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Abstract
In this paper, we propose a new variational model for removing haze from a single input image. The proposed model combines
two total generalized variation (TGV) regularizations, which are related to the image intensity and the transmission map,
respectively, to build an optimization problem. Actually, TGV functionals are more appropriate for describing a natural color
image and its transmissionmapwith slanted plane. Byminimizing the energy functional with double-TGV regularizations, we
obtain the final haze-free image and the refined transmission map simultaneously instead of the general two-step framework.
The existence and uniqueness of solutions to the proposed variational model are further obtained. Moreover, the variational
model can be solved in a unified way by realizing a primal–dual method for associated saddle-point problems. A number
of experimental results on natural hazy images are presented to demonstrate our superior performance, in comparison with
some state-of-the-art methods in terms of the subjective and objective visual quality assessments. Compared with the total
variation-based models, the proposed model can generate a haze-free image with less staircasing artifacts in the slanted plane
and more details in the remote scene of an input image.

Keywords Dehaze · Atmospheric scatting model · TGV · Dark channel prior

1 Introduction

The phenomenon of haze, due to the presence of airborne
particulate matter, absorbs the reflected light of the scene
and scatters some atmospheric light to the camera [1]. As
such, the visibility, contrast and vividness of the scene are
dramatically degraded, which is a major threat to subsequent
high-level computer vision tasks, such as object detection
and recognition. Hence, it is important to design an image
dehazing method to improve the environmental adaptability
of the visual system.

In the literature, various methods have been proposed to
handle the image dehazing problem.We can roughly classify
these methods into two categories: multiple image dehazing
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and single image dehazing. However, the haze removal from
one single image has now gained the dominant popularity,
since it is more practical for realistic settings. This paper
focuses on the problem of single image dehazing. In com-
puter vision, the formation of hazy image is usually described
by the atmospheric scattering model [2]:

I(x) = J(x)t(x) + A(1 − t(x)), (1)

where I is the observed hazy image intensity defined on the
image domain Ω ⊂ R2, J is the scene radiance to be recov-
ered, A is the atmospheric light and assumed to be constant
over the whole image, t is the medium transmission and x
denotes the image coordinates. The transmission describes
the portion of the light reaching the camera without being
scattered. In a homogeneous atmosphere, the transmission t
can be further expressed as t(x) = e−ηd(x), where d(x) is
the distance from the scene point to the camera and η is the
scattering coefficient of the atmosphere. The task of dehaz-
ing is to estimate J (with A and t as by-products) from the
input image I, which is a severely ill-posed problem. There-
fore, haze removal is a challenging problem, especially for
single image dehazing. Various prior knowledges have been
proposed to capture deterministic (e.g., physical rules and
variational energy) or statistical properties of the hazy image.
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For instance, Tan et al. [3] proposed a dehazing model based
on the observation that the clear or enhanced images usually
have higher contrast than hazy images. After that, Fattal [4]
estimated the transmission through a refined image forma-
tionmodel, inwhich the cost functions of surface shading and
transmission are considered to be statistically uncorrelated.
He et al. [5] leveraged an empirical observation that the local
patches in haze-free images often contain some low albedo
values in at least one color channel. Inspired by this observa-
tion, they proposed a dark channel prior (DCP) to estimate
the haze thickness. One may have the initial estimation of
the transmission t (denoted t0) from He et al.’s model:

t0(x) = 1 − μ min
c∈{R,G,B}

(
min

y∈N (x)

I c(y)

Ac

)
,

where μ is used to keep some depth information of a natu-
ral image and is commonly set as μ = 0.95, I c is a color
channel of the hazy image I, the atmospheric light Ac can
be estimated as the brightest pixel color in the dark channel
(c denotes a color channel). This coarse transmission map
is computed locally and thus often needs to be refined. He
et al. utilized the soft-matting technique to reduce the haze
effect. As the soft-matting algorithm is too complex, Tarel et
al. [6] proposed a fast image restoration algorithm by using
a median filtering and its variant to replace the soft-matting
algorithm. Nowadays, many imaging problems are solved by
variational methods. Meng et al. [7] reformulated DCP as a
boundary constraint and incorporated a contextual regular-
ization to model transmissions of hazy images. They found
an optimal transmission function t(x) by minimizing the fol-
lowing objective function:

λ

2
‖t − t0‖22 +

∑
j∈E

‖Wj ◦ (Dj ⊗ t)‖1,

where λ is the regularization parameter for balancing the
two terms, E is an index set, ◦ represents the element-wise
multiplication operator, ⊗ stands for the convolution opera-
tor, Dj is a first-order differential operator and Wj ( j ∈ ω)

is a weighting matrix. Later, Zhu et al. [8] created a lin-
ear model to estimate the scene depth under a novel color
attenuation prior and learned the model parameters in HSV
space. Although this approach can produce visually pleasing
performance, it often fails to remove the dense haze in the
remote scenes. The total variation (TV) and its adaptive term,
such as weighted TV or vectorial TV, have been proved to be
effective for edge preservation, and they have been applied
in many image processing tasks, such as image denoising,
image restoration, deblurring, filtering, and so on. Fang et al.
[9] proposed a newvariationalmodelwithweighted vectorial
total variation (WVTV) to dehaze and denoise simultane-
ously. The minimizing problem is given as follows:

min
g,d

E(g, d) = ‖h∇g‖TV + λ‖∇d‖T V

+ 1

2
‖|g − f − d‖2 + γ

2
‖d − d0‖2,

where d = − 1
η
log t(x), d0 = − 1

η
log t0(x), g = 1

η
log(A −

J), f = 1
η
log(A − I). The TV approach, however, also

has some shortcomings, most notably the staircasing phe-
nomenon. If one natural image contains not only flat but also
slanted regions, then the image dehazing on the basis of the
total variation tends to be piecewise constant (staircasing).
The work in [10] aimed to solve a variational model based
on image-guided total generalized variation (TGV) regular-
ization to suppress artifacts in hazy images. They refined
the transmission by using a global method based on image-
guided total generalized variation (TGV) regularization:

min
t,ω

{
α1

∫
|D1/2(∇t − ω)|dx

+α0

∫
|∇ω|dx +

∫
|t − t0|dx

}
,

where D1/2 is the anisotropic diffusion tensor defined as:

D1/2 = exp(−γ |∇ I |β)nnT + n⊥n⊥T ,

where n is the direction of the gradient of the guided image
n = ∇ I

|∇ I | and n⊥ is the perpendicular direction, γ , β are
parameters to adjust the sharpness and magnitude of the ten-
sor andω is an auxiliary variable. After the transmissionmap
was refined, they recovered the scene radiance J by gradient
residual minimization (GRM):

min
J

{
1

2

∫
‖Jt − (I − A + At)‖22dx+η

∫
‖∇J−∇I‖0dx

}
,

where the l0 norm counts the number of nonzero elements
and η is a weighting parameter. However, for very faraway
objects, their method cannot significantly increase their con-
trast, which is due to the ambiguity between the artifacts
and true objects covered by very thick haze, and mistakenly
remove the distant objects to produce over-smoothed results.
Lately, as convolutional neural networks (CNNs) have wit-
nessed prevailing success in computer vision tasks, they have
been introduced to image dehazing aswell. Cai et al. [11] pro-
posed a trainable model to estimate the transmission matrix
from a hazy image called DehazeNet. Ren et al. [12] further
exploited a multiscale CNN (MSCNN) that first generated a
coarse-scale transmission matrix and later refined it.

In this paper, we propose a novel variational model with
double-TGV regularizations related to J(x) and t(x) for
image dehazing and prove the existence and uniqueness of
solutions of the proposed model. TGV regularization can
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suppress artifacts in hazy images. We do not need to esti-
mate the transmission in advance as the haze estimation step
presented in [10]. We develop a primal–dual algorithm for
optimal solutions by alternating updating the transmission
map t(x) and the scene radiance J(x) step-by-step. More-
over, the two variables affect each other in the calculating
process.

The rest of our paper is organized as follows. In Sect. 2,
we deduce the proposed model and prove the existence and
uniqueness of the solution for the model. In Sect. 3, we
present the primal–dual algorithm to solve our model. In
Sect. 4, we give some experimental results on natural images
and illustrate the superior performance of our model. In
Sect. 5, we provide concluding remarks.

2 The ProposedModel

In this section, we introduce our variational model for recov-
ering the haze-free image without estimating the refined
transmission in advance.

(1) can be rewritten as

Ac − Ic(x) = t(x)(Ac − Jc(x)), (2)

where c denotes the color channel. In order to handle the
product expression in (2), we convert it into the logarithmic
domain, i.e.,

log(Ac − Ic(x)) = log t(x) + log(Ac − Jc(x)).

