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Abstract
Deep learning and (deep) neural networks are emerging tools to address inverse problems and image reconstruction tasks.
Despite outstanding performance, the mathematical analysis for solving inverse problems by neural networks is mostly
missing. In this paper, we introduce and rigorously analyze families of deep regularizing neural networks (RegNets) of the form
Bα +Nθ(α)Bα , where Bα is a classical regularization and the network Nθ(α)Bα is trained to recover the missing part IdX −Bα

not found by the classical regularization. We show that these regularizing networks yield a convergent regularization method
for solving inverse problems. Additionally, we derive convergence rates (quantitative error estimates) assuming a sufficient
decay of the associated distance function. We demonstrate that our results recover existing convergence and convergence
rates results for filter-based regularization methods as well as the recently introduced null space network as special cases.
Numerical results are presented for a tomographic sparse data problem, which clearly demonstrate that the proposed RegNets
improve classical regularization as well as the null space network.

Keywords Inverse problems · Regularizing networks · Convergence analysis · Convolutional neural networks · Convergence
rates · Null space networks
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1 Introduction

This paper is concerned with solving inverse problems of the
form

yδ = Ax + z, (1.1)

where A : X → Y is a bounded linear operator between
Hilbert spaces X and Y, and z denotes the data distortion
that satisfies ‖z‖ ≤ δ for some noise level δ ≥ 0. Many
inverse problems arising in medical imaging, signal process-
ing, astronomy, computer vision and other fields are written
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in form (1.1). Amain characteristic property of inverse prob-
lems is that they are ill-posed [7,19]. This means that the
solution of (1.1) is either not unique or is unstable with
respect to data perturbations.

To solve such kind of inverse problems, one has to employ
regularization methods, which serve the following two main
purposes:

• Select particular solutions of the noise-free equation,
thereby accounting for non-uniqueness ker(A) �= {0}.

• Approximate (1.1) by neighboring but stabler problems.

Our aim is finding convergent regularization methods for
the solution of (1.1) using deep neural networks that can
be adjusted to realistic training data.

In [21], we focused on the non-uniqueness issue, where
particular solutions of the noise-free equation, (1.1) with z =
0, are approximated using classical regularization methods
combined with null space networks. Null space networks
(introduced originally in [16] in a finite dimensional setting)
are refined residual networks, where the residual is projected
onto the null space of the operator A. In this context, the
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stabilization of finding a solution to (1.1) comes from a given
traditional regularizationmethod, and the role of the network
is to select correct solutions in a data consistent manner.

1.1 Proposed Regularizing Networks (RegNets)

In this paper, we go one step further and generalize the con-
cept of deep null space learning by allowing the network to
also act in the orthogonal complement of the null space of A
in a controlled manner. This is in particular useful if the oper-
ator contains several small singular values that are not strictly
equal to zero. Similar to the components in the kernel, these
parts are difficult to be reconstructed by a classical linear reg-
ularization method, and quantitative error estimates require
strong smoothness assumptions on the objects to be recov-
ered. Learning almost invisible components can significantly
improve reconstruction results for less smooth objects.

The proposed RegNets generalize the structure of null
space networks analyzed in [21] and consist of a family
(Rα)α>0 of mappings Rα : Y → X of the form

Rα := Bα + Nθ(α)Bα for α > 0. (1.2)

Here, (Bα)α>0 with Bα : Y → X is a classical regularization
of the Moore–Penrose inverse A+, and Nθ(α) : X → X are
neural networks that can be trained to map the part BαAx
recovered by the regularization method to the missing part
(IdX −BαA)x . Here, (Nθ )θ∈� is any family of parameterized
functions that can be taken as a standard network, for exam-
ple, a convolutional neural network (CNN). In particular,
Nθ(α) is allowed to depend on the regularization parameter
α.

In this paper, we show that if Nθ(α)BαA → N on
ran(A+) as α → 0 for some function N : X → X with
ran(N) ⊆ ker(A), the RegNets defined by (1.2) yield a con-
vergent regularization method with admissible set M :=
(IdX +N)(ran(A+)). Further, we derive convergence rates
(quantitative error estimates) for elements satisfying condi-
tions different from the classical smoothness assumptions.

1.2 Outline

The organization of this paper is as follows. In Sect. 2 we
present some background and related results. In Sect. 3,
we introduce the proposed regularizing networks and show
that they yield a convergent regularization method. Further,
we derive convergence rates under a modified source con-
dition. In Sect. 4, we demonstrate that our results contain
existing convergence results as special cases. This includes
filter-based methods, classical Tikhonov regularization, and
regularization by null space networks. Moreover, we exam-
ine a data-driven extension of singular components, where
the classical regularization method is given by truncated sin-

gular value decomposition (SVD). The paper concludes with
a short summary presented in Sect. 6.

