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Abstract
Wepropose a novel two-stagemethod for the classification of hyperspectral images. Pixel-wise classifiers, such as the classical
support vector machine (SVM), consider spectral information only. As spatial information is not utilized, the classification
results are not optimal and the classified image may appear noisy. Many existing methods, such as morphological profiles,
superpixel segmentation, and composite kernels, exploit the spatial information. In this paper, we propose a two-stage approach
inspired by image denoising and segmentation to incorporate the spatial information. In the first stage, SVMs are used to
estimate the class probability for each pixel. In the second stage, a convex variant of the Mumford–Shah model is applied
to each probability map to denoise and segment the image into different classes. Our proposed method effectively utilizes
both spectral and spatial information of the data sets and is fast as only convex minimization is needed in addition to the
SVMs. Experimental results on three widely utilized real hyperspectral data sets indicate that our method is very competitive
in accuracy, timing, and the number of parameters when compared with current state-of-the-art methods, especially when the
inter-class spectra are similar or the percentage of training pixels is reasonably high.

Keywords Hyperspectral image classification · Image segmentation · Image denoising · Mumford–Shah model ·
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1 Introduction

Remotely sensed hyperspectral images (HSI) are images
taken from drones, airplanes or satellites that record a wide
range of electromagnetic spectrum, typically more than 100
spectral bands from visible to near-infrared wavelengths.
Since different materials reflect different spectral signatures,
one can identify the materials at each pixel of the image by
examining its spectral signatures. HSI is used in many appli-
cations, including agriculture [1,2], disaster relief [3,4], food
safety [5,6], military [7,8] and mineralogy [9].

One of the most important problems in hyperspectral
data exploitation is HSI classification. It has been an active
research topic in past decades [10,11]. The pixels in the
hyperspectral image are often labeled manually by experts
based on careful review of the spectral signatures and investi-
gation of the scene. Given these ground-truth labels of some
pixels (also called “training pixels”), the objective of HSI
classification is to assign labels to part or all of the remaining
pixels (the “testing pixels”) based on their spectral signatures
and their locations.
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Numerous methods have been developed for HSI classi-
fication. Among these, machine learning is a well-studied
approach. It includes multinomial logistic regression [12–
14], artificial neural networks [15–19], and support vector
machines (SVMs) [20–22]. Since our method is partly based
on SVMs, we will discuss it in more detail here. Early
SVMclassificationmethods [23,24] performpixel-wise clas-
sification that utilizes spectral information but not spatial
dependencies. Numerous spectral–spatial SVM classifica-
tion methods have been introduced since then. They show
better performance when compared to the pixel-wise SVM
classifiers. Here we discuss some of them.

SVMs with composite kernels [25] use composite kernels
that are weighted summations of spectral kernels and spatial
kernels. The spatial information is extracted by taking the
average of the spectra in a fixedwindowaround each pixel. To
further utilize the spatial information, the method in [26] first
applies superpixel segmentation to break the hyperspectral
image into small regions with flexible shapes and sizes. Then
it extracts the spatial information based on the segmentation
and finally performs the classification using SVMswith mul-
tiple kernels. In [27], a pixel-wise SVM classification is first
used to produce classification maps and then a partitional
clustering is applied to obtain a segmentation of the hyper-
spectral image. Then a majority vote scheme is used in each
cluster and finally a filter is applied to denoise the result. The
method in [28] first produces pixel-wise classification maps
using SVMs and then applies edge-preserving filtering to the
classification maps. In addition to these methods, techniques
based on Markov random fields [29], segmentation [26,27,
30,31] and morphological profiles [31,32] have also been
incorporated into SVMs to exploit the spatial information.

Besides machine learning approaches, another powerful
approach is sparse representation [33]. It is based on the
observation that spectral signatures within the same class
usually lie in a low-dimensional subspace; therefore test
data can be represented by a few atoms in a training dic-
tionary. A joint sparse representation method is introduced
in [34] to make use of the spatial homogeneity of neighbor-
ing pixels. In particular, each testing pixel and its neighboring
pixels inside a fixed window are jointly sparsely represented.
In [35], a kernel-based sparse algorithm is proposed which
incorporates the kernel functions into the joint sparse repre-
sentation method. It uses a fixed size local region to extract
the spatial information. Approaches with more flexible local
regions were proposed in [36] and [37]. They incorporate a
multiscale scheme and superpixel segmentation into the joint
sparse representationmethod, respectively.Multiple-feature-
based adaptive sparse representation was proposed in [38].
It first extracts various spectral and spatial features and then
the adaptive sparse representations of the features are com-
puted. The method in [39] first estimates the pixel-wise class
probabilities using SVMs and then applies sparse represen-

Fig. 1 An example of classification result using pixel-wise SVM clas-
sifiers

tation to obtain superpixel-wise class probabilities in which
spatial information is utilized and the final result is obtained
by combining both probabilities.