As we know, t is an exponential function of the depth map
d, so we have d(x) = − 1

η
log t(x), where again η is the

scattering coefficient and, for simplicity, we set it to be 1 for
our experiments. We further set

fc(x) = 1

η
log(Ac − Ic(x)), gc(x) = 1

η
log(Ac − Jc(x)).

Then, Eq. (2) is equivalent to

g(x) = f(x) + d(x), x ∈ Ω

where g = {gR, gG, gB}, f = { fR, fG , fB},d(x) =
{d, d, d}.

In order to dealwith color images, it is convenient to have a
notion of TGV for vector-valued images g : Ω ⊂ R2 → RL

for some L ≥ 1. Here, L = 3 for the RGB color space. A
vector-valued version of TGVk

α(g) can then be defined as

TGVk
α(g) = sup

{∫
Ω

3∑
l=1

gl (divkvl) dx | v

∈ C k
c (Ω,Symk(R2)3),

‖divκv‖∞ ≤ ακ, κ = 0, . . . , k − 1

}
,

where gl is a color channel of the image g, vl is a
component of v, Symk(R2) = {ξ : R2 × · · · × R2︸ ︷︷ ︸

k times

→

R| ξ multilinear and symmetric} denotes the space of sym-
metric tensors on R2 (for k = 1, Sym1(R2) = R2; and for
k = 2, Sym2(R2) = S2×2) and ακ are fixed positive param-
eters.

The vector-valued space BGVk
α(Ω,R3) is defined as fol-

lows:

BGVk
α(Ω,R3) = {g ∈ L1(Ω,R3)|TGVk

α(g) < ∞}.

The scalar version of TGVk
β for d can be defined as same as

the vector-valued version of TGVk
α with l = 1, and the scalar

space BGV is defined as BGVk
β(Ω).

For k = 1, α0 = 1, TGVk
α coincides with TV and the

space BGVk
α coincides with space BV. Indeed, solutions

of variational problems with TV regularization admit many
desirable properties, most notably the appearance of sharp
edges. Unfortunately, one can also observe typical artifacts
which are associated with the regularization with TV. The
most prominent of these artifacts are the so-called staircas-
ing effect and blocky effect. This is a side effect of the model
assumption that an image consists of piecewise constant.
Natural images are, however, often piecewise smooth due to
shading, for instance. Compared with the conventional TV,
total generalized variation (TGV) prefers piecewise smooth
images. This is also a desired property for the transmission,
because we may have a slanted plane (e.g., road, bridge)
whose transmission varies smoothly along with the change
of depth.As a consequence,we useTGV regularization terms
for a hazy image and its transmission map both.

We thus make the following assumptions:

– We suppose functions d(x) and g(x) are piecewise
smooth in Ω . Thus, TGVk

β(d) and TGVk
α(g) can be set

as the regularization terms of d and g.
– The sum of d(x) and f(x) is close to g(x) in the sense

of square norm. Thus, the fidelity terms are given by∫
Ω

(g − d − f)2dx and
∫
Ω

(d − d0)2dx .

Combining the above two assumptions, we propose the
following energy functional for recovering ahaze-free image:
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E(g, d) = TGVk
α(g) + 1

2

∫
Ω

(g − f − d)2dx

+ TGVk
β(d) + γ

2

∫
Ω

(d − d0)
2dx,

(3)

where d0 = − log t0, and γ is a positive parameter.
Then, the total space Λ of our energy functional can be

defined as

Λ := {(g, d)|(g, d) ∈ BGVk
α(Ω,R3) × BGVk

β(Ω)}.

After the functional space has been chosen, the minimizing
problem of (3) can be written as the following form:

inf
(g,d)∈Λ

E(g, d). (4)

In the following, wewill discuss the existence and unique-
ness of the globalminimizer for the proposedmodel. It is easy
to show the lower semicontinuity of TGV, and the proof can
be seen in [13].

Lemma 1 (Lower semicontinuity) If the sequences gn ⊂
BGVk

α(Ω,R3) and g∗ ∈ BGVk
α(Ω,R3) satisfy that gn −→

g∗ in L1(Ω,R3), i.e.,

lim
n→+∞

∫
Ω

|gn − g∗|dx = 0,

then

TGVk
α(g∗) ≤ lim

n→+∞ inf TGVk
α(gn).

Theorem 1 Assume that f ∈ L2(Ω,R3) and that d0 ∈
L2(Ω) is nonnegative, then the minimization problem (4)
admits a unique solution (g∗, d∗) ∈ Λ.