2 Some Background

Before actually analyzing the RegNets, we recall basic
notions and concepts from regularization of inverse prob-
lems (see [7,19]) and the concept of null space networks. We
also review some previous related work.

2.1 Classical Regularization of Inverse Problems

Regularization methods to stably find a solution of (1.1) use
a-priori information about the unknown, for example that
the solution x lies in a particular set of admissible elements
M. For such a setM ⊆ X, a regularization method is a tuple
((Bα)α>0, α

�), whereBα : Y → X are continuous operators,
and α�(δ, yδ) is a parameter choice function such that for all
x ∈ M, we have Bα�(δ,yδ)(yδ) → x as δ → 0.

Classical regularizationmethods approximate theMoore–
Penrose inverseA+ and the setM is given byM = ker(A)⊥.
Note that for any y ∈ ran(A), the Moore–Penrose inverse
A+y is given by theminimal norm solution of (1.1). A precise
definition of a regularization method is as follows.

Definition 1 (Regularization method) Let (Bα)α>0 a fam-
ily of continuous operators Bα : Y → X and suppose
α� : (0,∞)×Y → (0,∞). The pair ((Bα)α>0, α

�) is called
a (classical) regularizationmethod for the solution ofAx = y
with y ∈ dom(A+), if the following holds

• limδ→0 sup{α�(δ, yδ) | yδ ∈ Y, ‖yδ − y‖ ≤ δ} = 0.
• limδ→0 sup{‖A+y − Bα�(δ,yδ)yδ‖ | yδ ∈ Y and ‖yδ −

y‖ ≤ δ} = 0.

The parameter choice α�, depending on the noise level as
well as on the data, determines the level of approximation of
the Moore–Penrose inverse. For decreasing noise level, the
ill-posed problem (1.1) can be approximated by stable prob-
lems getting closer to finding the minimum norm solution
of (1.1) and in the limit, it holds limδ→0 Bα�(δ,yδ)(yδ) = A+y.

A great variety of regularization methods, namely filter-
based regularization methods, can be defined by regularizing
filters.

Definition 2 (Regularizing filter) A family (gα)α>0 of piece-
wise continuous functions gα : [0, ‖A∗A‖] → R is called
regularizing filter if

• sup{|λgα(λ)| | α > 0 and λ ∈ [0, ‖A∗A‖]} < ∞.
• ∀λ ∈ (0, ‖A∗A‖] : limα→0 gα(λ) = 1/λ.
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Any regularizing filter (gα)α>0 defines a regularization
method by taking

∀α > 0 : Bα := gα(A∗A)A∗. (2.1)

We call a regularization according to (2.1) a (classical) filter-
based regularization.Note thatA∗A : X → X is a self-adjoint
bounded linear operator, and therefore gα(A∗A) : X → X

is bounded linear as well, defined by the framework of
functional calculus [10,23]. In particular, if A∗A has an
eigenvalue decomposition A∗A(x) = ∑

n∈N λn〈un, x〉un ,
then

∀x ∈ X : gα(A∗A)x :=
∑

n∈N
gα(λn)〈un, x〉un .

In the general case, the spectral decomposition of A∗A is
used to rigorously define gα(A∗A), see [10,23].

Two prominent examples of filter-based regularization
methods are classical Tikhonov regularization and truncated
SVD. In Tikhonov regularization, the regularizing filter is
given by gα(λ) = 1/(λ + α), see Fig. 1. This yields
Bα = (A∗A + α IdX )−1A∗. In truncated SVD, the regu-
larizing filter is given by

gα(λ) =
{
0, λ < α
1
λ

λ ≥ α,
(2.2)

as shown in Fig. 2. For both methods, the admissible set is
M = ker(A)⊥.

λ

gα(λ)

1
α

1/λ

Fig. 1 Illustration of the regularizing filter for Tikhonov regularization

λα

gα(λ)

1/λ

Fig. 2 Illustration of the regularizing filter for truncated SVD

Other typical filter-based regularization methods are
the Landweber iteration and iterative Tikhonov regulariza-
tion [7].

2.2 Null Space Networks

Standard regularization approximates the Moore–Penrose
inverse, and therefore selects elements in ker(A)⊥. In [21],
we introduced regularizationwith null space networks,where
the aim is to approximate elements in a setM different from
ker(A)⊥.

Null space networks are defined as follows.

Definition 3 (Null space network) We call a function IdX +
N : X → X a null space network if N = Pker(A)U where
U : X → X is any Lipschitz continuous function.

Moreover, we use the following generalized notion of a
regularization method.

Definition 4 (Regularization methods with admissible set
M) Let (Rα)α>0 be a family of continuous operators
Rα : Y → X and α� : (0,∞) × Y → (0,∞). Then, the
pair ((Rα)α>0, α

�) is called a regularization method (for the
solution of Ax = y) with admissible setM, if for all x ∈ M,
it holds

• limδ→0 sup{α�(δ, yδ) | yδ ∈ Y, ‖yδ − Ax‖ ≤ δ} = 0.
• limδ→0 sup{‖x−Rα�(δ,yδ)yδ‖ | yδ ∈ Y and ‖yδ−Ax‖ ≤

δ} = 0.