A pixel-wise classifier such as SVM considers only spec-
tral information. It generates results with decent accuracy
but would appear “noisy” as spatial information is not used,
see [23] and also Fig. 1. Segmentation techniques have been
used to incorporate the spatial information, see [26,27,30,
31]. Indeed, image segmentation is a well-studied subject
in image processing and numerous effective segmentation
methods for noisy images have been introduced [40–45].
Among them, a variationalmethod called theMumford–Shah
model [40,41] is one of the most important and successful
image segmentation techniques. In this paper, we propose a
simple but effective two-stage classification method inspired
by our previous methods for image segmentation [43–45]
which are based on the Mumford–Shah model. In the first
stage, we apply a pixel-wise SVM method that exploits the
spectral information to estimate a pixel-wise probability map
for each class. In the second stage, we apply a convex vari-
ant of the Mumford–Shah model to denoise the maps and
exploit the spatial information so as to segment the image into
different classes accurately. Traditional methods like that in
[27] apply a pixel-wise classification to obtain an initializa-
tion. Then they use a segmentation algorithm followed by a
denoising algorithm to do the classification. In comparison,
in our proposed method, since our convex Mumford–Shah
model performs denoising and segmentation simultaneously,
we just need one step here. Besides, because of the superior
segmentation accuracy of our convexMumford–Shahmodel,
our method has much better classification results.

Our method utilizes spectral information in the first stage
and spatial information in the second stage. Experiments
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show that our method generates very accurate results when
compared to the state-of-the-art methods on real HSI data
sets, especially when the inter-class spectra are similar. This
is because our method can effectively exploit the spatial
information even when the other methods cannot distin-
guish between the spectra. Moreover, our method has amuch
smaller number of parameters and shorter computation time
than the state-of-the-art methods.

This paper is organized as follows. In Sect. 2, sup-
port vector machines and variational methods for denoising
and segmentation are reviewed. In Sect. 3, our proposed
two-stage classification method is presented. In Sect. 4,
experimental results are presented to illustrate the effective-
ness of our method. Sect. 5 concludes the paper.

2 Support Vector Machines and Variational
Methods

2.1 Review of �-Support Vector Classifiers

Support vector machines (SVMs) have been used success-
fully in pattern recognition [46], object detection [47,48], and
financial time series forecasting [49,50] etc. This approach
also has superior performance in hyperspectral classification,
especially when the dimensionality of the data is high and
the number of training data is limited [23,24]. In this subsec-
tion, we review the ν-support vector classifier (ν-SVC) [22]
which will be used in the first stage of our method.

Consider for simplicity a supervised binary classification
problem. We are given m training data {xi }mi=1 in R

d1 , and
each data is associated with a binary label yi ∈ {−1,+1}
for i = 1, 2, . . . ,m. In the training phase of SVM, one aims
to find a hyperplane to separate the two classes of labels
and maximize the distance between the hyperplane and the
closest training data, which is called the support vector. In
the kernel SVM, the data is mapped to a higher-dimensional
feature space by a feature map φ : Rd1 → R

d2 in order to
improve the separability between the two classes.

The ν-SVC is an advanced support vector classifier which
enables the user to specify themaximum training error before
the training phase. Its formulation is given by

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min
w,b,ξ ,ρ

1
2‖w‖22 − νρ + 1

m

m∑

i=1
ξi

subject to:
yi (w · φ(xi ) + b) ≥ ρ − ξi , i = 1, 2, . . . ,m,

ξi ≥ 0, i = 1, 2, . . . ,m,

ρ ≥ 0,

(1)

where w ∈ R
d2 and b ∈ R are the normal vector and the

bias of the hyperplane, respectively, ξi ’s are the slack vari-
ables which allow training errors, and ρ/‖w‖2 is the distance

between the hyperplane and the support vector. The param-
eter ν ∈ (0, 1] is shown to be an upper bound on the fraction
of training errors [22].

The optimization problem (1) can be solved through its
Lagrangian dual

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
α

− 1
2

m∑

i, j=1
αiα j yi y j K (xi , x j )

subject to: 0 ≤ αi ≤ 1
m , i = 1, 2, . . . ,m,

m∑

i=1
αi yi = 0,

m∑

i=1
αi ≥ ν.

(2)

Its optimal Lagrange multipliers can be calculated using
quadratic programming methods [51]. After obtaining them,
the parameters of the optimal hyperplane can be represented
by the Lagrange multipliers and the training data. The deci-
sion function for a test pixel x is given by

g(x) = sgn( f (x)),

where f (x) =
m∑

i=1

αi yi K (xi , x) + b.
(3)

Mercer’s Theorem [51, p. 423-424] states that a symmet-
ric function K can be represented as an inner product of
some feature maps φ, i.e., K (x, y) = φ(x) ·φ(y) for all x, y,
if and only if K is positive semi-definite. In that case, the
feature map φ need not be known in order to perform the
training and classification, but only the kernel function K is
required. Examples of K satisfying the condition inMercer’s
Theorem include: K (xi , x j ) = exp(−‖xi −x j‖2/(2σ 2)) and
K (xi , x j ) = (xi · x j + 1)p.

2.2 Review of Variational Methods for Denoising
and Segmentation

Let Ω = {1, . . . , N1}×{1, . . . , N2} be the index set of pixel
locations of an image, v be the noisy image and u be the
restored image. One famous variational method to denoise
imageswithGaussian noise is the total variation (TV)method
[52]. It involves an optimization model with a TV regulariza-
tion termwhich corresponds to the function ‖∇·‖1. However,
it is known that it reproduces imageswith staircase effect, i.e.,
with piecewise constant regions. One approach to improve it
is to add a higher-order term, see, e.g., [53–57]. In [56], the
authors considered minimizing

H(u) = 1

2
‖v − u‖22 + α1‖∇u‖1 + α2

2
‖∇u‖22. (4)

Here the first term is the 	2 data-fitting term that caters for
Gaussian noise. The second term is the TV term while the
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third term is the extra higher-order term added to introduce
smoothness to the restored imageu. By setting the parameters
{αi }2i=1 appropriately, one can control the trade-off between
a piece-wise constant and a piece-wise smooth u.

