+1 is equal to the partition Bk ,
III which implies that Bk−1 = Bk = Bk+1.

Let uk = {s, r} and uk+1 = {x, y}. By the definition
of switch, the sequence (u1, . . . , uk+1, uk, . . . , u|E ) is the
sequence induced by ≺′. We may infer that, for any i < k,
the i-partition by the ordering≺′ is equal to the i-partition by
the ordering ≺. Hence, as uk+1 is the edge of rank k for ≺′
and sinceB′

k−1 = Bk−1, the k-partition for the ordering≺′ is
the partition B′

k = {By
k−1 ∪ Bx

k−1} ∪ (Bk−1\{Bx
k−1,B

y
k−1}).

By the statement I, Bk−1 = Bk , which implies that B′
k =

{By
k ∪ Bx

k } ∪ (Bk\{Bx
k ,B

y
k }). Therefore, we have that:

IV B′
k is equal to the partition Bk+1

As Bk+1 = Bk = Bk−1 by statement III, we have that

V B′
k = Bk+1 = Bk−1 = B′

k−1

By statement V, as B′
k = B′

k−1, we conclude that uk+1 is
not a building edge for ≺′.

We nowprove that uk is not a building edge for≺′. As uk is
the edge of rank k+1 for≺′, the k+1-partition for the order-
ing ≺′ is the partition B′

k+1 = {B′s
k ∪B

′r
k } ∪ (B′

k\{B
′s
k ,B

′r
k }).

By statement V, we have B′
k = B′

k−1. Since B
′
k−1 = Bk−1,

then, by statement III, we have that B′
k = Bk−1. Therefore,

we conclude that:

VI B′
k+1 = {Bs

k−1 ∪ Br
k−1} ∪ (Bk−1\{Bs

k−1,B
r
k−1})

By the definition of B′
k+1 in the statement VI, we have:

VII B′
k+1 = Bk

By statement IV, B′
k = Bk+1, and by statement III,

Bk = Bk+1. Hence, Bk = B′
k . Thus, by the statement VII,

we conclude that B′
k+1 = B′

k . Therefore, uk is not a building
edge for ≺′.

Since the sequences induced by the orderings≺ and≺′ are
equal for any i > k+1, and sinceB′

k+1 = B′
k = Bk = Bk+1,

wemay affirm that,Bi = B′
i for any i > k+1. Therefore, the

set of building edges for≺ is equal to the set of building edges
for ≺′, and the set of partitions and regions of B≺ is equal to
the set of partitions and regions of B≺′ . By Lemma 29, f is
one-side increasing for ≺′. ��
Lemma 31 Let ≺ be an altitude ordering for w and let f
be a saliency map such that f is one-side increasing for ≺.
Let (u1, . . . , u|E |) be the sequence induced by ≺. Let k be
a critical rank for f and ≺ such that both uk and uk+1 are
building edges for ≺ and such that Ruk ∩ Ruk+1 = ∅. Then,
f is one-side increasing for the switch ≺′ for k.

Proof In this proof, we first show that uk+1 and uk are build-
ing edges for ≺′. Then, we conclude that the partitions of
the binary partition hierarchies for ≺ and for ≺′ are equal,
which, by Lemma 29, prove that f is one-side increasing for
≺′.

Let (B0,B1, . . . ,B|E |) be the sequence of partitions (of
V ) such that, for any i in {1, . . . , |E |}, the partition Bi is the
i-partition by the ordering ≺. Let (B′

0,B
′
1, . . . ,B

′|E |) be the
sequence of partitions such that, for any i in {1, . . . , |E |}, the
partition B′

i is the i-partition by the ordering ≺′. By the def-
inition of switch, the sequence (u1, . . . , uk+1, uk, . . . , u|E |)
is the sequence induced by ≺′. As the sequences induced by
≺ and by ≺′ are equal for any edge with rank i < k, we may
affirm that:

I Bi = B′
i for any i < k
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Let uk = {s, r} and uk+1 = {x, y}. As uk and uk+1 are
building edges for ≺, we have that:

II Bk �= Bk−1, and
III Bk+1 �= Bk

As uk+1 is the edge of rank k for ≺′, we have that the

k-partition for the ordering ≺′ is B′
k = {B′x

k−1 ∪ B
′y
k−1} ∪

(B′
k−1\{B

′x
k−1,B

′y
k−1}). By the statement I,B′

k−1 andBk−1 are
equal. Then, B′

k = {Bx
k−1 ∪ By

k−1} ∪ (Bk−1\{Bx
k−1,B

y
k−1}).

By definition, we have:

IV Bk = {Bs
k−1 ∪ Br

k−1} ∪ (Bk−1\{Bs
k−1,B

r
k−1}), and

V Bk+1 = {Bx
k ∪ By

k } ∪ (Bk\{Bx
k ,B

y
k })

Byour hypothesis,we have Ruk ∩Ruk+1 = ∅, whichmeans
that the regions Ruk and Ruk+1 of B≺ (whose building edges
are, respectively, uk and uk+1) have no intersection. As uk
is a building edge for ≺, we have Ruk = {Bs

k−1 ∪ Br
k−1}.

Similarly, as uk+1 is a building edge for ≺, we have Ruk+1 =
{Bx

k ∪ By
k }. Since Ruk ∩ Ruk+1 = ∅, we have that:

VI neither x nor y is in the region Bs
k−1 (nor in the region

Br
k−1), and

VII neither s nor r is in the region Bx
k (nor in the region B

y
k )

By VI and VII, we can conclude that Bs
k−1, B

r
k−1, B

x
k and

By
k are all distinct regions of the partition Bk−1. Hence, we

have:

VIII Bx
k = Bx

k−1, and
IX By

k = By
k−1

By definition, as uk+1 is the edge of rank k for ≺′, we
have:

X B′
k = {B′x

k−1 ∪ B
′y
k−1} ∪ (B′

k−1\{B
′x
k−1,B

′y
k−1})

By I and X, we conclude that:

XI B′
k = {Bx

k−1 ∪ By
k−1} ∪ (Bk−1\{Bx

k−1,B
y
k−1})

By VIII, IX and XI, we conclude:

XII B′
k = {Bx

k ∪ By
k } ∪ (Bk\{Bx

k ,B
y
k })

As Bx
k and By

k are distinct regions, we may say that B′
k is

different from B′
k−1. Hence, uk+1 is a building edge for ≺′.

We now prove that uk is also a building edge for ≺′. As
uk is the edge of rank k + 1 for ≺′, we have that the (k +
1)-partition for the ordering ≺′ is B′

k+1 = {B′s
k ∪ B

′r
k } ∪

(B′
k\{B

′s
k ,B

′r
k }). By statement VII, we have that neither s nor

r are in the regions Bx
k and B

y
k . Hence, by the statement XII,

s and r belong to distinct regions of B′
k . Therefore, B

′s
k �=

B
′r
k . Consequently, B

′
k+1 is different from B′

k . Hence, uk is a
building edge for ≺′.

Moreover, we conclude that B′
k+1 = Bk+1 because both

partitions result from the union of the four distinct regions
of Bk−1 containing s, r , x and y. Hence, for any i > k + 1,
as the sequences induced by ≺ and ≺′ are equal, we can
conclude that any partition Bi is equal to the partition B′

i for
any i > k + 1. Therefore, the building edges for ≺ and for
≺ are equal, and the set of regions of the binary partitions
hierarchies for ≺ and for ≺ are equal. By Lemma 29, f is
one-side increasing for ≺′. ��
Lemma 32 Let ≺ be an altitude ordering for w and let f
be a saliency map such that f is one-side increasing for ≺.
Let (u1, . . . , u|E |) be the sequence induced by ≺. Let k be
a critical rank for f and ≺ such that both uk and uk+1 are
building edges for ≺ and such that Ruk ⊂ Ruk+1 . Then, f is
one-side increasing for the switch ≺′ for k.

Proof In this proof, we first show that both uk and uk+1 are
building edges for≺′. Then,we conclude that the set of build-
ing edges for≺ and for≺′ are equal. Finally,we prove that the
three conditions of Definition 3 for f to be one-side increas-
ing for ≺′ hold true.

By our hypothesis, the region Ruk of B≺ is a subset of
the region Ruk+1 of B≺. Let A be the region of B≺ such that
Ruk+1 = Ruk ∪ A. Let B and C be the children of Ruk . This
situation is illustrated in the following figure.

Let uk = {s, r} and uk+1 = {x, y}. As uk+1 is a building
edge for ≺, we conclude that x are y belong to two distinct
regions in {A, B} or in {A,C}. Without loss of generality,
let us assume that x belongs to A and that y belongs to B.
Let Bk−1 be the (k − 1)-partition for ≺. We can say that the
regions A, B and C belong to Bk−1. Moreover, we know
that Bk−1 is equal to the (k − 1)-partition for ≺′ because,
for any i < k, the edge of rank i for ≺ is also the edge of
rank i for ≺′. Since uk+1 is the edge of rank k for ≺′, we
can conclude that the k-partition B′

k for ≺′ is the partition
{A ∪ B} ∪ (Bk−1\{A, B}). As the region {A ∪ B} is not
in the partition B′

k−1, we can conclude that B′
k is different
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from B′
k−1. Hence, uk+1 is the building edge of the region

R′
uk+1

= {A ∪ B} of B≺′ . Consequently, uk+1 is a building
edge for ≺′.