In this case, we call (Rα)α>0 an (A,M)-regularization.

The regularized null space networks analyzed in [21] take
the form

Rα := (IdX +N) ◦ Bα for α > 0, (2.3)

where (Bα)α>0 is any classical regularization method and
IdX +N any null space network (for example, defined by
a trained deep neural network). In [21], we have shown
that (2.3) yields a regularization method with admissible set
M := (IdX +N)(ran(A+)). This approach is designed to find
the null space component of the solution in a data-driven
manner with a fixed neural network N independent of the
regularization parameter α that works in the null space of A;
compare Fig. 3.

In this paper,wegoone step further and consider a series of
regularizing networks (RegNets) of the form (IdX +Nθ(α))◦
Bα generalizing null space networks of the form (2.3). Here,
Nθ(α) depends on α and is allowed to act in the orthogo-
nal complement of the kernel ker(A)⊥. We give conditions
under which this approach yields a regularization method
with admissible set M.
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Fig. 3 Regularization defined
by a null space network. For a
filter-based regularization
method, we have
Bα yδ ∈ ker(A)⊥. The
regularized null space network
Rα = Bα + N ◦ Bα adds
reasonable parts along the null
space ker(A) to the standard
regularization Bα yδ

ran(A+) = ker(A)⊥

ker(A)
M := (IdX +N)(ran(A+))

Bαyδ

Rαyδ

Allowing the network Nθ(α) to also act in ker(A)⊥ in par-
ticular is beneficial, if the forward operator A contains many
small singular values. In this case, the network can learn
components which are not sufficiently well-contained in the
data. Note that in the limit α → 0, the regularization method
(Bα)α>0 converges to A+ point-wise. Therefore, in the limit
α → 0, the network is restricted to learn components in the
null space of A.

2.3 RelatedWork

Recently, many works using deep neural networks to solve
inverse problems have been published. These papers include
two-stage approaches, where in a first step an initial recon-
struction is done, followed by a deep neural network. Several
network architectures, often based on the U-net architec-
ture [18] and improvements of it [9,24], have been used for
this class of methods.

CNN-based methods that only modify the part of the
reconstruction that is contained in the null space of the
forward operator have been proposed in [16,17]. In [21],
we introduced regularized null space networks which are
shown to lead a convergent regularization method. Recently,
a related synthesis approach for learning the invisible frame
coefficients for limited angle computed tomography has been
proposed in [6].

Another possibility to improve reconstructions by deep
learning is to replace certain operations in an iterative scheme
by deep neural networks or use learned regularization func-
tionals [1,2,8,12,15]. Further, aBayesian frameworkhas been
proposed in [3,4], where the posterior distribution of solu-
tions is approximated by learned CNNs.

3 Convergence and Convergence Rates of
RegNets

In this section,we formally introduce the concept ofRegNets,
analyze their regularization properties and derive conver-
gence rates.

Throughout the following, let A : X → Y be a linear and
bounded operator and IdX +N : X → X be a null space net-
work, seeDefinition 3. Further, let (Bα)α>0 denote a classical
filter-based regularization method, defined by the regulariz-
ing filter (gα)α>0, see Definition 2.

3.1 Convergence

Let us first formally define a family of regularizing networks.

Definition 5 Let (Bα)α>0 be a classical filter-based regular-
izationmethod. A family (Nθ(α))α>0 of Lipschitz continuous
functions Nθ(α) : X → X is called ((Bα)α>0,N)-adapted if

• limα→0 Nθ(α)(BαAz) = N(z) for all z ∈ ran(A+).
• The Lipschitz constants of (Nθ(α))α>0 are bounded from
above by some constant L > 0.

For the following recall Definition 4 of a regularization
methodwith admissible setM.Wewill often use the notation
Nz := N(z). The following convergence results hold.

Theorem 3.1 (RegNets) Let (Bα)α>0 be a classical filter-
based regularization method and (Nθ(α))α>0 be ((Bα)α>0,

N)-adapted. Then, the family

Rα(yδ) = (IdX +Nθ(α))Bα(yδ), (3.1)
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is a regularization method with admissible set

M := (IdX +N)(ran(A+)). (3.2)

We call (Rα)α>0 a regularizing family of networks (RegNets)
adapted to ((Bα)α>0,N).