In [43–45], the authors derived the same minimizational
function (4) as a convex approximation of the Mumford–
Shad model for segmentation. In [43–45], (4) is first applied
to obtain a smooth denoised image and then thresholding
is applied to the restored image to obtain the segmenta-
tion. The method is successful for segmenting greyscale and
color images corrupted by different noises (Gaussian, Pois-
son, Gamma), information loss and/or blur. We note that the
denoising and segmentation are intimately related. Indeed,
Cai and Steidl showed that the famous Chan–Vese segmen-
tation model [58] can be obtained by thresholding the TV
denoising model with some properly chosen regularization
parameter, see [59] for more details.

The two-stage approach for denoising has also been
applied to impulse noise removal, see [60]. In the first stage a
standard impulse noise detector, the Adaptive Median Filter
[61], is used to detect the locations of possible noisy pixels.
Then in the second stage, it restores the noisy pixels while
keeping the non-noisy pixels unchanged by minimizing

F(u) = ‖v − u‖1 + β

2
‖∇u‖α

α,

s.t. u|Υ = v|Υ ,

(5)

where Υ is the set of non-noisy pixels detected by the Adap-
tive Median Filter, u|Υ = (ui )i∈Υ , and 1 < α ≤ 2. We
remarked that in [62], Nikolova showed that the 1-norm data-
fitting term (used in (5) above) is the correct norm for impulse
noise. This two-stage method is the first method that can suc-
cessfully restore images corrupted with extremely high level
of impulse noise (e.g., 90%).

Our proposed method is inspired by the image denois-
ing/segmentation methods in [43–45,56,60], which apply (4)
successfully to denoise/segment images with various noises.
In the first stage of our proposed method, we use the spectral
classifier ν-SVC to generate a pixel-wise probability map for
each class. Then in the second stage, we use a combination
of (4) and (5) to denoise and segment the result from the first
stage.

3 Our Two-Stage ClassificationMethod

SVMs yield decent classification accuracy [23], but their
results can be noisy (see Fig. 1) since only spectral infor-
mation is used. We therefore propose to use an image
denoising/segmentation scheme to incorporate the spatial
information into the classification.Ourmethodfirst estimates
the pixel-wise probability map for each class using SVMs.

Then the spatial positions of the training pixels are used in
a variational denoising/segmentation method to effectively
segment the image into different classes.

3.1 First Stage: Pixel-Wise Probability Map
Estimation

3.1.1 SVM Classifier

HSI classification is a multi-class classification, but the SVM
is a binary classifier. To extend SVM to multi-class, we use
theOne-Against-One (OAO) strategy [63]where [c(c−1)/2]
SVMs are built to classify every possible pair of classes. Here
c is the number of classes. In this paper, we choose the SVM
method ν-SVC [22] with OAO strategy for the HSI mul-
ticlass classification in our first stage. Moreover, the radial
basis function kernel (RBF kernel) [21] is used as the kernel
function in our SVM method. The RBF kernel is defined as

K (xi , x j ) = exp
(

− ‖xi − x j‖2
2σ 2

)
. (6)

We remark that one can use other SVMs, other multiclass
strategies such as the One-Against-All strategy in [63], or
other kernel functions such as the polynomial kernel [21]
instead.

3.1.2 Probability Estimation of SVM Outputs

Given a testing pixel x and a SVM classifier with decision
function f (x) in (3), we can label x with a class according
to the sign of f (x), see [21]. Under the OAO strategy, there
are [c(c − 1)]/2 such pairwise functions fh,l , 1 ≤ h, l ≤ c,
h �= l. We use them to estimate the probability ph that x is in
the h-th class. The idea is given in [64,65]. We first estimate
the pairwise class probability Prob(y = h | y = h or y = l)
by computing

rh,l = 1

1 + eη fh,l (x)+τ
, (7)

where η and τ are computed by minimizing a negative log
likelihood problem over all the training pixels [64].

Then the probability vector p = [p1, p2, . . . , pc]ᵀ of the
testing pixel x is estimated by solving

min
p

1

2

c∑

h=1

∑

l �=h

(rl,h ph − rh,l pl)
2,

s.t. ph ≥ 0,∀h,

c∑

h=1

ph = 1. (8)

By [65], its optimal solution can be obtained by solving the
simple (c + 1) − (c + 1) linear system
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Fig. 2 Examples of probability
maps on Indian Pines before and
after the second stage. Here,
completely white represents
probability one and completely
black represents probability zero

(a) Probability map of class 2 before the
second stage

(b) Normalized probability map of class 2
after the second stage

(c) Probability map of class 11 before the
second stage

(d) Normalized probability map of class 11
after the second stage

[
Q e
eᵀ 0

] [
p
b

]

=
[
0
1

]

, (9)

where

Qhl =
⎧
⎨

⎩

∑

s �=h
r2s,h if h = l,

−rl,hrh,l if h �= l,

b is the Lagrange multiplier of the equality constraint in (8),
e is the c-vector of all ones, and 0 is the c-vector of all zeros.
In our tests, the probability vectors p(x) for all testing pixels
x are computed by thismethod using the toolbox of LIBSVM
library [66].