We now prove that uk is also a building edge for≺′. With-
out loss of generality, let us assume that s belongs to B and
that r belongs to C . By our hypothesis, uk is the edge of
rank k + 1 for ≺′. In the partition B′

k , we know that s and r
belong to distinct regions because s is in {A ∪ B} and r is in
C . Hence, the region {A ∪ B ∪ C} is a region of B′

k+1 and
we have B′

k+1 �= B′
k . Therefore, uk is a building edge for ≺′.

This situation is illustrated in the following figure.

We can infer that the (k+1)-partition for≺′ is equal to the
(k+1)-partition for≺. For i > k+1, the edge of rank i for≺
is also the edge of rank i for≺′. Hence, we can conclude that
the set of building edges for ≺ is equal to the set of building
edges for ≺′.

Now, we will prove that f is one-side increasing for ≺′.
To that end, we will demonstrated that the three conditions
of the definition of one-side increasing maps (Definition 3)
hold true for f .

1. We first prove that the condition 1 of Definition 3 holds
true for f . Since the set E≺ of building edges for ≺ is
equal to the set E≺′ of building edges for ≺′, we can
conclude that { f (u) | u ∈ E≺′} is equal to { f (u) | u ∈
E≺} = {0, . . . , n − 1}. Thus, the first condition for f to
be one-side increasing for ≺′ holds true.

2. We now prove that the condition 2 of Definition 3 holds
true for f . In order to prove this condition, we consider
four cases: (2.1) both uk and uk+1 are watershed-cut
edges for ≺; (2.2) neither uk nor uk+1 is a watershed-
cut edge for ≺; (2.3) only uk is a watershed-cut for ≺;
and (2.4) only uk+1 is a watershed-cut for ≺.

(2.1) If both uk and uk+1 are watershed-cut edges for ≺,
then there is at least one minimum of w included
in each of the regions A, B and C . Since A and B
are the children of R′

uk+1
, we may say that uk+1 is

a watershed-cut edge for ≺′. Since {A ∪ B} and C
are the children of R′

uk and since there is at least one
minimum included in each of the children of R′

uk ,

we may say that uk is a watershed-cut edge for ≺′.
Hence, both uk and uk+1 are watershed-cut edges for
≺′.

(2.2) If neither uk nor uk+1 is a watershed-cut edge for ≺,
then there are at least two regions among A, B and
C that do not include any minimum of w. Hence,
there is at least one child of each of the regions R′

uk
and R′

uk+1
that do not include any minimum of w.

Therefore, neither uk nor uk+1 is a watershed-cut
edge for ≺′.

(2.3) If uk is a watershed-cut edge for ≺ and if uk+1 is
not watershed-cut edge for ≺, then there is at least
one minimum included in each of the regions B and
C and there is no minimum included in A. Hence,
as A is a child of the region R′

uk+1
of B≺′ and as

there is no minimum of w included in A, uk+1 is
not a watershed-cut edge for ≺′. Since there is at
least one minimum included in each of the regions
B and C , and since B and C are included in distinct
children of the region R′

uk , we can conclude that uk
is a watershed-cut edge for ≺′.

(2.4) If uk+1 is a watershed-cut edge for ≺ and if uk is not
watershed-cut edge for≺. As k is a critical rank for f
and ≺, we have that f (uk) ≥ f (uk+1). However, by
the definition of one-side increasing maps (Defini-
tion 3), we have f (uk+1) > 0 and f (uk) = 0, which
contradicts our hypothesis. Therefore, the casewhere
uk+1 is a watershed-cut edge for ≺ and if uk is not
watershed-cut edge for ≺ does not happen.

Therefore, we can conclude that the set of watershed-cut
edges for ≺ is equal to the set of watershed-cut edges
for ≺′. Then, the second condition for f to be one-side
increasing for ≺′ holds true.

3. We finally prove that the condition 3 of Definition 3 holds
true for f . As k is a critical rank for f and ≺, we have
that f (uk) ≥ f (uk+1). We will consider two cases: (3.1)
f (uk) = f (uk+1); and (3.2) f (uk) > f (uk+1).

(3.1) If f (uk) = f (uk+1), by Lemma 28, neither uk nor
uk+1 is a watershed-cut edge for ≺. Since neither uk
nor uk+1 is a watershed-cut edge for ≺, as proven in
the case (2.2), neither uk nor uk+1 is a watershed-
cut edge for ≺′. Hence, there is at least one child
of the region R′

uk (resp. R
′
uk+1

) that does not include
any minimum of w. Let Z be the child of R′

uk (resp.
R′
uk+1

) that does not include any minimum of w. We
can infer that there is no watershed-cut edge v for≺′
such that Rv ⊆ Z . Then, for any edge v such that
Rv ⊆ Z , we have f (v) = 0. Since f (uk) = 0 (resp.
f (uk+1) = 0), we can affirm that there is a child
Z of R′

uk (resp. R
′
uk+1

) such that f (uk) ≥ ∨{ f (v) |
Rv ⊆ Z} (resp. f (uk+1) ≥ ∨{ f (v) | Rv ⊆ Z}).
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(3.2) Let us assume that f (uk) > f (uk+1). Since f is one-
side increasing for ≺, by Definition 3 (statement 3),
we conclude that, for any edge v such that v is the
building edge of a region included in A, we have
f (uk+1) ≥ f (v). In the hierarchy B≺′ , the region
R′
uk+1

is the parent of A, so the statement 3 of Defi-
nition 3 holds true for R′

uk+1
.

We will now prove that the statement 3 of Definition
3 holds true for R′

uk . By Definition 3, we know that
there is a child Z of Ruk such that for any edge v

such that v is the building edge of a region included
in Z , we have f (uk) ≥ f (v). Let us first assume that
Z = C . Since C is also a child of the region R′

uk of
B≺′ , the statement 3 of Definition 3 holds true for
R′
uk . Now, let us assume that Z = B. We will prove

that, for the building edge v of any region included
in {A ∪ B ∪ R′

uk+1
}, we have f (uk) ≥ f (v). By our

assumption f (uk) > f (uk+1), which implies that
f (uk) is greater than the weight of the building edge
of R′

uk+1
. By our assumption that Z = B, for any

edge v such that v is the building edge of a region
included in B, we have f (uk) ≥ f (v). Moreover,
for any edge v such that v is the building edge of a
region included in A, we have f (uk) ≥ f (v)because
f (uk) > f (uk+1) andbecause A is the child of R′

uk+1

such that f (uk+1) ≥ ∨{ f (v) | Rv ⊆ A}. Therefore,
for the building edge v of any region included in
{A ∪ B ∪ R′

uk+1
}, we have f (uk) ≥ f (v). Conse-

quently, the statement 3 of Definition 3 holds true
for R′

uk . ��

Lemma 33 Let ≺ be an altitude ordering for w and let f
be a saliency map such that f is one-side increasing for ≺.
Let (u1, . . . , u|E |) be the sequence induced by ≺. Let k be a
critical rank for f and ≺ such that uk+1 is a building edge
for ≺ and such that uk is not a building edge for ≺. Then, f
is one-side increasing for the switch ≺′ for k.

Proof Let (B0,B1, . . . ,B|E |) be the sequence of partitions
(of V ) such that, for any i in {1, . . . , |E |}, the partition Bi is
the i-partition by the ordering≺ (as defined in Sect. 3.1). Let
(B′

0,B
′
1, . . . ,B

′|E |) be the sequence of partitions such that,
for any i in {1, . . . , |E |}, the partition B′

i is the i-partition by
the ordering ≺′. As the sequences induced by ≺ and by ≺′
are equal for any edge with rank i < k, we may affirm that:

I. Bi = B′
i for any i < k

By the definition of binary partition hierarchy and since
uk is not a building edge for ≺, we may say that:

II. the partition Bk is equal to the partition Bk−1.

Let uk = {s, r} and uk+1 = {x, y}. Since Bk = Bk−1

and since Bk = {Bs
k−1 ∪ Br

k−1} ∪ (Bk−1\{Bs
k−1,B

r
k−1}), we

conclude that the regionsBs
k−1 andB

r
k−1 of the partitionBk−1

are equal:Bs
k−1 = Br

k−1. By the statement I, we may say that

the regions B
′s
k−1 and B

′r
k−1 of the partition B

′
k−1 are equal as

well. Hence:

III. the partition B′
k is equal to the partition and B′

k−1

Therefore, uk is not a building edge for ≺′.
Since uk+1 is a building edge for ≺, we have that:

IV. the partition Bk+1 is different from the partition Bk .

By the statement IV, we conclude that the regions Bx
k and

By
k of the partition Bk are distinct. By the statement III,

we have that B′
k = B′

k−1. Then, by statement I , we have
B′
k = Bk−1. Hence, by statement II, we have B′

k = Bk .
Therefore, the regions Bx

k and B
y
k also belong to the partition

B′
k . Consequently, since x and y are in distinct regions in the

partitionB′
k , we conclude that uk+1 is a building edge for≺′.

