
Journal of Mathematical Imaging and Vision (2019) 61:1112–1134
https://doi.org/10.1007/s10851-019-00891-2

Comparative Study and Proof of Single-Pass Connected Components
Algorithms

Michael J. Klaiber1 · Donald G. Bailey2 · Sven Simon3

Received: 15 August 2018 / Accepted: 1 June 2019 / Published online: 28 June 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Union-find algorithms form the basis of managing sets of equivalent labels within most connected components labelling
algorithms. The new class of single-pass connected components analysis (CCA) algorithms (where a feature vector of each
component is extracted during processing) are analysed and compared within this context. Such algorithms have been devel-
oped for stream processing, using customised hardware architectures. Many of these use an improved union-find algorithm
requiring only a single lookup for its find operation. This paper analyses this optimisation and formally proves that the
resulting single lookup connected components algorithm associates each pixel with its correct component when extracting the
components’ feature vectors. Analysis of the algorithm led to a new double lookup algorithm that reduces the total number of
memory accesses and is a step towards unifying pixel-basedmethods and run-basedmethods. State-of-the-art CCA algorithms
are compared in terms of the number of memory accesses, which is a limiting factor for hardware-based acceleration, with
key implementation trade-offs identified between hardware resources and worst-case processing speed.

Keywords Connected component analysis · Connected component labelling · Feature extraction · Union-find · Stream
processing · FPGA · Hardware architecture

1 Introduction

Connected components analysis (CCA) is a common step
in many image processing applications, extracting features
such as area or size of arbitrarily shaped objects in a binary

This work was funded by the German Academic Exchange Service
(DAAD) under scholarship id 91510664 and by the German Research
Foundation (DFG) under Grant SPP 1423. This work is part of the
OpenCCA project.

B Michael J. Klaiber
michael.klaiber@de.bosch.com

Donald G. Bailey
D.G.Bailey@massey.ac.nz

Sven Simon
simon@ipvs.uni-stuttgart.de

1 Robert Bosch GmbH, Corporate Research Campus,
71272 Renningen, Germany

2 Department of Mechanical and Electrical Engineering,
School of Food and Advanced Technology, Massey
University, Palmerston North, New Zealand

3 Institute of Parallel and Distributed Systems, University of
Stuttgart, Stuttgart, Germany

image. It is based on connected components labelling (CCL),
which creates a labelled image of the same dimensions
as the original image where all pixels of each connected
component are assigned a unique label. Most recent CCL
algorithms carry out three phases: scan, analyse and rela-
belling [8,13,19,34,35]. In the scan phase, a provisional label
is assigned to each object pixel. If more than one label is
assigned to a single connected component, this relationship
is detected and memorised. In the analysis phase, one label is
chosen to represent each connected component in the labelled
image.Most state-of-the-art connected components labelling
algorithms perform this analysis using some form of union-
find data structure and algorithm [9,12,35], although they
may not always explicitly mention it by this name [7]. The
relabelling phase requires a second pass through the image
and replaces each provisional label by its representative label.
As a result, all pixels of a connected component are assigned
the same label.

In connected components analysis, a feature vector is
derived from each connected component. Since the set of
feature vectors is of primary interest, a labelled image is
essentially only an auxiliary data structure. If features are
extracted during the scan phase then relabelling is redundant

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10851-019-00891-2&domain=pdf
http://orcid.org/0000-0001-8286-7000
http://orcid.org/0000-0002-1025-3680

Journal of Mathematical Imaging and Vision (2019) 61:1112–1134 1113

and the three processing phases can, therefore, be reduced to
only two: scan and analyse. Analysing the image while it is
scanned resolves data associations on-the-fly [2] and this is
the principle behind the recently developed class of single-
pass CCA algorithms ([1,32]). Such CCA algorithms allow
stream processing of the input image and reduce memory
requirements [18] since only the labels of the current and
the previous row are required for further processing. Previ-
ous single-pass CCL algorithms are based on contour tracing
[5].

Some CCA and CCL algorithms are adapted and opti-
mised to the instruction sets or memory architectures of the
hardware device they are usedon [3,11,19].Many single-pass
algorithms are motivated by the idea of creating a CCA algo-
rithm from which an efficient customised high-performance
architecture can be derived by basic processing and storage
elements [18]. This is realised by:

– Single-pass processing

For CCA, a labelled image does not need to be stored, there-
fore, there is no need to maintain, optimise or accelerate the
labelled image data structure or its memory accesses when it
is processed in only a single pass.

– Linear processing time

A necessary condition for real-time processing is that the
algorithm complexity is linear in the number of pixels in the
image because the binary input image is either read from a
memory or received as a pixel stream.

– One lookup per pixel to determine the representative
label

InmanyCCL andCCA algorithms, the union-find data struc-
tures which represent equivalence relations are mapped to
arrays [8,12,13,28,35]. Their union-find algorithms require
several lookups per pixel to identify which connected com-
ponent a pixel is associated with. Most single-pass CCA
algorithms reduce this to one lookup per pixel implicitly
using a novel, context-based, optimisation of the classi-
cal union-find algorithm. The single lookup property is
especially important for a dedicated hardware architecture
because it enables the system to process the pixel stream at
the pixel clock rate.

The contributions of this paper are:

– State-of-the-art CCL and CCA algorithms are analysed
in terms of the union-find algorithm (Sect. 2). In particu-
lar, single-pass algorithms are placed within this context,
and the corresponding optimised union-find algorithm is
identified and analysed.

– Section 3 presents a full algorithmic description of the
state-of-the-art Single Lookup CCA SLCCA hardware
architecture from [18].

– A proof of the correctness of the SLCCA algorithm is
provided (Sect. 4). This proves that the single lookup
of the optimised union-find algorithm is sufficient for
CCA. This is the first formal proof of single-pass CCA
algorithms; prior outlines of proof [1] are both informal
and incomplete.

– From this, a novel optimised Double Lookup CCA algo-
rithm (DLCCA) is derived in Sect. 5, with fewer total
lookups required.

– Pixel-based and run-based algorithms are unified by
proving that it is only necessary to find the equivalent
label of the first pixel in a run when propagating labels
from one row to the next, enabling run-length encoding
to be used for storing the label image.

– The trade-offs between different CCA algorithms are
analysed in terms of memory operations and the required
resources in Sect. 6.

2 Union-Find in CCL and CCA Algorithms

First, what is meant by a connected component is formally
defined. The binary input image I identifies object and back-
ground pixels on a discrete grid in Cartesian space of width
W and height H . Let imagePos be the set of all positions
in I ,

imagePos = {(i, j) : 0 ≤ i < W , 0 ≤ j < H , i, j ∈ N}.
(1)

Pixels outside the image are assumed to be background.

I [p] =
⎧
⎨

⎩

0, ∀p /∈ imagePos,
1, if p = (i, j) is an object pixel,
0, if p = (i, j) is not an object pixel.

(2)

Two pixels p1 and p2, are adjacent if

‖p1 − p2‖ = 1. (3)

Adjacent object pixels are connected. Here, 8-connectivity
is assumed (i.e., using ‖ ‖L∞), although the same techniques
can be applied for 4-connectivity (using ‖ ‖L1).

Definition 1 Connectedness Two object pixels in I , p1 and
p2, belong to the same connected component if there is a
path of connected object pixels in I between p1 and p2.

123

1114 Journal of Mathematical Imaging and Vision (2019) 61:1112–1134

This is denoted as p1 ←→ p2, which can be defined recur-
sively as:

{
I [p1]=I [p2]=1 ∧ ‖p1 − p2‖=1 or

∃pi : I [pi]=1 ∧ p1 ←→ pi ∧ pi ←→ p2.
(4)

The base case holds true if p1 and p2, are adjacent object
pixels of I . The recursive case holds true if there is an object
pixel pi with a connected path to both p1 and p2.

Definition 2 Connected component A maximal set of mutu-
ally connected object pixels in I is called a connected
component. Each connected component represents a sepa-
rate image object in I .

2.1 Union-Find

Problems which require the manipulation of disjoint sets by
carrying out intermixed find and union operations are called
union-find problems [31]. Within the context of CCL, union-
find is used for managing the set of labels associated with a
single connected component, and for selecting the represen-
tative label for a component.

2.1.1 Graph Notation

The most common union-find data structure to represent dis-
joint sets (distinct components) is a directed forest. Each
provisional label assigned to a connected component is repre-
sented by a vertex. A directed forest is an acyclic graphwhere
directed edges, referred to as arcs, link pairs of vertices, indi-
cating the relationship between the associated labels. The
following graph notation represents the directed forest struc-
ture F as a set of vertices V (F) and edges E(F):

F = (V , E)

V (F) = {v0, . . . , vn−1}
E(F) = {(vi0 → v j0), . . . , (vim−1 → v jm−1)}.

(5)

For each edge, vi → v j , vi is the child vertex, and v j is
the parent. Each vertex has exactly one parent (except for a
root vertex which has no parent), with the edge represented
by a pointer to its parent. A vertex may have many children;
vertices with no children are leaf vertices. A path from vertex
v1 to vertex v2 is denoted v1 �→ v2, which consists of a
sequence of vertices v1 → vi → · · · → v2, where each pair
of two consecutive vertices is an arc in E(F).

Definition 3 Rooted TreeA tree (ormore formally, a directed
rooted tree) T is a subgraph of F comprising a root vertex
vr and all of its children.

Each vertex belongs to exactly one tree, and there is a path
following the edges of T from every vertex in the tree to vr

1 2

3 3

3 3 3 3

3 3

3

4

4

4 4

1

A B C

D px

3 2

1

4

3

(b)(a)

Fig. 1 a A label is assigned to each pixel in raster scan order. Also
shown is the neighbourhood of a pixel at position px = (x, y) and
b union-find data structure F of the image from a

[24]. Therefore:

V (Tvr) = {vi : vi ∈ V (F) ∧ vi �→ vr }. (6)

A tree is associated with one connected component in the
image. The root vertex of each tree serves as the represen-
tative element for the set. Each tree is referred to by its root
vr (and its associated representative label for the connected
component).

Definition 4 Level of a vertex in a tree The level of a vertex
v, level(v), is the number of arcs between v and the root, vr .

The level of the root vertex is therefore 0, and for all other
vertices the level is one higher than the level of its parent:

level(v) =
{
0, v = vr (it is root),
level(parent(v)) + 1, otherwise.

(7)

Definition 5 Height of a tree The height of a tree T ,
height(T), is the maximum level of a vertex in V (T).

height(T) = max{level(vi) : vi ∈ V (T)}. (8)

Connected components labelling sequentially assigns a
label L[p] to each pixel p, with the goal of eventually assign-
ing the same label to all pixels belonging to a single connected
component. Since there is a one-to-one relationship between
labels and vertices of the forest F , in the discussion here the
term label is synonymous to a vertex of V (F). Assigning
L[p] := Lvp is therefore equivalent to associating p with
vertex Lvp . An example image is shown in Fig. 1a, and the
corresponding forest derived from this image is shown in
Fig. 1b.

123

Journal of Mathematical Imaging and Vision (2019) 61:1112–1134 1115

Algorithm 1 QuickFind based union-find.
1: procedure MakeSet(vertex e)
2: parent[e] := ∅
3: end procedure

4: function Find(vertex e)
5: if parent[e] = ∅ then
6: return e
7: else
8: return parent[e]
 Only a single lookup required
9: end if
10: end function

11: procedure Union(vertex e, vertex f)
12: roote := Find(e)
13: root f := Find(f)
14: for v in V (F) do
15: if parent[v] = roote then
 Every vertex of tree added
16: parent[v] := root f
 is linked directly to the root
17: end if
18: end for
19: parent[e] := root f
20: end procedure

2.1.2 Union-Find Algorithms

Union-find algorithms have three key operations. Make-
Set(e) creates a set Se consisting of a single element e; a
Union(e, f) replaces the sets Se and S f by Se ∪ S f [15];
and a Find(e) returns the representative element of the set
containing e [15].

With a forest structure in the context of CCL, the opera-
tions have the following meanings: MakeSet creates a new
tree within F and corresponds to assigning a new label to a
new connected component; Union joins two trees into a sin-
gle tree, corresponding to merging two previously disjoint
connected components; and Find returns the root vertex of
the tree which contains a specified vertex, corresponding to
finding the representative label of a connected component.

Algorithms 1–3 present common variations of union-find
which are discussed in the following. These algorithms oper-
ate on a directed forest data structure, F , which contains nF
vertices.Adding a vertex to F , changing the parent of a vertex
or looking up the parent of a vertex in F are each referred to in
the following as one uf -instruction (union-find instruction).