We finish Stage 1 by forming the 3D tensorV whereVi, j,k

gives the probability that pixel (i, j) is in class k.More specif-
ically, if pixel (i, j) is a testing pixel, then Vi, j,: = p(xi, j );
if pixel (i, j) is a training pixel belonging to the c-th class,
then Vi, j,c = 1 and Vi, j,k = 0 for all other k’s.

3.2 Second Stage: Denoising/Segmentation of the
Pixel-Wise Probability Map

Given the probability tensor V obtained in Stage 1, one can
obtain anHSI classification by taking themaximumprobabil-
ity for each pixel [28]. However, the result will appear noisy
as no spatial information is taken into account. The goal of
our second stage is to incorporate the spatial information into
V by a denoising/segmentation method that keeps the value
of the training pixels unchanged during the optimization, as
their ground-truth labels are given a priori.

Let vk := V:,:,k , k = 1, . . . , c, be the probability map of
the k-th class obtained from Stage 1. We improve them by
minimizing

min
u

1

2
‖u − vk‖22 + β1‖∇u‖1 + β2

2
‖∇u‖22,

s.t. u|Υ = vk |Υ ,

(10)
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Fig. 3 Spectra of training pixels of Indian Pines data

where β1, β2 are regularization parameters and Υ is the
set of training pixels. We choose this minimization func-
tional because it gives superb performance in denoising [56]
and segmentation [43–45]. The higher-order ‖∇u‖22 term
encourages smoothness of the solution and can improve the
classification accuracy, see Sect. 4.4. In our tests, we use
anisotropic TV [67] and periodic boundary condition for the
discrete gradient operator, see [68, p. 258].

Alternating directionmethod ofmultipliers (ADMM) [69]
is used to solve (10). First, we rewrite (10) as

min
u

1

2
‖u − vk‖22 + β1‖s‖1 + β2

2
‖Du‖22 + ιw

s.t. s = Du and w = u.

(11)

Here D denotes the discrete operator of ∇, D =
(
Dx

Dy

)

∈
R
2n×n , where Dx and Dy are the first-order difference matri-

ces in the horizontal and vertical directions, respectively, and
n is the total number of pixels in the hyperspectral image, ιw
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Table 1 Number of training/testing pixels and classification accuracies for Indian Pines data set

Class Train/test ν-SVC SVM-CK EPF SC-MK MFASR Our method

Alfalfa 10/36 70.28% 81.94% 97.29% 100% 98.06% 99.17%

Corn-no till 143/1285 77.90% 89.98% 96.03% 95.44% 96.66% 97.89%

Corn-mill till 83/747 67.80% 89.68% 97.75% 97.16% 97.94% 98.73%

Corn 24/213 52.96% 86.24% 93.03% 99.25% 91.69% 99.01%

Grass/pasture 48/435 89.13% 93.31% 99.17% 96.67% 94.62% 96.92%

Grass/trees 73/657 96.15% 98.98% 96.02% 99.70% 99.56% 99.74%

Grass/pasture-mowed 10/18 93.33% 96.11% 99.47% 100% 100% 100%

Hay-windrowed 48/430 93.93% 98.42% 100% 100% 99.98% 100%

Oats 10/10 90.00% 100% 96.25% 100% 100% 100%

Soybeans-no till 97/875 72.26% 88.81% 92.21% 94.62% 96.03% 96.01%

Soybeans-mill till 246/2209 79.71% 91.57% 86.65% 98.80% 98.58% 99.54%

Soybeans-clean 59/534 67.66% 85.90% 96.26% 96.29% 97.06% 99.64%

Wheat 21/184 96.09% 98.64% 100% 99.67% 99.57% 100%

Woods 127/1138 91.89% 96.85% 95.24% 99.99% 99.89% 99.91%

Bridg-grass-tree-drives 39/347 56.97% 88.01% 93.70% 98.39% 98.01% 99.14%

Stone-steel lowers 10/83 85.66% 98.43% 96.11% 97.71% 98.92% 96.39%

OA 79.78% 92.11% 93.34% 97.83% 97.88% 98.83%

AA 80.11% 92.68% 95.95% 98.35% 97.91% 98.88%

kappa 0.769 0.910 0.924 0.975 0.976 0.987

is the indicator function, where ιw = 0 if w|Υ = vk |Υ and
ιw = ∞ otherwise. Its augmented Lagrangian is given by

L(u, s,w,λ)

= 1

2
‖u − vk‖22 + β1‖s‖1 + β2

2
‖Du‖22

+ ιw + μ

2
‖Eu − g − λ‖22,

(12)

where μ > 0 is a positive constant, E =
(
D
I

)

, g =
(
s
w

)

and λ =
(

λ1

λ2

)

the Lagrange multipliers.

The formulation (12) allows us to solve u and g alternately
as follows:

u(t+1) = argmin
u

{
1

2
‖u − vk‖22 + β2

2
‖Du‖22

+ μ

2
‖Eu − g(t) − λ(t)‖22

}

(13a)

g(t+1) = argmin
g

{

β1‖s‖1 + ιw

+ μ

2
‖Eu(t+1) − g − λ(t)‖22

}

(13b)

λ(t+1) = λ(t) − Eu(t+1) + g(t+1) (13c)

The u-subproblem (13a) is a least squares problem. Its solu-
tion is

u(t+1) = (I + β2D
ᵀD + μEᵀE)−1

(vk + μEᵀ(g(t) + λ(t))).
(14)

Since periodic boundary conditions are used, the solution
can be computed efficiently using the two-dimensional fast
Fourier transform (FFT) [70] in O(n log n) complexity.

