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Abstract
This paper addresses the understanding and characterization of residual networks (ResNet), which are among the state-of-
the-art deep learning architectures for a variety of supervised learning problems. We focus on the mapping component of
ResNets, which map the embedding space toward a new unknown space where the prediction or classification can be stated
according to linear criteria. We show that this mapping component can be regarded as the numerical implementation of
continuous flows of diffeomorphisms governed by ordinary differential equations. In particular, ResNets with shared weights
are fully characterized as numerical approximation of exponential diffeomorphic operators. We stress both theoretically and
numerically the relevance of the enforcement of diffeomorphic properties and the importance of numerical issues to make
consistent the continuous formulation and the discretized ResNet implementation. We further discuss the resulting theoretical
and computational insights into ResNet architectures.

Keywords Residual network · Diffeomorphism · Dynamical systems

1 Introduction

Deep learning models are the reference models for a wide
range of machine learning problems. Among deep learning
(DL) architectures, residual networks (also called ResNets)
have become state-of-the-art ones [15,16]. Experimental evi-
dences emphasize critical aspects in the specification of these
architectures, for instance, in terms of network depths or
combination of elementary layers as well as in their stability
and genericity. The understanding and the characterization of
ResNets and more wider DL architectures from a theoretical
point of view remain a key issue despite recent advances for
CNN [24].

Interesting insights into ResNets have recently been pre-
sented in [12,25,31] from an ordinary/partial differential
equation (ODE/PDE) point of view. ResNets can be regarded
as numerical schemes of differential equations. In particular,
in [25], this PDE-driven setting stresses the importance of
numerical stability issues depending on the selected ResNet
configuration. Interestingly, it makes explicit the interpreta-
tion of the ResNet architecture as a depth-related evolution
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of an input space toward a new space, where the prediction of
the expected output (for instance classes) is solved accord-
ing to a linear operator. This interpretation is also pointed out
in [13] and discussed in terms of Riemannian geometry.

In this work, we deepen this analogy between ResNets
and deformation flows to relate ResNet and registration prob-
lems [27], especially diffeomorphic registration [2,3,5,30].
Our contribution is threefold: (1) We restate ResNet learning
as the learning of a continuous and integral diffeomorphic
operator and investigate different solutions, especially the
exponential operator of velocity fields [2], to enforce diffeo-
morphic properties; (2) we make explicit the interpretation
of ResNets as numerical approximations of the underlying
continuous diffeomorphic setting governed by ordinary dif-
ferential equations (ODE); (3) we provide theoretical and
computational insights into the specification of ResNets and
on their properties.

This paper is organized as follows. Section 2 relates
ResNets to diffeomorphic registrations. We introduce in
Sect. 3 the proposed diffeomorphism-based learning frame-
work. Section 4 reports experiments. Our key contributions
are further discussed in Sect. 5.

2 From ResNets to Diffeomorphic
Registrations

ResNets [15,16] have become state-of-the-art deep learn-
ing architectures for a variety of problems, including, for
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Fig. 1 A schematic view of ResNet architecture [15], decomposed into
three blocks: embedding, mapping and prediction. ‘conv’ means con-
volution operations followed by nonlinear activations, and ‘fc’ means
fully connected layer

instance, image recognition [15] or super-resolution [18].
This architecture has been proposed in order to explore per-
formance of very deep models, without training degradation
accuracy when adding layers. ResNets proved to be easier to
optimize and made it possible to learn very deep models (up
to hundreds layers).

As illustrated in Fig. 1, ResNets can be decomposed into
three main building blocks:

– the embedding block which aims to extract relevant fea-
tures from the input variables for the targeted task (such
as classification or regression). In [15], the block consists
of a set of 64 convolution filters of size 7 × 7 followed
by nonlinear activation function such as ReLU.

– the mapping block, which aims to incrementally map the
embedding space to a new unknown space, in which the
data are, for instance, linearly separable in the classifica-
tion case. In [15], this block consists of a series of residual
units. A residual unit is defined as y = F(x, {Wi }) + x,
where the function F is the residual mapping to be
learned. In [15], F(x) = W2σ(W1x), where σ denotes
the activation function (biases are omitted for simplify-
ing notations). The operation F(x) + x is performed by
a shortcut connection and element-wise addition.