Proof Let xα,δ := Rα(yδ) = (IdX +Nθ(α))Bα(yδ). Then, we
have

‖x − xα,δ‖
= ‖BαAx + (IdX −BαA)x − Bα yδ − Nθ(α)Bα yδ‖
≤ ‖Bα(Ax − yδ)‖ + ‖(IdX −BαA)x − Nθ(α)BαAx‖

+ ‖Nθ(α)BαAx − Nθ(α)Bα yδ‖
≤ (1 + L)‖Bα‖δ + ‖x − Nθ(α)BαAx − BαAx‖.

(3.3)

Assuming that x = (IdX +N)z ∈ M with z ∈ ran(A+), we
get

‖x − xα,δ‖
≤ (1 + L)‖Bα‖δ + ‖z + Nz − Nθ(α)BαAz − BαAz‖
≤ (1 + L)‖Bα‖δ + ‖z − BαAz‖ + ‖Nz − Nθ(α)BαAz‖.

Eventually, we get limδ→0 ‖x − xα,δ‖ = 0 since the first
expression vanishes by assumption, the second because
(Bα)α>0 is a regularization method and the last because of
(Nθ(α))α>0 being ((Bα)α>0,N)-adapted. ��

3.2 Convergence Rates

In this section, we derive convergence rates for RegNets
introduced in Sect. 3.1. To that end, we first introduce a
distance function and define the qualification of a classical
regularizationmethod. The definition of the distance function
is essentially motivated by [11].

Definition 6 (Distance function) For any numbers α, ρ, μ >

0 and x ∈ X, we define the distance function

dα(x; ρ,μ) := inf{‖x − Nθ(α)BαAx − (A∗A)μω‖
| ω ∈ X ∧ ‖ω‖ ≤ ρ}. (3.4)

The qualification of a regularization method is a classical
concept in regularization theory (see [7, Theorem 4.3]) and
central for the derivation of convergence rates.

Definition 7 (Qualification) We say that a filter-based reg-
ularization Bα := gα(A∗A)A∗ defined by the regularizing
filter (gα)α>0 has qualification at last μ0 ∈ (0,∞) if there is
a constant C > 0 such that for all μ ∈ (0, μ0], we have

∀α > 0 : sup{λμ |1 − λgα(λ)|
| λ ∈ [0, ‖A∗A‖]} ≤ Cαμ. (3.5)

The largest value μ0 such that (3.5) holds for all μ ∈
(0, μ0] is called the qualification of the regularizationmethod
(Bα)α>0 or the regularizing filter (gα)α>0 (taken as infinity
if (3.5) holds for all μ > 0).

Note that Tikhonov regularization has qualification μ0 =
1, and truncatedSVDregularization has infinite qualification.
Further, if (Bα)α>0 has qualification μ0, then (see [7])

∥
∥(IdX −BαA)(A∗A)μω

∥
∥ ≤ Cραμ (3.6)

‖A(IdX −BαA)(A∗A)μω‖ ≤ Cραμ+1/2 (3.7)

holds for μ ≤ μ0, α > 0 and all ω ∈ X with ‖ω‖ ≤ ρ.

Lemma 1 Let (Rα)α>0 be a family of RegNets adapted to
((Bα)α>0,N) where (Bα)α>0 has qualification of order at
least μ. Then, for any α, δ, ρ > 0 and x ∈ X,

‖Rα(yδ) − x‖ ≤ δ(1 + L)‖Bα‖
+Cραμ + dα(x; ρ,μ) + ‖BαANθ(α)BαAx‖, (3.8)

where yδ ∈ Y satisfies ‖Ax − yδ‖ ≤ δ and C is the constant
from Definition 7.

Proof As in the proof of Theorem 3.1, we have

‖x − xα,δ‖ ≤ (1 + L)‖Bα‖δ
+‖x − Nθ(α)BαAx − BαAx‖

︸ ︷︷ ︸
=:Eα

. (3.9)

Further for all ω ∈ X with ‖ω‖ ≤ ρ, the term Eα can be
estimated as

Eα ≤ ∥
∥x − Nθ(α)BαAx − BαA(x − Nθ(α)BαAx)

∥
∥

+ ‖BαANθ(α)BαAx‖
= ‖(IdX −BαA)(x − Nθ(α)BαAx)‖

+ ‖BαANθ(α)BαAx‖
≤ ‖(IdX −BαA)(A∗A)μω‖

+ ‖(IdX −BαA)(x − Nθ(α)BαA − (A∗A)μω‖
+ ‖BαANθ(α)BαAx‖

≤ ‖(IdX −BαA)(A∗A)μω‖
+ dα(x; ρ,μ) + ‖BαANθ(α)BαAx‖.

Because (Bα)α>0 has qualification of order μ, we have

Eα ≤ Cραμ + dα(x; ρ,μ) + ‖BαANθ(α)BαAx‖,

which concludes the proof. ��
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From Lemma 1, we obtain the following theorem provid-
ing convergence rates for families of RegNets.