Proof First, the energy functional E(g, d) is clearly non-
negative and proper because E(0, 0) is a finite value. Let
{(gn, dn)} be a minimizing sequences of problem (4). Then,
there is a constant M > 0, such that

E(gn, dn) = TGVk
α(gn) + 1

2

∫
Ω

(gn − f − dn)2dx

+ TGVk
β(dn) + γ

2

∫
Ω

(dn − d0)
2dx ≤ M .

Thus,

TGVk
α(gn) ≤ M, TGVk

β(dn) ≤ M . (5)

Since d0 ∈ L2(Ω), f ∈ L2(Ω,R3), we can assume that

‖d0‖2 ≤ M, ‖f‖2 ≤ M .

Observing that

γ

2

∫
Ω

|dn − d0|2dx ≤ M and

1

2

∫
Ω

|gn − f − dn|2dx ≤ M,

we have

‖dn‖22 = ‖(dn − d0) + d0‖22
≤ 2‖dn − d0‖22 + 2‖d0‖22
≤ 4

γ
M + 2M2

and

‖gn‖22 = ‖(gn − f − dn) + f + dn‖22
≤ 3‖gn − f − dn‖22 + 3‖f‖22 + 3‖dn‖22
≤ 6M + 12

γ
M + 9M2.

Then, the boundedness of ‖dn‖1 and ‖gn‖1 is automatically
obtained by Holder’s inequality:

‖dn‖21 ≤ |Ω|‖dn‖22 ≤ |Ω|
(
4

γ
M + 2M2

)
,

‖gn‖21 ≤ |Ω|‖gn‖22 ≤ |Ω|
(
6M + 12

γ
M + 9M2

)
,

where γ is a positive parameter. Namely, the sequences {gn}
and {dn} are bounded in L1(Ω) and L1(Ω,R3), respectively.
Combining it with (5), we can conclude that the sequences
{gn} and {dn} are bounded in BGVk

α(Ω,R3) and BGVk
β(Ω),

respectively. By Sobolev imbedding theorems, there exist
subsequences (gn, dn) such that

dn −→ d∗ and gn −→ g∗ strongly in L1(Ω),

dn −→ d∗ and gn −→ g∗ weakly in L2(Ω),

dn
ω∗−→ d∗ and gn

ω∗−→ g∗ in BGV,

where (g∗, d∗) ∈ BGVk
α(Ω,R3) × BGVk

β(Ω). By the

weakly lower semicontinuity of the L2 and Lemma 1, a stan-
dard process can prove that

min
(g,d)∈Λ

E(g, d) = lim
n→+∞ inf E(gn, dn) ≥ E(g∗, d∗).

Hence, (g∗, d∗) is a minimal point of E(g, d).
All the terms in (3) are convex, so E is convex. (Here, g

is a three-dimensional vector value and d is one-dimensional
value.) Moreover, the Hessian matrix of the functional
E0(g, d) := 1

2

∫
Ω

(g − f − d)2dx + γ
2

∫
Ω

(d − d0)2dx is
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H =
⎡
⎣

∂2E0
∂g2

∂2E0
∂g∂d

∂2E0
∂d∂g

∂2E0
∂d2

⎤
⎦ =

[
1 −3

−1 3 + γ

]
.

H is positive definite; thus, E0 is strictly convex. As a result,
E is strictly convex, too.

Therefore, we can conclude that the variational problem
(4) admits a unique solution. ��

3 The Algorithm

To solve the minimizing problem (4), we apply the primal–
dual algorithm. The present paper addresses this issue by
analyzing the case of k = 2, i.e., total generalized variation
of second order.

With the constraint ∇T q = p, we can now deduce a dis-
crete version of TGV2

α(u):

TGV2
α(u) = max

{
〈u,∇T p〉RL | (p, q) ∈ (R2)L × Sym2(R2)L ,

∇T q = p, ‖q‖∞ ≤ α0, ‖p‖∞ ≤ α1

}
,

The inner products we used here are defined as follows:

for u, r ∈ RL : 〈u, r〉RL =
L∑

l=1

〈ul , rl〉,

for u, r ∈ (R2)L : 〈u, r〉(R2)L

=
L∑

l=1

〈(ul)1, (rl)1〉 + 〈(ul)2, (rl)2〉,

for u, r ∈ Sym2(R2)L :

〈u, r〉Sym2(R2)L =
L∑

l=1

〈(ul)11, (rl)11〉

+〈(ul)22, (rl)22〉 + 2〈(ul)12, (rl)12〉,

and 〈·, ·〉 denotes the Euclidean inner product.
Introducing indicator functionals, i.e.,

IK (x) =
{
0 if x ∈ K
∞ else

and observing that

−I{0}(∇T q − p) = min
ω∈(R2)L

〈ω,∇T q − p〉(R2)L ,

the discrete functional can be rewritten as

TGV2
α(u) = max

p,q
min

ω∈(R2)L
〈u,∇T p〉RL+〈ω,∇T q−p〉(R2)L

− I{‖·‖≤α0}(q) − I{‖·‖≤α1}(p).