– the prediction block, which addresses the classification
or regression steps from the mapped space to the output
space. This prediction block is expected to involve lin-
ear models. In [15], this step is performed with a fully
connected layer.

In this work, we focus on the definition and characteri-
zation of the mapping block in ResNets. The central idea of
ResNets is to learn the additive residual function F such that
the layers in the mapping block are related by the following
equation:

xl+1 = xl + F(xl ,Wl) (1)

where xl is the input feature to the lth residual unit. Wl is a
set of weights (and biases) associated with the lth residual
unit. In [16], it appears that such formulation exhibits inter-
esting backward propagation properties. More specifically,
it implies that the gradient of a layer does not vanish even
when the weights are arbitrarily small.

Here, we relate the incremental mapping defined by
these ResNets to diffeomorphic registration models [27].
These registration models, especially large deformation dif-
feomorphic metric mapping (LDDMM) [5,30], tackle the
registration issue from the composition of a series of incre-
mental diffeomorphic mappings, each individual mapping
being close to the identity. Conversely, in ResNet architec-
tures, the lth residual block provides an update of the form
xl + F(xl ,Wl). Under the assumption that ‖F(xl ,Wl)‖ �
‖xl‖, the deformation flows generated by ResNet architec-
tures may be expected to implement the composition of a
series of incremental diffeomorphic mappings.

In [15,16], it is mentioned that the form of the residual
function F is flexible. Several residual blocks have been
proposed and experimentally evaluated such as bottleneck
blocks [15], various shortcut connections [16] or aggregated
residual transformations [32]. However, by making the con-
nection between ResNets and diffeomorphic mappings, it
appears here that the function F is a parametrization of
an elementary deformation flow, constraining the space of
admissible residual unit architectures.

We argue this registration-based interpretation motivates
the definition of ResNet architectures as the numerical imple-
mentation of continuous flows of diffeomorphisms. Section 3
details the proposed diffeomorphism-based learning frame-
work, inwhich diffeomorphic flows are governed byODEs as
in the LDDMM setting. ResNets with shared weights relate
to a particularly interesting case yielding the definition of
exponential diffeomorphism subgroups in the underlying Lie
algebra.Overall, the proposed framework results in: (1) a the-
oretical characterization of the mapping block as an integral
diffeomorphic operator governed by an ODE, (2) in consid-
ering deformation flows and Jacobian maps for the analysis
of ResNets, (3) the derivation of ResNet architectures with
additional diffeomorphic constraints.

3 Diffeomorphism-Based Learning

3.1 Diffeomorphisms and DrivingVelocity Vector
Fields

Registration issues have been widely stated as the estimation
of diffeomorphic transformations between input and output
spaces, especially in medical imaging [27]. Diffeomorphic
properties guarantee the invertibility of the transformations,
which includes the conservation of topological features. The

123



Journal of Mathematical Imaging and Vision (2020) 62:365–375 367

parametrization of diffeomorphic transformations according
to time-varying velocity vector fields has been shown to be
very effective in medical imaging [21]. Beyond its com-
putational performance, this framework embeds the group
structure of diffeomorphisms and results in flows of dif-
feomorphisms governed by an ordinary differential equation
(ODE):

dφ(t)

dt
= Vt (φ(t)) (2)

with φ(t) the diffeomorphism at time t , and Vt the veloc-
ity vector field at time t . φ(0) is the identity and φ(1) the
registration transformation between embedding spaceX and
output spaceX ∗, such that for any element X inX itsmapped
version in X ∗ is φ(1)(X). Given velocity fields (Vt )t , the
computation of φ(1)(X) comes from the numerical integra-
tion of the above ODE.

A specific class of diffeomorphisms refers to stationary
velocity fields, that is to say velocity fields which do not
depend on time (Vt = V ,∀t). As introduced in [2], in this
case, the resulting diffeomorphisms define a subgroup struc-
ture in the underlying Lie group and yield the definition of the
exponential operators. We here only briefly detail these key
properties. We let the reader refer to [1] for a detailed and
more formal presentation of their mathematical derivation.
For a stationary velocity field, the resulting diffeomorphisms
belong to the one-parameter subgroup of diffeomorphisms
with infinitesimal generator V . In particular, they verify the
following property: ∀s, t, φ(t) · φ(s) = φ(s + t), where ·
stands for the composition operator in the underlying Lie
group. This implies, for instance, that computing φ(1) boils
down to applying n times φ(1/2n) for any integer value n.
Interestingly, this one-parameter subgroup yields the defini-
tion of diffeomorphisms (φ(t))t as exponentials of velocity
field V denoted by (exp(tV ))t and governed by the stationary
ODE

dφ(t)

dt
= V (φ(t)) (3)

Conversely, any one-parameter subgroup of diffeomor-
phisms is governed by an ODE with a stationary velocity
field. Itmay be noted that the above definition of exponentials
of velocity fields generalizes the definition of exponential
operators for matrices and finite-dimensional spaces.

