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Abstract
In this paper, we present a framework for computing dissimilarities between surfaces which is based on the mathematical
model of normal cycle from geometric measure theory. This model allows to take into account all the curvature information of
the surface without explicitly computing it. By defining kernel metrics on normal cycles, we define explicit distances between
surfaces that are sensitive to curvature. This mathematical framework also has the advantage of encompassing both continuous
and discrete surfaces (triangulated surfaces). We then use this distance as a data attachment term for shape matching, using
the large deformation diffeomorphic metric mapping for modelling deformations. We also present an efficient numerical
implementation of this problem in PyTorch, using the KeOps library, which allows both the use of auto-differentiation tools
and a parallelization of GPU calculations without memory overflow. We show that this method can be scalable on data up
to a million points, and we present several examples on surfaces, comparing the results with those obtained with the similar
varifold framework.

Keywords Normal cycles · Geometric measure theory · Kernel metrics · Surface registration · Diffeomorphic deformations

1 Introduction

This article takes place in the context of computational
anatomy, an active research field which aims at providing a
mathematical framework to study the variability of anatom-
ical structures among a population of subjects. The term
“computational anatomy” was first introduced by Grenan-
der and Miller [28].

In the past decades, the development of acquisition tech-
niques (among which magnetic resonance imaging, coher-
ence tomography, diffusion-tensor imaging, functionalMRI)
opens the way to an early diagnosis of diseases that cause
or are caused by unexpected deformations. A qualitative
approach is not anymore sufficient and one necessitates an
automatized procedure for an analysis that fully exploits the
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size of the database. This automation implies a quantitative
approach, and thus, a mathematical modelling of shape vari-
ability and how to measure it.

This problematic is at the heart of computational anatomy.
Formally, one estimates from a “healthy” data set a sta-
tistical model of the shapes’ variability. From there, it is
possible to provide statistical tests to discriminate between
a pathological and a normal shape variation. Of course, this
is a very large and complex problem. From a mathematical
point of view, the measure of shapes variability necessitates
a framework that provides theoretical and numerical guar-
antees. From a medical point of view, the relevance and
the interpretation of such applications need to be evaluated
depending on the anatomical structure at stake. Yet, numer-
ous studies have shown promising results. Let us quote, for
example, works on Alzheimer’s disease [17,18,39,45,48],
DTI images [20,29,38], heart malformations [34], Down
syndrome [19,21] and retina layer for glaucoma diagno-
sis [7,31,32].

An elementary brick for carrying out such statistical anal-
yses is the pairwise registration of geometric structures. This
matching problem is often addressed as a variational prob-
lem, with a cost functional which is the sum of two terms: a
data attachment term that measures how close the deformed
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shape is to the target shape, and a regularization term on the
deformation that ensures that the problem is well posed. In
this context, the construction of a data attachment term to
measure the residual distance between the deformed shape
and the target is of importance. Indeed, depending on the fea-
tures of the shapes it takes into account, this term will drive
the registration procedure in a certain way. Ideally, we want
a mathematical setting to represent the shapes (e.g. the sur-
faces) in a common framework for discrete and continuous
shapes, and with theoretical guarantees of the kind of infor-
mation thatwe are able to retrieve through this representation.
Last but not least, this setting should provide an explicit met-
ric between shapes, which is implementable numerically for
discrete shapes.

In the past decade, several models for defining such data
attachment terms for curves, surfaces or points clouds have
been proposed, based on mathematical tools coming from
geometricmeasure theory. Thefirst of thesemodels consisted
of defining kernel metrics on spaces of currents [27,47] to
provide an explicit distance between shapes, for both contin-
uous and discrete cases.

This setting is now commonly used in computational
anatomy; its advantages lie in its simple implementation,
its parameterization-free representation and the fact that it
provides a common framework for continuous and discrete
shapes. However, currents are oriented objects, and thus,
a consistent orientation of shapes is needed for a coherent
matching. Moreover, due to this orientation property, arti-
ficial cancellation can occur with shapes with high local
variations. To deal with this problem, amore advancedmodel
basedon varifoldshas been introducedmore recently [10,30].
Such framework provides a non-oriented distance between
shapes, which contains first-order information. Note that
optimal transport has also been used to construct a data
attachment term for diffeomorphic registration in the same
spirit [25].