Therefore, the set E≺ of building edges for ≺ is equal to the
set E≺′ of building edges for ≺′.

Moreover, we conclude that B′
k+1 = Bk+1 because both

partitions result from the union of the two distinct regions of
Bk−1 containing x and y. Hence, for any i > k + 1, as the
edge of rank i for ≺ is also the edge of rank i for ≺′, we can
conclude that any partition Bi is equal to the partition B′

i .
Hence, B≺ and B≺ have the same set of regions.

Since E≺ = E≺′ and since B≺ and B≺ have the same set
of regions, by Lemma 29, f is one-side increasing for ≺′. ��

Lemma 34 Let ≺ be an altitude ordering for w and let f
be a saliency map such that f is one-side increasing for ≺.
Let (u1, . . . , u|E |) be the sequence induced by ≺. Let k be a
critical rank for f and ≺ such that uk is a building edge for
≺ and such that uk+1 is not a building edge for ≺. Then, f
is one-side increasing for the switch ≺′ for k.

Proof Let (B0,B1, . . . ,B|E |) be the sequence of partitions
(of V ) such that, for any i in {1, . . . , |E |}, the partition Bi is
the i-partition by the ordering ≺. Let (B′

0,B
′
1, . . . ,B

′|E |) be
the sequence of partitions such that, for any i in {1, . . . , |E |},
the partition B′

i is the i-partition by the ordering ≺′. As the
sequences induced by ≺ and by ≺′ are equal for any edge
with rank i < k, we may affirm that:

I. Bi = B′
i for any i < k

Since uk is a building edge for ≺, we have that:

II. Bk is different from Bk−1
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Let uk = {s, r} and uk+1 = {x, y}. Since Bk �= Bk−1,
we conclude that s and r are in distinct regions of Bk−1. As
uk+1 is not a building edge for ≺, we consider two cases: (1)
x and y belong to a unique region of Bk−1; and (2) x and y
belong to two distinct regions of Bk−1.

(1) Let us consider that x and y belong to a unique region of
Bk−1. By the statement I, we have B′

k−1 = Bk−1. Hence,
x and y belong to a unique region ofB′

k−1 and, therefore,
uk+1 is not a building edge for≺′.Wewill now prove that
uk is a building edge for ≺′. Since uk is a building edge
for≺, we have that s and r belong to two distinct regions
of the partition Bk−1. Since uk+1 is not a building edge
for ≺′, we have B′

k = B′
k−1. Then, by the statement I,

we have B′
k = B′

k−1 = Bk−1. Therefore, s and r belong
to two distinct regions of the partition B′

k . Hence, uk is a
building edge for ≺′.
Therefore, the set E≺ of building edges for ≺ is equal to
the set E≺′ of building edges for ≺′.
Moreover, we conclude that B′

k+1 = Bk+1 because both
partitions result from the union of the two distinct regions
of Bk−1 containing s and r . Hence, for any i > k + 1,
as the edge of rank i for ≺ is also the edge of rank i
for ≺′, we can conclude that any partition Bi is equal to
the partition B′

i . Thus, B≺ and B≺ have the same set of
regions.
Since E≺ = E≺′ and since B≺ and B≺ have the same set
of regions, by Lemma 29, f is one-side increasing for
≺′.

(2) We now consider that x and y belong to two distinct
regions ofBk−1. Let A and B be the regions ofBk−1 such
that s ∈ A and r ∈ B. Since x and y belong to two distinct
regions ofBk−1 and sinceBk = {A∪B}∪(Bk−1\{A, B}),
we conclude that either x or y is in A, and that either s
or r is in B. Without loss of generality, let us assume
that x ∈ A and y ∈ B. This situation is illustrated in the
following figure.

Since uk+1 is the edge of rank k for the ordering ≺′,
we can say that the k-partition B′

k by the ordering ≺′ is
{A∪B}∪(B′

k−1\{A, B}) because A and B are the regions
of B′

k−1 that contain, respectively, x and y. As the region
{A ∪ B} does not belong to the partition B′

k−1, we have
that uk+1 is the building edge of the region {A ∪ B}.
Hence, uk+1 is a building edge for ≺′.
Since uk is the edge of rank k + 1 for the ordering ≺′,
we may conclude that B′

k+1 = B′
k because the s and r

belong to the same region {A ∪ B} of B′
k . Therefore, uk

is not a building edge for ≺′. This situation is illustrated
in the following image.

We conclude that B≺ and B≺′ have the same set of
regions but not the same set of building edges: E≺′ =
E≺\{uk} ∪ {uk+1}. Hence, the only difference between
the hierarchies B≺ and B≺′ is the building edge of the
region {A∪ B}. Therefore, we may say that, if the weight
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of the building edge of {A ∪ B} for ≺ is equal to the
weight of the building edge of {A ∪ B} for ≺′, then f
is also one-side increasing for ≺′. To that end, we will
prove that f (uk) = f (uk+1).
By Lemma 22, as f is one-side increasing for≺, we have
that:

III. (V , E≺) is a MST of (G, f )

By the statement III and by Lemma 21, we conclude that:

IV. the hierarchy QFZ(G, f ) is equal to the hierarchy
QFZ((V , E≺), f )

Statement IV implies that f is the saliency map of the
hierarchy QFZ((V , E≺), f ). Hence, for any edge u =
{a, b} in E , f (u) is the maximum weight in the unique
path between a and b in ((V , E≺), f ). We can affirm
that:

V. the unique path between x and y in ((V , E≺), f ) is
a path that includes the edge uk

By the statementVandby the definition of saliencymaps,
we have f (uk+1) ≥ f (uk). Since k is a critical rank for
f and≺, we have f (uk+1) ≤ f (uk). Therefore, we have
f (uk) = f (uk+1), which completes the proof that f is
one-side increasing for ≺′. ��

C Proof of Property 6

Property 6 Let ≺ be an altitude ordering for w and let ε be a
map from the regions ofB≺ intoR. Themap ε is an extinction
map for ≺ if and only if the following statements hold true:

– {ε(R) | R is a region of B≺} = {0, . . . , n};
– for any two distinct minima M1 and M2 of w, we have

ε(M1) �= ε(M2); and
– for any region R of B≺, we have that ε(R) is equal to

∨{ε(M) such that M is a minimum of w included in R},
where ∨{} = 0.

We prove the forward and backward implications of Prop-
erty 6 in Lemmas 35 and 36, respectively.

Lemma 35 Let ≺ be an altitude ordering for w and let ε

be a map from the regions of B≺ into R. If the map ε is
an extinction map for ≺, then the following statements hold
true:

1. {ε(R) | R is a region of B≺} = {0, . . . , n};
2. for any two distinct minima M1 and M2 of w, we have

ε(M1) �= ε(M2); and

3. for any region R of B≺, we have that ε(R) is equal to
∨{ε(M) such that M is a minimum of w included in R},
where ∨{} = 0.

Proof Let ε be an extinction map for ≺. Then, by the
definition of extinction maps, there is a sequence S =
(M1, . . . , Mn) of minima of w such that ε is the extinction
map for ≺ and S. We will prove that the statements 1, 2 and
3 hold true for ε.

To prove that the statement 1 holds true, wewill first prove
that {ε(R) | R is a region of B≺} ⊆ {0, . . . , n}. Since w has
n minima, the extinction value of any region of B≺ which
includes a minimum of w is in the set {1, . . . , n}. On the
other hand, for any region R of B≺ which do not include any
minimum of w, we have that ε(R) = 0. Hence, {ε(R) | R
is a region of B≺} ⊆ {0, . . . , n}. We will now prove that
{0, . . . , n} ⊆ {ε(R) | R is a region of B≺}. As B≺ has at
least one leaf region composed of a single vertex of G, we
can affirm that there is at least one region ofB≺ which do not
include any minimum of w and whose extinction value for
≺ and S is zero. Then, 0 is in {ε(R) | R is a region of B≺}.
Now, let i be a value in {1, . . . , n}. For the minimum Mi , we
may affirm that Mi is the unique minimum of w included in
Mi and, therefore, ε(Mi ) = i . Hence, i is in {ε(R) | R is a
region ofB≺}. Wemay conclude that, for any i in {0, . . . , n},
i is in {ε(R) | R is a region of B≺}. Therefore, the range
of ε is {0, . . . , n}, which corresponds to the statement 1 of
Lemma 35.

By the definition of extinction maps, for any minimum
Mi , for i in {1, . . . , n}, we have ε(Mi ) = i because Mi is
the only minimum of w included in Mi . Therefore, for any
two distinct minima Mi and Mj , for i, j in {1, . . . , n}, we
have ε(Mi ) = i and ε(Mj ) = j and, consequently, ε(Mi ) is
different from ε(Mj ). Hence, the statement 2 of Lemma 35
holds true for ε.