QuickFind based union-find (Algorithm 1) [15] maintains
F so that every leaf is directly connected to the root. A Find,
therefore, consists of one uf -instruction. A Union checks
which vertices of F belong to the changed rooted tree and
changes each of their parents to the new root. A Union can,
therefore, require up to 2nF uf -instructions in the worst case.

QuickUnion based union-find (Algorithm 2) [15] com-
bines two trees by making the root of one tree the parent of
the root of the other tree. This requires two Finds for one
Union, which requires up to nF uf -instructions in the worst

Algorithm 2 QuickUnion based union-find.
1: procedure MakeSet(vertex e)
2: parent[e] := ∅
3: end procedure

4: function Find(vertex e)
5: if parent[e] = ∅ then
6: return e
7: else
8: return Find(parent[e])
 Recursively search for root
9: end if
10: end function

11: procedure Union(vertex e, vertex f)
12: roote := Find(e)
13: root f := Find(f)
14: if roote �= root f then
15: parent[roote] := root f
 Link one tree to the other
16: end if
17: end procedure

Algorithm 3 QuickUnion with path compression.
1: procedure MakeSet(vertex e)
2: parent[e] := ∅
3: end procedure

4: function Find(vertex e)
5: if parent[e] = ∅ then
6: return e
7: else
8: root := Find(parent[e])
 Recursively search for root
9: parent[e] := root
 Compress path
10: return root
11: end if
12: end function

13: procedure Union(vertex e, vertex f)
14: roote := Find(e)
15: root f := Find(f)
16: if roote �= root f then
17: parent[roote] := root f
 Link one tree to the other
18: end if
19: end procedure

case [27]. Both QuickFind and QuickUnion have quadratic
run time in the worst case [27].

QuickUnion with path compression (Algorithm 3) [15]
joins all vertices which are visited during a Find directly
to the root vertex. Whenever these values are accessed again
theywill point directly to the root (at the time that the pathwas
compressed). The worst-case run time of QuickUnion with
path compression grows with the inverse of the Ackermann
function [30] (which is quasi-linear for practical cases) when
the tree size of the union-find data structure is balanced with
a heuristic such as union-by-rank [30], which is not discussed
in this paper.

For connected components labelling or analysis, the
sequence of Union and Find operations depends on the
input image. This can be used to derive a more efficient

123

1116 Journal of Mathematical Imaging and Vision (2019) 61:1112–1134

union-find algorithm for the special case of CCA and CCL
of two-dimensional images.

2.2 Improved Union-Find

Single-pass CCA requires the label for each pixel to be
resolved on-the-fly so that the contribution of the pixel to
the feature vector can be allocated to the correct component.
For streamed images, the order of operations is determined
by the order in which the pixels are scanned, along with the
local connectivity.

The pixels of the input image I are streamed or scanned
row-wise from the top-left position (0, 0) to the bottom-right
position (W − 1, H − 1). A position p1 preceding another
position p2 in the raster scan order is denoted as p1 ≺ p2.

As the data structures are updated dynamically as the pix-
els are processed, it is necessary to define the structures that
represent the state after processing each pixel. Let px be the
current pixel. The set visi ted contains all pixels which have
already been visited after processing the current pixel:

visi ted = {px } ∪ {p : p ≺ px }. (9)

Two pixels p1, p2 are connected in image I as scanned so
far, if they are connected by a path of adjacent object pixels in
visi ted. Equation (4) can be extended to define p1 ←→

visi ted
p2

as
⎧
⎨

⎩

p1, p2 ∈ visi ted ∧ I [p1]=I [p2]=1 ∧ ‖p1 − p2‖=1
or ∃pi : I [pi]=1 ∧ p1 ←→

visi ted
pi ∧ pi ←→

visi ted
p2.

(10)

As F is updated as each pixel is processed, let F−
px be

the state of F before processing pixel px , and Fpx be the
resultant state after processing.

Definition 6 Component segment All pixels belonging to the
same connected component after processing pixel px are a
component segment.

Component segments therefore correspond to sets of pix-
els with labels associated with individual trees in Fpx and are
subsets of the final connected components of I .

Algorithm 4, a context-based union-find algorithm, explo-
its the order of Union and Find operations combined with
an age-balancing heuristic [8] to achieve linear run time
and requires fewer uf -instructions in the worst case than
QuickFind (Algorithm 1), QuickUnion (Algorithm 2) or
QuickUnion with path compression (Algorithm 3). Age-bal-
ancing ensures that the label assigned to the earliest pixel of
a connected component encountered during a scan is always
the root vertex.

Context-based union-find combines the best features
of QuickFind and QuickUnion. Like QuickFind, the Find

Algorithm 4 Context-based union-find algorithm.
1: procedure MakeSet(vertex e)
2: parent[e] := e
3: end procedure

4: function Find(vertex e)
5: return parent[e]
6: end function

7: procedure Union(vertex e, vertex f)
8: roote := Find(e)
9: root f := Find(f)
10: if roote ≺ root f then
 Age-balancing heuristic
11: parent[root f] := roote
12: else
13: Stack.push(root f ,roote)
 Caching for path compression
14: parent[roote] := root f
15: end if
16: end procedure

17: procedure Flatten()
18: while ¬Stack.empty do
 Path compression
19: Lmin ,Lmax := Stack.pop()
20: parent[Lmax] := Find(Lmin)
21: end while
22: end procedure

requires only one uf -instruction. The Union of two ver-
tices makes one root vertex the parent of the other, similar to
QuickUnion with the addition of age-balancing. In addition
to MakeSet, Union and Find operations, a fourth opera-
tion, Flatten, is introduced which performs the equivalent
of path compression by making the root vertex the parent of
all vertices in a tree.

InQuickUnion with path compression (Algorithm 3), path
compression is performed within the Find, processing from
the leaves towards the root by following the arcs of E(F) as
they are searched by Find [29]. In contrast, Flatten starts
at the root vertex and processes towards the leaves. To accel-
erate this, arcs joining vertices with level(v) > 1 that will
be encountered in subsequent processing are recorded in a
stack during the Union operations.

Normally, Find is used to determine the root of a label
vertex [30]. Since context-based union-find, replaces Find
by a single lookup, it therefore returns only the parent of a
vertex. For convenience, every root vertex points to itself,
i.e., parent[vr] = vr . A single lookup is equivalent to a
Find for trees of height(T) ≤ 1; this will only be the root
vertex for vertices of level zero or one.

Definition 7 Stale label A label Ls is called a stale label if a
single lookup does not yield the root label.

A necessary condition for the Find not to return a stale
label, is that the CCA algorithm using Algorithm 4 must
ensure that Flatten is always called before a Find is applied
on a vertex with level larger than one. As outlined in [1], and
proven in Sect. 4, this can be achieved by calling Flat-
ten after processing each image row. One situation where

123

Journal of Mathematical Imaging and Vision (2019) 61:1112–1134 1117

Table 1 A comparison of properties of representative CCL and CCA algorithms

Method Abbr. Passes Form Scan Scan order Connect Run time complexity Set merging algorithm

Rosenfeld [26] Classical 2 CCL Pixel Raster scan 8 N/A Rosenfeld [26]

Dillencourt [8] GCCL 2 CCL Pixel Raster scan 4 Linear (formal proof) QuickUnion + path compression

Di Stefano [7] SEL 2 CCL Pixel Raster scan 4 N/A QuickFind

Suzuki [28] SCT Multi CCL Pixel Raster scan 8 Linear (experimental) Iterative connection table

Wu [35] SAUF 2 CCL Pixel Raster scan 8 Linear (formal proof) QuickUnion + path compression

He [12] RTS 2 CCL Run Raster scan 8 N/A Optimised QuickFind

He [11] HCS 2 CCL Run Raster scan 8 Linear (experimental) Equivalent label sets

Lacassagne [19] LSL 3 CCL Run Raster scan 8 N/A QuickUnion

Chang [5] CT 1.5 CCL Pixel Contour tracing 8 Linear (formal proof) None

Grana [10] Block 2 CCL Block Modified raster 8 Linear (experimental) QuickUnion + path compression

Bailey [1] OSP 1 CCA Pixel Raster scan 8 Linear (informal) Context-based union-find

Trein [32] RLSP 1 CCA Run Raster scan 8 N/A QuickUnion

Ma [22] AR 1 CCA Pixel Raster scan 8 Linear (informal) Context-based + relabelling

Klaiber [18] SLCCA 1 CCA Pixel Raster scan 8 Linear (formal proofa) Context-based union-find

Jeong [16] CAM 1 CCA Pixel Raster scan 8 Linear (informal) Direct

Proposed DLCCA 1 CCA Pixel Raster scan 8 Linear (formal proofa) Context-based union-find

The set merging algorithm according to the definitions from Sect. 2.1 are identified. Some algorithms use an optimised variant of the algorithm
from Sect. 2.1, some use path compression
aProof is provided in this paper

height(T) = 2 during processing is identified. In SLCCA
this exception is managed by deferring the second lookup,
whereas in DLCCA the second lookup is performed explic-
itly.

2.3 State-of-the-Art CCL and CCA Algorithms

Since the introduction of the classic connected components
labelling algorithm by Rosenfeld et al. [26], CCL has been
improved in many aspects. A summary of several properties
of (mainly) modern CCL and CCA algorithms is given in
Table 1 which compares:

– Number of passes
– Scan mode and scan order
– Worst-case run time, and how this was evaluated
– Categorisation of set merging algorithm used

Rosenfeld’s classical CCL algorithm [26], is a two-pass
algorithmwhere the first pass uses a binary image as an input
and creates a provisionally labelled image. If more than one
label is assigned to a connected component, these labels are
stored in an equivalence table. These equivalence relations
detected during the first scan are resolved at the end of the
first pass by iteratively sorting and replacing the entries of
the equivalence table until the table contains one entry for
each connected component. After this process, each entry of
the equivalence table contains all provisional labels assigned
to its connected component in the first pass sorted in ascend-

ing order, starting with the smallest label which serves as a
representative element. During the second pass all the object
pixels of the provisionally labelled image are replaced by
their representative values from the equivalence table. This
assigns the same label to each pixel of a connected compo-
nent.

Dillencourt et al. [8] proposed a general two-pass CCL
algorithm (GCCL) for different image representations such
as 2-D arrays and quad-trees. This algorithm uses QuickU-
nion with path compression extended by an age-balancing
heuristic embedded into the Union operation. Using this
property it is formally proven that this algorithm scales lin-
early with the number of pixels in I .

Di Stefano et al. [7] describe a simple and efficient con-
nected components labelling (SEL) algorithm. It requires two
passes to label all pixels using an equivalence table as the
union-find data structure carrying out the QuickFind algo-
rithm. The algorithm is improved for the worst-case image.
The image pattern becoming the new worst case with the
proposed improvement, however, still requires a quadratic
number of uf -instructions.

Suzuki et al. [28] proposed a multi-pass CCL algorithm
using a connection table to store the relations between pro-
visional labels. This algorithm is, therefore, referred to as
scan plus connection table (SCT) CCL algorithm. Previous
multi-pass algorithms propagated labels by neighbourhood
operations. The algorithm in [28] creates a forest structure
stored in the connection table during the first scan, with one
tree structure for each connected component consisting of

123

1118 Journal of Mathematical Imaging and Vision (2019) 61:1112–1134

provisional labels as vertices. Every scan over the image
decreases the height of the tree structure in the connection
table by one. The algorithm merges disjoint sets, however,
it cannot be categorised as a union-find algorithm such as
those of Sect. 2.1. The run time is stated to be linear in the
number of pixels which is determined by experimental eval-
uation. It should be noted, however, that it would be difficult
to experimentally distinguish between linear processing, and
run-times proportional to the inverse Ackermann function
[30] with small images. Most of the images used for evalua-
tion require four or fewer passes for final labelling [28].

In the two-passCCLalgorithmpresented byWuet al. [35],
the union-find data structure is represented by an array, there-
fore, it is referred to as scan plus array-based union-find
(SAUF).QuickUnion with path compression is used to main-
tain this array-based union-find data structure. To accelerate
the label selection process for each pixel, a decision tree is
proposed reducing the number of labels of the neighbourhood
to be accessed. A formal proof for the linear run time of the
algorithm is given.

The CCL algorithm by He et al. [12] is a two-pass algo-
rithm which run-length encodes the binary image during the
first pass and processes these runs in the second pass. The
algorithm uses a union-find data structure stored in an array
which is updated by an optimised variant of QuickFind. To
avoid updating all entries of the array for a Union operation,
an additional linked list is maintained for each tree structure
in the array containing all the vertices of the tree structure.
A Union on two vertices links the two lists and updates the
equivalence table entries of these vertices to the root ver-
tex. This set merging algorithm is referred to as Equivalent
Label Sets strategy (ELS) [11,14]. In [13] they optimise their
algorithm to only process runs of object pixels in the second
pass and in [11] extend the algorithm to also compute the
Euler number. Since, He and Chao [11] focuses on feature
extraction, only the part involved in CCL is considered and
is referred to as HCS.