For the g-subproblem (13b), the optimal s and w can be
computed separately as follows:

s(t+1) = argmin
s

{

β1‖s‖1

+ μ

2
‖Du(t+1) − s − λ

(t)
1 ‖22

} (15)

and

w(t+1) = argmin
w

{

ιw + μ

2
‖u(t+1) − w − λ

(t)
2 ‖22

}

(16)

The solution of (15) can be obtained by soft thresholding
[71], i.e.,

[s(t+1)]i = sgn([r]i ) · max{|[r]i | − β1

μ
, 0},

i = 1, . . . , 2n,

(17)

where r = Du(t+1) − λ
(t)
1 . The solution of (16) is simply

[w(t+1)]i =
{ [vk]i if i ∈ Υ ,

[u(t+1) − λ
(t)
2 ]i otherwise.

(18)
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The computation of (13c), (17) and (18) has a computational
complexity of O(n). Hence, the computational complexity
of our ADMM is O(n log n) for each iteration, where n is
the total number of pixels.

The convergence of our ADMM to the global minimum is
guaranteed by [69]. Once it finishes, we obtain the enhanced
probability map u for class k. We denote it as U:,:,k . After the
map for each class is obtained, we get a 3D tensor U . The
final classification of the (i, j)-th pixel is given by finding the
maximum value in Ui, j,:, i.e., argmax

k
Ui, j,k . Our proposed

method is summarized in Algorithm 1.

Algorithm 1 Our two-stage method
1: Stage 1: Estimation of pixel-wise probability using SVMs
2: for all pairs of classes do
3: Solve for the SVM:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

max − 1
2

m∑

i, j=1
αiα j yi y j K (xi , x j )

subject to: 0 ≤ αi ≤ 1
m , i = 1, 2, . . . ,m,

m∑

i=1
αi yi = 0,

m∑

i=1
αi ≥ ν

4: end for
5: for all pixels xi, j do
6: for all pairs of classes 1 ≤ h, l ≤ c do
7: Compute: rh,l = 1

1+eη fh,l (xi, j )+τ

8: end for
9: Solve for the probability pi, j :[

Q e
eᵀ 0

] [
pi, j
b

]

=
[
0
1

]

10: end for
11: Output of stage 1: probability maps V , where Vi, j,: = pi, j
12: Stage 2: Denoising/Segmentation using ADMM
13: for k = 1, 2, . . . , c do
14: Initialize

Set vk = V:,:,k and t = 0. Choose μ > 0, u(0)
k , s(0),

λ(0) and w(0), where w(0)|Υ = vk |Υ
15: while stopping criterion is not satisfied do
16: u(t+1)

k ← (I + β2DᵀD + μEᵀE)−1

(vk + μEᵀ(g(t) + λ(t)))

17: s(t+1) ← sgn(r) · max{|r| − β1
μ

, 0},
where r = Du(t+1)

k − λ
(t)
1

18: w(t+1)|Ω\Υ ← (u(t+1)
k − λ

(t)
2 )|Ω\Υ

19: λ(t+1) ← λ(t) − Eu(t+1)
k + g(t+1)

20: end while
21: end for
22: Classification result of the (i, j)-th pixel: argmax

k
Ui, j,k , where

U:,:,k = uk

We remark that in Stage 1, the operation is along the spec-
tral dimension, i.e., the third index of the tensor, while in
Stage 2, the operation is along the spatial dimension, i.e., the
first two indices of the tensor. The techniques of Stage 2 are
essentially similar to our segmentation methods in [43–45],

where a smooth denoised image is first computed and then
thresholding (here maximizing) is applied to it to segment
(here classify) it.

Figure 2 shows the probability maps before the second
stage and the enhanced probability maps after the second
stage. The figures are in gray scale, i.e., completely white
represents probability one and completely black represents
probability zero. Note that the second stage does not guar-
antee the enhanced probability maps to have a sum to one
property. In Fig. 2b and d, the enhanced probability maps are
normalized to sum to one.

4 Experimental Results

4.1 Experimental Setup

4.1.1 Data Sets

Three commonly tested hyperspectral data sets are used in
our experiments. These data sets have pixels labeled so that
we can compare the methods quantitatively. The first one is
the “Indian Pines” data set acquired by the Airborne Vis-
ible/Infrared Imaging Spectrometer (AVIRIS) sensor over
the Indian Pines test site in North-western Indiana. It has
a spatial resolution of 20 m per pixel and a spectral cov-
erage ranging from 0.2 to 2.4 µm in 220 spectral bands.
However, due to water absorption, 20 of the spectral bands
(the 104–108th, 150–163th and 220th bands) are discarded
in experiments in previous papers. Therefore our data set is
of size 145×145×200, and there are 16 classes in the given
ground-truth labels.

The second and third images are the “University of Pavia”
and “Pavia Center” data sets acquired by the Reflective
Optics System Imaging Spectrometer (ROSIS) sensor over
Pavia in northern Italy. The sensor has 1.3 m spatial reso-
lution and spectral coverage ranging from 0.43 to 0.86 µm.
The data set sizes are 610 × 340 × 103 and 1096 × 715 ×
102, respectively, where the third dimension is the spectral
dimension. Both sets have nine classes in the ground-truth
labels.