The statement 3 of Lemma 35 is precisely the definition
of extinction values: for any region R of B≺, the extinction
value of R is zero if there is no minimum of w included in R
and, otherwise, it is the maximal i (which is equal to ε(Mi ))
such that Mi is included in R. ��
Lemma 36 Let ≺ be an altitude ordering for w and let ε be
a map from the regions of B≺ into R such that:

1. {ε(R) | R is a region of B≺} = {0, . . . , n};
2. for any two distinct minima M1 and M2 of w, we have

ε(M1) �= ε(M2); and
3. for any region R of B≺, we have that ε(R) is equal to

∨{ε(M) such that M is a minimum of w included in R},
where ∨{} = 0.

Then, the map ε is an extinction map for ≺.
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Proof Toprove that ε is an extinctionmap for≺,wewill show
that there exists a sequence S = (M1, . . . , Mn) of minima
of w such that, for any region R of B≺, the value ε(R) is the
extinction value of R for ≺ and S.

Let S = (M1, . . . , Mn) be a sequence of minima of w

ordered in non-decreasing order for ε, i.e. for any two dis-
tinct minima Mi and Mj , with i, j in {1, . . . , n}, if ε(Mi ) <

ε(Mj ) then i < j .
By the hypothesis 2, this sequence S is unique. By the

hypothesis 3, for any region R of B such that there is no
minimum of w included in R, ε(R) = ∨{} = 0, so ε(R) is
the extinction value of R for ≺ and S.

Since w has n minima, for any minimum M of w, the
value ε(M) is in {1, . . . , n}. Otherwise, by contradiction,
let us assume that there exists a minimum M ′ of w such
that ε(M ′) = 0. Then, there is a value i in {1, . . . , n} such
that, for any minimum M ′′ ofw, the value ε(M ′′) is different
from i . Consequently, by the hypothesis 3, the range of ε

would be {0, . . . , n}\{i}, which contradicts the hypothesis 1.
Therefore, for any minimum Mi of w, for i in {1, . . . , n},
as our assumption that ε(Mi ) < ε(Mj ) implies that i < j ,
we have that ε(Mi ) = i . Thus, ε(Mi ) is the extinction value
of Mi for ≺ and S.

It follows that, by the hypothesis 3, for any region R of
B≺ such that there is a minimum of w included in R, the
value ε(R) is the maximum value i (which is equal to ε(Mi ))
in {1, . . . , n} such that Mi is included in R.

Thus, for any region R ofB≺, the value ε(R) is the extinc-
tion value of R for ≺ and S. Therefore, the map ε is an
extinction map for ≺. ��

D Proof of Lemma 11

Lemma 11 Let ≺ be an altitude ordering for w, let f be a
map from E into R such that f is one-side increasing for ≺,
and let ξ be the approximated extinction map for f and ≺.
The map ξ is an extinction map for ≺.

In order to prove Lemma 11, we prove in Lemmas 38, 39
and 43 that the three conditions of Property 6 for ξ to be an
extinction map are satisfied. We first establish the following
auxiliary lemma.

Lemma 37 Let ≺ be an altitude ordering for w and let f be
a map from E into R such that f is one-side increasing for
≺. Then, the two following statements hold true:

1. the set { f (e) | e is a watershed − cut edge f or ≺} is
equal to {1, . . . , n − 1}; and

2. for any two distinct watershed-cut edges u and v for B,
we have f (u) �= f (v).

Proof By Definition 3 (statement 1), we have { f (u) | u ∈
E≺} = {0, . . . , n − 1} and, by Definition 3 (statement
2), only the weight of the watershed-cut edges for ≺ are
strictly greater than zero. Then, { f (e) | e is a watershed −
cut edge f or ≺} = {1, . . . , n − 1}. Hence, for any i in
{1, . . . , n − 1}, there is a watershed-cut edge e for ≺ such
that f (e) = i . Moreover, as there are n − 1 watershed-cut
edges for ≺, for any two distinct watershed-cut edges u and
v for ≺, we have f (u) �= f (v). ��
Lemma 38 Let ≺ be an altitude ordering for w, let f be a
map from E into R such that f is one-side increasing for ≺,
and let ξ be the approximated extinction map for f and ≺.
The range of ξ is {0, . . . , n}.
Proof We will prove that: (1) for any i in {0, . . . , n}, there is
a region R of B≺ such that ξ(R) = i ; and (2) for any region
R of B≺, we have ξ(R) in {0, . . . , n}.

(1) Wefirst prove statement (1).We start byproving that there
is a region R of B≺ such that ξ(R) = n. Let R be the set
V of vertices of G. Then, by Definition 10 (statement 1),
we have ξ(R) = �(R) + 1, where � is the supremum
descendant map for f and ≺. By Definition 3 (statement
1), we have { f (u) | u ∈ E≺} = {0, . . . , n − 1}. As
�(V ) = ∨{ f (u) | Ru ⊆ V } = ∨{0, . . . , n−1} = n−1,
we have that ξ(R) = n − 1 + 1 = n.
We will now show that there is a region R ofB≺ such that
ξ(R) = 0. Let R be a region of B≺ such that there is no
minimum of w included in R. Then, R is not a minimum
of w and, consequently, the building edge of the parent
of R is not a watershed-cut edge for ≺. Let u be building
edge of the parent of R. Since there is no minimum of
w included in R, by Definition 9, R is not a dominant
region for f and ≺. By the statement 3 of the defini-
tion of approximated extinction maps (Definition 10),
we have ξ(R) = f (u). Since f is a one-side increasing
map and since u is not a watershed-cut edge for ≺, we
have f (u) = 0. Therefore, we have ξ(R) = f (u) = 0.
Finally, we will prove that, for any i in {1, . . . , n − 1},
there is a region R of B≺ such that ξ(R) = i . By
Lemma 37, we can say that, for any i in {1, . . . , n − 1},
there is a watershed-cut u edge for≺ such that f (u) = i .
Let u be a watershed-cut edge for ≺ and let X and Y be
the children of Ru . Since u is a watershed-cut edge for
≺, both X and Y contain at least a minimum of w and,
then, neither X nor Y are leaf regions ofB≺. Let� be the
non-leaf ordering for f and ≺. Since � is a total order-
ing, we have either X � Y or Y � X . Then, exactly
one child of Ru is a dominant region for f and ≺. Let
Y (resp. X ) be the child of Ru which is not a dominant
region for f and ≺. By Definition 10 (statement 3), we
have ξ(Y ) = f (u) (resp. ξ(X) = f (u)). Therefore, for
any i in {1, . . . , n − 1}, there is a watershed-cut edge u
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for ≺ such that f (u) = i and such that there is a child Z
of Ru such that ξ(Z) = i .

(2) We will now prove the statement 2. Let R be a region
of B≺. If R = V , then ξ(R) = n, as established in
the proof of statement 1. Otherwise, let v be the building
edge of the parent of R. ByDefinition 10, the value ξ f (R)

is either f (v) or ξ(parent(R)). Hence, either ξ f (R) is
equal to f (v) for a building edge v for ≺, or ξ f (R) is
equal to ξ(V ) = n. It is enough to prove that n and f (v)

are in {0, . . . , n}. As f is one-side increasing for ≺, by
Definition 3 (statement 1), we have { f (u) | u ∈ E≺} =
{0, . . . , n − 1}. Since v is a building edge for ≺, we may
say that f (v) is in {0, . . . , n − 1}. ��

Lemma 39 Let ≺ be an altitude ordering for w and let f
be a map from E into R such that f is one-side increasing
for ≺. Let ξ be the approximated extinction map for f and
≺. For any two minima M1 and M2 of w, if ξ(M1) = ξ(M2),
then M1 = M2.

To prove Lemma 39, we first present the Lemmas 40, 41
and 42 . In the following, for any non-leaf region X of a
binary partition hierarchy B of (G, w), we denote by uX the
building edge of X .

Lemma 40 Let≺ be an altitude ordering forw and let f be a
map from E into R such that f is one-side increasing for ≺.
Let ξ be the approximated extinction map for f and ≺. For
any region X of B≺ such that there is a minimum M of w

such that M ⊂ X, there is a child Y of X such that:

1. ξ(Y ) = ξ(X);
2. ξ(sibling(Y )) = f (uX ); and
3. there is a minimum of w included in Y .

Proof Let X be a region such that there is a minimum M of
w such that M ⊂ X . Then, there is a child Z of X such that
there is a minimum M such that M ⊆ Z . Let Z be a child
X such that there is a minimum M such that M ⊆ Z . We
consider two cases: (1) sibling(Z) is a leaf region of B≺;
and (2) sibling(Z) is a non-leaf region of B≺.

(1) If sibling(Z) is a leaf region ofB≺, then, byDefinition 9,
Z is a dominant region for f and≺ and sibling(Z) is not
a dominant region for f and≺. Hence, by Definition 10,
ξ(Z) = ξ(X) and ξ(sibling(Z)) = f (uX ).