The idea of using curvature information to improve the
registration motivated authors in [41]. In this article, they
make use of a modification of the varifolds representation of
surfaces to be sensitive to the mean curvature, coupled with
a spatially varying metric, depending on the mean curvature
of the shape.

In [43], we have introduced another shape representation
in computational anatomy, using the mathematical model of
normal cycle, and we have applied it to curves. The notion
of normal cycle has been introduced by Zähle in [50], based
on the work on curvature measures developed by Federer
earlier [22]. The theory of normal cycles relies on the repre-
sentation of shapes through their unit normal bundle: more
precisely, the normal cycle of a shape is the current associ-
ated with its unit normal bundle. The benefit of such a model
is that the normal cycle contains all the curvature informa-
tion of the underlying shape, as it was shown in [50,51].

The idea is that the current associated with a shape contains
only first-order information. Considering the current of the
unit normal bundle, we get first-order information of a first-
order model and thus curvature information. One can find a
more detailed explanation in [43,46]. Defining kernel met-
rics on normal cycles, one gets an explicit data attachment
term between shapes which is sensitive to curvature and also
to singularities of the shapes, such as branching points and
boundaries. Taking into account, the curvature during the
registration process is an interesting property, since in most
application regions with high curvature are features that we
want to be matched together.

In this article, we propose to extend the construction of
kernel metrics on normal cycles seen in [43] to surfaces of
R
3 (note that we presented preliminary work on surfaces

in a short article [44]). The contributions of this paper are
twofold: first, the extension of the previous work to surfaces
requires a fine decomposition of normal bundle in the case
of triangulated surfaces. The choice of the kernel defining
the metric is also crucial, so that the distance can be calcu-
lated, and contains non-trivial curvature information.We also
present an implementation of this algorithm, which makes
extensive use of recent software developments in the neural
networks community. More precisely, our implementation
takes full advantage of the automatic differentiation module
of the PyTorch library [37], together with a seamless use of
parallelization of generic convolution operations on Graph-
ics Processing Units (GPU) provided by the recent KeOps
module [8,9], developed byBenjaminCharlier, JoanGlaunès
and Jean Feydy. This allows to have a linear memory foot-
print memory on GPU for kernel convolutions, and thus to
avoid memory overflows that happen because of the usual
quadraticmemory footprint. All these elements lead to a code
for the matching problem that is both very efficient (because
the parallelization of the calculations is optimized) and sim-
ple (because the calculation of the gradients is painless). In
addition, the computation times presented are significantly
improved because of the automatic and efficient calculation
of the gradient. By doing so, we are able to define distances
that are sensitive to curvature, with an efficient implementa-
tion and that significantly improve matching results.

The article is organized as follows: in Sect. 2, we present
the bases of the representation of shapes with normal cycles,
after which we describe the normal cycle in the case of tri-
angulated surfaces. In Sects. 3 and 4, we define the kernel
metrics on normal cycles and express the associated dis-
tance in the case of discrete surfaces. We will see that we
can interpret what type of curvature is encoded in these dis-
tances. In Sect. 5, we detail the diffeomorphic deformation
model that we will use for the inexact registration prob-
lem, namely the large deformation diffeomorphic mapping
metric (LDDMM, [49]) framework. Section 6 focuses on
the numerical aspects of the registration problem. We detail
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the implementation in PyTorch and provide benchmarks for
computation times of the distance onnormal cycles, aswell as
the gradient evaluation. We compare this computation times
with the ones on varifolds, andwe observe that they are of the
same order of magnitude, despite the greater complexity of
the normal cycle model. Finally, in Sect. 7, we present many
examples of matching on surfaces using kernel metrics on
normal cycles as a data attachment term. The various exam-
ples aim to show the advantages of introducing curvature into
the data attachment term.