For light speed labelling (LSL) Lacassagne et al. [19]
identified memory accesses and conditional statements to be
the key issue slowing down CCL on state-of-the-art proces-
sors with a RISC architecture. Their algorithm consequently
optimises these by distributing the labelling process to three
passes, replacing the conditional operations. For set merging,
a variation of QuickUnion is applied. In [3] LSL was identi-
fied to require the fewest processing cycles per pixel when
carried out on a general-purpose processor.

Chang et al. [5] follow a completely different approach.
Instead of scanning the image in raster scan order, connected
components are identified by contour tracing which requires
randomaccess to the imagedata.During the raster scan,when
an unlabelled component is encountered, the border is traced
using contour tracing. During this process, control informa-
tion is stored in the labelled image so that pixels surrounded

by already labelled pixels can be labelled when scanning
resumes. Contour tracing (CT) avoids the need for set merg-
ing. The authors claim this to be a single-pass algorithm,
however random access to the input image during contour
tracing effectively means that more than one pass is required.
In Table 1 it is, therefore, denoted as a 1.5 pass algorithm. The
required random access makes this algorithm less practical
for recent processors and dedicated hardware architectures.

Grana et al. [10] made the observation that all of the pixels
within a 2×2 block will have the same label. They extended
the idea of pixel-based labelling to processing a 2×2 block of
pixels at a time. Block-based processing operates in a raster
scan of 2 × 2 blocks, hence it is identified as a modified
raster scan in Table 1. Like Wu et al. [35], a decision tree
approach is used to minimise the number of neighbourhood
accesses during label assignment. The decision tree is consid-
erably more complex than that for processing single pixels,
so Grana et al. developed an algorithm to derive the optimal
decision tree. The set merging algorithm isQuickUnion with
path compression, with the trees updated online (whenever
a merger occurs).

All of the two-pass CCL algorithms use a set merge algo-
rithm which requires either a minimum of two instructions
for a Find, or have a Union operation which scales quadrat-
ically with the number of labels.

Single-pass CCA algorithms require that the component
feature vector be accumulatedwhile determining the connec-
tivity in the first pass. All of the two-pass CCL algorithms
use the second pass for relabelling, so could potentially be
converted into single-pass CCA algorithms by accumulating
the feature data during the first pass. However, single-pass
CCA algorithms have generally been designed in terms of
hardware architectures, optimised for directly processing a
video stream.With streamprocessing, the processing, includ-
ing feature vector accumulation, is performed in a pipelined
manner in hardware.

The original single-pass (OSP) CCA algorithm by Bailey
and Johnston [1] introduced the principle behind the context-
based union-find algorithm, although it was not identified in
terms of union-find. The union-find graph was represented
by storing the links in a merger table. The algorithm was
based on the one lookup per pixel paradigm, with the use
of a stack to optimise the Flatten operation. This built on
earlier work [2] which introduced the parallel data table and
merging the data on-the-fly as regions merged.

Trein et al. [32] accelerated the processing by using run-
length encoding. Hence it is labelled RLSP for run-length
single-pass CCA. The run-length encoding takes multiple
input pixels in parallel, with the runs subsequently processed
as one segment (or one overlap between segments) per clock
cycle. To manage mergers, they used a pointer from the old
label to the new label so that the data from extending an old
label could be assigned to the correct component, and the

123

Journal of Mathematical Imaging and Vision (2019) 61:1112–1134 1119

current label assigned to the run. The simple use of pointers
in this way corresponds to a QuickUnion, which requires a
quadratic number of uf -instructions in the worst case. Data
accumulated for each component is output as soon as it is
detected that a run is not extended, enabling the memory for
data accumulation to be reused.

Bailey’s OSP algorithm was optimised by Ma et al. [22]
to significantly reduce the size of the data and merger tables
through aggressive relabelling (AR). Each row is relabelled
beginning with label 1 on the left, requiring translation of
labels from one row to the next. The original context-based
union-find is used, although a second lookup is required for
the translation associated with relabelling. The two lookups
are pipelined in the hardware implementation. One interest-
ing feature of relabelling is that many mergers are managed
by the translation table rather than the merger table, reduc-
ing the time required for the Flatten operation at the end
of each row.

Klaiber et al. [18] took a different approach to reduce
the memory requirements while retaining the single lookup
paradigm (SLCCA) through label recycling. Augmented
labels are introduced to maintain the age-balancing heuristic
to ensure correct operation of the context-based union-find
algorithm. This algorithm is described more fully in Sect. 3,
and proven to have linear run time in Sect. 4.6. Insights
gained from the proof of correctness have led to the opti-
mised DLCCA, presented later in this paper.

Jeong et al. [16] removed the need for union-find com-
pletely by directly replacing all instances of the old label
by the new label whenever a merger occurs. This removes
the need for an equivalence table or merger table. How-
ever, it requires implementing the label memory (or the
buffer caching the temporary labels) as content-addressable
memory (CAM). In hardware, the parallel update of the
content-addressable memory cannot be implemented using
the memory blocks on an FPGA; instead Jeong used a multi-
plexed shift register. Although this method recycles labels
immediately after mergers, it does not detect completed
objects until the end of the frame, requiring the size of the
data table to be the proportional to the image area in theworst
case.

3 Algorithmic Description of SLCCA

Of all the single-pass algorithms, the SLCCA algorithm [18]
was chosen for formal proof because it satisfies all of the
requirements outlined in the introduction, and it currently
represents the state-of-the-art of single-pass CCA algorithms
in terms of efficiency of resources and processing speed. The
algorithm underlying the hardware architecture of SLCCA
is presented in Algorithm 5. Its constituents are explained in
Algorithms 5.1–5.5 presented at the points in the paperwhere

the corresponding algorithmic background is explained in
detail.

The double for loop in lines 1 and 2 of Algorithm 5 per-
forms the raster scan through the image. When processing
streamed data, these loops are implicit in the order that pixels
arrive. The three operations for each pixel can be imple-
mented in one clock cycle each in hardware and can be
pipelined enabling one pixel to be processed per clock cycle.
At the end of each row, a Flatten is invoked to ensure that
the level of any vertices accessed during the following row
have height(T) ≤ 1. In parallel with the pixel processing,
when it is detected that a connected component is complete,
its associated feature vector is output.

The union-find label graph, F , is realised as a 1-D array,
the merger table, MT , indexed by the label, Lv , corre-
sponding to each vertex, v. The arcs, E(F), are represented
by storing the label of parent(v) in MT [Lv] (each vertex
has only one parent). So that lookup of a root vertex, vr ,
returns a valid label, every root vertex points to itself, i.e.,
MT [Lvr] = Lvr .

The provisional label assigned to pixel px = (x, y) is sav-
ed in a label image, L[px]. In CCA, the labelled image is not
required as output; however, one row must be maintained for
propagation of labels. L is therefore stored as a 1-D array
indexed by column, i.e., L[x].

The abbreviations and names of data structures used in the
following are summarised in Table 2.

3.1 Update Neighbourhood

Definition 8 Neighbourhood The neighbourhood η is the set
of four positions that have already been processed, adjacent
to the current pixel at position px (see Fig. 1a), i.e.,

η = {(− 1,− 1), (0,− 1), (1,− 1), (− 1, 0)} + px

= {A, B,C, D}. (11)

The provisional labels assigned to positions in η are there-
fore L[A], L[B], L[C] and L[D]. The current resolved labels
(after a Find) associatedwithη are contained in variables LA,
LB , LC and LD . These are realised as registers in the SLCCA

Algorithm 5 SLCCA algorithm.
Input: Binary image I of width W and height H
Output: A feature vector for each connected component in I
1: for y = 0 to H − 1 do
2: for x = 0 to W − 1 do
3: UpdateNeighbourhood
 Algorithm 5.1
4: UpdateDataStructures
 Algorithm 5.2
5: ResolveStaleLabels
 Algorithm 5.3
6: end for
7: Flatten
 Algorithm 5.4
8: end for
9: ReadFinishedFeatureVectors
 Algorithm 5.5

123

1120 Journal of Mathematical Imaging and Vision (2019) 61:1112–1134

Table 2 Nomenclature used in
the following sections

Abbreviation Name / description

DT Data table for accumulating feature vector

F Forest structure for L

FS Flatten stack to accelerate Flatten operation

FV Feature vector

H Image height

I Source image

IFV Initial feature vector

IsRoot Flag indicating that a label is a root

L Labelled image

LabelF I FO FIFO for recycling labels

LastLine Last line the component was updated

MT Merger table

px The current pixel during processing

SLS Stale label stack for managing FVs of stale labels

W Image width

Fig. 2 Merger patterns possible in the labels of neighbourhood Lη

hardware architecture. The label assigned to the current pixel
is denoted L px .

Since adjacent object pixels at the positions η will already
have the same label as a result of prior processing, amerger of
component segments (requiring a union of the correspond-
ing trees) can only occur between non-adjacent pixels, i.e.,
between L A and LC , or LD and LC [35], as shown in Fig. 2.
As an optimisation, L AorD is introduced to refer to the label
of L A or LD , i.e., all mergers consist of the two labels LAorD

and LC .
Tomove from onewindow position to the next of the same

row, the label values are shifted as given in Algorithm 5.1.
The superscript − denotes the corresponding neighbourhood
at the previous position. This shifting requires only the label
coming into positionC to be looked upwith a Find operation
(on line 20).

Algorithm 5.1 UpdateNeighbourhood
10: if I [A] then
 Select LAorD
11: LAorD := L−

B
 Next value of LA
12: else
13: LAorD := L−

px
 Next value of LD
14: end if
15: if I [B] ∧ I [D] then
16: LB := L−

px
 Propagate new label into next neighbourhood
17: else
18: LB := L−

C
19: end if
20: LC := MT [L[C]]
 Single lookup of label on previous row: Find

3.2 Update Data Structures

3.2.1 Label Selection

The set Lη denotes all object pixel labels in the neighbour-
hood of the current pixel.

Lη := {L AorD, LB, LC }\{0}. (12)

When a pixel is processed, it is assigned a label L px . Back-
ground pixels are assigned label 0. For object pixels, a label
from Lη is propagated to the current pixel where possible.

A new label operation is performed if an object pixel has
no object pixels in its neighbourhood, i.e., it is assigned the
next available new label (a MakeSet on F−

px creating a new
tree). Conceptually, to achieve age-balancing, the new label
(called newLabel in line 23) is provided by a counter, which
is incremented for each new label. The new label operation
sets MT [newLabel] := newLabel. To more easily detect
stale labels, a flag IsRoot is associated with each label.

A label copy operation propagates the one label in Lη (as
determined by the function posMin in line 46) to the current
position of the labelled image L[px].

Amerger pattern is detectedwhen LAorD and LC have dif-
ferent labels and neither is background, i.e., when (I [A] ∨
I [D]) ∧ I [C] ∧ L AorD �= LC . The last term on line 28 is
required to manage the case where the label ofC is stale (this
will be discussed further in Sect. 3.3). A merger operation
makes the label which first appears in the raster scan, Lmin,
the parent label of Lmax. This corresponds to a Unionmerg-
ing separate trees in F−

px . The vertex associated with Lmax is
no longer a root so the flag IsRoot[Lmax] is cleared.

123

Journal of Mathematical Imaging and Vision (2019) 61:1112–1134 1121

Algorithm 5.2 UpdateDataStructures
21: if I [p] then
22: if ¬I [A] ∧ ¬I [B] ∧ ¬I [C] ∧ ¬I [D] then
 New label

operation
23: L px := newLabel

(L px ← LabelF I FO)
24: MT [L px] := L px
 MakeSet
25: IsRoot[L px] := true
26: DT [L px] := I FV (px)
27: else
 Merger operation: Union
28: if (I [A] ∨ I [D]) ∧ I [C] ∧ LAorD �= LC ∧ LAorD �= L[C]

then
29: if LAorD ≺ LC then
 Propagating merger
30: Lmin := LAorD
31: Lmax := LC
32: else
 Non-propagating merger
33: Lmin := LC
34: Lmax := LAorD
35: FS.push(Lmin, Lmax)
 Stack labels for Flatten
36: end if
37: if IsRoot[Lmax] then
 Prevent multiple recycling
38: Lmax → LabelF I FO
 Recycle old label after

merging
39: end if
40: L px := Lmin
41: MT [Lmax] := Lmin
42: IsRoot[Lmax] := false
43: DT [Lmin] := DT [Lmin] ◦ DT [Lmax] ◦ I FV (px)
44: DT [Lmax] := ∅
45: else
 Label copy operation
46: L px := posMin(LAorD, LB , LC)

47: DT [L px] := DT [L px] ◦ I FV (px)
48: end if
49: if ¬IsRoot[L px] ∧ (L px �= SLS.head) then
50: SLS.push(L px)
 Manage stale labels in building FV
51: end if
52: end if
53: LastLine[L px] := y
 For detecting completed FV s
54: else
55: L px := 0
 Background pixel
56: end if
57: L[px] := L px
 Save label for processing next row

Definition 9 Propagating and non-propagating patterns A
merger pattern is propagating if LAorD ≺ LC otherwise it is
non-propagating.