(2) Let us now assume that sibling(Z) is a non-leaf region
ofB≺. Since X is not aminimumofw and since there is a
minimum ofw included in Z , we can conclude that there
is a minimum of w included in sibling(Z) as well. Let
� be the non-leaf ordering for f and ≺. As the non-leaf
ordering � is a total ordering on the non-leaf regions of
B≺, we have either Z � sibling(Z) or sibling(Z) �

Z . Then, by the definition of dominant regions (Defini-
tion 9),we have that either Z or sibling(Z) is a dominant
region for f and ≺. Let us assume that Z is a dominant
region for f and ≺. Then, by Definition 10, we have
ξ(Z) = ξ(X) and ξ(sibling(Z)) = f (uX ). Otherwise,
if sibling(Z) is a dominant region for f and≺, we have
ξ(sibling(Z)) = ξ(X) and ξ(Z) = f (uX ). Since both
Z and sibling(Z) include at least one minimum of w,
we may say that there is a child Y of X for which the
hypothesis 1, 2 and 3 hold true. ��

Lemma 41 Let≺ be an altitude ordering forw and let f be a
map from E into R such that f is one-side increasing for ≺.
Let ξ be the approximated extinction map for f and ≺. Let u
be a watershed-cut edge for ≺. Then, there is a minimum M
of w such that ξ(M) = f (u).

Proof As u is a watershed-cut edge for ≺, each child of Ru

includes at least one minimum of w. Then, there is a mini-
mum M of w such that M ⊂ Ru . By Lemma 40, there is a
child Y1 of Ru such that ξ(Y1) = f (u). If Y1 is a minimum
of w, then the property holds true. Otherwise, if Y1 is not a
minimumofw, it means that there is aminimumM ofw such
that M ⊂ Y1. By Lemma 40, there is a child Y2 of Y1 such
that ξ(Y2) = ξ(Y1) = f (u) and such that there is a minimum
ofw included in Y2. Again, if Y2 is a minimum ofw, then the
property holds true. Otherwise, we can apply this same rea-
soning indefinitely. We can define a sequence (Y1, . . . ,Yp)

of regions of B≺ where Yp is a minimum of w and such
that ξ(Yp) = . . . = ξ(Y1) = f (u) and Yi ⊂ Yi−1 for any i
in {2, . . . , p}. Therefore, there is a minimum Yp included
in Ru such that ξ(Yp) = f (u). ��
Lemma 42 Let ≺ be an altitude ordering for w and let f
be a map from E into R such that f is one-side increasing
for ≺. Let ξ be the approximated extinction map for f and
≺. Let X be a region of B≺ such that X contains at least
one minimum of w. There exists a minimum M ⊆ X such
that ξ(M) = ξ(X).

Proof If X is aminimumofw, then it is trivial. Otherwise, by
Lemma 40, there is a child Y1 of X such that ξ(Y1) = ξ(X)

and such that there is a minimum of w included in Y1.
If Y1 is a minimum of w, then the property holds true.
Otherwise, by Lemma 40, there is a child Y2 of Y1 such
that ξ(Y2) = ξ(Y1) = ξ(X) and such that there is aminimum
ofw included in Y2. Again, if Y2 is a minimum ofw, then the
property holds true. Otherwise, we can apply this same rea-
soning indefinitely. We can define a sequence (Y1, . . . ,Yp)

of regions of B≺ where Yp is a minimum of w and such
that ξ(Yp) = . . . = ξ(Y1) = ξ(X) and Yi ⊂ Yi−1 for any i
in {2, . . . , p}. Therefore, there is a minimum Yp included
in X such that ξ(Yp) = ξ(Y ). ��
Proof of Lemma 39 In order to prove that
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(1) for any twominimaM1 andM2 ofw, if ξ(M1) = ξ(M2),
then M1 = M2,

we will prove that

(2) for any two minima M1 and M2 of w, we have ξ(M1) �=
ξ(M2).

As w has n minima, it suffices to prove that, for any i in
{1, . . . , n}, there is a minimum M of w such that ξ(M) = i .

By Lemma 41, for any watershed-cut edge u forB≺, there
is a minimum M such that ξ(M) = f (u). By Lemma 37, for
any i in {1, . . . , n − 1}, there is a watershed-cut edge such
that f (u) = i . Then, for any i in {1, . . . , n − 1}, there is a
minimum M of w such that ξ(M) = i .

Since, f is one-side increasing for ≺, we have ∨{ f (v) |
Rv ∈ V } = {0, . . . , n − 1}. Then, we can conclude that
ξ(V ) = ∨{ f (v) | Rv ∈ V } + 1 = (n − 1) + 1 = n. By
Lemma 42, there is a minimum M of w such that ξ(M) =
ξ(V ) = n.

Therefore, for any i in {1, . . . , n}, there is a minimum
M of w such that ξ(M) = i . Since w has n minima, it
implies that the values ξ(M1) and ξ(M2) are distinct for any
pair (M1, M2) of distinct minima of w. Hence, for any two
minimaM1 andM2 ofw, if ξ(M1) = ξ(M2), thenM1 = M2.

��
Lemma 43 Let ≺ be an altitude ordering for w and let f
be a map from E into R such that f is one-side increasing
for ≺. Let ξ be the approximated extinction map for f and
≺. For any region R of B≺, we have ξ f (R) = ∨{ξ f (M) such
that M is a minimum of w included in R}.

To prove Lemma 43, we introduce Lemma 44.

Lemma 44 Let≺ be an altitude ordering forw and let f be a
map from E into R such that f is one-side increasing for ≺.
Let ξ be the approximated extinction map for f and ≺. Let
� be the supremum descendant map for f and ≺. Let X be
a region of B≺. Then, ξ(X) is greater than or equal to the
supremum descendant value �(X) of X.

Proof We consider the following cases: (1) X = V , (2) X �=
V and X is not a dominant region for f and≺; and (3) X is a
dominant region for f and≺. Let� be the non-leaf ordering
for f and ≺.

1. If X = V , then ξ(X) = ξ(V ) = �(V ) + 1 (first case of
Definition 10). Then, ξ(X) is clearly than �(X).

2. If X �= V and if X is not a dominant region for f and ≺,
then ξ(X) = f (u) (third case of Definition 10), where u
is the building edge of the parent of X . By the definition
of dominant regions, we consider two cases: (a) there is
no minimum M of w such that M ⊆ X ; or (b) X �
sibling(X).

(a) If there is nominimumM ofw such thatM ⊆ X , then
there is no descendant of X whose building edge is a
watershed-cut edge for≺. Hence, for any edge v such
that Rv ⊆ X , u is not a watershed-cut edge for≺ and,
since f is one-side increasing for≺, we have f (v) =
0 Definition 3 (statement 2). Therefore, �(X) = 0.
By Definition 3 (statement 1), we have { f (v) | v ∈
E≺} = {0, . . . , n − 1}. Hence, ξ(X), being equal to
f (u), is greater than or equal to �(X) = 0.

(b) If X � sibling(X), then, by the definition of non-
leaf ordering, we have:
(i) either �(X) < �(sibling(X)); or
(ii) �(X) = �(sibling(X)) and uX ≺ usibling(X).
Thus, we have �(X) ≤ �(sibling(X)). Since f is
one-side increasing for ≺, by the statement 3 of Def-
inition 3, there is a child Y of parent(X) such that
f (u) ≥ ∨{ f (v) | Rv ⊆ Y }. Hence, there is a child
Y of parent(X) such that f (u) ≥ �(Y ). Then, we
have f (u) ≥ �(X) or f (u) ≥ �(sibling(X)). In the
case where f (u) ≥ �(sibling(X)), this also implies
that f (u) ≥ �(X) because�(X) ≤ �(sibling(X)).
Therefore, ξ(X), being equal to f (u), is greater than
or equal to �(X).

3. If X is a dominant region for f and ≺, then ξ(X) =
ξ(parent(X)) (second case of Definition 10). We will
prove by induction that this lemma holds true for any
dominant region for f and ≺. In the base step, we con-
sider that parent(X) is V . In the inductive step, we show
that, if the property holds true for parent(X), then it also
holds true for X . Please note that, if parent(X) is not
a dominant region for f and ≺, the property holds for
parent(X) as proven in the previous case.

(a) Base step: if parent(X) is V , then ξ(X) = ξ(V ) =
�(V ) + 1 (first case of Definition 10). We can see
that�(V ) ≥ �(X) because, for any edge u such that
Ru ⊆ X , we also have Ru ⊆ V . Then, ξ(X), being
equal to �(V ) + 1, is greater than �(X).