Theorem 3.2 (Convergence rate) Let (Rα)α>0 be a family of
RegNets adapted to ((Bα)α>0,N) for some classical regular-
ization (Bα)α andMdefinedby anull space network IdX +N.
Further, assume that for a setMρ,μ ⊆ M, the following hold:

(A1) The parameter choice rule satisfies α � δ
2

2μ+1 .
(A2) For all x ∈ Mρ,μ we have

dα(x; ρ,μ) = O(αμ) as α → 0

(A3) For all x ∈ Mρ,μ we have

‖BαANθ(α)BαAx‖ = O(αμ) as α → 0.

(A4) (Bα)α>0 has qualification at least μ.

Then for all x ∈ Mρ,μ, the following convergence rates result
holds

‖Rα(yδ) − x‖ = O(δ
2μ

2μ+1 ) as α → 0. (3.10)

Proof The assertion follows from Lemma 1. ��
In the following section, we will give three examples of

regularization methods that arise as special cases of our
results given above. In particular, we give a data-driven
extension of SVD regularization where the assumptions of
Theorem 3.2 are satisfied.

4 Special Cases

In this section, we demonstrate that our theory recovers
known existing results as special cases and demonstrate how
to derive novel data-driven regularization methods. In par-
ticular, we show that any classical regularization method,
regularization by null space networks and a deep learning
variant of truncated SVDfitwithin our framework introduced
in Sect. 3.

4.1 Classical Filter-Based Regularization

Classical Tikhonov regularization is a special case of the
regularization method defined in Theorem 3.1 with

Bα = (A∗A + α IdX )−1A∗

Nθ(α) = 0.

In this case, the distance function

dα(x; ρ,μ) = inf{‖x − (A∗A)μω‖ | ω ∈ X ∧ ‖ω‖ ≤ ρ}

is independent of α, and therefore satisfies dα(x; ρ,μ) =
O(αμ) if and only if dα(x; ρ,μ) = 0. This in turn is equiv-
alent to

x ∈ {(A∗A)μω | ω ∈ X ∧ ‖ω‖ ≤ ρ},

which is the classical source condition for the convergence

rate ‖x − xα,δ‖ = O(δ
2μ

2μ+1 ) as δ → 0.
Clearly, the above considerations equally apply to any

filter-based regularization method including iterative Tikho-
nov regularization, truncated SVD and the Landweber iter-
ation. We conclude that Theorem 3.2 contains classical
convergence rates results for classical regularization meth-
ods as special cases.

4.2 Regularized Null Space Networks

In the case of regularized null space networks, we take
(Bα)α>0 as a filter-based regularization method andNθ(α) =
N for some null space network IdX +N. In the following the-
orem, we derive a decay rate of the distance function on the
source set

Xμ,ρ := {(IdX +N)(A∗A)μω | ω ∈ X

and ‖ω‖ ≤ ρ}

in the special case where the regularizing networks are given
by a regularized null space network.

For regularized null space networks, in [21, Theorem 2.8],

we derive the convergence rate ‖Rα(yδ) − x‖ = O(δ
2μ

2μ+1 )

for x ∈ Xμ,ρ and α � δ
2

2μ+1 . The following theorem shows
that [21, Theorem2.8] is a special case ofTheorem3.2. In this
sense, the results of the current paper are indeed an extension
of [21].

Theorem 4.1 (Convergence rates for regularized null space
networks) Let IdX +N : X → X be a null space network and
take Nθ(α) = N for all α > 0. Further, let (Bα)α>0 be a
classical regularization method with qualification at least μ
that satisfies NBα(0) = 0. Then, we have

dα(x; ρ,μ) = O(αμ) for all x ∈ Xμ,ρ. (4.1)

In particular, if (Bα)α>0 has qualificationμ, then the param-
eter choice α � δ2/(2μ+1) gives the convergence rate
‖Rα(yδ) − x‖ = O(δ2μ/(2μ+1)) for x ∈ Xρ,μ.

Proof For x ∈ Xμ,ρ , we have

‖x − NBαAx − (A∗A)μω‖
= ‖N(A∗A)μω − NBαA(A∗A)μω

− NBαAN(A∗A)μω‖
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= ‖N(A∗A)μω − NBαA(A∗A)μω‖
≤ L‖(IdX −BαA)(A∗A)μω‖
≤ LCαμ.

Here, L denotes the Lipschitz constant of N and C is some
constant depending on the regularization (Bα)α>0. ��

4.3 Data-Driven Continued SVD

For the following, assume that A admits a singular value
decomposition

((un)n∈N, (vn)n∈N, (σn)n∈N) ,

where (un)n∈N and (vn)n∈N are orthonormal systems in X

and Y, respectively, and σn are positive numbers such that
for all x ∈ X

Ax =
∑

n∈N
σn〈un, x〉vn . (4.2)

The regularization method corresponding to the regular-
izing filter given in (2.2) yields to the truncated SVD given
by

Bα(y) =
∑

σ 2
n ≥α

1

σn
〈y, vn〉un . (4.3)

The truncated SVD only recovers signal components corre-
sponding to sufficiently large singular values of A and sets
the other components to zero. It seems reasonable to train
a network that extends the coefficients with nonzero values,
and therefore can better approximate non-smooth functions.