One can show that the maximum and minimum can be inter-
changed. Moreover, the constraints are symmetric around 0,
so we have

TGV2
α(u) = min

ω
max
p,q

〈∇u − ω, p〉(R2)L + 〈Eω, q〉
− I{‖·‖≤α0}(q) − I{‖·‖≤α1}(p),

where E is the symmetric derivative Eω = 1
2 (∇ω + ∇ωT ).

For L = 1, the discrete scalar version of TGV2
β(d) can

be defined; for L = 3, the discrete vector-valued version of
TGV2

α(g) can be defined.
Then, a discretization of the variational problem (4) is

given by the saddle-point problem

min
g,d,ω1,ω2

max
p1,p2,q1,q2

〈∇g − ω1,p1〉(R2)3 + 〈Eω1,q1〉Sym2(R2)3

+ 1

2

∫
Ω

(g − f − d)2dx + 〈∇d − ω2, p2〉R2

+ 〈Eω2, q2〉Sym2(R2) + γ

2

∫
Ω

(d − d0)
2dx

− I{‖·‖≤α1}(p1) − I{‖·‖≤α2}(q1) − I{‖·‖≤β1}(p2)
− I{‖·‖≤β2}(q2).

(6)

Note that (6) can be solved by many efficient methods, such
as the augmented Lagrangianmethod and split Bregman iter-
ation. Here, we chose to employ the primal–dual method due
to its simplicity which is summarized in the following:

In the algorithm, dk+1 = (dk+1, dk+1, dk+1), τ, σ > 0
are the step sizes and k is the iteration number. The project
operators P is defined:

P[x] = x

max{1, |x |} .
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(a) Hazy Image (b) Tarel et al. (c) He et al. (d) Meng et al.

(e) Berman et al. (f) Chen et al. (g) CAP (h) DehazeNet

(i) MSCNN (j) AOD (k) DCPDN (l) Ours

Fig. 1 Thin haze removal

(a) Hazy Image (b) Tarel et al. (c) He et al. (d) Meng et al. (e) Berman et al. (f) Chen et al.

(g) CAP (h) DehazeNet (i) MSCNN (j) AOD (k) DCPDN (l) Ours

Fig. 2 Dense haze removal
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(a)Hazy Image (b) Tarel et al. (c)Meng et al. (d)Chen et al.

(e) CAP (f) DehazeNet (g) MSCNN (h) Ours

Fig. 3 Inhomogeneous haze removal

The divergence and gradient operators in the optimization
are approximated by using standard finite difference. More
details are defined as in [13].

4 Experimental Results

In this section, we present some experimental results to
show the performance and the effectiveness of our model,
in comparison with Tarel et al.’s model [6], DCP model
[5], Meng et al.’s model [7], Berman et al.’s model [14],
Chen et al.’s model [10], CAP model [8], DehazeNet [11],
MSCNN [12], AOD-Net [15] and DCPDN [16]. The first
five conventional methods are proposed to refine the coarse
transmission map obtained by dark channel prior, and the
others are some state-of-the-art of learning methods nowa-
days. Note that the most of the following experiments are
implemented in MATLAB R2015b on an Intel 2.50 GHz
PC with 8 GB RAM; especially, AOD-Net and DCPDN are
implemented in Pycaffe on an Intel PC with GTX1064 GPU.
In our model, the parameters α and β adjust the impor-
tance of the two TGV regularization terms. We observe
that the results of the proposed model change very little
as the parameters α and β vary in ranges [0.01, 0.1] and

[0.2, 0.8]. The parameter γ determines the fidelity term; as
a result, we cannot set γ to be too small. In our experi-
ment, we fix γ in [2, 4]. We choose the parametersα =
0.02, β = 0.5 and γ = 4 in our manuscript by infer-
ring on best visual appearance after taking many times
experiments. For other comparison models, we use the
parameter ranges given in their corresponding papers (or
programs) and choose the values to give the best visual
effect.