Figure 3a shows an example of a propagating merger pat-
tern, where the label LAorD is propagated through several
mergers. Figure 3b is an example of a sequence of non-
propagating merger patterns.

A sequence of non-propagating mergers can result in
labels having level(v) ≥ 1 on the next row. These are
resolved by flattening the trees at the end of each row.

3.2.2 Feature Vector Collection

Definition 10 Feature vector The feature vector of an im-
age component is an n-tuple composed of functions of the
component’s pixel pattern.

(a) (b)

Fig. 3 a Propagating, and b non-propagating, merger patterns.

Connected components analysis is concerned with deriv-
ing the feature vector for each connected component. To
accumulate the feature vectors of component segments, a
data table, DT , maintains one feature vector for each label.
An operator ◦ is defined for combining the feature vectors
when a merger operation is induced. The initial feature vec-
tor (I FV) is the feature vector of a single pixel. Table 3
presents the data structures, the initial feature vectors, and
the combining operation for extracting area, bounding box
and first-order moment of connected components.

For a background pixel, nothing needs to be saved in DT .
A new label operation writes the I FV of the current pixel
to DT [L px] (line 26). A label copy operation combines the
current pixel’s I FV with the feature vector stored in DT
(line 47). A merger operation combines the feature vectors
of the object labels in Lη with the I FV and stores the result
in DT [Lmin] (line 43); the data table entry at index Lmax is
also invalidated.

3.2.3 Label Reuse

The memory requirements of MT and DT are proportional
to the number of labels used, which in the worst case is pro-
portional to the image area [1]. However, at any time, the
number of feature vectors updated in one image row is only
proportional to the image width [17,21]. Memory require-
ments can be significantly reduced by recycling labels no
longer in use, enabling entries of MT and DT to be reused
after a connected component is completed. Rather than use a
counter, newLabel is obtained from a FIFO, LabelF I FO ,
initialised with the set LabelF I FOinit , which contains all
possible labels [18]:

LabelF I FOinit =
{
1, . . . , �W+5

2 �
}

. (13)

Labels which are ready for reuse are queued at the end of
LabelF I FO .

To detect when a connected component has been com-
pleted, a tag, LastLine, is associated with each label.
During the raster scan, whenever a label, L px , is updated,

123

1122 Journal of Mathematical Imaging and Vision (2019) 61:1112–1134

Table 3 Data structure and
combining operator for the
feature vectors area, bounding
box and first-order moment

Feature Feature vector I FV px = (x, y) Combining operator FVa ◦ FVb

Area A 1 Aa + Ab

Bounding box

⎛

⎜
⎜
⎝

xmin
ymin
xmax
ymax

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

x
y
x
y

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

min(xmin,a, xmin,b)

min(ymin,a, ymin,b)

max(xmax,a, xmax,b)

max(ymax,a, ymax,b)

⎞

⎟
⎟
⎠

First-order moment

(
M10
M01

) (
x
y

) (
M10a + M10b
M01a + M01b

)

its LastLine tag is updated with the current image row

LastLine[L px] := y when L px �= 0 (14)

to reflect that the component is not completed. Labels for
which LastLine is not updated from one line to the next are
detected as completed (as described in Sect.3.5), enabling the
labels of completed components to be recycled and reused.

After every merger operation, label Lmax is no longer
required. However, it must not be reused for one image row
since the labelled image L still might contain Lmax in the
current image row to the left of the current position. Writing
Lmax to the end of LabelF I FO ensures that it is not assigned
to a new connected component within the following image
row.

The reuse of labels in this way requires modifying the
method used to determine Lmin and Lmax. New labels pro-
duced by a counter strictly increase in scan order. Therefore,
realising the ≺-operator as a comparison is sufficient. When
reusing labels, the numeric labels are not necessarily assigned
to component segments in increasing order. Therefore aug-
mented labels are introduced to realise the functionality of
the ≺-operator with label reuse.

An augmented label is a two-tuple consisting of the row
number L.rw in which the label is first assigned and L.index
which is used as an address to access array data structures.
For example, DT [L px] translates to DT [L px .index]. The
row number rw is used for decisions in merger operations.
The evaluation of L AorD ≺ LC (line 29) is thus realised as

L AorD.rw ≤ LC .rw. (15)

This ensures that Lmin is always the label created earlier dur-
ing processing, leading to correct age-balancing behaviour
when a merger pattern is detected [1].

When a new label is assigned to a component segment, its
index is pulled from the head of LabelF I FO , i.e., newLabel
in Algorithm 5.2 line 23 is realised as

newLabel.rw :=y,

newLabel.index ←LabelF I FO.
(16)

3.3 Resolve Stale Labels

Astale label within Lη requires an additional lookup to deter-
mine the root vertex. Rather than performing this lookup
immediately, SLCCA defers this until the root label appears
in Lη. If a non-root label is assigned to L px , as determined
from the IsRoot flag, the feature vectors of the object labels
in Lη are combined and stored to data table entry DT [L px]
for later combination with the feature vector of the root of
L px . The non-root label is pushed onto the stale label stack
(SLS) (Algorithm 5.2 line 50) until its root appears in Lη.
To avoid duplicate entries which lead to increased memory
requirements and processing times, a label is only added to
SLS if it differs from the top entry, SLS.head.

When SLS.head is equal to L[C], then the lookup to
determine LC will return the label associated with the root
vertex. Algorithm 5.3 then combines the feature vector of the
stale label with the feature vector of the current component
segment, and stores the result in DT [LC]. The data table
entry associated with the label popped from the stack is then
invalidated.

This enables an on-the-fly processing of feature vectors
of reachable stale labels.

Algorithm 5.3 ResolveStaleLabels
58: if SLS.head = L[C] then
59: Lstale := SLS.pop()

60: DT [LC] := DT [LC] ◦ DT [Lstale]
61: DT [Lstale] := ∅
62: FS.push(LC , Lstale)
 Stack for Flatten
63: end if

3.4 Flattening Trees in F

A prerequisite for Algorithm 4 to produce correct results
is that all trees of the forest structure in M are reduced to
height(T) ≤ 1. This can be achieved by using path com-
pression, which is embodied in the Flatten operation.

Since minimum labels propagate to the right due to the
raster scan by assigning Lmin to L px , the height of a tree
in Fpx is increased by one for each non-propagating merger

123

Journal of Mathematical Imaging and Vision (2019) 61:1112–1134 1123

pattern. Therefore, the arc from Lmax to Lmin created by a
union operation induced by a non-propagatingmerger pattern
is pushed onto the stack FS to accelerate flattening (Algo-
rithm 5.2 line 35).

Algorithm 5.4 Flatten
64: while ¬FS.empty do
65: Lmin, Lmax := FS.pop()

66: MT [Lmax] := MT [Lmin]
 Find on RHS
67: end while

At the end of each image row, Flatten is invoked as
listed inAlgorithm 5.4. This pops the arcs off the flatten stack
FS, visiting them in reverse order, effectively performing a
scan from the root to the leaves in the reverse order that the
tree was constructed. The vertex associated with label Lmax

in FS is made the child of the minimum label Lmin which
successively connects each label to the root, flattening the
forest structure in M to a height of one.

3.5 Detecting Completed Connected Components

Label reuse requires the data of completed components to be
removed from the data table DT so that the label to be recy-
cled. A connected component is completed when no further
pixels are added to the component in the current row. This
cannot be checked until the end of the current row is reached,
so in practise, it is checked while the next row is processed.
That is a connected component with label l can be detected
as completed if LastLine[l] was last updated on row y − 2
(it was not extended onto the previous row as indicated in
Fig. 4), i.e.,

LastLine[l] = y − 2. (17)

The data table, DT , is searched for feature vectors of
completed connected components once per row in parallel
with the update process. When a completed component is
detected, the feature vector from the data table is output.
The data table entry is then cleared to be reused by a sub-
sequently connected component and the label recycled for
subsequent components by returning the label to the end
of the LabelF I FO . This process is represented in Algo-
rithm 5.5.

Of course, all remaining objects are completed after pro-
cessing the last row of the image.

Note that in a hardware implementation, it is unnecessary
to store all the bits of y in LastLine. Two bits are sufficient
to satisfy (17) unambiguously.

Algorithm 5.5 ReadFinishedFeatureVectors
68: while ¬ end_of_image do
69: for l := 1 to �W+5

2 � do
70: if DT [l] �= ∅ ∧ (LastLine[l] = y − 2) then
71: Output: DT [l]
72: DT [l] := ∅
73: l → LabelF I FO
 Recycle the label
74: end if
75: end for
76: end while
77: for l := 1 to �W+5

2 � do
 End of image
78: if DT [l] �= ∅ then
79: Output: DT [l]
80: DT [l] := ∅
81: l → LabelF I FO
 Recycle the label
82: end if
83: end for

4 Proof of Correctness of the SLCCA
Algorithm

In this section, it is shown that the correct feature vector
is extracted for each connected component in a binary input
image, I , using the algorithm presented in Sect. 3. In particu-
lar, it is shown that replacing Find of the classical union-find
algorithmby a single lookup as in (Algorithm5.1), theFlat-
ten operation of Algorithm 5.4, and the deferred lookup of
stale labels in Algorithm 5.3 all result in the extraction of the
correct feature vectors for the connected components in I .
To do this, a top-down hierarchical proof will be used.

I is only processed once in raster scan order. The current
pixel px = (x, y) is assigned a label based on the labels in
its neighbourhood η. Therefore, only the labels in L of the
previous line are used to determine the subsequent labels in
the scan process. It is convenient to divide the corresponding
positions into two sets relative to px , as depicted in Fig. 4.
The set le f tPos contains the pixel positions of the current
row to the left of px :

le f tPos = {(i, y) : 0 ≤ i < x, i ∈ N}, (18)

and rightPos contains the pixel positions of the previous
row to the right of px :

right Pos = {(i, y − 1) : x < i < W , i ∈ N}. (19)

Replacing Find by a single lookup to determine the con-
nected component’s root label works correctly for labels
associated with vertices of level(l) ≤ 1. The feature vec-
tors of these labels can be easily accumulated and associated
with their connected components.

However, as a result of severalmergers, a label can become
stale (level(l) > 1). To associate such labels correctly with
their connected components, additional steps are required.
For this, it is convenient to identify the set of vertices (labels)

123

1124 Journal of Mathematical Imaging and Vision (2019) 61:1112–1134

Fig. 4 Visualisation of the positions in the sets visi ted, rightPos,
le f tPos in the image

that may be encountered when processing the rest of the
current row (before the next call of Flatten).

Definition 11 Reachable vertices These are the labels of L
in rightPos and their parents:

Vreachable = {L[pr] ∪ parent(L[pr]) : pr ∈ rightPos}.
(20)

4.1 Outline of Correctness Proof

Labels in le f tPos of level(l) > 1 (created by a sequence
of non-propagating mergers) are not reachable in the current
row, which will be shown in Lemma 12. For these labels,
calling Flatten at the end of the image row is sufficient as
shown in Corollary 13. Therefore, the feature vectors of the
associated patterns are correctly determined. The correctness
of Flatten for compressing the forest structure, F , repre-
sentedwithin themerger table,MT , is shown in Theorem 14.

Labels in rightPos of level(l) > 1 can only be created
by a combination of two merger patterns, one in le f tPos
and one in rightPos as shown in Lemma 16. In this case,
Lemma 18 shows that the root will always be encountered
before the end of the image row. Therefore, by storing the
stale label on the stale label stack, SLS, enables the additional
lookup to be deferred, while still associating the accumulated
data with the correct connected component (Theorem 20).
Finally, it is shown in Theorem 21 that any resulting labels
of level(l) > 1 are also reduced to level 1 by Flatten.

These show that the results of SLCCA are correct.