To achieve a learned data extension, we consider a family
of regularizing networks of the form (3.1)

Rα(yδ) := (IdX +Nθ(α))Bα(yδ)

= (IdX +Nθ(α))
∑

σ 2
n ≥α

1

σn
〈yδ, vn〉un (4.4)

Nθ(α)(z) := (IdX −BαA)Uθ(α)(z)

=
∑

σ 2
n <α

〈Uθ(α)z, un〉un . (4.5)

For the data-driven continued SVD (4.4), (4.5), the following
convergence rates result holds.

Theorem 4.2 (Convergence rates for data-driven continued
SVD) Let (Rα)α>0 be defined by (4.4), (4.5) and adapted to
((Bα)α>0,N), where (Bα)α>0 is given by truncated SVD and
M is defined by (3.2) for some null space network IdX +N.
Moreover, assume that dα(x; ρ,μ) = O(αμ) for all x ∈

Mρ,μ in some setMρ,μ ⊆ M. Then, provided thatα � δ
2

2μ+1 ,
for all x ∈ Mρ,μ, we have

‖Rα(yδ) − x‖ = O(δ
2μ

2μ+1 ) as α → 0. (4.6)

Proof We apply Theorem 3.2 and for that purpose verify
(A1)–(A4). Items (A1) and (A2) are satisfied according to
the made assumptions. Moreover, we have

ran((IdX −BαA)Uθ(α)) ⊆ span{ui | σ 2
i < α}.

Then for x ∈ X and all α, ‖BαANθ(α)BαAx‖ vanishes, and
therefore (A3) is satisfied. Finally, it is well-known that trun-
cated SVD has infinite qualification [7, Example 4.8], which
gives Assumption (A4) in Theorem 3.2 and concludes the
proof. ��

The networks Nθ(α) map the truncated SVD reconstruc-
tion Bα(yδ) lying in the space spanned by the reliable basis
elements (corresponding to sufficiently large singular val-
ues of the operator A) to coefficients unreliably predicted by
A. Hence, opposed to truncated SVD, Rα is some form of
continued SVD, where the extension of the unreliable coef-
ficients is learned from the reliable ones in a data-driven
manner.

Opposed to the two previous examples, for the data-driven
continued SVD, we do not have a simple and explicit char-
acterization for the sets Mρ,μ in Theorem 4.2. These sets
crucially depend on the nature of the networks Nθ(α), the
used training data and training procedure. Investigating and
characterizing these sets in particular situations will be sub-
ject of future research.

Another natural example is the case where classical
Tikhonov regularizationBα = (A∗A+α IdX )−1A∗ is used to
define aRegNet (Rα)α of the form (3.1).Also in this example,
Theorem 3.1 gives convergence of (Rα)α under the assump-
tion that (Nθ(α))α>0 is adapted to ((Bα)α>0,N). However, for
Tikhonov regularization, we are currently not able to verify
(A3) under natural assumptions, required for the convergence
rates results. Investigating convergence rates for the com-
bination of Tikhonov regularization or other regularization
methods with a learned component will be investigated in
future research.

5 Numerical Example

In this section, we consider the inverse problem g = R( f ),
whereR is an undersampled Radon transform. For that pur-
pose, we compare classical truncated SVD, the data-driven
extended SVD and the null space approach of [21]. Similar
results are presented in [22] for the limited data problem of
photoacoustic tomography.
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5.1 Discretization

We discretize the Radon transform R by using radial basis
functions. For a phantom f : R2 → R supported in the
domain [−1, 1]2, we make the basis function ansatz

f (x) =
N2
∑

i=1

ciϕi (x), (5.1)

for coefficients ci ∈ R and ϕi (x) = ϕ(x − xi ), where xi are
arranged on a Cartesian grid on [−1, 1]2 and ϕ : R2 → R is
the Kaiser–Bessel function given by

ϕ(x) =
⎧
⎨

⎩

I0
(
(ρ

√
1−(‖x‖/a)2)

)

I0(ρ)
‖x‖ ≤ a,

0 otherwise.
(5.2)

Here, I0 denotes the modified first kind Bessel function, and
the parameters controlling the shape and support are cho-
sen ρ = 7 and a = 0.055 (around 4 pixels in the images
shown), respectively. We take advantage of the fact that for
Kaiser–Bessel functions, the Radon transform is known ana-
lytically [14].