4.1 Comparison to the State-of-Art Methods

The haze of the input image in Fig. 1 is thin, and the scene
depth of it is varying continuously. The dehazed result of
Tarel et al.’s model [6] has oversaturated color in the sky
region, and we can see this unpleasant effect in the close-up
view. To some extent, the dehazed result of Meng et al.’s
model [7] can remove the haze of the image, but it suffers
from color distortion owing to the error estimation of the
atmospheric light. Besides, the results of Berman et al.’s
model [14], Chen et al.’s model [10], CAP model [8] and
MSCNN [12] also suffer from unpleasing color shifting. The
result of DCPmodel [5] still contains haze in the distant hori-
zon. The dehazed results of CAPmodel [8], DehazeNet [11],
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(a) Hazy Image (b) TV (c) TGV

(d) Hazy Image (e) TV. (f) TGV

Fig. 4 A comparison between the TV model and the TGV model

MSCNN [12] and AOD-Net [15] are a little dark and lack of
enhancement in some areas (see the close-up view in the yel-
low rectangle). DCPDN’s [11] result and our result contain
much less visual artifacts and appear to be more natural.

In Fig. 2, the image suffers from dense haze and has dis-
continuous scene depth. We can observe that edge artifacts
around scene depth become severe in Tarel et al. model [6]’s
result. The result of Chen et al.’s model [10] is quite over-
smoothed for the distant objects. The results of Meng et al.’s
model [7] andBerman et al.’smodel [14] have the compelling
visibility, but they suffer from color distortion which makes
the image appear to be unnatural. The dehazed results of
the learning-based methods are enhanced, but not as clear as
ours. The result of our method is comparable to the DCP
[5] method’s, but our result has a higher image contrast.
Compared with the other results, our dehazed image is more
balanced in the visibility and the naturalness.

In Fig. 3, the image is full of inhomogeneous haze and
discontinuous depth. For this input, most existing dehazing
methods’ results are visual unnoticeable, especially in heavy
haze regions. The haze cannot be effectively removed using
the previous methods, even the learning methods nowadays,
such as CAP [8], DehazeNet [11] and MSCNN [12]. This is

because, during the dataset training process, the haze image
is synthesized homogenously. Our result can remove more
haze in the image with less visual artifact, but the color of
our image is prone to dark. However, a better result may
be obtained by further enhancing its brightness via exposure
compensation.We can see the close-ups from the boxed areas
in the bottom.

4.2 Comparison to TV-BasedModels

We further compare our method with the TV-based dehaz-
ing model [9]. Two examples are shown in Fig. 4, where the
input images have lower quality in the remote scenes. We
can see that fine details in the remote scenes are lost in TV
model’s results such as the buildings in the red square, the
trees, houses and telegraph pole in the red rectangle. More
apparently, the bridge (the close-up view in the yellow rect-
angle) in the dehazed image using TV model is missing. As
we know, the kernel of TGV2

α reads as

ker(TGV2
α) = {u(x) = Ax + b |A ∈ R3×2, b ∈ R3},
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Fig. 5 A comparison between
the TV model’s transmission
map and the TGV model’s
transmission map

(a) TV (b) TGV

(c) TV (d) TGV

but the kernel of TV consists of constant functions. For the
TGVmodel, the dehazed image can be represented as eAx+b

roughly in a local region, while ec for the TV model, which
implies that our TGV model allows the image change lin-
early in this local region. This reveals that the range of the
color value is larger in the TGV model’s result than in the

TV model’s; in other words, more color and content will be
preserved.

In Fig. 5, we compare the transmission maps obtained by
the TVmodel and ourmodel.We can see that there are strong
visible blocky artifacts appearing in the sky region of the TV
model’s results which are alleviated after dehazing by our
TGV model. As we know, the transmission cannot be well
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Fig. 6 A close-up comparison
between the TV model and the
TGV model

(a) TV (b) TGV

approximated by piecewise constant functions when it varies
smoothly along with the change in depth.

The superiority of the TGV model is more apparent in
Fig. 6, in which close-up views of Fig. 4 are displayed. From
the images, we observe that the hull, the brown pillar and the
yellow wall recovered by the TVmodel suffer more staircas-
ing effect than by ourmodel.Meanwhile, the top of the brown
building and the water surface of the TV model’s result in
Fig. 4 are over-smoothed. This eliminates the possibility that
the weights of the TV regularization terms are too small. The
staircasing effect is produced by the TV model itself due to
its inaccurate assumption of scene depth and surface radiance
being piecewise constant.