3.2 Diffeomorphism-Based Supervised Learning

In this section, we view supervised learning issues as the
learning of diffeomorphisms according to some predefined
loss function. Let us consider a typical supervised classifi-
cation issue, in which the goal is to predict a class Y from
an N -dimensional real-valued observation X . Let Lθ be a

linear classifier model with parameter θ . Within a neural-
network setting, Lθ typically refers to a fully connected
layer with softmax activations and parameter vector θ to
the weight and bias parameters of this layer. Let D be the
group of diffeomorphisms in R

N . We state the supervised
learning as the joint estimation of an embedding E , a diffeo-
morphic mapping φ ∈ D and linear classification model Lθ

according to:

̂E, ̂φ,̂θ = arg min
E,φ,θ

loss ({Lθ (φ (E(Xi ))) ,Yi }i ) (4)

with {Xi ,Yi }i the considered training dataset and loss an
appropriate loss function, typically a cross-entropy criterion.
Considering the ODE-based parametrization of diffeomor-
phisms, the above minimization leads to an equivalent
estimation of velocity field sequence (Vt )

̂E, (̂Vt ),̂θ = arg min
E,(Vt ),θ

loss ({Lθ (φ(1) (E(Xi ))) , Yi }i )
(5)

subject to

⎧

⎨

⎩

dφ(t)

dt
= Vt (φ(t))

φ(0) = I
(6)

When considering stationary velocity fields [2,3], this mini-
mization simplifies as

̂E, ̂V ,̂θ = arg min
E,(V ),θ

loss ({Lθ (exp(V ) (E(Xi ))) ,Yi }i ) (7)

Wemay point out that this formulation differs from the image
registration problem in the considered loss function.Whereas
image registration usually involves the minimization of the
prediction error Yi − φ(1) (E(Xi )) with any pair Xi , Yi ∈
R

N , we here state the inference of the registration operator
φ(1) according to classification-based loss function. It may
also be noted that the extension to other loss functions (e.g.,
for regression tasks) is straightforward.

3.3 Derived NN Architecture

To solve forminimization issues (5) and (7), additional priors
on the velocity fields can be considered. One may consider
the introduction of an additional term in the minimization,
which typically involves the integral of the norm of the
gradient of the velocity fields and favors small registration
displacements between the two time steps [5,33]. Paramet-
ric priors may also be considered. They come to set some
parametrization for the velocity fields. In image registration
studies, spline-based parametrization has, for instance, been
explored [3].

Here, we combine these two types of priors. We exploit a
parametric approach and consider neural-network-based rep-
resentations of the driving velocity fields inODEs (2) and (3).
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More specifically, the discrete parametrization of the veloc-
ity field, Vt (x), can be considered as a linear combination of
basis functions:

Vj,t (x) =
∑

i

νt, j,i ft,i (x) (8)

where Vj,t denotes component j (a scalar) of the learned
velocity field, and the νt, j,i are the weights learned by the
1D convolutional layer.

Various types of shortcut connections and various usages
of activation functions experimented in [16] correspond to
various forms of the parametrization of the velocity field.
Understanding residual units in a registration-based frame-
work allows to provide a methodological guide to propose
new valid residual units. Figure 2 shows three residual block
units: original ResNet [15], improved ResNet [16] and the
residual block studied in this work. For instance, it can be
noticed that adding an activation function such as ReLU
after the shortcut connection (i.e., after the addition layer)
as in [15] (see Fig. 2a) makes the mapping no longer bijec-
tive, and thus, such an architecture may be less efficient, as
shown experimentally in [16].