(b) Inductive step: let us assume that ξ(parent(X)) ≥
�(parent(X)). Since ξ(X) = ξ(parent(X)), we
have ξ(X) ≥ �(parent(X)). We can affirm that, for
any edge v in E≺ such that Rv ⊆ X , we also have
Rv ⊆ parent(X). Hence, �(parent(X)) ≥ �(X).
Therefore, ξ(X), being equal to ξ(parent(X)), is
greater than or equal to �(X). ��

Proof of Lemma 43 We will prove that, for any region X
of B≺, we have ξ(X) = ∨{ξ f (M) such that M is a min-
imum of w included in X}. Let X be a region of B≺. We
consider two cases: (1) there is a minimum of w included in
X ; and (2) there is no minimum of w included in X .
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(1) If there is nominimumofw included in X , then X is not a
dominant region for f and≺. Then, ξ(X) = f (u) (third
condition of Definition 10), where u is the building edge
of parent(X). The edge u is not a watershed-cut edge
for ≺ because the child X of Ru does not include any
minimum ofw. Hence, since f is one-side increasing for
≺, by the statement 2 of Definition 3, we have f (u) =
0. Therefore, ξ(X), being equal to f (u), is also equal
to ∨{ξ(M) such that M is a minimum of w included
in R} = ∨{} = 0.

(2) Let us assume that there is at least one minimum of w

included in X . If X is a minimum of w, then ξ(X) =
∨{ξ f (M) such that M is a minimum of w included
in X} = ∨{ξ f (X)}.
In order to prove the casewhere X is not aminimumofw,
wewill first demonstrate that ξ(X) ≥ ∨{ξ(Y ) | Y ⊆ X}.
To prove that ξ(X) ≥ ∨{ξ(Y ) | Y ⊆ X}, it is enough
to demonstrate that, for any region Z of B≺, we have
ξ(Z) ≥ ∨{ξ(Y ) | Y is a child of Z}. Let Z be a region
of B≺. If Z is a leaf region of B≺, then ξ(Z) ≥ ∨{ξ(Y ) |
Y is a child of Z} = ∨{} = 0 because, by Lemma 38,
ξ(Z) is in {0, . . . , n}. Let us now assume that Z is not
a leaf region of B≺ and let Y be a child of Z . If Y is a
dominant region for f and ≺, then ξ(Y ) = ξ(Z) and,
consequently, ξ(Z) ≥ ξ(Y ). Otherwise, if Y is not a
dominant region for f and ≺, then ξ(Y ) = f (v), where
v is the building edge of Z . By Lemma 44, ξ(Z) ≥ �(Z)

and, consequently, ξ(Z) ≥ f (u). Hence, ξ(Z) ≥ ξ(Y ).
We can now prove that ξ(X) = ∨{ξ f (M) such that M is
a minimum of w included in X} in the case where X is
not a minimum ofw. By Lemma 42, there is a minimum
M of w such that M ⊂ X and such that ξ(M) = ξ(X).
Let M be the minimum of w such that ξ(M) = ξ(X).
Since ξ(X) ≥ ∨{ξ(Y ) | Y ⊆ X}, we can say that
ξ(X) = ∨{ξ f (M ′) such that M ′ is a minimum of w

included in X}. ��

E Proof of Lemma 12

Lemma 12 Let ≺ be an altitude ordering for w and let f be
a map from E into R such that f is one-side increasing for
B≺. Then, for any u in E≺, we have:

f (u) = min{ξ(R) such that R is a child of Ru}.

Proof Let u be an edge in E≺. By the definition of dominant
regions, we have that at most one child of Ru is a dominant
region for f and≺. Therefore, there is a child of Ru which is
not a dominant region for f and ≺. Let X be the child of Ru

which is not a dominant region for f and ≺. Then, ξ(X) =
f (u) (by the third condition of Definition 10). If sibling(X)

is not a dominant region for f and ≺, then ξ(sibling(X)) =

f (u) as well and, consequently, f (u) = min{ξ(R) such
that R is a child of Ru} = min{ f (u), f (u)}. Otherwise,
let us assume that sibling(X) is a dominant region for f
and ≺. Then, ξ(sibling(X)) = ξ(Ru). By Lemma 44, we
can infer that ξ(Ru) ≥ f (u). Therefore, min{ξ(Y ) such
that Y is a child of Ru} = min{ξ f (X), ξ(sibling(X))} =
min{ f (u), ξ(Ru)} = f (u). ��

F Proof of Lemma 4

Lemma 4 Let H be a hierarchy on V . The hierarchy H is
a hierarchical watershed of (G, w) if and only if there is
an altitude ordering ≺ for w such that Φ(H) is one-side
increasing for ≺.

Proof We prove the forward and backward implications of
Lemma 4 in Lemmas 45 and 46, respectively. ��
Lemma 45 LetH be a hierarchy on V . If the hierarchyH is
a hierarchical watershed of (G, w), then there exists an alti-
tude ordering≺ forw such thatΦ(H) is one-side increasing
for ≺.

Proof By Lemma 16, there is a sequence of minima S of w

such thatH is the hierarchy induced by ≺ and S. In order to
prove thatΦ(H) is one-side increasing for≺, byDefinition 3,
we will prove that the following three statements hold true:

1. {Φ(H)(e) | e ∈ E≺} = {0, . . . , n − 1};
3. for any edge u in E≺, Φ(H)(u) > 0 if and only if u is a

watershed-cut edge for ≺; and
4. for any edge u in E≺, there exists a child R of Ru such

that Φ(H)(u) ≥ ∨{Φ(H)(v) such that Rv is included
in R}, where ∨{} = 0.

In the remainder of this proof, let ρ and ε be, respectively,
the persistence map and the extinction map for ≺ and S.

1. By Lemma 20, we have {Φ(H)(e) | e ∈ E≺} = {ρ(e) |
e ∈ E≺}. Then, as Lemma 19 states that the range of ρ is
{0, . . . , n−1}, we can conclude that {Φ(H)(e) | e ∈ E≺}
is the set {0, . . . , n − 1}.

2. Letu be a building edge for≺.Given the followingpropo-
sitions:

(a) u is a watershed-cut edge
(b) Φ(H)(u) > 0

we will prove that (a) implies (b), and that not (b) implies
not (a).
If u is a watershed-cut edge for ≺, then both children
of Ru contain at least one minimum of w. Therefore, the
extinction value of both children of Ru is nonzero and,
consequently, the persistence value ρ(u) of u is nonzero.
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Moreover, byLemma20, in this casewehaveΦ(H)(e) =
ρ(e) for any building edge e for ≺. Thus, Φ(H)(u) is
nonzero.
On the other hand, if u is not a watershed-cut edge for
≺, then there is a child X of Ru which does not contain
any minimum of w. Therefore, the extinction value of
X is equal to 0: ε(X) = 0. Since, by definition ρ(u) =
min{ε(X), ε(sibling(X))} and the minimal extinction
value is zero,we can say thatρ(u) = 0.Again, byLemma
20, in this casewe haveΦ(H)(e) = ρ(e) for any building
edge e for ≺ and thus, Φ(H)(u) is equal to 0.

3. Let u be a building edge for ≺. The persistence value
of u is the extinction value of a child X of Ru . Let X be a
child of Ru such that ρ(u), the persistence value of u, is
equal to ε(X), the extinction value of X . By Lemma 17,
for any region Y of B≺ such that Y ⊆ X , we have
ε(Y ) ≤ ε(X) and, as X ⊆ Ru , ε(Y ) ≤ ε(Ru). Let v be
the building edge of a region Z ⊆ X . Then, we can say
that the extinction value of both children of Z is less than
or equal to the extinction value ε(X). Hence, ρ(v) ≤
ε(X) and, then, ρ(v) ≤ ρ(u). By Lemma 20, we can
conclude thatΦ(H)(v) ≤ Φ(H)(u). Hence,Φ(H)(u) ≥
∨{Φ(H)(v) such that Rv is included in X}. ��

Lemma 46 LetH be ahierarchy on V and let≺be analtitude
ordering such that Φ(H) is one-side increasing for ≺. Then,
the hierarchy H is a hierarchical watershed of (G, w).

Proof Let ξ be the approximated extinction map for Φ(H)

and ≺. By Lemma 12, for any edge in E≺, we have
Φ(H)(u) = min{ξ(R) such that R is a child of Ru}. By
Lemma 11, the map ξ is an extinction map for ≺. Then, by
the backward implication of Property 7, the hierarchyH is a
hierarchical watershed of (G, w). ��

G Proof of Property 14

Property 14 Let H be a hierarchy on V . The hierarchy H is
a flattened hierarchical watershed of (G, w) if and only if
there is an altitude ordering ≺ for w such that:

1. (V , E≺) is a MST of (G, Φ(H)); and
2. for any edge u in E≺, if u is not a watershed-cut edge

for ≺, then Φ(H)(u) = 0; and
3. for any edge u in E≺, there exists a child R of Ru such

that Φ(H)(u) ≥ ∨{Φ(H)(v) such that Rv is included
in R}, where ∨{} = 0.

To prove Property 14, we establish the following lemma.

Lemma 47 Let ≺ be an altitude ordering for w and letH be
a hierarchy on V such that Φ(H) is one-side increasing for
≺. Then, (V , E≺) is a MST of (G, Φ(H)).