4.3 Objective Quality Evaluations

A good image quality assessment method needs to compare
the effect of visibility, color restoration and image struc-
ture similarity of different dehazing algorithms. As shown
in Table 1, no-reference image quality assessments [17] are
used here, because the full-reference and reduced-reference
image quality assessments need a clear image corresponding
to the hazy image to act as the reference image. This is hard
to be satisfied in real applications.

In Table 1, we compare the quality assessments of the
dehazing methods with those of our method, such as IVM,
VCM, Cg, UQI and so on. The definitions of these objec-
tive image quality assessment are described in detail in the
appendix. According to the subjective quality assessments
in Sect. 4.14.1, we can find that DehazeNet, MSCNN and
CAP obtain the satisfactory visual results with respect to
Figs. 1, 2 and 3, respectively, so in Table 1 we take the three
methods to compare with our method. As shown in the table,
our model achieves better values of most visibility assess-
ment criteria than the other methods. In some sense, when
all the other values of assessments are equal, a smaller SSIM
indicates less haze in the dehazed image. Thus, in this case,
the SSIM here is only a reference for the readers. (There is
no truth image in real-world applications of image dehazing
and the original hazy image is always chosen as the reference
image, so large SSIM and UQI do not mean the image is of
better dehazed result. For example, the SSIM index of two
identical hazy images must be larger than the SSIM index
of the hazy image and the dehazed image.) Compared with
the result of CAP, the color of our result is a little dark. So
the HCC values of ours shown in the table are smaller than
CAP’s. Next, our algorithm achieves better values, on aver-
age, than MSCNN and DehazeNet algorithms. There is no
dehazing method that has very good performance under all
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Table 1 Blind quantitative
analysis comparison of the
results

Figure Method IVM VCM SSIM Cg UQI HCC

Figure 1 DehazeNet [11] 8.0128 70.1923 0.8996 0.3402 0.8229 0.2022

Ours 8.3739 75.1923 0.8457 0.2861 0.8805 0.6304

Figure 2 MSCNN [12] 5.2842 45.8333 0.8299 0.2123 0.9174 0.3749

Ours 6.5800 44.5000 0.6875 0.2429 0.8488 0.1474

Figure 3 CAP [8] 8.9442 50 0.7345 0.3630 0.6854 − 0.1434

Ours 10.9083 71.9642 0.4067 1.1900 0.3374 − 0.2016

Bold values indicate the better result

Table 2 Comparison of average model running time (in s)

Image size DCP [5] Meng [7] Berman [14] CAP [8] DehazeNet [11] AOD-Net [15] TV [9] Chen [10] Ours

465*384 1.7197 4.4014 6.4785 2.2900 3.8172 0.6218 26.9408 163.0120 38.3732

400*600 2.1226 5.1096 7.9396 2.3397 4.5488 0.5215 31.3883 196.5083 53.7700

1024*768 7.4820 10.8102 16.6591 4.4108 15.5929 0.5879 99.6759 493.7204 172.2233

Table 3 Quantitative analysis
comparison of synthetic images

Image DCP [5] Meng et al. [7] Berman et al. [14] MSCNN [12] Ours

SSIM Baby 0.8426 0.8215 0.8811 0.9048 0.9002

Aloe 0.9500 0.8030 0.8171 0.8993 0.9335

Toy 0.8703 0.8710 0.8734 0.8774 0.8508

PSNR Baby 11.6593 17.7222 16.5943 17.6007 18.7031

Aloe 18.4094 17.2590 18.6789 21.1392 29.4708

Toy 14.4741 20.5046 19.1675 19.5174 20.7632

MSE Baby 0.0682 0.0169 0.0219 0.0174 0.0135

Aloe 0.0144 0.0188 0.0136 0.0077 0.0011

Toy 0.0357 0.0089 0.0121 0.0112 0.0084

Bold values indicate the best result

conditions, so the quality assessment indexes can be used as
references for the subjective assessment.