4.2 Non-propagatingMergers

Since each connected component is represented by a tree in
F , the arguments given in the following subsections of this
proof refer to a single connected component.

A non-propagating merger has LC ≺ L AorD , so L AorD is
made a child of LC , increasing level(L AorD) by 1.

Lemma 12 After a non-propagating merger, only the root
label, LC , is reachable.

Proof For L AorD to be reachable, it must be connected
to a position in rightPos through the pixels that have

already been processed. This requires L AorD ≺ LC which
contradicts the requirements of a non-propagating merger.
Therefore L AorD is not reachable [1]. ��

A sequence of two or more non-propagating mergers will
result in stale labels in le f tPos (see Fig. 3b). However, none
of these will appear in the neighbourhood before the end of
the image row.

Corollary 13 Delaying the Flatten operation until the end
of the row will not affect the assigning of correct labels.

When moving to the start of the next row, le f tPos
becomes rightPos so all of the labels in the current row
become reachable again. Therefore Flatten must reduce
the maximum level of a label to 1.

Theorem 14 The Flatten operation as described in Algo-
rithm 5.4 results in a forest structure Fp where each rooted
tree is of height ≤ 1.

Proof Each non-propagating merger pattern increases the
level of the vertex associated with label LAorD by one. Since
the labels of successive non-propagating mergers are strictly
decreasing (LC ≺ L AorD), each successivemerger grows the
tree adding a new root vertex. Therefore revisiting the merg-
ers in reverse order will follow the vertices of a sequence of
non-propagating mergers in order from the root to leaf, as
illustrated in Fig. 5. This is facilitated by pushing the non-
propagating mergers onto a stack, FS, as they occur, saving
LAorD as Lmax and LC as Lmin, respectively. Popping the
pair of labels off the stack performs the reverse scan from
root back to the leaves. If level(Lmin) ≤ 1 then assigning
MT [Lmax] := Find(Lmin) will make level(Lmax) = 1 for
each iteration within Algorithm 5.4.

As a result of the reverse scan, level(Lmin) ≤ 1 for non-
propagatingmergers. It will be shown in Theorem21 that this
is also true for stale labels following a propagating merger
(referred to as reachable stale labels).

Consequently, level(v) ≤ 1 ∀ v ∈ V (Fp) before process-
ing the next line. ��

Since non-propagating mergers can result in trees requir-
ing the Flatten operation, an obvious question is “why not
make allmergers propagatingmergers?”, i.e., to always select
LAorD as the root of a merger. As demonstrated in [1], this
does not prevent the building of trees of height greater than
1, and since it is not known in advance which vertices will
have their level increased, such a scheme would require all
mergers to be stacked for checking, not just non-propagating
mergers.

4.3 PropagatingMergers

After a propagating merger (L AorD ≺ LC), the label L[C]
is still reachable, and its level will be increased by 1. If

123

Journal of Mathematical Imaging and Vision (2019) 61:1112–1134 1125

Fig. 5 A sequence of 3 labels followed by 3 propagating merger pat-
terns. Arcs recorded after the last pixel of the current row is processed.
The solid arrows represent the arcs pushed onto stack FSwhich are used
for Flatten. The dotted arrows represent the arcs stored inmerger table
M .

level(L[C]) > 1 then L[C] becomes a reachable stale label.
In contrast to stale labels resulting from non-propagating
mergers, reachable stale labels can appear in the neighbour-
hood η of px before the end of the current image row. The
following will investigate how a reachable stale label can be
created.

Theorem 15 The labels resulting from a merger from more
than one row previously will be reduced to the root label
before the current row.

Proof Flatten will reduce the maximum level of a label to
level 1 at the endof a row (theorem14). In the absenceof addi-
tionalmergers,when scanning the following rowFind(L[C])
will perform the lookup, returning the root label. ��
Lemma 16 A reachable stale label can only be created by a
non-propagating merger in rightPos followed by a propa-
gating merger in le f tPos.

Proof The level of a label can only increase as a result of
a merger. Therefore at least two mergers are required to
make a reachable label stale. From Theorem 15, these merg-
ers must have occurred in the previous W scanned pixels,
where W is the image width, i.e., in le f tPos or rightPos.
From Lemma 12, the label increased by a non-propagating
merger is not reachable, therefore to create a reachable stale
label, any mergers in le f tPos must be propagating merg-
ers. In a sequence of such mergers, each merger links LC

Fig. 6 Two examples of images containing stale label l2. A non-root
label is assigned to L px , because a stale label is in the neighbourhood

to the root label so successive propagating mergers do not
increase the height of the tree (see Fig. 3a). Similarly, from a
propagatingmerger in rightPos, only the root label is reach-
able. A sequence of one or more non-propagating mergers in
rightPos will only provide a reachable label of level(v) ≤ 1
(Theorem 14). Therefore, the only way to get a reachable
label with level > 1 is through a non-propagating merger in
rightPos followed by a propagating merger in le f tPos. ��

Two examples of such mergers are shown in Fig. 6.
On the previous row, labels l1 and l2 merge, which makes
level(l2) = 1. Then, the propagating merger between l0
and l1 in le f tPos results in level(l2) = 2. Note that this
also requires l0 ≺ l1 so that the level of l2 is increased.
The single lookup of l2 at position px results in assigning
L px := Find(l2) = l1, which is a non-root label, rather than
the root l0.

Definition 17 Bridge patterns A bridge pattern is a compo-
nent segment inwhich an object label appearsmore than once
in the same image row separated by background pixels.

A reachable stale label requires a bridge pattern between
the merger in le f tPos and the merger in rightPos as is
shown in Fig. 6.

4.4 Feature Vector Accumulation of Reachable Stale
Labels

To determine the root vertex of reachable stale labels, a max-
imum of two lookups are necessary, which are distributed
to two different positions in the image (in Algorithms 5.1
line 20 and 5.3). It is, therefore, necessary to show that for
every possible image patternwhich contains a reachable stale
label, these two lookups are performed.

Lemma 18 The appearance of a reachable stale label l2 in
the neighbourhood Lη of the current pixel is always followed
by the appearance of l1 = parent(l2) in rightPos before
the end of the current row.

Proof From Lemma 16, a reachable stale label in Lη implies
a non-propagating merger pattern in rightPos, between l2
and l1. Since l1 ≺ l2, l1 = parent(l2), and l1 will have been

123

1126 Journal of Mathematical Imaging and Vision (2019) 61:1112–1134

written to the labelled image, L . During the ongoing scan,
label l1 will therefore appear in L[C]. ��

The stale label stack, SLS, is used for caching the stale
label while waiting for its parent to appear in the neighbour-
hood. The stack is necessary, because the stale label may not
necessarily be in the neighbourhood when its parent appears.

Lemma 19 A stack is sufficient for searching for the parent
of a stale label.

Proof Consider the case where a different stale label l2 is
encountered before the parent of the current stale label l1 is
found, i.e., parent(l1) has not yet been encountered. There-
fore, there is a path in visi ted between l1 on the left of l2
and parent(l1) on the right of l2. To become a stale label, l2
requires an earlier label on each side (Lemma 16): lle f t and
lright , such that lle f t ≺ lright = parent(l2) ≺ l2. Since l1
appears on both sides of this group, this implies either l1 ≺
lle f t or l1 = lle f t . This requires parent(l1) ≺ parent(l2),
therefore parent(l1) cannot be in between l2 and parent(l2).
So the stale label l2 must be resolved before l1,making a stack
appropriate. ��
Theorem 20 The feature vectors of the pixels of a reachable
stale label pattern are always associatedwith their connected
component.

Proof The use of the flag IsRoot enables every non-root
label assigned to L px to be detected when the feature vec-
tor is updated in the data table DT . Since IsRoot indicates
that the label is stale, temporarily buffering the feature vec-
tor and recording the label in SLS (Algorithm 5.2 line 50),
enables the feature vector to later be combinedwith that of the
root label. When the parent of the stale label in encountered
(Lemma 18), the data is combined with that of the correct
root label. Since the merger in rightPos is non-propagating
(Lemma 16) the stale label will not appear again beyond the
merger point. ��

4.5 Flattening Reachable Stale Labels

When reaching the end of a row, there will be no instances of
the previously stale label in le f tPos, because the stale label
will have been looked up returning its parent. The parent of
the stale labelmay have been propagated into the label image,
L . Since level(parent(lstale)) = 1 any subsequent non-
propagating mergers involving that component will increase
the level to 2 or more. Therefore, to ensure that the maxi-
mum height after calling Flatten is 1, it is also necessary to
include in the Flatten operation any reachable stale label
assigned to px (pushed onto SLS and resolved before the
end of a row).

Fig. 7 Stair pattern inducing the maximum number of non-propagating
merger operations [1]

Theorem 21 Pushing the reachable stale label onto the flat-
ten stack, FS, when the reachable stale label is resolved is
sufficient to correctly flatten reachable stale labels.

Proof Non-propagatingmergers following the event of resolv-
ing a reachable stale label are pushed onto the flatten
stack after the reachable stale label. Therefore, these non-
propagating mergers will be flattened first, ensuring that
Flatten on the reachable stale label will yield the root label.
Any non-nested sequence of non-propagating mergers will
similarly be correctly flattened in the reverse order.

Next consider a nested sequence of reachable stale labels,
where an inner reachable stale label linner is created after an
earlier reachable stale label louter is created, but before it is
resolved. Since louter ≺ linner (see the proof of Lemma 19)
then if they are part of the same tree, louter will be closer to
the root than linner . Therefore, louter must be flattened before
linner requiring it to be pushedonto theflatten stack later.Dur-
ing the processing, louter is encountered before linner andwill
be pushed onto the stale label stack earlier than linner . When
the labels are resolved (Lemma 19), linner will be resolved
first, and consequently be pushed onto the flatten stack earlier
than louter as required. ��

4.6 Processing Complexity of SLCCA

New label, label copy andmerger operations require constant
processing time per pixel. The processing time for these is
clearly linear in the number of pixels. Processing stack FS at
the end of each image row by Flatten is data dependent, but
is bounded by the number of non-propagating merger oper-
ations. There can be a maximum of �W−1

2 � non-propagating
merger patterns per line of W pixels, so the processing time
for this is also linear in the number of pixels.

The worst-case pattern with regards to the total number
of uf -instructions [1] has an average of �W

5 � merger patterns
per row and is shown in Fig. 7. This clearly shows that the
algorithm from Sect. 3 scales linearly with the image size.

123

Journal of Mathematical Imaging and Vision (2019) 61:1112–1134 1127

4.7 Insights Gained

The proof of correctness of SLCCA demonstrates that per-
forming a Flatten at the end of each row is not only a
necessary condition of the improved context-based union-
find, but it is also a sufficient condition. In particular, this
allows the processing of sequences of non-propagatingmerg-
ers to be deferred until the end of each image row.

It has also identified a limitation of the OSP algorithm of
Bailey and Johnston [1]. There, reachable stale labels were
not considered, and as a result, were not included within the
Flatten operation at the end of each row, potentially lead-
ing to erroneous results in some circumstances. An example
of this is using CCA for blob counting, by incrementing
the count for each new label operation, and decrementing
the count for each merger operation. A reachable stale label
can result in an additional merger between already merged
components, giving an incorrect count. In SLCCA, the stale
label stack ensures the data from pixels with stale labels are
assigned to the correct feature vector.

5 OptimisedDLCCA Algorithm

The problem associated with reachable stale labels may be
overcome if a second lookup can be performed. However, to
determine whether or not a label is a root, it is necessary to
either look up the IsRoot flag (from the data table DT) or
perform a second lookup within the merger table MT .

In this section, it is shown that if two lookups are made
within themerger table then it is only necessary to look up the
first pixel in a run of pixels. Consequently, the total number
of lookups is less than the number of pixels in the image.

5.1 Properties of a Double Lookup

Lemma 22 A double lookup will always yield the root label.

Proof Astale label has level(l) > 1. Lemma16describes the
onlywayof achieving reachable stale labels,which is through
a specific combination of twomergers. The maximum height
of a reachable tree is 2 levels. Therefore two lookups are
always sufficient to reach the root label. ��
Theorem 23 Within a run of consecutive object pixels within
rightPos, the root label of all pixels in the run is the same
as the root label of the first pixel in the run.

Proof The labels within a run in rightPos can only be dif-
ferent if there has been a merger (if there is no merger, the
label simply propagates). After a merger, any adjacent labels
have the same root. ��

These imply that it is only necessary to look up the first
pixel in a run tofind the root, and a double lookup is sufficient.

The first object pixel in a run will either be followed by
another object pixel or background pixel. It is not necessary
to look up background pixels, therefore the total number of
accesses to themerger table,MT , is less than the total number
of pixels in the image, satisfying the single lookup per pixel
requirement (on average).