2 Representation of Shapes with Normal
Cycles

The question of shapes representation is a central point in
geometric measure theory whose reference book is from
Federer [23]. This field was motivated in the second half
of the twentieth century by the calculus of variation, and
more specifically by the Plateau’s problem of finding a min-
imal area surface with constrained boundary: given a closed
(m−1)-dimensional surfaceΓ ⊂ R

d , find anm-dimensional
surface S of least area such that ∂S = Γ . Solving this
problemwas a conceptual breakthrough. Indeed if the formu-
lation is a classicalminimization problemwith constraint, the
main difficulty was to provide a theoretical setting to embed
surfaces in a topological space with nice properties. The
specifications of this framework are the following: define a
space where the surfaces can be represented, with a topology
that allows some compactness properties for a minimizing
sequence of the Plateau’s problem. The representation of
oriented surfaces with integral currents [24] and later the
representation of non-oriented surfaces with varifolds [1,2]
were introduced for this purpose.

As convenient as these two settings may be, in this arti-
cle we investigate the finer shape representations of normal
cycles. The theory of normal cycles was originated from
Federer’s work on curvature measures [22] and was pushed
forward by Zähle [50] who gave integral representation of
these measures: this is the normal cycle. It provides another
theoretical tool to represent surfaces and more generally
shapes, encoding higher-order information such as curvature.

The theory of normal cycles had already been used in
the applied mathematics community, to perform curvature
estimation from triangulations: in [15], the authors use the
Lipschitz–Killing forms to generalize the mean and Gaus-
sian curvatures in a mathematical setting that encompasses
the polyhedral case as well as the continuous case. They also
use vector-valued differential forms to extend the notion of
second fundamental form operator and get finer results: the
principal curvatures as well as the principal directions may
be estimated from this.Moreover, an upper bound of the error
of the estimated curvature from a triangulated approximation

of a smooth shape is proven. The estimation of the second
fundamental form is refined in [16] in a Riemannian frame-
work. [13] extends the stability result of [15] that was valid
only for approximation of smooth hypersurfaces. Introduc-
ing the μ-reach of a set, they provide curvature stability with
respect to the Hausdorff distance of compact subset that has
positive μ-reach, still using the theory of normal cycles. For
example, a finite set of points in R

3 has a positive μ-reach
and the authors derived an algorithm to explicit the curvature
measure in this case from a description of its normal bun-
dle. Some of the previous curvature estimation with normal
cycles are summed up in [36].

In this section, we detail the representation of shapes with
normal cycles. We start with a brief recall of currents, as it
is underpinning for the theory of normal cycles. Then, we
define the normal cycle of a shape with positive reach as
the current associated with its unit normal bundle, and we
explain how to extend this definition to sets that are union
of sets with positive reach. These kinds of sets encompass
the case of discrete shapes, such as triangulations. The next
step is then to describe the normal cycles for elementary
objects as a triangle and a union of triangle. The latter relies
on a decomposition of the unit normal bundle into spherical,
cylindrical and planar part, each part being associated with a
precise kind of curvature.

2.1 Currents

We present the framework form-dimensional currents inRd .
Let 0 ≤ m ≤ d be an integer. In the following,we consider

Ωm
0 (Rd) := C0

(
R
d , (Λm

R
d)∗
)
the space of continuous dif-

ferential forms on M , vanishing at infinity, endowed with the
uniform norm. Here Λm

R
d is the space of m-vector in R

d

and (Λm
R
d)∗ is its algebraic dual.

In this article, a current will simply be an element of the
topological dual of Ωm

0 (Rd):

Definition 1 (Currents) The space of m-currents in R
d

is defined as the topological dual of Ωm
0 (Rd), denoted

Ωm
0 (Rd)′. T ∈ Ωm

0 (Rd)′ maps every differential form ω

to T (ω) ∈ R and T (ω) ≤ CT ‖ω‖∞.

Note 1 This definition differs from the original one of Fed-
erer that was introduced similarly to Schwartz’ theory of
distribution [24]. However, we do not need such refinements
for our applications.