For our simulations, we evaluate the Radon transform
at Nθ = 30 equidistant angles in θk := (k − 1)π/Nθ and
Ns = 200 equidistant distances to the origin in the interval
[−3/2, 3/2]. Further, we use a total number of N 2 = 1282

basis function to approximate the unknown density f . Then,
the discrete forward operator A ∈ R

Ns Nθ×N2
is defined by

ANs (n−1)+ j,i = R(ϕi )(sn, t j ). This results in the following
inverse problem for the coefficients of the phantom

Recover c ∈ R
N2

from data y = Ac + ξ. (5.3)

Here, the vector ξ ∈ R
N2

models the error in the data.
For our choice of Nθ , theRadon transform is highly under-

sampled, and (5.3) is ill-conditioned. In the following, we
consider the problem of recovering c, since the function f
can be reconstructed by evaluating (5.1). Note that ϕi are
translated versions of a fixed basis function with centers on a
Cartesian grid. Therefore,we cannaturally arrange the coeffi-
cients c ∈ R

N2
as an N×N image. This image representation

will be used for visualization and for the inputs of the regu-
larizing networks.

5.2 Used RegularizationMethods

Let A = U�V ᵀ be the singular value decomposition of
the discrete forward operator. We denote by (un)

Nt Nθ

n=1 and

(vn)
N2

n=1 the columns of U and U , respectively, and by σ1 ≥
σ2 ≥ . . . ≥ σNs Nθ the singular values. Singular vectors un

with vanishing singular values correspond to components of
the null space ker(A).

• The truncated SVD (Bα)α>0 is then given by

Bα(y) =
∑

σ 2
n ≥α

1

σn
〈y, vn〉un for y ∈ R

Ns Nθ . (5.4)

• The data-driven continued SVD (see (4.4), (4.5)) is of the
form

Rα(y) = Bα(y) +
∑

σ 2
n <α

〈Uθ(α)(Bα y), un〉un, (5.5)

where Uθ(α) : RN2 → R
N2

is a neural network that

operates on elements of RN2
as N × N images, sub-

sequently followed by the projection onto the singular
vectors corresponding to the truncated singular values.
We use the same U-net architecture as described in [5]
(without residual connection) forUθ(α). Note that the net-
work does not affect the non-vanishing coefficients of the
truncated SVD, which means thatRα and Bα reconstruct
the same low-frequency parts.

• Additionally,we apply the regularized null space network
of [21] which with the help of the SVD can be evaluated
by

R0
α(y) = Bα(y) +

∑

σ 2
n =0

〈U0
θ(α)(Bα y), un〉vn . (5.6)

For the neural network Uθ(α), we use again the U-net
architecture as described as above. Opposed to (5.5), the
null space networks only add components of the kernel
ker(A) to Bα .

Note that the implemented regularization methods fit in
the general framework of RegNets, see Sect. 4. In particular,
for all methods, we have convergence as δ → 0. For the data-
driven continued SVD (5.5), this convergence result requires
that there is some network U : X → X such that for all
x ∈ ran(A+), we have

lim
α→0

∑

σ 2
n <α

〈Uθ(α)(Pαx), un〉un =
∑

σn=0

〈Ux, un〉un,

where Pα(x) := ∑
σ 2
n ≥α〈x, un〉un . We think that this con-

vergence (at least on a reasonable subset of ran(A+)) is
reasonable using the same training strategy (5.7). Further,
theoretical and practical research, however, is required for
rigorously analyzing this issue.
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5.3 Network Training and Reconstruction Results

The regularizing networksRα andR0
α were trained for differ-

ent regularization parameters α. Our training set consists of
1000 Shepp–Logan-type phantoms c(k) for k = 1, . . . , 1000
as ground truth and the corresponding regularized recon-
structionsBα y(k) where the data y(k) = Ac(k) were simulated
with the discrete forward operatorA. We trained the network
Rα (and likewiseR0

α) by minimizing the mean absolute error
(MAE)

1

1000

1000∑

k=1

‖c(k) − Rα(y(k))‖1, (5.7)

with the stochastic gradient descent (SGD) algorithm. The
learning rate was set to 0.05 and the momentum parameter
to 0.99. To evaluate the proposed regularizing networks, we
generated 250 phantoms for testing (see Fig. 4 for an example
from the test set).

We trained the networks Rα and R0
α for 15 different val-

ues of the regularization parameter α the same way using
noise-free data minimizing (5.7) for Rα and Nα , respec-
tively. For the reconstructed images shown in Fig. 5 and
Fig. 6, we took ten different images with corresponding data
y(k) = Ac(k) + δξ (k) with noise level of δ = 0.05, where
ξ (k) ∼ ‖Ac(k)‖∞N (0, 1). Then, we chose the regularization
parameter with minimal mean squared error, averaged over
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Fig. 4 Right: True phantom from the test set. Middle: Simulated
sparse Radon data Ac + δξ for Nθ = 30 directions, where ξ j ∼
‖Ac‖∞N (0, 1) with δ = 0.05. Left: Cross section of the data for
the 15th sensor directions for different noise levels