One way to build diffeomorphisms is to compose small
perturbations of the identity. Using the same notations as
in [33], let Ω ⊂ R

d be open and bounded. We denote by
C1
0(Ω, R

d) the Banach space of continuously differentiable
vector fields v on Ω such that v and Dv vanish on ∂Ω and
at infinity. Let χ1

1 (T ,Ω) be the set of absolutely integrable
functions from [0, T ] to C1

0(Ω, R
d). It can be shown that

the flow associated with the time-dependent vector field v ∈
χ1
1 (T ,Ω) is a diffeomorphism of Ω [33].
In this work, we propose a residual block suitable to build

flows of diffeomorphisms. In the two case studies considered
in this paper, two parametrizations of the basis functions are
considered. For the case of the experiments of Sect. 4.1, on
the CIFAR-10 dataset, where the inputs are images, the basis
functions ft,i are parametrized with one convolutional layer
and one ReLU layer. The linear combination of these basis
functions can be represented as a second one-dimensional
convolutional layer, with a filter size of 1 × 1. In the experi-
ments of Sect. 4.2, on the spiral datasets, the inputs are two
dimensional. In that case, the basis functions are modeled
through the output of a dense layer, followed by a tanh acti-
vation function.

It has to be noticed that no biases are considered for the
two convolutional layers. In order to control the magnitude
of the velocity field, we propose to use in the residual block
a tanh layer and a scaling layer. Finally, to ensure that v ∈
χ1
1 (T ,Ω), we introduce a windowing layer such that v and

Dv vanish on ∂Ω and at infinity. This ensures that v is a
Lipschitz continuous mapping [33]. This proposed residual
block is shown in Fig. 2c.

Fig. 2 Various residual units: a original ResNet [15], b improved
ResNet [16], c proposed residual unit

In the registration-based framework considered so far, the
transformation φ is only applied to the embedding of the
observation X . This can introduce an undesirable asymmetry
in the optimization process and have a significant impact on
the registration performance. Inverse consistency, first intro-
duced by Thirion [29], can be performed by adding a penalty
term. In order to implement inverse consistent algorithms, it
is useful to be able to integrate backward as well as forward.
In the diffeomorphic framework, the inverse consistency can
be written as follows:

φ(1) ◦ φ(−1) = φ(−1) ◦ φ(1) = φ(0) (9)

This inverse consistency can then be achieved by adding the
following term in the overall loss function:

̂E, ̂φ,̂θ = arg min
E,φ,θ

α loss ({Lθ (φ (E(Xi ))) ,Yi }i )

+ (1 − α)
∑

i

(E(Xi ) − φ(−1)(E(Xi )
∗)

)2 (10)

where E(Xi )
∗ = φ(1)(E(Xi )), Xi ∈ X and α is a weighting

parameter. We may stress that this term does not depend
on the targeted task (i.e., classification or regression) and
only constraint the learning of the mapping block. Thus, this
regularization term can be extended to data points that do
not belong to the learning set, and more generally to points
in a given domain, such that the inverse consistency property
does not depend on the sampling of the learning dataset.
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4 Experiments

In this section, we investigate experimentally the potential
of the proposed architecture of residual blocks using the
image classification dataset CIFAR-10 [22] and synthetic
2D data (spiral dataset). CIFAR-10 is used to explore the
performance of the proposed residual unit with respect to
other ResNet architectures. The 2D spiral dataset helps to
further investigate properties of diffeomorphism-based net-
works and provides geometrical insights into the estimated
flows.

4.1 CIFAR-10

4.1.1 Experimental Setting

The CIFAR-10 dataset contains 60,000 32×32 color images
in ten different classes. A total of 10,000 images are used for
the testing purpose. The overall architecture is decomposed
into three main parts: embedding, mapping and prediction.
First, the embedding is performed using the following layers:
(1) a 5 × 5 convolutional layer with 128 filters, (2) batch
normalization, (3) tanh activation layer (which ensures that
E(Xi ) ∈ ] − 1, 1[p, an open and bounded interval). Then,
the network consists of several residual blocks as depicted in
Fig. 2c (3×3 convolutionswithout bias, with 128 filters). The
scaling factor of the residual units is learned and shared for
every unit. At the end of the mapping block, a tanh activation
layer is used to ensure thatφ(E(Xi )) ∈ ]−1, 1[p, an open and
bounded interval. Finally, the prediction step is performed
using the following layers: (1) a 3 × 3 convolutional layer
with 128 filters, (2) batch normalization, (3) tanh activation
layer, (4) 32× 32 average pooling, (5) fully connected layer.
Weights are initialized with a truncated normal distribution
centered on 0 [14]. We use 
2 weight-decay regularization
set to 2×10−4 and SGD optimization method with a starting
learning rate of 0.1, minibatch of 128, 100 epochs.