A current can be seen as an object that integrates differen-
tial forms, and if we consider X an oriented, m-dimensional
submanifold of R

d , we can associate with X a current,
denoted [X ], through the integration of differential forms
over X : if ω ∈ Ωm

0 (Rd),

[X ](ω) :=
∫

X
〈ω(x)|τX (x)〉 dσX (x)
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Fig. 1 In these two figures, we consider a black curve X . The black
dotted line represents the medial axis of the curve, i.e. the set of points
which do not have a unique projection on X . This is illustrated with the
orthogonal projections from the medial axis to X (red dotted lines) .
The reach is the distance between the medial axis and the curve. Left: a
black curve X with positive reach. Right: the curve X has not a positive
reach. The medial axis is at distance 0 from the curve (Color figure
online)

where τX (x) is them-vector associated with a positively ori-
ented, orthonormal basis of Tx X (if (e1(x), . . . , em(x)) is an
orthonormal frame of Tx X , then τX (x) := e1(x) ∧ · · · ∧
em(x)), 〈.|.〉 stands for the dual pairing between ω(x) ∈
(Λm

R
d)∗ and τX (x) ∈ Λm

R
d , and σX is the volume form of

X (that coincides with the m-dimensional Hausdorff mea-
sure of R

d , H m). We have seen here that the space of
m-dimensional currents contains, among others, all the m-
dimensional submanifolds.

Another interesting object living in Ωm
0 (Rd)′ is the Dirac

current. Considering x ∈ R
d and α ∈ Λm

R
d , we define δα

x
as:

δα
x (ω) := 〈ω(x)|α〉 .

These types of currents are useful to have compact approx-
imation of currents, especially for discrete shapes.

2.2 Representation of Surfaces with Normal Cycles

The convenient setting for introducing normal cycles is the
one of sets with positive reach. In this section, we give basic
definitions and results of the theory and refer to [22,51] for
proofs and more developments.

Definition 2 (Reach of a set) The reach of a set X ⊂ R
3 is

the supremum of the r > 0 for which we can define a unique
projection from ∂Xr on X , where ∂Xr = {x ∈ R

3|d(x, X) =
r}.

One can find in Fig. 1 an illustration of a set X with zero
reach and a set X with positive reach.

Example 1 – For a convex set X , Reach(X) = +∞.
– If X is a C2-submanifold, compact, Reach(X) > 0.

One can prove that for any r < Reach(X), ∂Xr is a closed
surface of class C1 in R3.

Definition 3 (Unit normal bundle for sets with positive reach
in R3) Let X ⊂ R

3 be a set with positive reach, and 0 < r <

Reach(X), and let x ∈ X . The unit normal bundle of X ,
denoted NX , is defined as:

NX :=
{
(x, n) ∈ X × S

2, x + rn ∈ ∂Xr

}
.

It can be proven that this set NX does not depend on
r and that gr : (x, n) �→ x + rn defines a bi-Lipschitz
bijection between NX and ∂Xr . Since ∂Xr is a C1 closed
surface in R

3, it is canonically oriented, and this orientation
transfers via gr to a canonical orientation of NX . In order
to consider the current associated with NX , it is interesting
to describe the tangent space T(x,n)NX of the normal bun-
dle at point (x, n). Let us start by considering ∂Xr . It is a
smooth hypersurface without border, and thus, it is canoni-
cally oriented. For (x, n) ∈ NX , x+rn ∈ ∂Xr andwe denote(
bri (x, n)

)

1≤i≤d−1
the directions of principal curvatures of

∂Xr associated with the curvatures (kri (x, n))1≤i≤d−1. As
explained in [50], bri (x, n) is independent of r and we write
it bi (x, n).Moreover,we define ki (x, n) := limr→0 kri (x, n).
ki (x, n) expresses the curvature of X at point x , seen with
n as the reference direction. For example, if X is a closed
smooth surface of R3, oriented with a normal vector field
x �→ n(x), then we have ki (x, n(x)) = κi (x) where κi (x) is
the i th principal curvature (signed). And one can show that

ki (x,−n(x)) = −ki (x, n(x)) = −κi (x).