4.1.2 Methods Compared and Parameters Used

Wehave compared ourmethodwith fivewell-known classifi-
cationmethods: ν-support vector classifiers (ν-SVC) [22,23]
(i.e., the first stage of our method), SVMs with compos-
ite kernels (SVM-CK) [25], edge-preserving filtering (EPF)
[28], superpixel-based classification via multiple kernels
(SC-MK) [26] and multiple-feature-based adaptive sparse
representation (MFASR) [38]. All the tests are run on a lap-
top computer with an Intel Core i5-7200U CPU, 8 GB RAM
and the software platform is MATLAB R2016a.
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(a) Ground Truth (b) Label color (c) False color image

(d) Heatmap col-
orbar (e) ν-SVC [22, 23] (f) SVM-CK [25]

(g) EPF [28] (h) SC-MK [26] (i) MFASR [38]

(j) Our method

Fig. 4 Indian Pines data set. aGround-truth labels, b label color of the ground-truth labels, c false color image, d heatmap colorbar, e–j classification
results by different methods

In the experiments, the parameters are chosen as follows.
For the ν-SVC method, the parameters are obtained by per-
forming a fivefold cross-validation [72]. For the SVM-CK
method, the parameters are tuned such that it gives the high-

est classification accuracy.All parameters of theEPFmethod,
the SC-MK method, and the MFASR method are chosen as
stated in [26,28,38], respectively, except the window size in
the EPF method, the number of superpixels and the parame-
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Table 2 Number of
training/testing pixels and
classification accuracies for
University of Pavia data set

Class Train/test ν-SVC SVM-CK EPF SC-MK MFASR Our method

Asphalt 200/6431 84.65% 95.84% 98.84% 99.06% 99.44% 98.68%

Meadows 200/18449 89.96% 97.62% 99.62% 98.14% 98.52% 98.78%

Gravel 200/1899 83.59% 91.99% 95.50% 99.98% 99.80% 99.69%

Trees 200/2864 94.94% 97.95% 98.94% 99.03% 98.02% 96.56%

Metal sheets 200/1145 99.59% 99.97% 99.03% 99.87% 99.91% 100%

Bare soil 200/4829 90.69% 97.49% 92.95% 99.70% 99.78% 100%

Bitumen 200/1130 92.73% 98.41% 93.84% 100% 99.92% 100%

Bricks 200/3482 82.59% 92.71% 92.92% 99.05% 99.41% 99.02%

Shadows 200/747 99.60% 99.92% 99.30% 99.99% 100% 99.18%

OA 89.16% 96.80% 97.60% 98.83% 99.02% 98.89%

AA 90.93% 96.88% 96.77% 99.42% 99.42% 99.10%

kappa 0.857 0.957 0.968 0.984 0.987 0.985

ters of the superpixel segmentation algorithm in the SC-MK
method, and the sparsity level of the MFASR are tuned such
that the highest classification accuracies are obtained. For our
method, the parameters of the ν-SVC (1) in the first stage are
obtained by performing a fivefold cross-validation and the
parameters of the optimization problem (10) in the second
stage are tuned such that it gives the highest classification
accuracy. The optimal parameters in the second stage β1 and
β2 are 0.4 and 3; 0.1 and 3; 0.2 and 4 for Indian Pines,
University of Pavia and Pavia Center, respectively. By [69],
Algorithm 1 converges for any μ > 0, so μ is fixed as 5 for
all the tests on the three data sets.

4.1.3 Performance Metrics

To quantitatively evaluate the performance of the methods,
we use the following three widely used metrics: (i) overall
accuracy (OA): the percentage of correctly classified pix-
els, (ii) average accuracy (AA): the average percentage of
correctly classified pixels over each class, and (iii) kappa
coefficient (kappa): the percentage of correctly classified pix-
els corrected by the number of agreements that would be
expected purely by chance [73].

For each method, we perform the classification ten times
where each time we randomly choose a different set of train-
ing pixels. In the tables below, we give the averages of these
metrics over the ten runs. The accuracies are given in per-
centage, and the highest accuracy of each category is listed
in boldface. In order to graphically show the classification
results in an objective way, we also count the number of mis-
classifications for each testing pixel over the ten runs. The
numbers of mis-classifications are shown in the correspond-
ing heatmap figures, with the heatmap colorbar indicating
the number of mis-classifications.

4.2 Classification Results

4.2.1 Indian Pines

The Indian Pines data set consists mainly of big homoge-
neous regions and has very similar inter-class spectra (see
Fig. 3 for the spectra of the training pixels of Indian Pines
data where there are three similar classes of corns, three simi-
lar classes of grasses and three similar classes of soybeans). It
is therefore very difficult to classify it if only spectral infor-
mation is used. In the experiments, we choose exactly the
same number of training pixels as in [26,37] and they amount
to about 10% of the pixels from each class. Some classes
have small numbers of pixels, and hence 10 pixels are taken
as training pixels for each of these classes. The rest of the
labeled pixels are used as testing pixels.

The number of training and testing pixels and the classifi-
cation accuracies obtained by different methods are reported
in Table 1. We see that our method generates the best results
for all three metrics (OA, AA and kappa) and outperforms
the comparing methods by a significant margin. They are at
least 0.95% higher than the others. Also, the second stage of
our method improves the overall accuracy of ν-SVC (used
in the first stage of our method) by almost 20%.