The goal of this experiment is to study the efficiency of
the proposed residual unit with respect to original ResNet.
The baseline architecture used for comparison is the ResNet
architecture proposed in [16]. In this experiment, we use the
Keras1 implementation of ResNet for reproductibility pur-
pose: ResNet56v2 (depth of 56 with increasing number of
convolution filters [16]), with about 1.6Mof trainable param-
eters.

4.1.2 Results

In this work, the dimension of the embedding space is
constant throughout the mapping block. We first compare

1 F. Chollet et al. Keras, 2015. https://keras.io.

ResNet56v2 with the proposed approach with the same num-
ber of parameters, which corresponds to a network depth of
5 (i.e., 5 residual units). It can be seen in Fig. 3 that the per-
formance of these two networks is similar when using the
entire training dataset. Residual units of the Keras ResNet
are built using three layers: convolution, batch normaliza-
tion and ReLU. ReLU units are crucial to promote efficient
sparse parametrizations of the velocity fields. However, the
obtained results show that batch normalization in the residual
units is not required to reach satisfactory classification accu-
racy. Instead, we use a tanh activation layer to restrict the
embedding set to be open and bounded for the whole flow of
diffeomorphisms. It has to be noted that in the proposed net-
work, the dimension of the transformed embedding space is
constant. Similar to [17], the experimental results show that
progressive dimension changes in the embedding space are
not required, contrary to popular belief that the performance
of deep neural networks is based on progressive removal of
uninformative variability. To study the generalization perfor-
mance of the proposed residual unit, we conduct experiments
with decreasing number of training samples (see Table 1 for
detailed results). It appears that the use of the proposed resid-
ual unit makes the model more robust to small training sets
compared to the Keras ResNet.

We also investigate the impact of the network depth on
the classification results. Increasing the depth leads to more
complex models (in terms of trainable parameters). It can
thus be expected to observe overfittingwhen using very small
training datasets. However, Fig. 3 shows that increasing the
depth of the proposed network does not lead to accuracy
decrease. From a dynamical point of view, increasing the
depth corresponds to smaller integration steps and then to
smoother variations of velocity fields. The proposed residual
architecture is not subject to overfitting for small datasets
even with a deep diffeomorphic network.

4.2 Spiral Data

In this section, we propose to further deepen the understand-
ing of behavior of networks based on flows of diffeomor-
phisms. Following thework on differential geometry analysis
of ResNet architectures of Hauser et al. [13], we consider a
classification task of two-dimensional spiral data.

4.2.1 Experimental Setting

No embedding layer is required in this experimental setup.
The purpose of the mapping block is then to warp the input
data points Xi into an unknown space X ∗, where the trans-
formed data X∗ are linearly separable. We have considered
the following setting: The loss function is the binary cross-
entropy between the output of a sigmoid function applied
to the transformed data points X∗ and the true labels. Each
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Fig. 3 Performance of various non-stationary ResNet architectures on CIFAR10, with varying sizes of the training dataset (left: from 1000 to
50,000 images, right: zoom version for very small dataset size)

Table 1 Accuracy on CIFAR10
for ResNet and proposed
approaches (DiffeoNet:
proposed residual unit,
stationary velocity fields
correspond to the use of shared
weights) with respect to the
number of training samples
(1000 up to 50,000)