5.2 DLCCA Algorithm

The DLCCA algorithm (Algorithm 6) is similar to that for
SLCCA, with minor changes to UpdateNeighbourhood,
and UpdateDataStructures. The double lookup means
that ResolveStaleLabels is no longer required, how-
ever Fatten and ReadFinishedFeatureVectors remain
unchanged.

Algorithm 6 DLCCA algorithm.
Input: Binary image I of width W and height H
Output: A feature vector for each connected component in I
1: for y = 0 to H − 1 do
2: for x = 0 to W − 1 do
3: UpdateNeighbourhood
 Algorithm 6.1
4: UpdateDataStructures
 Algorithm 6.2
5: end for
6: Flatten
 Same as Algorithm 5.4
7: end for
8: ReadFinishedFeatureVectors
 Same as Algorithm 5.5

UpdateNeighbourhood (Algorithm 6.1) has to bemod-
ified to perform the double lookup at the start of a run. During
a run (on line 21), the label assigned to LB on line 15 or 17
is repeated.

UpdateDataStructures (Algorithm 6.2) is simpler
than for SLCCA. It is no longer necessary to record the
IsRoot since the double lookup will always return the root.
Similarly, the stale label stack, SLS, is no longer required.
Label assignment, tree flattening, data table update, and com-
pleted object detection remain the same.

The fact that only the first object pixel in a run needs to be
looked up implies that the label image L may be compressed
using run-length encoding. DLCCA therefore unifies pixel-
based processing with run-based processing methods, since
any subsequent processing can be done on runs. For exam-
ple, it is similar to He et al.’s CCL algorithms [11,12] which
use run-length encoding to optimise the second (relabelling)
pass, and in [11] for feature extraction (Euler number). How-
ever, DLCCA differs from Trein’s single-pass run-length
algorithm (RLSP) [32] in that it still processes the neigh-
bourhood one pixel at a time, whereas RLSP processes one
overlap between runs in each clock cycle.

In the worst case (with alternating object and background
pixels), there is no speed advantage of run-based processing,
although it can reduce the processing formore typical images

123

1128 Journal of Mathematical Imaging and Vision (2019) 61:1112–1134

Algorithm 6.1 UpdateNeighbourhood
9: if I [A] then
 Select LAorD
10: LAorD := L−

B
 Next value of LA
11: else
12: LAorD := L−

px
 Next value of LD
13: end if
14: if I [B] ∧ I [D] then
15: LB := L−

px
 Propagate new label into next neighbourhood
16: else
17: LB := L−

C
18: end if
19: if I [C] then
20: if I [B] then
 Part of a run of consecutive pixels
21: LC := LB
 Repeat latest label
22: else
23: LC := MT [MT [L[C]]]
 Double lookup of start of run
24: end if
25: else
26: LC := 0
 Lookup of background is unnecessary
27: end if

Algorithm 6.2 UpdateDataStructures
28: if I [p] then
29: if ¬I [A] ∧ ¬I [B] ∧ ¬I [C] ∧ ¬I [D] then
 New label

operation
30: L px := newLabel

(L px ← LabelF I FO)
31: MT [L px] := L px
 MakeSet
32: DT [L px] := I FV (px)
33: else
 Merger operation: Union
34: if (I [A] ∨ I [D]) ∧ I [C] ∧ LAorD �= LC ∧ LAorD �= L[C]

then
35: if LAorD ≺ LC then
 Propagating merger
36: Lmin := LAorD
37: Lmax := LC
38: else
 Non-propagating merger
39: Lmin := LC
40: Lmax := LAorD
41: FS.push(Lmin, Lmax)
 Stack labels for Flatten
42: end if
43: L px := Lmin
44: MT [Lmax] := Lmin
45: DT [Lmin] := DT [Lmin] ◦ DT [Lmax] ◦ I FV (px)
46: DT [Lmax] := ∅
47: else
 Label copy operation
48: L px := posMin(LAorD, LB , LC)

49: DT [L px] := DT [L px] ◦ I FV (px)
50: end if
51: end if
52: LastLine[L px] := y
 For detecting completed FV s
53: else
54: L px := 0
 Background pixel
55: end if
56: L[px] := L px
 Save label for processing next row

at the expense of more complex processing logic. However,
unless the image is streamed in at more than one pixel per
clock cycle, then there is limited real advantage.

Fig. 8 DLCCA race condition. The merger in cycle t is written to MT
in cycle t + 1. The second lookup of E looks up the same label in cycle
t + 1

5.3 Implementation Issues of DLCCA

In hardware, each lookup requires a clock cycle. The two
lookups can be pipelined, to ensure that the root label is
loaded into neighbourhood window. Pipelining the second
lookup is possible because the following pixel does not need
to be looked up (it is either a background pixel, or part of a
run).

However, pipelining can create a race condition where the
label being looked up is updated in MT in the same clock
cycle as the second lookup, as illustrated in Fig. 8. At time
t , the merger between A and C links label 2 to label 1. With
pipelining, this is written to the merger table in clock cycle
t +1. In parallel with this, pixel E is looked up in the merger
table in cycles t and t + 1. The first lookup (at t) looks
up label 3 and returns 2. The second lookup (at t+1) is of
label 2, which would return the old root, label 2, because the
merger table has not been updated from merger until the end
of t + 1. For correct operation, this requires the hardware
for MT to perform a write-before-read, or have bypass logic
constructed to read the new value being written.

6 Comparison and Discussion

6.1 EvaluationMethod

Modern CCA and CCL algorithms are often tailored to the
cache hierarchy of general-purpose processors (GPP) [3,11,
19] which consist of several levels of on-chip and off-chip
memory. For such processors, the average number of clock
cycles to process a pixel of a random image is a meaningful
metric to compare algorithms [4]. However, the suitability of
a CCA or CCL algorithm to a hardware architecture depends
on the interaction of the algorithm with the basic building
elements of the technology used and the arrangement of these
elements. The freedom to arrange the basic building elements
of the hardware device facilitates the use of parallelism and
helps to reduce processing or I/O bottlenecks.

The number and speed of lookup operations are crucial for
carrying out CCA and CCL, as discussed in the introduction.
Unlike in a GPP, hardware architectures realised on an ASIC
or FPGA do not have a fixed memory model; the three avail-

123

Journal of Mathematical Imaging and Vision (2019) 61:1112–1134 1129

able memory types on-chip registers, on-chip memory and
off-chip memory can be arranged and connected to make the
best use of lookup operations and to provide data at the exact
time they are required. The bandwidth of on-chip registers
and memory is significantly higher and the latency is signif-
icantly lower than off-chip memory. Therefore, SLCCA and
DLCCA are designed to fit completely in on-chip registers
and memories, which are limited for current FPGA devices.

Unlike in a cache hierarchy, where the cost of a read or
write operation depends on the hierarchy-level, the FPGA
on-chip memory model provides random read and write
operations at constant cost. Therefore, the total number of
memory operations required to process an image provides a
good estimate on how suitable a CCA or CCL algorithm is
for a hardware architecture.

To compare variants of CCA or CCL algorithms with
different numbers of passes, different scan modes and dif-
ferent set merging algorithms, the number ofmemory access
instructions is considered.

Definition 24 Memory access instruction A memory access
instruction (MAI) is a single read access from or a single
write access to an indexed data structure.

In particular, the state-of-the-artCCAandCCLalgorithms
are examined with regards to

– total number of memory accesses,
– degree of parallelism and
– required memory resources

to process a stream of binary pixels.

6.2 MAIs for DLCCA

To evaluate and compare the state-of-the-art CCA or CCL
algorithms, each algorithmwas implemented in C++ or Java.
The code was instrumented to count the number of MAIs.
Since CCL algorithms are only concerned with outputting a
labelled image, feature vector collection was also added to
their implementations.

Figure 9 shows the number of MAIs DLCCA requires to
extract the feature vectors of the components in a random
512 × 512 pixel image as a function of object pixel density.
Each colour in Fig. 9 depicts the number of MAIs on one of
the data structures; the upper bound shows the total number
of MAIs. Read and write accesses to the labelled image, L ,
are also in parallel using dual-port memory. Although the
number of MAIs required for L could be reduced by run-
length encoding, these accesses are in parallel to the other
data structures, so in practise little would be gained.DLCCA
is designed to access all data structures in parallel (except
for the flatten stack, FS, during Flatten at the end of each
row). Therefore, the maximum number of MAIs carried out

Fig. 9 Memory access instructions (MAIs) on each data structure of
DLCCA for processing 512 × 512 images with different object pixel
densities

in parallel depends on the maximum number of MAIs on a
single data structure plus the MAIs required on FS.

The label and the feature vector associatedwith the current
pixel, L px , can be stored in registers, with the other feature
vectors stored in on-chip memory. As the label L[C] can be
from a different connected component than L AorD , for every
pixel, the parent label of L[C] must be looked up. DLCCA
performs a double lookup (i.e., M[M[L[C]]], in successive
clock cycles) to find the root label. Since the root labels of
consecutive object pixels are all the same, two lookups are
always sufficient to determine the label to assign to all pixels
of a run. Therefore at most two MAIs on the merger table
MT are necessary for a run of consecutive object pixels.

The labels of L AorD and LB are derived from the labels
of L[C] and L[px] of the previous position. It is, therefore,
sufficient to store them in registers. As the LabelF I FO is
only accessed when new label patterns or completed con-
nected components are detected, the number of MAIs on
the LabelF I FO is highest around an object pixel density of
40%.DLCCA does not store a fully labelled image, therefore
L is only accessed for labels assigned to the previously pro-
cessed image row. For each pixel in the input image I there
is one read access on L to retrieve the pixel coming into the
local neighbourhood, and one write access to store the provi-
sional label assigned to a pixel. For consecutive object pixels
the feature vector associated with label L px is cached in reg-
isters [18] which optimises the number of MAIs on the data
table (DT) having the highest number of MAIs at an object
pixel density of around 50%. The number of MAIs on the

123

1130 Journal of Mathematical Imaging and Vision (2019) 61:1112–1134

Fig. 10 Comparison of the number of memory access instructions
required by CCL and CCA algorithms for processing 512×512 images
with different object pixel densities

flatten stack (FS) is highest for images with a stair pattern
which have an object pixel density of 40%.

6.3 Evaluation of MAIs

To compare the number of memory access instructions of
CCA and CCL algorithms, the following cost metric is
applied:

– Successive reads from the same position of a data struc-
ture can be buffered in a register and are, therefore,
counted as one MAI.

– Successive writes to the same position of a data structure
can be cached in a register and are, therefore, counted as
one MAI.

– Receiving the input image I as a stream (as in a hardware
implementation) is not a memory access instruction per
se, i.e., requires zero MAIs. However, for a fair compar-
ison, these read accesses are counted as one MAI each
(effectively streaming from memory).

This metric does not try to show which CCA algorithm runs
the fastest on a general-purpose processor, but indicates the
potential speed of a CCA or CCL algorithm when realised as
a hardware architecture. In fact, the results of [3] show that
LSL requires the smallest number of processing cycles per
pixel on Intel and ARM processors.

Figure 10 represents the total number ofMAIs for extract-
ing the feature vectors of the connected components in a
random 512 × 512 pixel image of by DLCCA, SLCCA [18],
OSP [1],AR [22],RLSP [32],CAM [16],LSL [19],HCS [11],
CT [5] and Rosenfeld’s classical algorithm [26] applying
QuickUnion (RQU) (seeTable 1 for algorithmabbreviations).

(a) (b) (c) (d) (e)

Fig. 11 The number of memory access instructions required for pro-
cessing worst-case images (chessboard, stairs, feather pattern) and
natural images from the SIPI database [33] and from the Berkley
BSDS300 dataset [23]. All images are 512 × 512 pixels

RLSP, HCS and LSL encode and process runs of pixels
from the input image, which explains the large difference of
MAIs between an image with object pixel density around
50% and an empty or filled image. For the algorithms HCS,
CAM, RLSP and LSL most MAIs are required when pro-
cessing random images between 48% and 55% object pixel
density.

The number of MAIs for SLCCA andOSP is almost equal
since the basic processing principle is very similar (although
OSP does not use relabelling). AR is also similar to SLCCA
andDLCCA, but requires one additional lookup per pixel for
the translation table associated with aggressive relabelling.
DLCCA is an advancement of SLCCA and requires up to
25% fewer MAIs due to caching lookups. The number of
MAIs ofDLCCA increases with the object pixel density until
43% object pixel density. Above 43% the number of MAIs
decrease again.