Fig. 5 Reconstructions for low noise levels (δ = 0.02).Left:Trun-
cated SVD.Middle: Null space network. Right: Reconstruction with
continued SVD

Fig. 6 Reconstructions for higher noise levels (δ = 0.05). Left:
Truncated SVD. Middle: Null space network. Right: Reconstruction
with continued SVD
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Fig. 7 Mean Errors for the test images using different error mea-
sures. The x-axis shows the number of used singular values. The noise
level is δ = 0.02
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Fig. 8 Mean Errors for the test images using different error mea-
sures. The x-axis shows the number of used singular values. The noise
level is δ = 0.05

the ten sample images. The resulting regularization param-
eter was α = 1 (which equals to taking the 796 biggest
singular values).

For quantitative evaluation of the different approaches,
we calculated the mean errors for all 250 test images and
all regularization parameters using the mean squared error
(MSE) and the mean absolute error (MAE). All images were
rescaled to have values in [0, 1] before calculating the error.
The resulting error curves depending on the regularization
parameter α (respectively, the number of used singular val-
ues) are shown in Figs. 7 and 8.
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5.4 Discussion

One can see that our proposed approach (data-driven contin-
ued SVD) in both cases outperforms the truncated SVD and
the null space network; see Figs. 5 and 6. The better perfor-
mance is also shown inFigs. 7 and8,where the reconstruction
errors are shown for varying regularization parameter (the
number of used singular values). The data-driven continued
SVD yields the smallest reconstruction errors followed by
the null space network and the truncated SVD.

Interestingly, in these figures, one also observes a shift
to the left of the error curve for the methods with learned
components compared to plain truncated SVD. This can be
explained as follows. The continued SVD and the null space
network preserve the singular components corresponding to
large singular values. Further, the reconstruction error corre-
sponding to the truncated components is reduced by applying
the trained network, and therefore the overall error becomes
reduced compared to the other two methods. We conclude
that partially learned methods need less singular values to
achieve accurate results. This effect is even larger for the
learned SVD than for the null space network. This explains
the improved performance of the learned SVD and the shift
to the left in Figs. 7 and 8.

There exists a variety of recently proposed deep learning-
based methods for solving inverse problems, and in par-
ticular, for limited data problems in image reconstruction.
Because the main contribution of our work is the the-
oretical analysis, we do not make the attempt here to
numerically compare our method with other deep learning-
based methods, for which no comparable theory is available.
One advantage of our approach that we expect is the bet-
ter generalization to data different from the training data.
Numerical studies investigating such issues are subject of
future research.

5.5 Extensions

The probably most established deep learning approach to
image reconstruction is to apply a two-step reconstruction
network RFBP := (Id+Uθ ) ◦ BFBP where BFBP denotes the
filtered backprojection operator and (Id+Uθ ) is a trained
residual network. The FBP BFBP can been seen as a regular-
ization method in the case of full data. In the case of limited
data, this is not the case, and therefore it does not fully fit into
the framework of our theory. Analyzing such more general
situations opens an interesting line of research that we aim
to address in future work.

Another interesting generalization of our results is the
extension to regularization also from left and from the right.
In this case, the reconstruction networks have the form

Rα,β(y) := B(1)
β (Id+Nθ(α,β)) ◦ B(0)

α ◦ (y),

for regularization methods (B(0)
α )α , (B(1)

β )β and networks
Nθ(α,β). Extensions are even possible using cascades of
network, which would have similarity with iterative and vari-
ational networks [2,12] and cascades of networks [13,20].We
expect that our results can be extended to such more general
situations.

6 Conclusion

In this paper, we introduced the concept of regularizing fam-
ilies of networks (RegNets), which are sequences of deep
CNNs. The trained components of the networks, as well as
the classical parts, are allowed to dependon the regularization
parameter, and it is shown that under certain assumptions,
this approach yields a convergent regularization method. We
also derived convergence rates under the assumption that the
solution lies in a source set that is different from the classical
source sets. Examples were given, where the assumptions are
satisfied. It has been shown that the new framework recovers
results for classical regularization as special cases as well as
data-driven improvements of classical regularization. Such
data-driven regularization methods can give better results in
practice than classical regularizationmethodswhich only use
handcrafted prior information.

As a numerical example, we investigated a sparse sam-
pling problem for the Radon transform. As regularization
method, we took the truncated SVD and its data-driven coun-
terparts, the null space network and the continued SVD.
Numerical results clearly demonstrate that the continued
SVD outperforms classical SVD as well as the null space
network. Future work will be done to test the proposed
regularizing networks on further ill-posed inverse problems
and compare it with various other regularization methods.
A detailed numerical comparison of our method with other
deep learning methods is subject of future research. This will
reveal the theoretical advantage of our method that it actually
has improved generalizability.
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