Methods #params (M) 1k 2.5k 5k 10k 20k 30k 40k 50k

ResNet d56 1.6 0.45 0.57 0.69 0.80 0.87 0.90 0.91 0.92

DiffeoNet d5 1.6 0.53 0.64 0.73 0.81 0.86 0.89 0.90 0.91

DiffeoNet d10 3.1 0.54 0.67 0.74 0.81 0.88 0.89 0.91 0.92

DiffeoNet d20 6 0.53 0.65 0.75 0.82 0.88 0.90 0.92 0.93

Stationary velocity fields

DiffeoNet d5 0.45 0.52 0.63 0.70 0.75 0.83 0.86 0.87 0.88

DiffeoNet d10 0.45 0.51 0.63 0.70 0.77 0.83 0.86 0.89 0.89

DiffeoNet d20 0.45 0.53 0.64 0.70 0.77 0.84 0.87 0.89 0.89

Stationary velocity fields and inverse consistency

DiffeoNet d5 0.45 0.52 0.63 0.69 0.75 0.82 0.86 0.88 0.90

DiffeoNet d10 0.45 0.51 0.64 0.70 0.76 0.84 0.87 0.88 0.90

DiffeoNet d20 0.45 0.52 0.64 0.70 0.77 0.85 0.86 0.88 0.90

Depths (d5, d10, d20) and number of parameters are reported to perform a fair comparison

network is composed of 20 residual units, for which nonlin-
earities are modeled with tanh activation functions and 10
basis functions (modeled by dense layers) are used for the
parametrization of the velocity fields. Weights are initialized
with the Glorot uniform initializer (also called Xavier uni-
form initializer) [9]. We use 
2 weight-decay regularization
set to 10−4 and the ADAM optimization method [20] with a
learning rate of 0.001, β1 = 0.9, β2 = 0.999, minibatch of
300, 1000 epochs.

We consider four ResNet architectures: (a) a ResNet with-
out shared weights (corresponding to time-varying velocity
fields modeling), (b) ResNet with shared weights (corre-
sponding to the stationary velocity fields modeling), (c)
data-driven Symmetric ResNet with shared weights (con-
sidering also the inverse consistency criterion is computed
over training data) and (d) domain-driven Symmetric ResNet
with shared weights (where the inverse consistency criterion
is computed over the entire domain using a random sampling
scheme).

4.2.2 Characterization of ResNet Properties

ResNet architectures have been recently studied from the
point of view of differential geometry in [13]. In this article,
Hauser et al. studied the impact of residual-based approaches
(compared to non-residual networks) in terms of differen-
tiable coordinate transformations. In our work, we propose to
go one step further by considering the characterization of the
estimated deformation fields leading to an adapted configura-
tion for the considered classification task. More specifically,
we consider in this work the maps of Jacobian values.

The Jacobian (i.e., the determinant of the Jacobian matri-
ces of the deformations) is defined in a two-dimensional
space as follows:

Jφ(x) =
∣

∣

∣

∣

∣

∂φ1(x)
∂x1

∂φ1(x)
∂x2

∂φ2(x)
∂x1

∂φ2(x)
∂x2

∣

∣

∣

∣

∣

. (11)
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From a physical point of view, the value of the Jacobian
represents the local volume variation induced by the trans-
formation. A transformation with a Jacobian value equal to 1
is a transformation that preserves volumes. A Jacobian value
greater than 1 corresponds to a local expansion, and a value
less than 1 corresponds to a local contraction. The casewhere
the Jacobian is zeromeans that several points arewarped onto
a single point: This case corresponds to the limit case from
which the bijectivity of the transformation is not verified any-
more, thus justifying the constraint on the positivity of the
Jacobian in several registration methods [27].

4.2.3 Results

Classification algorithms are usually only evaluated using
the classification accuracy (as the number of correct predic-
tions from all predictions made). However, the classification
rate is not enough to characterize the performance of a spe-
cific algorithm. In all the experiments shown in this work,
the classification rate is greater than 99%. Visualization of
the decision boundary is an alternative way to provide com-
plementary insights into the regularity of the solution in the
embedding space. Figure 4 shows the decision boundary for
the four considered ResNets. Although all methods achieved
very high classification rates, it can be seen that adding con-
straints such as the use of stationary velocity fields (i.e.,
shared weights) and inverse consistency constraints lead to
smoother decision boundaries with no effect on the overall
accuracy. This is regarded as critical for generalization and
adversarial robustness [28].

Decision boundaries correspond to the projection of the
estimated linear decision boundary in the space X ∗ into the
embedding space X . The visualization of decision bound-
aries does not however provide information regarding the
topology of the manifold in the output space X ∗. We also
study the deformation flow through the spatial configuration
of data points through the network layers as in [13]. Figure 5
shows how each network untangles the spiral data. Networks
with shared weights exhibit smoother layer-wise transforma-
tions. More specifically, this visualization provides insights
into the geometrical properties (such as topology preser-
vation/connectedness) of the transformed set of input data
points.