The bar diagrams in Fig. 11 a through c show the num-
ber of MAIs required for processing worst-case images with
chessboard pattern, stair pattern and feather pattern [1]. In
the scope of the explored algorithms, the chessboard pattern
with a granularity of one pixel has been shown to require the
maximum number of MAIs for LSL, HCS, CT, RLSP and
RQU. Although DeBock and Philips [6] identified a tree pat-
tern as the worst-case pattern forHCS with respect to the run
time, our analysis shows that the chessboard pattern requires
more MAIs. The stair pattern from Fig. 7 requires the maxi-
mum number of MAIs for OSP, CAM, SLCCA and DLCCA.
For AR, all of the mergers associated with the stair pattern
are managed by relabelling of objects from one row to the

123

Journal of Mathematical Imaging and Vision (2019) 61:1112–1134 1131

next. The merger table (and flatten stack) is only required
when both component segments already have a label on the
current row, which can only occur with a bridge pattern. This
requires an image such as the feather pattern to induce the
maximum number of MAIs for AR [22].

Figure 11d, e shows the average number ofMAIs required
for processing the more than 300 natural reference images
from the USC-SIPI database [33] and the Berkley BSDS300
dataset [23]. For the comparison, these images are scaled to a
size of 512×512 pixels and binarised with a global threshold
value determined by Otsu’s algorithm [25]. In general, the
methods which make use of run-length encoding are able
to benefit from such images through their ability to access
complete runs of pixels with a single MAI.

To compare the minimal guaranteed processing time, the
worst-case pattern of each algorithm is used for a comparison.
Table 4 lists the total number of MAIs per pixel (the sum of
MAIs on all memory structures) for processing the worst-
case patterns.

CAM requires the fewest number of MAIs due to its
content-addressable memory. Every update of the content-
addressable memory is counted as a single MAI, even if
multiple locations in the memory with the same label are
updated. OSP, AR, SLCCA and DLCCA have a similar range
for the sum of MAIs, as these methods are all based onOSP.
AR requires moreMAIs thanOSP due to the additional trans-
lation table. SLCCA requires more MAIs than OSP because
the data table is continuously searched for finished feature
vectors. DLCCA requires fewer MAIs than OSP as it caches
labels of continuous runs, whereas OSP requires one lookup
for each pixel to determine a label’s parent.

HCS, RLSP and LSL perform run-length encoding of the
input images before processing the images. The maximum
number of MAIs for those algorithms is required when pro-
cessing the chessboard pattern which essentially is a series
of runs with a length of a single pixel. Therefore, run-length
encoding does not gain an advantage for the worst case.

RQU assigns up to �W × H/4� provisional labels when
passing the input image the first time. Merging these provi-
sional labels at the end of the image and assigning the final
labels to L in a second pass constitute the difference in com-
parison with CAM.

CT traces the contour of each connected component in the
input image and, therefore, requires multiple read and write
operations which are strictly sequential for each input pixel.

6.4 Evaluation of Parallelism

This subsection evaluates the parallelism of the examined
algorithms. Some algorithms (especially software algo-
rithms) accomplish parallel processing by means of static
or dynamic scheduling on a superscalar general-purpose
processor. This scheduling cannot be identified from the

algorithm’s description alone. A good measure for software
algorithms is, therefore, the cycles-per-pixel (cpp) measure
established by Cabaret and Lacassagne [3], as it relates to an
algorithm executed on a specific processor. The parallelism
of those algorithms is, therefore, implicit and dependent on
the hardware the algorithm is run on.

To compare parallelism for a hardware architecture, such
as an FPGA implementation, an explicit description of the
hardware architecture and a mapping of the algorithm to it is
necessary. This is the case for the following algorithms:OSP,
RLSP, AR, SLCCA,DLCCA andCAM. Therefore, only these
are discussed with regards to parallel MAIs in Table 4. Other
algorithms may well contain pipelined or parallel MAIs;
however, these are dependent on the particular processor used
making their analysis beyond the scope of this evaluation.

AR’s additional lookup in the translation table operates in
parallel to the other memory structures and, therefore, does
not diminish the performance. Similarly, scanning the data
table bySLCCA andDLCCA to detect completed components
makes use of a second memory port enabling it to operate in
parallel.

CAM requires one parallel MAI per pixel due to the use
of a content-addressable memory. Whenever two compo-
nent segments merge, the provisional label is immediately
replaced by the representative label, so no further processing
is required.

In contrast, OSP, AR, SLCCA and DLCCA require addi-
tional MAIs at the end of each row for flattening stale labels
fromnon-propagatingmergers. This overhead is proportional
to the number of mergers cached on the flatten stack (FS).
As indicated earlier, AR caches fewer mergers as a result of
the relabelling process, with a worst-case overhead of 1 in
16 (approximately 6.3%). OSP, SLCCA and DLCCA have a
worst-case overhead of 1 in 5 (20%). However,OSP also has
an additional sequential overhead of processing completed
components at the end of the frame. With AR, SLCCA and
DLCCA, label reuse requires identifying completed compo-
nents on the fly.

This suggests that by making the worst-case image more
complex, the number of MAIs required for Flatten could
be reduced. In examining the stair pattern, a new label is
assigned to a component segment, only for it to subsequently
bemergedwith an existing segment. If the allocation of a new
label could be deferred, then the merger would be unneces-
sary. Such a change would also require modifying the row
buffer, to make it run-length encoded, rather than storing
every pixel. This would reduce the worst-case overhead from
1 in 5 to 1 in 8 (or 12.5%). For typical images, however, the
number of non-propagating mergers is relatively low and the
overhead of the Flatten operation is negligible (see FS in
Fig. 9).

While RLSP can gain on images with large blobs (with
long runs), in the worst case, with alternating sequences

123

1132 Journal of Mathematical Imaging and Vision (2019) 61:1112–1134

Table 4 Comparison of MAIs per pixel for the worst-case patterns

Algorithm Worst-case pattern # MAIs [normalised]

Sum Parallel Sum Parallel

CAM Stairs All3 4.39 1.00

DLCCA Stairs Stairs 4.99 1.19

OSP Stairs Stairs 5.39 1.19

SLCCA Stairs Stairs 5.59 1.19

AR Feather Feather 5.81 1.06

RLSP Chess Chess 7.49 1.99

HCS Chess N/A 7.49 N/A

RQU Chess N/A 7.49 N/A

LSL Chess N/A 8.00 N/A

CT Chess N/A 11.97 N/A

of individual pixels from the chessboard pattern, run-length
coding does not help. RLSP has serial dependencies within
the matching process that cannot easily be pipelined, result-
ing in an increased parallel MAI score.

6.5 Evaluation of Resources

While CAM gives the best performance in terms of MAIs,
this comes at a heavy cost in terms of resources. Rather than
implementing the provisional label cache, L , as a simple
memory, the need to replace every instance of an old label
during a merger requires the buffer to be implemented using
registers. On an FPGA, this is implemented as a shift register
with a multiplexer between each stage. While this situation
may be improved by implementing the content-addressable
memory in VLSI, it would still require significantly more
logic than a simple memory-based row buffer.

The main limitation of OSP is that it must maintain data
structures (DT and MT) that are proportional to the image
area [22].AR improved this by relabelling each row from L as
it is processed, reducing the size of the data structures to the
width of the image. SLCCA reduced the total on-chip mem-
ory required with improved memory management through
label recycling (with augmented labels) [18]. This avoids
the need for the additional translation table required by AR,
making it better suited for hardware implementation.DLCCA
improves the number of MAIs for finding the representative
(root) labels (access to MT).

The major advantage of RLSP over the other run-based
algorithms (such as HCS or LSL) is that it is a true single-
pass algorithm. This allows the memory used by finished
connected components to be recycled for subsequent ones.
The memory requirements are, therefore, proportional to the
image width.

7 Conclusions

Single-pass CCA algorithms are a relatively new class of
algorithms designed and optimised for processing streamed
image data using an embedded or hardware architecture, by
extracting component feature vectors directly from the pixel
stream. Real-time operation necessitates processing stream-
ed pixel data at one pixel per clock cycle.

This paper provides the first detailed algorithmic per-
spective of single-pass CCA algorithms identifying and
discussing the implicitly used set merging algorithms. These
CCA algorithms have been examined and compared with
CCL in terms of the union-find algorithm used for manag-
ing object mergers. Through this analysis, single-pass CCA
algorithms have been unified with more conventional CCL
algorithms on an analytical basis.

It has been shown that many single-pass algorithms use a
single lookup variant of union-find. This variant is directly
based on the order in which Union and Find operations are
encountered in the context of processing a two-dimensional
image as a pixel stream. The Find is replaced by a single
lookup, which is only valid for trees of height less than or
equal to one level. This requires an additional Flatten oper-
ation to reduce the height of labels to at most level 1 (to avoid
stale labels) before any Find (or Union) is performed on
those labels. It is shown that a sufficient condition for this is
performing a Flatten at the end of each image row.

One of the key paradigms of single-pass algorithms is
the online resolution of mergers, enabling the feature vector
extracted from each component to be extracted and merg-
ed on the fly. The ability to defer the Flatten operation to
the end of each row significantly relaxes the sequential data
dependencies, enabling pipelined stream processing on an
FPGA at 1 pixel per clock cycle.

The proof of correctness, and associated analysis, has
shown the circumstances that lead to stale labels, where
additional processing is required to ensure that data from
eachpixel is correctly associated its corresponding connected
component. Although early work on single-pass connected
components analysis [1,22] had identified sequences of non-
propagating mergers as one instance of stale label creation,
more complex cases involving propagating mergers had not
previously been identified. From this insight, it may readily
be seen that some algorithms from the literature are either
incorrect in their operation (as described) or incomplete in
their description, for example [20].

Algorithm analysis has also shown that the issues asso-
ciated with stale labels can be avoided by using a second
lookup. This led to the DLCCA algorithm, which performs
the two lookups in successive clock cycles at the start of
each run of pixels. Pipelining the lookups in this way, and
only looking up the first pixel in a run, is shown to reduce
the overall number of memory accesses. It also provides a

123

Journal of Mathematical Imaging and Vision (2019) 61:1112–1134 1133

unification between pixel-based and run-length-based algo-
rithms.

In analysing the operation of single-pass algorithms,
there is an obvious trade-off between processing speed and
resources. Jeong et al.’s algorithm [16] avoids the overhead
of flattening the trees at the end of each row, by immedi-
ately removing all references to the old label. This makes
it potentially the fastest single pixel per clock cycle algo-
rithm when implemented in hardware. However, the cost of
this is replacing the RAM-based row buffer with a signifi-
cantly more resource intensive multiplexed shift register. Ma
et al.’s aggressive relabelling [22] incurs a small overhead at
the end of each row for the Flatten, at the cost of additional
resources for the translation table (and an additional lookup,
although this can be pipelined). Klaiber et al. [18] reduce this
(and the associated memory required) at the cost of a higher
Flatten overhead.

It is hoped that by outlining the necessary and sufficient
conditions for correct operation, as well as the comparison
of the strength and weaknesses of existing CCA and CCL
algorithms this analysis would inspire further attempts at
optimising the class of single-pass CCA algorithms.