Figure 4 shows the heatmaps of mis-classifications. The
results of the ν-SVC, SVM-CK and EPF methods produce
large area of mis-classifications. The SC-MK also produces
mis-classification at the top-right region and the middle-
right region which are soybeans-clean and soybeans-no till,
respectively. This shows that SC-MK cannot distinguish-
ing these two similar classes well. The heatmap of MFASR
method contains scattered regions of mis-classification. In
contrast, our method generates smaller regions of mis-
classifications and less errors as it effectively utilizes the
spatial information to give an accurate result.
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(a) Ground Truth (b) Label color (c) False color image

(d) Heatmap colorbar (e) ν-SVC [22, 23] (f) SVM-CK [25] (g) EPF [28]

(h) SC-MK [26] (i) MFASR [38] (j) Our method

Fig. 5 University of Pavia data set. a Ground-truth labels, b label color of the ground-truth labels, c false color image, d heatmap colorbar, e–j
classification results by different methods

4.2.2 University of Pavia

The University of Pavia data set consists of regions with
various shapes, including thin and thick structures and large
homogeneous regions. Hence, it can be used to test the ability
of the classification methods on handling different shapes.

In the experiments, we choose the same number of train-
ing pixels (200 for each class) as in [26]. This accounts for
approximately 4% of the labeled pixels. The remaining ones
are used as testing pixels.

Table 2 reports the classification accuracies obtained by
different methods. We see that the performance of SC-MK,
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Table 3 Number of
training/testing pixels and
classification accuracies for
Pavia Center data set

Class Train/test ν-SVC SVM-CK EPF SC-MK MFASR Our method

Water 150/65128 99.54% 99.82% 100% 99.86% 99.97% 99.66%

Trees 150/6357 94.22% 95.61% 99.11% 94.59% 95.52% 98.61%

Meadows 150/2741 95.14% 96.15% 97.16% 98.78% 98.54% 98.84%

Bricks 150/2002 92.56% 97.37% 90.08% 99.91% 99.62% 99.98%

Soil 150/6399 94.31% 96.51% 99.40% 99.76% 99.59% 98.69%

Asphalt 150/7375 95.94% 97.34% 98.86% 99.24% 98.76% 99.60%

Bitumen 150/7137 89.99% 94.75% 99.79% 98.64% 99.55% 97.86%

Tiles 150/2972 97.42% 99.33% 99.97% 99.32% 99.05% 99.52%

Shadows 150/2015 99.98% 100% 99.96% 99.85% 99.97% 99.27%

OA 97.54% 98.80% 99.59% 99.31% 99.33% 99.42%

AA 95.46% 97.43% 98.26% 98.88% 98.95% 99.12%

kappa 0.965 0.983 0.994 0.990 0.990 0.991

MFASR, and our method are very close: approximately 99%
in all three metrics (OA, AA and kappa) and they outper-
form the ν-SVC, SVM-CK and EPF methods. However, we
note that MFASR requires twice the number of parame-
ters as ours and 12 times longer to run, see Tables 7 and
8. Figure 5 shows the heatmaps of mis-classifications. The
ν-SVC, SVM-CK and EPF methods produce large regions
of mis-classifications. The SC-MK method produces many
mis-classifications at the middle and bottom regions where
the meadows are. The MFASR method and our method gen-
erate smaller regions of mis-classification.

4.2.3 Pavia Center

The Pavia Center data set also consists of regions with vari-
ous shapes. In the experiments, we use the same number of
training pixels as in [31] (150 training pixels per class). This
accounts for approximately 1% of the labeled pixels. The rest
of the labeled pixels are used as testing pixels. Table 3 reports
the number of training/testing pixels and the classification
accuracies of different methods. We see that the EPF method
gives the highest OA and kappa while our method gives
the second highest and their values differ by about 0.1%.
However, our method gives the highest AA (99.12%) which
outperforms the EPF method by almost 1%. The SC-MK
andMFASRmethods give slightly worse accuracies than our
method. Figure 6 shows the heatmaps of mis-classifications.

4.3 Advantages of Our Two-StageMethod

4.3.1 Percentage of Training Pixels

Since our method improves on the classification accuracy by
using spatial information, it is expected to be a better method
if the training percentage (percentage of training pixels) is
higher. To verify that, Tables 4, 5 and 6 show the overall

accuracies obtained by our method on the three data sets
with different levels of training percentage. We see that our
method outperforms the other methods once the training per-
centage is reasonably high enough (6% for Example 1, 10%
for Example 2, and 3% for Example 3). When it is not high,
our method still gives a classification accuracy that is very
close to the best method compared.

4.3.2 Model Complexity and Computation Time

Tables 7 and 8 show the computation time required and
the number of parameters for all methods. We note that the
reported timing does not count the time required to find the
optimal set of parameters. The ν-SVC, SVM-CK and EPF
methods have fast computation time because of the simplic-
ity of their models. They have only a few parameters (2, 3 and
4, respectively). However, from the results in Sect. 4.2, they
are worse than the other three methods. The SC-MKmethod
is a good method in terms of accuracy and timing, but it has 9
parameters. The MFASR method has 10 parameters and the
longest computation time. In comparison, our method has 5
parameters (2 parameters ν and σ for the ν-SVC (1) and the
RBF kernel (6), respectively, in the first stage, 2 parameters
β1 andβ2 for the denoisingmodel (10) in the second stage and
1 parameter μ for the ADMM algorithm (12)). It has much
better (if not the best) classification accuracies with slightly
longer computation time than those of ν-SVC, SVM-CK and
EPF.