To evaluate the quality of the estimation warping transfor-
mation, Fig. 6 shows the Jacobian maps for each considered
network. Local Jacobian sign changes correspond to loca-
tions where bijectivity is not satisfied. It can be seen that
adding constraints such as stationary velocity fields and
inverse consistency leads to more regular geometrical shapes
of the deformed manifold. The domain-driven regularization
applied to aResNetwith sharedweights leads to themost reg-
ular geometrical pattern. Adding the symmetry consistency

leads to positive Jacobian values over the entire domain, guar-
anteeing the bijectivity of the estimated mapping.

5 Discussion: Insights into ResNet
Architectures from a Diffeomorphic
Viewpoint

As illustrated in the previous section, the proposed diffeo-
morphic formulation of ResNets provides new theoretical
and computational insights into their interpretation and char-
acterization as discussed as follows.

5.1 Theoretical Characterization of ResNet
Architectures

In this work, we make explicit the interpretation of the map-
ping block of ResNet architectures as a discretized numerical
implementation of a continuous diffeomorphic registration
operator. This operator is stated as an integral operator asso-
ciated with an ODE governed by velocity fields. Moreover,
ResNet architectures with shared weights are viewed as the
numerical implementation of the exponential of velocity
fields, equivalently defined as diffeomorphic operators gov-
erned by stationary velocity fields. Exponentials of velocity
fields are by construction diffeomorphic under smoothness
constraints on the generating velocity fields. Up to the choice
of the ODE solver implemented by ResNet architecture (in
our case an Euler scheme), ResNet architectures with shared
weights are then fully characterized from a mathematical
point of view.

The diffeomorphic property naturally arises as a critical
property in registration problems, as it relates to invertibility
properties. Such invertibility properties are also at the core of
the definition of kernel approaches, which implicitly defines
mapping operators [26]. As illustrated for the reported classi-
fication experiments, the diffeomorphic property prevents the
mapping operator from modifying the topology of the man-
ifold structure of the input data. When not imposing such
properties, for instance, in unconstrained ResNet architec-
tures, the learned deformation flows may present unexpected
topology changes.

The diffeomorphic property may be regarded as a regular-
ization criterion on the mapping operator, so that the learned
mapping enables a linear separation of the classes while
guaranteeing the smoothness of the classification boundary
and of the underlying deformation flow. It is obvious that a
ResNet architecture with shared weights is a special case
of an unconstrained ResNet. Therefore, the training of a
ResNet architecture with shared weights may be viewed as
the training of an unconstrained ResNet within a reduced
search space. The same holds for the symmetry property
which further constrains the search space during training.
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Fig. 4 Decision boundaries for the classification task of two-
dimensional spiral data. From left to right: ResNet without shared
weights, ResNet with shared weights, data-driven symmetric ResNet

with shared weights, domain-driven symmetric ResNet with shared
weights. We refer the reader to the main text for the correspondence
between ResNet architectures and diffeomorphic flows

Fig. 5 Evolution of the spatial configuration of data points through the 20 residual units. From top to bottom: ResNet without shared weights,
ResNet with shared weights, data-driven symmetric ResNet with shared weights, domain-driven symmetric ResNet with shared weights

Fig. 6 Jacobian maps for the four ResNet architectures. From left to
right: ResNet without shared weights (Jmin = −5.59, Jmax = 6.34),
ResNet with shared weights (Jmin = −1.41, Jmax = 2.27), data-driven
symmetric ResNet with shared weights (Jmin = 0.55, Jmax = 5.92),

domain-driven symmetric ResNet with shared weights (Jmin = 0.30,
Jmax = 1.44). (colormap: Jmin = −2.5, Jmax = 2.5, so dark pixels
correspond to negative Jacobian values)

The later constraint is shown to be numerically important,
so that the discretized scheme complies with the theoretical
diffeomorphic properties.

Overall, this analysis stresses that over an infinity of map-
ping operators reaching optimal training performance one
may favor those depicting diffeomorphic properties so that
key properties such as generalization performance, predic-
tion stability and robustness to adversarial examples may

be greatly improved. Numerical schemes which fulfill such
diffeomorphic properties during the training process could
be further investigated and could benefit from the registra-
tion literature, including for diffeomorphic flows governed
by non-stationary velocity fields [4,5,30]. In particular, the
impact of the diffeomorphism-based network building on
adversarial example estimation is an open research direction
for further studies.
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5.2 Computational Issues

Besides theoretical aspects, computational properties also
derive from the proposed diffeomorphism-based formula-
tion. Within this continuous setting, the depth of the network
relates to the integration time step and the precision of the
integration scheme. The deeper the network, the smaller the
integration step. In particular, a large integration time step,
i.e., a shallower ResNet architecture, may result in numeri-
cal integration instabilities and hence in non-diffeomorphic
transformations.