Acknowledgements The authors would like to thank Prof. Stephen
Marsland of Victoria University, Wellington for his helpful comments
and suggestions on an early draft of this paper. We would also like to
thank the reviewers for their valuable comments and suggestions which
have substantially improved the content of the paper.
Code A functional Java implementation of the algorithm is published
under the following URL: http://crisp.massey.ac.nz/code/DLCCA.zip

References

1. Bailey, D., Johnston, C.: Single pass connected components anal-
ysis. In: Image and Vision Computing New Zealand, pp. 282–287
(2007)

2. Bailey, D.G.: Raster based region growing. In: 6th New Zealand
Image Processing Workshop, pp. 21–26 (1991)

3. Cabaret, L., Lacassagne, L.: What is the world’s fastest
connected component labeling algorithm? In: International
Workshop on Signal Processing Systems, pp. 1–6 (2014).
10.1109/SiPS.2014.6986069

4. Cabaret, L., Lacassagne, L., Oudni, L.: A review of world’s
fastest connected component labeling algorithms: speed and
energy estimation. In: Conference on Design and Architectures
for Signal and Image Processing (DASIP), pp. 1–6 (2014).
10.1109/DASIP.2014.7115641

5. Chang, F., Chen, C.J., Lu, C.J.: A linear-time component-labeling
algorithm using contour tracing technique. Comput. Vis. Image
Underst. 93(2), 206–220 (2004). https://doi.org/10.1016/j.cviu.
2003.09.002

6. De Bock, J., Philips, W.: Fast and memory efficient 2-D connected
components using linked lists of line segments. IEEE Trans. Image
Process. 19(12), 3222–3231 (2010). https://doi.org/10.1109/TIP.
2010.2052826

7. Di Stefano, L., Bulgarelli, A.: A simple and efficient con-
nected components labeling algorithm. In: International Confer-

ence on Image Analysis and Processing, pp. 322–327 (1999).
10.1109/ICIAP.1999.797615

8. Dillencourt, M.B., Samet, H., Tamminen, M.: A general approach
to connected-component labeling for arbitrary image represen-
tations. J. ACM 39(2), 253–280 (1992). https://doi.org/10.1145/
128749.128750

9. Fiorio, C., Gustedt, J.: Two linear time union-find strategies for
image processing. Theor. Comput. Sci. 154(2), 165–181 (1996).
https://doi.org/10.1016/0304-3975(94)00262-2

10. Grana, C., Borghesani, D., Cucchiara, R.: Optimized block-based
connected components labeling with decision trees. IEEE Trans.
Image Process. 19(6), 1596–1609 (2010). https://doi.org/10.1109/
TIP.2010.2044963

11. He, L., Chao, Y.: A very fast algorithm for simultaneously perform-
ing connected-component labeling and Euler number computing.
IEEE Trans. Image Process. 24(9), 2725–2735 (2015). https://doi.
org/10.1109/TIP.2015.2425540

12. He, L., Chao, Y., Suzuki, K.: A run-based two-scan labeling algo-
rithm. IEEE Trans. Image Process. 17(5), 749–756 (2008). https://
doi.org/10.1109/TIP.2008.919369

13. He, L., Chao, Y., Suzuki, K.: A run-based one-and-a-half-scan
connected-component labeling algorithm. Int. J. Pattern Recog-
nit. Artif. Intell. 24(4), 557–579 (2010). https://doi.org/10.1142/
S0218001410008032

14. He, L., Chao, Y., Suzuki, K., Wu, K.: Fast connected-component
labeling. Pattern Recognit. 42(9), 1977–1987 (2009). https://doi.
org/10.1016/j.patcog.2008.10.013

15. Hopcroft, J., Ullman, J.: Set merging algorithms. SIAM J. Comput.
2(4), 294–303 (1973). https://doi.org/10.1137/0202024

16. Jeong, Jw, Lee, Gb, Lee, Mj, Kim, J.G.: A single-pass connected
component labeler without label merging period. J. Signal Process.
Syst. 84(2), 211–223 (2016). https://doi.org/10.1007/s11265-015-
1048-7

17. Khanna, V., Gupta, P., Hwang, C.: Finding connected compo-
nents in digital images by aggressive reuse of labels. Image Vis.
Comput. 20(8), 557–568 (2002). https://doi.org/10.1016/S0262-
8856(02)00044-6

18. Klaiber, M.J., Bailey, D.G., Baroud, Y.O., Simon, S.: A resource-
efficient hardware architecture for connected components analysis.
IEEE Trans. Circuits Syst. Video Technol. 26(7), 1334–1349
(2016). https://doi.org/10.1109/TCSVT.2015.2450371

19. Lacassagne, L., Zavidovique, B.: Light speed labeling: efficient
connected component labeling on RISC architectures. J. Real
Time Image Process. 6(2), 117–135 (2011). https://doi.org/10.
1007/s11554-009-0134-0

20. Ling, L., Chen, Z., Li, S., Zhang, X.: FPGA-based connected com-
ponents analysis algorithm without equivalence-tables. In: Huang,
Y., Wu, H., Liu, H., Yin, Z. (eds.) 10th International Conference on
Intelligent Robotics and Applications (ICIRA 2017), vol. LNAI
10463, Springer International Publishing, pp. 543–553 (2017).
10.1007/978-3-319-65292-4_47

21. Lumia, R., Shapiro, L., Zuniga, O.: A new connected compo-
nents algorithm for virtual memory computers. Comput. Vis. Gr.
Image Process. 22(2), 287–300 (1983). https://doi.org/10.1016/
0734-189X(83)90071-3

22. Ma, N., Bailey, D., Johnston, C.: Optimised single pass
connected components analysis. In: International Conference
on Field Programmable Technology, pp. 185–192 (2008).
10.1109/FPT.2008.4762382

23. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human
segmented natural images and its application to evaluating seg-
mentation algorithms and measuring ecological statistics. In: 8th
International Conference on Computer Vision, vol. 2, pp. 416–423
(2001). 10.1109/ICCV.2001.937655

24. Mehlhorn, K., Sanders, P.: Algorithms and Data Structures: The
Basic Toolbox, chap. 2, Springer, p. 52 (2008)

123

http://crisp.massey.ac.nz/code/DLCCA.zip
https://doi.org/10.1016/j.cviu.2003.09.002
https://doi.org/10.1016/j.cviu.2003.09.002
https://doi.org/10.1109/TIP.2010.2052826
https://doi.org/10.1109/TIP.2010.2052826
https://doi.org/10.1145/128749.128750
https://doi.org/10.1145/128749.128750
https://doi.org/10.1016/0304-3975(94)00262-2
https://doi.org/10.1109/TIP.2010.2044963
https://doi.org/10.1109/TIP.2010.2044963
https://doi.org/10.1109/TIP.2015.2425540
https://doi.org/10.1109/TIP.2015.2425540
https://doi.org/10.1109/TIP.2008.919369
https://doi.org/10.1109/TIP.2008.919369
https://doi.org/10.1142/S0218001410008032
https://doi.org/10.1142/S0218001410008032
https://doi.org/10.1016/j.patcog.2008.10.013
https://doi.org/10.1016/j.patcog.2008.10.013
https://doi.org/10.1137/0202024
https://doi.org/10.1007/s11265-015-1048-7
https://doi.org/10.1007/s11265-015-1048-7
https://doi.org/10.1016/S0262-8856(02)00044-6
https://doi.org/10.1016/S0262-8856(02)00044-6
https://doi.org/10.1109/TCSVT.2015.2450371
https://doi.org/10.1007/s11554-009-0134-0
https://doi.org/10.1007/s11554-009-0134-0
https://doi.org/10.1016/0734-189X(83)90071-3
https://doi.org/10.1016/0734-189X(83)90071-3

1134 Journal of Mathematical Imaging and Vision (2019) 61:1112–1134

25. Otsu, N.: A threshold selectionmethod fromgray-level histograms.
IEEETrans. Syst.ManCybern. 9(1), 62–66 (1979). https://doi.org/
10.1109/TSMC.1979.4310076

26. Rosenfeld, A., Pfaltz, J.L.: Sequential operations in digital pic-
ture processing. J. ACM 13(4), 471–494 (1966). https://doi.org/
10.1145/321356.321357

27. Sedgewick, R., Wayne, K.: Algorithms, 4th edn. Addison-Wesley,
Boston (2011)

28. Suzuki, K., Horiba, I., Sugie, N.: Linear-time connected-
component labeling based on sequential local operations. Comput.
Vis. Image Underst. 89(1), 1–23 (2003). https://doi.org/10.1016/
S1077-3142(02)00030-9

29. Tarjan, R.: Data Structures and Network Algorithms. CBMS-NSF
Regional Conference Series in Applied Mathematics. Society for
Industrial and Applied Mathematics (1983)

30. Tarjan, R., van Leeuwen, J.: Worst-case analysis of set union algo-
rithms. J. ACM 31(2), 245–281 (1984). https://doi.org/10.1145/
62.2160

31. Tarjan, R.E.: Efficiency of a good but not linear set union algorithm.
J. ACM 22(2), 215–225 (1975). https://doi.org/10.1145/321879.
321884

32. Trein, J., Schwarzbacher, A.T., Hoppe, B., Noffz, K.H., Trenschel,
T.: Development of a FPGA based real-time blob analysis circuit.
In: Irish Signals and Systems Conference, pp. 121–126 (2007)

33. USC-SIPI: USC-SIPI image database. http://sipi.usc.edu/
database/

34. Wu, K., Otoo, E., Shoshani, A.: Optimizing connected component
labeling algorithms. In: Medical Imaging, vol. SPIE 5747, Inter-
national Society for Optics and Photonics, pp. 1965–1976 (2005).
10.1117/12.596105

35. Wu, K., Otoo, E., Suzuki, K.: Optimizing two-pass connected-
component labeling algorithms. Pattern Anal. Appl. 12(2), 117–
135 (2009). https://doi.org/10.1007/s10044-008-0109-y

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Michael J. Klaiber received the
diploma degree (Dipl.-Ing.) in
Electrical Engineering and Infor-
mation Technology in 2011, and
the Ph.D. degree in Computer Sci-
ence in 2016 from the University
of Stuttgart, Germany. From 2016
to 2018, he worked as a Logic
Design Engineer for IBM con-
tributing to Mainframe and Power
processors. Since October 2018
he has been working for Robert
Bosch Corporate Research in Ren-
ningen, Germany. His research
interests include image process-

ing, computer vision, deep learning, machine learning, computer engi-
neering and hardware architectures.

Donald G. Bailey has B.E.(Hons)
(1982) and Ph.D. (1985) degrees
in Electrical and Electronic Engi-
neering from University of Can-
terbury, New Zealand. He is a
Senior Member of IEEE. He is
currently Professor of Imaging
Systems at Massey University, and
is leader of the Centre for Resea
rch in Image and Signal Process-
ing. Donald has spent 30 years
applying image processing tech-
nology to a range of industrial,
machine vision and robot vision
applications. For the last 17 years

one are of particular research focus has been exploring aspects using
FPGAs for implementing and accelerating image processing algo-
rithms. He is the author of many publications in this field, including
the book “Design for Embedded Image Processing on FPGAs”, pub-
lished by Wiley/IEEE Press.

Sven Simon received the diploma
from RWTH Aachen (1992) and
the Ph.D. from Technische Uni-
versität München (1996) both in
Electrical Engineering. In 1996,
he joined Siemens AG and Infi-
neon Technologies AG in 1998
focusing on hardware architectures
and digital signal processing. In
1998 he became project manager
and was nominated for the Infi-
neon Inventors Award in 2000.
In 2001, he became professor at
Hochschule Bremen, Germany,
heading a research group for hard-

ware architectures and sensor systems. In 2007, he became full pro-
fessor and head of the Parallel Systems Department at the Institute
of Parallel and Distributed Systems of the University of Stuttgart. His
research interests include parallel algorithms, hardware architectures
and sensor systems. He has numerous publications as well as a num-
ber of patents.

123

https://doi.org/10.1109/TSMC.1979.4310076
https://doi.org/10.1109/TSMC.1979.4310076
https://doi.org/10.1145/321356.321357
https://doi.org/10.1145/321356.321357
https://doi.org/10.1016/S1077-3142(02)00030-9
https://doi.org/10.1016/S1077-3142(02)00030-9
https://doi.org/10.1145/62.2160
https://doi.org/10.1145/62.2160
https://doi.org/10.1145/321879.321884
https://doi.org/10.1145/321879.321884
http://sipi.usc.edu/database/
http://sipi.usc.edu/database/
https://doi.org/10.1007/s10044-008-0109-y

	Comparative Study and Proof of Single-Pass Connected Components Algorithms
	Abstract
	1 Introduction
	2 Union-Find in CCL and CCA Algorithms
	2.1 Union-Find
	2.1.1 Graph Notation
	2.1.2 Union-Find Algorithms

	2.2 Improved Union-Find
	2.3 State-of-the-Art CCL and CCA Algorithms

	3 Algorithmic Description of SLCCA
	3.1 Update Neighbourhood
	3.2 Update Data Structures
	3.2.1 Label Selection
	3.2.2 Feature Vector Collection
	3.2.3 Label Reuse

	3.3 Resolve Stale Labels
	3.4 Flattening Trees in F
	3.5 Detecting Completed Connected Components

	4 Proof of Correctness of the SLCCA Algorithm
	4.1 Outline of Correctness Proof
	4.2 Non-propagating Mergers
	4.3 Propagating Mergers
	4.4 Feature Vector Accumulation of Reachable Stale Labels
	4.5 Flattening Reachable Stale Labels
	4.6 Processing Complexity of SLCCA
	4.7 Insights Gained

	5 Optimised DLCCA Algorithm
	5.1 Properties of a Double Lookup
	5.2 DLCCA Algorithm
	5.3 Implementation Issues of DLCCA

	6 Comparison and Discussion
	6.1 Evaluation Method
	6.2 MAIs for DLCCA
	6.3 Evaluation of MAIs
	6.4 Evaluation of Parallelism
	6.5 Evaluation of Resources

	7 Conclusions
	Acknowledgements
	References