4.4 Effect of the Second-Order Term

Here we examine empirically the importance of the term
‖∇u‖22 in (10). Figure 7 shows the heatmaps of mis-
classifications on the Indian Pines data by using our method
with andwithout ‖∇u‖22 over ten runs. The training pixels are
randomly selected and consist of 2.5% of the labeled pixels.
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(a) Ground Truth
(b) Label
color (c) False color image

(d) Heatmap
colorbar

(e) ν-SVC [22, 23] (f) SVM-CK [25] (g) EPF [28]

(h) SC-MK [26] (i) MFASR [38] (j) Our method

Fig. 6 Pavia center data set. aGround-truth labels, b label color of the ground-truth labels, c false color image, d heatmap colorbar, e–j classification
results by different methods

Figure 7a shows the ground-truth labels. Figure 7b–d shows
the heatmaps of mis-classifications of the ν-SVC classifier
(i.e., the first stage of our method), the second stage of our
method without the ‖∇u‖22 term, and the second stage of

our method with the ‖∇u‖22 term, respectively. Recall the
term ‖∇u‖22 control the smoothness of the final probability
maps and the final classification result is determined by tak-
ing the maximum over this map of each class. By choosing
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Table 4 Classification results
on the Indian Pines data with
different levels of training pixels

Method \ training percentage 6% (%) 8% (%) 10% (%) 12% (%) 14% (%)

ν-SVC 75.24 77.87 79.78 81.50 82.40

SVM-CK 87.92 90.41 92.11 93.30 94.28

EPF 91.14 92.35 93.34 94.64 95.92

SC-MK 97.39 97.52 97.83 97.83 97.94

MFASR 96.59 97.63 97.88 98.29 98.47

Our method 97.51 98.28 98.83 99.06 99.26

Difference from the best 0.00 0.00 0.00 0.00 0.00

Table 5 Classification results
on the University of Pavia data
with different levels of training
pixels

Method \ training percentage 4% (%) 6% (%) 8% (%) 10% (%) 12% (%)

ν-SVC 89.16 89.74 91.19 91.34 91.80

SVM-CK 96.80 97.54 97.93 98.24 98.47

EPF 97.60 98.05 98.37 98.49 98.56

SC-MK 98.83 99.24 99.67 99.45 99.52

MFASR 99.02 99.39 99.52 99.60 99.68

Our method 98.89 99.30 99.58 99.63 99.74

Difference from the best 0.13 0.09 0.09 0.00 0.00

Table 6 Classification results
on the Pavia Center data with
different levels of training pixels

Method \ training percentage 1% (%) 2% (%) 3% (%) 4% (%) 5% (%)

ν-SVC 97.54 98.01 98.17 98.28 98.38

SVM-CK 98.80 99.46 99.59 99.67 99.74

EPF 99.59 99.76 99.73 99.76 99.86

SC-MK 99.31 99.59 99.71 99.75 99.80

MFASR 99.33 99.64 99.73 99.87 99.86

Our method 99.42 99.73 99.80 99.90 99.92

Difference from the best 0.17 0.03 0.00 0.00 0.00

Table 7 Comparison of number
of parameters

ν-SVC SVM-CK EPF SC-MK MFASR Our method

Number of parameters 2 3 4 9 10 5

Table 8 Comparison of computation times (in seconds)

Data Size/training % ν-SVC SVM-CK EPF SC-MK MFASR Our method

Indian Pines 145 × 145 × 200/10% 5.98 6.32 6.92 9.44 119 8.24

University of Pavia 610 × 340 × 103/4% 24.02 32.12 28.53 39.47 443 35.97

Pavia Center 1096 × 715 × 102/1% 58.46 81.63 118 107 2599 145

the parameter associated with the term appropriately, we can
then control the level of shrinking or expanding the homoge-
neous regions in the final classification result. From Fig. 7c,
when the term is dropped, themis-classification regions at the
top left and bottom left of the first stage result are not only still
mis-classified, but the numbers ofmis-classification increase.

In contrast, when the term is kept, we see from Fig. 7d that
the numbers of mis-classification are significantly lowered.
Moreover, most of the mis-classified regions of the first stage
result are now correctly classified when the parameters are
chosen appropriately.
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(a) Ground Truth (b) ν-SVC [22, 23] (c) Our method without
‖∇u‖2

2

(d) Our method with
‖∇u‖2

2

Fig. 7 Heatmaps of mis-classifications on Indian Pines data. a Ground-truth labels, b ν-SVC (the first stage), c and d our method without and with
the second-order term, respectively

5 Conclusions and FutureWork

In this paper, we propose a novel two-stage hyperspectral
classificationmethod inspiredby imagedenoising/segmentation.
The method is simple yet performs effectively. In the first
stage, a support vector machine method is used to estimate
the pixel-wise probability map of each class. The result in
the first stage has decent accuracy but is noisy. In the sec-
ond stage, a convex variant of the Mumford–Shah model is
applied to denoise and classify the hyperspectral image into
different classes. Since both spectral and spatial information
are effectively utilized, our method is very competitive when
compared with state-of-the-art hyperspectral data classifica-
tion methods. It also has a simpler framework with fewer
numbers of parameters and faster computation times. It per-
forms particularly well when the inter-class spectra are close
or when the training percentage is high.

For future work, we plan to investigate the use of deep
learning methods in the first stage [16–19]. We will also
investigate the use of automated parameter selection [74–77]
of the variational method in the second stage. Additionally,
we plan on using our methods for classifying fused hyper-
spectral and LiDAR data [18,78,79].
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