This means that the curvature considered with −n(x) as ref-
erence direction is opposite of the one considered with n(x)
as reference direction. [50] showed that an orthonormal basis
of T(x,n)NX is then:

ai (x, n) :=
(

bi (x, n)
√
1 + k2i (x, n)

,
ki (x, n)bi (x, n)
√
1 + k2i (x, n)

)
,

i = 1, . . . , d − 1. (1)

If ki (x, n) = ∞, we set 1√
1+∞2 = 0 and ∞√

1+∞2 = 1.
We see with this remark that the information on the cur-

vatures of the set X can be read on the expression of the
orthonormal basis of T(x,n)NX .

In the following, we denote τNX (x, n) = ∧d−1
i=1 ai (x, n)

the (d − 1)-vector associated with the tangent frame of NX

at point (x, n).

Definition 4 (Normal cycles for sets with positive reach in
R
3) Let X ⊂ R

3 be a set with positive reach. The normal
cycle of X , denoted N (X), is the 2-current associated with
the surface NX ⊂ R

3 × S
2, endowed with the canonical
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orientation. If ω ∈ Ω2
0 (R3 × S

2),

N (X)(ω) := [NX ](ω)

=
∫

NX

〈
ω(x, n)

∣∣τNX (x, n)
〉
dH 2(x, n).

The representation of a shape with its normal cycle is thus
equivalent to consider the shape as an object which integrates
differential forms over the unit normal bundle. As explained
in [46,50], and later in [43], there exists differential forms
ω0, ω1, ω2 such that N (X)(ωi ) retrieves the integral of the
i th curvature of X when X is a smooth surface of R3. These
differential forms are called the Lipschitz–Killing differen-
tial forms. This is why we can say that the representation of
shapes with normal cycles encodes all the curvature infor-
mation.

Let us illustrate this fact with an example on surface: con-
sider a global parameterization of a surface S, with

γ : U ⊂ R
2 → S, (u, v) �→ γ (u, v).

S is oriented with a normal vector field defined as

n(u, v) = ∂uγ (u, v) ∧ ∂vγ (u, v)

‖∂uγ (u, v) ∧ ∂vγ (u, v)‖ ,

where ∂uγ (u, v) = ∂γ
∂u (u, v). Thenormal bundle of S has two

connected component, N 1
S and N 2

S with parameterization

Γ (u, v) =
(

γ (u, v)

n(u, v)

)
for N 1

S ,

Γ̃ (u, v) =
(

γ (u, v)

−n(u, v)

)
for N 2

S .

Using these parameterizations, we compute N (S)(ω)

N (S)(ω) =
∫

U

〈
ω
(
γ, n
)∣∣∂uΓ ∧ ∂vΓ

〉
dudv

+
∫

U

〈
ω
(
γ,−n
)∣∣∣∂uΓ̃ ∧ ∂vΓ̃

〉
dudv

(2)

where we omit the dependence of γ, n and Γ in u, v. We can
suppose that γ is a parameterization such that (∂uγ, ∂vγ ) is
an orthogonal frame of the tangent space and such that ∂uγ

is the direction of first principal curvature κ1, and ∂vγ is the
direction of second principal curvature κ2, so that:

∂uΓ ∧ ∂vΓ =
(

∂uγ

κ1∂uγ

)
∧
(

∂vγ

κ2∂vγ

)

= det
(
∂uγ, ∂vγ

)

×
[(

b1
0

)
+
(

0
κ1b1

)]
∧
[(

b2
0

)
+
(

0
κ2b2

)]

with (b1 = ∂uγ
‖∂uγ ‖ , b2 = ∂vγ

‖∂vγ ‖ ) an orthonormal frame of
principal directions. With the previous expression, we see
that:

∂uΓ ∧ ∂vΓ = det
(
∂uγ, ∂vγ

)

×
(
ε1 ∧ ε2+κ1ε̃1 ∧ ε2+κ2ε1 ∧ ε̃2+κ1κ2ε̃1 ∧ ε̃2

)

where the εi =
(
bi
0

)
and ε̃ j =

(
0
b j

)
. This last expression is

interesting because it specifies how the tangent space of the
normal bundle (represented via ∂uΓ ∧ ∂vΓ and ∂uΓ̃ ∧ ∂vΓ̃ )
contains the different curvature information. Now, we define
the following subspaces of Λ2(R3 × R

3):

F0 = Span
{(0

α

)
∧
(
0
β

)
, α, β ∈ R

3
}

F1 = Span
{(

α

0

)
∧
(
0
β

)
, α, β ∈ R

3
}

F2 = Span
{(

α

0

)
∧
(

β

0

)
, α, β ∈ R

3
}

and Wi the spaces of differential forms with value in F∗
i .