The runtimes of DCPmodel,Meng et al.’s model, Berman
et al.’s model, CAP model, DehazeNet model, AOD model,
TV model, Chen et al.’s model and our model are listed in
Table 2. Furthermore, we have compared runtimes of three
image sizes of 465*384, 400*600 and 1024*768.Most of the
methods are implemented in MATLAB R2015b but AOD-
Net and DCPDN are implemented in Pycaffe. CAP model,
DehazeNet model and AOD model are learning methods
using trained model parameters; as a result, the runtimes of
them are very fast. DCP method and Berman et al.’s method
do not use the variational model, so they take little time in
iterative calculation. TV model, Chen et al.’s model and our
model are variationalmodels using two variableswhileMeng
et al. use one variable to optimize theirmodel; therefore, their
method is faster than ours. We want to accelerate our model
with a more efficient fast algorithm in the future.

To verify the effectiveness on complete images, we test
our method on synthesized hazy images from stereo images
with a known depth map d(x). And our method is com-

pared with DCP, Meng et al., Berman et al. and MSCNN
in Fig. 7. To quantitatively assess these methods, we use a
series of evaluation criteria in terms of the difference between
each pair of ground-truth image and dehazed result. Apart
from thewidely used structural similarity (SSIM) indices, we
use additional evaluation indexes, namely mean square error
(MSE) and peak signal-to-noise ratio (PSNR). In Table 3, our
method achieves the best performance in PSNRandMSE.On
the whole, our method achieves a satisfactory performance
on synthesized images.

5 Conclusion

In this paper,we have proposed a variationalmodelwithTGV
regularizations to remove the haze of a single image. The pro-
posed dehazingmethod obtains the optimal solutions through
a primal–dual algorithm.We have validated the superior per-
formance of our method over some state-of-the-art methods.
Compared with the TV dehazing model [7], the proposed
method can remove the visible blocky artifacts appearing in
the transmissionmaps and recover haze-free imageswith less
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(b) DCP(a) Hazy images (c) Meng et al. (d) Berman et al. (e) MSCNN (f) Ours (g) Ground truth

Fig. 7 Dehazing results on synthetic images

visual staircasing artifacts in the slanted plane, more details
in the remote regions. But the color of our output image is a
little dim; it still needs to be improved. In the future, we will
consider how to enhance its brightness adaptively.

Acknowledgements The funding was provided by National Natural
Science Foundation of China (Grant Nos. 11531005, 91330101).

Appendix: Image Quality Assessment

The criteria of objective image quality assessment we used
are described in detail in [17].

Yu et al. [18] presented an image visibility measurement
method based on the visible edge segmentation. The IVM is
defined as

IVM = nr
ntotal

log
∑
x∈A

C(x).

where nr is the number of visible edges, ntotal is the number
of edges, C(x) is the mean contrast and A denotes the image
area of visible edges.

Jobson et al. [19] proposed a visual contrast measure
(VCM) to quantify the degree of visibility of the imagewhich
is calculated as follows:

VCM = 100 ∗ Rv

Rt
,

where Rv is the number of local areas, the standard deviation
of which is larger than the given threshold and Rt is the total
number of local areas. The VCM uses the local standard
deviation which denotes the contrast of the image to measure
the visibility. In general, the higher the VCM, the clearer the
enhanced image.

The contrast of a clear image is usually much higher than
that of a hazy image, so image contrast can be used to com-

pare different dehazing algorithms. The higher the contrast
of the enhanced image, the better the dehazing algorithm.Ma
and Wen [20] used the image global contrast to compare the
performance of different dehazing algorithms. Tripathi et al.
[21] used contrast gain to compare different dehazing algo-
rithms. Contrast gain denotes the mean contrast difference
between the enhanced image and original hazy image and is
calculated by

Cgain = C̄J − C̄I ,

where C̄J and C̄I represent themean contrast of the enhanced
image and hazy image, respectively. And C is the local con-
trast of the image in a small window and is calculated by

C(x, y) = S(x, y)

m(x, y)
,

where

S(x, y) = 1

(2r + 1)2
∑
j

∑
i

(I (x + i, y + j) − m(x, y))2,

m(x, y) = 1

(2r + 1)2
∑
j

∑
i

I (x + i, y + j),

and r is the radius of the local area. The larger the contrast
gain, the better the result of the dehazing algorithm.

Yu et al. thought that a good dehazing algorithm should
allow the original hazy image and enhanced image to have
similar histogram distributions. They used the histogram
correlation coefficient (HCC) of the two color images as a
criterion to assess the performance of color restoration.

Wu and Zhu used the image structural similarity (SSIM)
and universal quality index (UQI) to assess the performance
of the structural similarity between the original hazy image
and the enhanced image.
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