Proof Let α denote the sum of the weight of the edges in
E≺ in the map Φ(H): α = ∑

e∈E≺ Φ(H)(e). As Φ(H)

is one-side increasing for ≺, by the condition 1 of Defi-
nition 3, we can affirm that α = 0 + 1 + . . . + n − 1.
In order to prove that (V , E≺) is a MST of (G, Φ(H)),
we will prove that, for any MST G ′ of (G, Φ(H)), the
sum of the weight of the edges in G ′ is greater than or
equal to α. Let G ′ be a MST of (G, Φ(H)). As G ′ is a
MST of (G, Φ(H)), by the condition 1 of Lemma 21, we
have that G and G ′ have the same quasi-flat zones hierar-
chy:QFZ(G, Φ(H)) = QFZ(G ′, Φ(H)). As Φ(H) is the
saliency map of H, we have that H = QFZ(G, Φ(H)).
Therefore, H = QFZ(G ′, Φ(H)). Let i be a value in
{1, . . . , n − 1}. By the condition 1 of Definition 3, we can
say that {1, . . . , n − 1} is a subset of the range of Φ(H).
Therefore, H is composed of at least n distinct partitions.
Let H be the sequence (P0, . . . ,Pn−1, . . .). Since the parti-
tions Pi and Pi−1 are distinct, then there exists a region in
Pi which is not in Pi−1. Therefore, there is a region X of
Pi which is composed of a several regions {R1, R2, . . .} of
Pi−1. Then, there are two adjacent vertices x and y such that
x and y are in distinct regions in {R1, R2, . . .}. Let x and
y be two adjacent vertices such that x and y are in distinct
regions in {R1, R2, . . .}. Hence, the lowest j such that x and
y belong to the same region of P j is i . Thus, there exists an
edge u = {x, y} in E≺ such that Φ(H)(u) = i . Hence, the
sum of the weight of the edges ofG ′ is at least 1+ . . .+n−1,
which is equal to α. Therefore, the graph (V , E≺) is a MST
of (G, Φ(H)). ��

The reader can observe that the statement 3 of the above
property is precisely the statement 3 of the definition of one-
side increasing maps (Definition 3), and that the statement
2 is an implication of the statement 2 of Definition 3. The
statement 1 of the above property corresponds to a property
of one-side increasing maps established in Lemma 47.

In order to prove Property 14, we establish some auxiliary
lemmas on MSTs and saliency maps.

In the following, we state a well-known property of span-
ning trees in Lemma 48.

Let x and y be two vertices in V and let π = (x0, . . . , xp)
be a path from x to y. For any edge u = {xi−1, xi } for i in
{1, . . . , p}, we say that u is in π or that π includes u.

Lemma 48 Let G ′ be a spanning tree of a weighted graph
(G, f ). Let u = {x, y} be an edge in E\E(G ′) and let π be
the path from x to y (resp. y to x) in G ′. The graph G ′ is a
MST of (G, f ) if and only if f (u) ≥ f (v) for any edge v in
π .

The following lemma characterizes MSTs of saliency
maps.

Lemma 49 Let f be the saliency map of a hierarchy on V
and let G ′ be a spanning tree of (G, f ). Let u = {x, y} be
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an edge in E\E(G ′) and let π be the path from x to y (resp.
y to x) in G ′. Let v be an edge of greatest weight in π . The
graph G ′ is a MST of (G, f ) if and only if f (u) = f (v).

Proof We will first prove the forward implication of this
lemma. LetG ′ be aMST of (G, Φ(H)). Then, by Lemma 48,
for any edge e in the path π , we have Φ(H)(e) ≤ Φ(H(u).
Hence,Φ(H)(v) ≤ Φ(H(u). Let us assume thatΦ(H)(v) <

Φ(H)(u). Then, given λ = Φ(H)(v), in the λ-level set of
(G, Φ(H)), the vertices x and y are connected,which implies
that, by the definition of saliency maps, Φ(H(u) is less or
equal toΦ(H)(v), which contradicts our assumption. Hence,
Φ(H)(v) = Φ(H(u).

Now, let us assume that Φ(H)(u) is equal to the greatest
weight among the edges in π . Then, for any edge e in the
path π , we have Φ(H)(e) ≤ Φ(H(u). Then, by Lemma 48,
G ′ is a MST of (G, Φ(H)). ��
Lemma 50 Let H′ be a hierarchy on V and let H be a flat-
tening ofH′. Let u and v be two distinct edges in E such that
Φ(H)(u) < Φ(H)(v). Then, Φ(H′)(u) < Φ(H′)(v).

Proof Let u = {x1, y1} and v = {x2, y2}. As Φ(H)(u) <

Φ(H)(v), there is a partition P of H such that x1 and y1
belong to the same region of P and we such that x2 and y2
do not belong to the same region of P. As P is a partition of
H′, there is a partition in H′ such that x1 and y1 belong to
the same region of this partition but x2 and y2 do not. Then,
Φ(H′)(u) < Φ(H′)(v). ��
Lemma 51 Let H′ be a hierarchy on V and let H be a flat-
tening ofH′. Let u and v be two distinct edges in E such that
Φ(H′)(u) ≤ Φ(H′)(v). Then, Φ(H)(u) ≤ Φ(H)(v).

Proof Let u = {x1, y1} and v = {x2, y2}. As Φ(H′)(u) ≤
Φ(H′)(v), then for any partition P of H′, if x2 and y2 are in
the same region of P, then x1 and y1 are in the same region
of P as well. As any partition of H is also a partition of H′,
we may say that for any partition P ofH, if x2 and y2 are in
the same region of P, then x1 and y1 are in the same region
of P. Hence, Φ(H)(u) ≤ Φ(H)(v). ��

The forward and backward implications of Property 14
are proven in Lemmas 52 and 53, respectively.

Lemma 52 Let H be a flattened hierarchical watershed
of (G, w). Then, there is an altitude ordering ≺ for w such
that:

1. (V , E≺) is a MST of (G, Φ(H)); and
2. for any building edge u for ≺, if u is not a watershed-cut

edge for ≺, then Φ(H)(u) = 0; and
3. for any building edge u for ≺, there exists a child R

of Ru such that Φ(H)(u) ≥ ∨{Φ(H)(v) such that Rv is
included in R}, where ∨{} = 0.

Proof As H is a flattened hierarchical watershed of (G, w),
by Definition 13, there is a hierarchical watershed Hw of
(G, w) such that H is a flattening of Hw. By Lemma 4,
there is an altitude ordering ≺ for w such that Φ(Hw) is
one-side increasing for ≺. Let ≺ be the altitude ordering
for w such that Φ(Hw) is one-side increasing for ≺. By
Lemma 22, (V , E≺) is aMST of (G, Φ(Hw)). LetG ′ denote
the graph (V , E≺). By Lemma 21, Hw is the hierarchy
QFZ(G ′, Φ(Hw)). Then, any partition ofH is a partition of
QFZ(G ′, Φ(Hw)). By the definition of saliency maps, we
can affirm that any partition ofQFZ(G, Φ(H)) is a partition
of QFZ(G ′, Φ(Hw)).

In the following, we will prove that the three statements
hold true for ≺.

1. We will first prove that G ′ is a MST of (G, Φ(H)).
By contradiction, let us assume that G ′ is not a MST
of (G, Φ(H)). Then, by Lemma 49, there is an edge
u = {x, y} such that u is in E\E(G ′) and such that
Φ(H)(u) is different from the greatest weight among the
edges in the path π from x to y in (G ′, Φ(H)). Let v

be an edge of greatest weight in π . As H is equal to
QFZ(G, Φ(H)), we may affirm that Φ(H)(u) is lower
than Φ(H)(v) because, otherwise, the vertices x and y
would be connected in the λ-level set of (G, Φ(H)) for
a λ lower than Φ(H)(u), which contradicts the fact that
Φ(H) is a saliency map. Hence, we have Φ(H)(u) <

Φ(H)(v). Then, by Lemma 51, as H is a flattening of
Hw, we may conclude that Φ(Hw)(u) < Φ(Hw)(v).
Hence, the weight Φ(Hw)(u) is different from the great-
est weight among the edges in the path π . Therefore, by
Lemma 49, G ′ is not a MST of (G, Φ(Hw)), which con-
tradicts our assumption. Hence, wemay conclude thatG ′
is a MST of (G, Φ(H)).

2. We will now prove the second condition for H to be
a flattened hierarchical watershed of (G, w). As Hw is
one-side increasing for ≺, by the second condition of
Definition 3, for any watershed-cut edge u = {x, y} for
≺, we have Φ(Hw)(u) = 0. Then, for any partition P of
Hw, x and y belong to the same region of P. Therefore,
as any partition of H is a partition of Hw, we can say
that, for any partition P ofH, x and y belong to the same
region of P. Hence, the lowest λ such that x and y are the
same partition Pλ ofH is zero. Hence, Φ(H)(u) = 0.