Therefore, deep-enough architectures should be consid-
ered to guarantee numerical stability and diffeomorphic
properties. The maximal integration step relates to the reg-
ularity of the velocity fields governing the ODEs. In our
experiments, we only consider an explicit first-order Euler
scheme.Higher-order explicit schemes, for instance, the clas-
sic fourth-order Runge–Kutta scheme, seem of great interest
as well as implicit integration schemes [8]. Given the spatial
variabilities of the governing velocity fields, adaptive inte-
gration schemes also appear as particularly relevant.

Using diffeomorphism-based framework leads to specific
architectures of residual units. In this work, for instance, tanh
activation layers are used to constraint the domain Ω to be
open and bounded. Such activation layer guarantees the dif-
feomorphic properties of the mapping block. The popular
use of ReLU activation in the embedding block cannot pro-
vide such guarantee. Several other reversible architectures
have been recently proposed [7,10,17], showing the poten-
tial of such frameworks for the analysis of residual networks.
In the LDDMM framework [5], the parametrization of the
velocity field is often carried out with Reproducing Kernel
Hilbert Spaces (RKHS). Recent works have been done in
this direction connecting RKHS and deep networks [6]. In
our work, v and Dv vanish on ∂Ω and at infinity. This prop-
erty guarantees that the learned residual units are Lipschitz
continuous, which is related to recent works investigating
explicit constraints on Lipschitz continuity in neural net-
works [11]. Moreover, this condition implies that the Hilbert
space of admissible velocity fields is a RKHS [34]. Further
work could focus on the parametrization of the velocity fields
(i.e., residual units) using suitable kernels.

Diffeomorphic mapping defined as exponential of veloc-
ity fields was shown to be computationally more stable
with smoother integral mappings. They lead to ResNet
architectures with shared weights, which greatly lowers the
computational complexity and memory requirements com-
pared with the classic ResNet architectures. They can be
implemented as recurrent neural networks [19,23]. Impor-
tantly, the NN-based specification of the elementary of
velocity field V (8) becomes the bottleneck in terms of mod-
eling complexity.

The parametrization (Eq. 8) may be critical to reach-
ing good prediction performance. Here, we considered a
two-layer architecture regarded as a projection of V onto
basis function. Higher-complexity architecture, for instance
with larger convolution supports, more filters or layers,
might be considered while keeping the numerical stability
of the overall ResNet architectures. By contrast, considering
higher-complexity elementary blocks in a ResNet archi-
tectures without shared weights would increase numerical
instabilities and may require complementary regularization
constraints across network depth [15,25].

Regarding training issues, our experiments exploited a
classic backpropagation implementation with a random ini-
tialization. From the considered continuous log-Euclidean
prospective, the training may be regarded as the projection
of the random initialization onto the manifold of acceptable
solutions, i.e., solutions satisfying both the minimization of
the training loss and diffeomorphic constraints. In the reg-
istration literature [27], the numerical schemes considered
for the inference of the mapping usually combine a para-
metric representation of the velocity fields and a multiscale
optimization strategy in space and time. The combination
of such multiscale optimization strategy to backpropagation
schemes appears as a promising path to improve convergence
properties, especially the robustness to the initialization. The
different solutions proposed to enforce diffeomorphic prop-
erties are also of interest.Here,we focused on the invertibility
constraints, which result in additional terms to be minimized
in the training loss.

6 Conclusion

This paper introduces a novel registration-based formula-
tion of ResNets. We provide a theoretical interpretation of
ResNets as numerical implementations of continuous flows
of diffeomorphisms. Numerical experiments support the rel-
evance of this interpretation, especially the importance of
the enforcement of diffeomorphic properties, which ensure
the stability of a trained ResNet. This work opens new
research avenues to explore further diffeomorphism-based
formulations and associated numerical tools for ResNet-
based learning, especially regarding numerical issues.
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