3. We will now prove the third condition for H to be a
flattened hierarchical watershed of (G, w). By the third
statement of Definition 3, we have that, for any edge u in
E≺, there exists a child R of Ru such that Φ(Hw)(u) ≥
∨{Φ(Hw)(v) | Rv ⊆ R}. Let u be an edge in E≺
and let R be the child of Ru such that Φ(Hw)(u) ≥
∨{Φ(Hw)(v) | Rv ⊆ R}. Let v be an edge in E≺ such
that Rv ⊆ R. Then, Φ(Hw)(u) ≥ Φ(Hw)(v). Hence, by
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Lemma 51, Φ(H)(u) ≥ Φ(H)(v). Therefore, we may
conclude that Φ(H)(u) ≥ ∨{Φ(H)(v) | Rv ⊆ R}. ��

The following lemma corresponds to the backward impli-
cation of Property 14.

Lemma 53 LetH be ahierarchy on V and let≺be analtitude
ordering for w such that:

1. (V , E≺) is a MST of (G, Φ(H)); and
2. for any edge u in E≺, if u is not a watershed-cut edge

for ≺, then Φ(H)(u) = 0; and
3. for any edge u in E≺, there exists a child R of Ru such

that Φ(H)(u) ≥ ∨{Φ(H)(v) such that Rv is included
in R}, where ∨{} = 0.

Then, H is a flattened hierarchical watershed of (G, w).

In order to prove Lemma 53, we first state two auxiliary
lemmas. From Property 10 of [6], we can deduce the follow-
ing lemma linking binary partition hierarchies and MSTs.

Lemma 54 Let B be a binary partition hierarchy of (G, w).
The graph (V , E≺) is a MST of (G, w).

By Property 12 of [6] linking hierarchical watersheds and
hierarchies induced by an altitude ordering and a sequence
of minima, and by Lemma 21, we infer the following lemma.

Lemma 55 Let G ′ be aMST of (G, w) and letH be a hierar-
chical watershed of (G ′, w). Then, H is also a hierarchical
watershed of (G, w).

Proof of Lemma 53 LetH be a hierarchy on V such that there
is an altitude ordering ≺ for w such that:

1. (V , E≺) is a MST of (G, Φ(H)); and
2. for edge u in E≺, if u is not a watershed-cut edge for ≺,

then Φ(H)(u) = 0; and
3. for edge u in E≺, there exists a child R of Ru such

that Φ(H)(u) ≥ ∨{Φ(H)(v) such that Rv is included
in R}, where ∨{} = 0.

We will prove thatH is a flattened hierarchical watershed
of (G, w). To this end, we will prove that there is a hierarchi-
cal watershed Hw of (G, w) such that any partition of H is
also a partition ofHw. Let G ′ denote the graph (V , E≺). By
Lemma 54,G ′ is aMST of (G, w). Moreover, by Lemma 55,
given a hierarchical watershed Hw of a MST of (G, w), we
can say that Hw is also a hierarchical watershed of (G, w).
Hence, we can simply prove that there is a hierarchical water-
shed Hw of (G ′, w) such that any partition of H is also a
partition ofHw.

To define the hierarchyHw, we first define a map f from
E≺ into R such that f is one-side increasing for ≺. Since

G ′ is a tree, by the definition of saliency maps, we can say
that f is the saliency map of the hierarchyQFZ(G ′, f ). By
Lemma 4, as f is one-side increasing for ≺, we may say that
QFZ(G ′, f ) is a hierarchical watershed of (G ′, w).

In themap f , the edges which are not watershed-cut edges
for ≺ are assigned to zero, and the watershed-cut edges for
≺ are ranked according to their weights in w and in Φ(H).
Let ≺2 be a total ordering on the set {u is a watershed-cut
edge for≺} such that, for any two watershed-cut edges u and
v for ≺, we have u ≺2 v if and only if Φ(H)(u) < Φ(H)(v)

or if Φ(H)(u) = Φ(H)(v) and u ≺ v. The map f is defined
as follows:

f (u) =

⎧
⎪⎨

⎪⎩

0 if u is not a watershed-cut

edge for ≺
rank of u for ≺2 otherwise

(2)

We first demonstrate that f is one-side increasing for ≺.

1. By the definition of f , as there are n − 1 watershed-cut
edges for ≺, we can say that, for any i in {1, . . . , n − 1},
there is a watershed-cut edge u for≺ such that the rank of
u for ≺2 is i and, consequently, f (u) = i . On the other
hand, as w has at least one minimum, there is at least
one edge e in E≺ such that e is not a watershed-cut edge
for ≺ and such that f (e) = 0. Hence, we have { f (e) |
u ∈ E≺} = {0, . . . , n− 1}. Therefore, the statement 1 of
Definition 3 holds true for f .

2. For any edge u, by the definition of f , f (u) is nonzero
if and only if u is not a watershed-cut edge for ≺, so the
statement 2 of Definition 3 holds true for f .

3. Let u be a building edge for≺. If u is not a watershed-cut
edge for ≺, then there is a child X of Ru such that there
is no minimum of w included in X . Hence, none of the
building edges of the descendants of X is a watershed-cut
edge for ≺. By the definition of f , we have f (u) = 0
and, for any edge v such that Rv ⊆ X , we have f (v) = 0.
Hence, f (u) ≥ ∨{ f (v) such that Rv is included in X}.
Otherwise, let us assume that u is a watershed-cut edge
for ≺. Then, there is at least one minimum of w included
in each child of Ru . By the hypothesis 3, there is a child
X of Ru such that Φ(H)(u) ≥ ∨{Φ(H)(v) such that Rv

is included in X}. Let X be the child of Ru such that
Φ(H)(u) ≥ ∨{Φ(H)(v) such that Rv is included in X}.
Let e be a building edge for ≺ such that Re ⊆ X . If
e is not a watershed-cut edge for ≺, then f (e) = 0
and, consequently, f (u) > f (e). Otherwise, if e is a
watershed-cut edge for ≺, then we have Φ(H)(u) ≥
Φ(H)(e) and e ≺ u, which implies that e ≺2 u. Conse-
quently, by the definition of f , we have f (u) > f (e).
Therefore, f (u) ≥ ∨{ f (v) such that Rv is included
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in X}. Then, the third condition of Definition 3 holds true
for f .

Hence, f is one-side increasing for ≺ and, as stated pre-
viously,QFZ(G ′, f ) is a hierarchical watershed of (G ′, w)

(resp. (G, w)). Now, we only need to prove that any partition
ofH is a partition of QFZ(G ′, f ). By the hypothesis 1, G ′
is a MST of (G, Φ(H)). Then, by Lemma 21, we can say
that H is the QFZ hierarchy of (G ′, Φ(H)). We will prove
that any partition of QFZ(G ′, Φ(H)) is also a partition of
QFZ(G ′, f ).

Let the range of Φ(H) be the set {0, . . . , �}: {Φ(H)(u) |
u ∈ E≺} = {0, . . . , �}. Let λ be a value in {0, . . . , �}.
Let G ′

λ,Φ(H)
be the λ-level set of (G ′, Φ(H)). Let α be

the greatest value in { f (u) | u ∈ E(G ′
λ,Φ(H)

)}. We will
prove that the α-level set of (G ′, f ) is equal to the λ-level
set of (G ′, Φ(H)). Since α is the greatest value in the set
{ f (u) | u ∈ E(G ′

λ,Φ(H)
)}, we can see that any edge v in the

λ-level set of (G ′, Φ(H)) also belongs to the α-level set of
(G ′, f ). Now, we also need to prove that there is no edge u
in the α-level set of (G ′, f ) such that u is not in the λ-level
set of (G ′, Φ(H)).

Let u be an edge which is not in the λ-level set of
(G ′, Φ(H)). Then, Φ(H)(u) > λ and, for any edge v in the
λ-level set of (G ′, Φ(H)), we have Φ(H)(u) > Φ(H)(v).
Since the minimum value of λ is zero, we can say that
Φ(H)(u) > 0 and, by the hypothesis 2, u is a watershed-cut
edge for≺. Let v be an edge in the λ-level set of (G ′, Φ(H)).
Since Φ(H)(u) > Φ(H)(v), if v is a watershed-cut edge for
≺, then v ≺2 u and f (u) > f (v). Otherwise, if v is not a
watershed-cut edge for ≺, by the definition of f , we have
f (v) = 0 and f (u) > f (v). Thus, for any edge v in the
λ-level set of (G ′, Φ(H)), we have f (u) > f (v) and, there-
fore, f (u) > α. Then, u is not in the α-level set of (G ′, f ).

Therefore, we can conclude that the α-level set of (G ′, f )
is equal to the λ-level set of (G ′, Φ(H)). As the partitions
of H are given by the set of connected components of the
level sets of (G ′, Φ(H)), we can affirm that any partition
of H is also a partition of QFZ(G ′, f ). Therefore, there
is a hierarchical watershed Hw = QFZ(G ′, f ) of (G ′, w)

(resp. (G, w)) such that anypartition ofH is also a partition of
Hw. Then,H is a flattened hierarchical watershed of (G ′, w)

(resp. (G, w)). ��
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