Note 2 – The subspaces Fi are orthogonal with respect to
the canonical scalar product on Λ2(R3 × R

3).
– With the previous notation, ε1∧ε2 ∈ W2, ε̃1∧ε2, ε1∧ε̃2 ∈

W1, ε̃1 ∧ ε̃2 ∈ W0.

With the expression of ∂uΓ ∧∂vΓ , and with 2, one can show
that

Area(S) = 1

2
sup {N (S)(ω) | ω ∈ W2, ‖ω‖∞ ≤ 1} ,

∫

U

|κ1| + |κ2|
2

= 1

2
sup {N (S)(ω) | ω ∈ W1, ‖ω‖∞ ≤ 1} ,

∫

U
|κ1κ2| = 1

2
sup {N (S)(ω) | ω ∈ W0, ‖ω‖∞ ≤ 1} .

This makes clear that the normal cycle contains all the
(unsigned) curvature information.

2.2.1 Description of the Unit Normal Bundle of a Triangle

Let T be a solid triangle of R3 with vertices x1, x2, x3 and
edges: f1 = x2 − x1, f2 = x3 − x2, f3 = x1 − x3. The
normal vectors of the face are: nT = f1× f2

| f1× f2| and −nT .
Note that the description of the normal cycle of a

2-dimensional polyhedral has been studied in [15]. The
description of the normal bundle of a triangle is quite straight-
forward. As illustrated in Fig. 2, it can be decomposed into
a planar part (associated with the unit normal vectors at the
relative interior of T ), composed of two triangles (in cyan),
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Fig. 2 Illustration of the decomposition of the normal bundle of a dark
blue triangle into a planar (in cyan), a cylindrical (in red) and a spherical
(in green) parts. Note that the actual normal bundle lives inR3 ×S

2 and
not in R3 (Color figure online)

a cylindrical part (associated with the generalized unit nor-
mal vectors at the edges), composed of three “half” cylinders
located at the edges (in red), and a spherical part (associated
with the generalized unit normal vectors at the vertices), com-
posed of three portions of sphere located at the vertices (in
green).

This description of the unit normal bundle can be summed
up as follows. Let us define

N
pln
T := T × {−nT , nT },

N
cyl
T := ∪3

i=1[xi , xi+1] × S⊥+
fi , fi×nT

,

N
sph
T := ∪3

i=1{xi } × S+
fi−1,− fi+1

.

N
pln
T ,N

cyl
T , andN sph

T stand for, respectively, for the pla-
nar, cylindrical and spherical part of the unit normal bundle.
Here, for any non zero vectors α, β ∈ R

3, we denote the
semicircle S⊥+

α,β := (S2 ∩ α⊥) ∩ {u| 〈u, β〉 ≥ 0}, and the

portion of sphere S+
α,β := {u ∈ S

2, 〈u, α〉 ≥ 0, 〈u, β〉 ≥ 0
}
.

Note that fi and nT depend on an orientation of T , but this
is not the case for fi × nT which is always oriented outward

from the triangle. We define the associated currents:

N (T )pln=[N pln
T ], N (T )cyl=[N cyl

T ], N (T )sph = [N sph
T ].

We have straightforwardly

N (T ) = N (T )pln + N (T )cyl + N (T )sph

because the setsN pln
T ,N cyl

T andN sph
T intersect only along

1-dimensional subsets and their union equals NT .
Notice that as previously said, every part of the triangle

appears in the unit normal bundle: for a triangle, the edges are
associated with half cylinders and the vertices with portions
of spheres. Starting from this description, we will see how to
consider the normal cycle of a polyhedral mesh.

2.2.2 Decomposition of the Normal Cycle for Triangulation
Meshes

The theory of normal cycles can be extended to a class of sets
containing unions of sets with positive reach, as developed
in [40,46,51]. We briefly introduce this extension here, refer-
ring to these works for all details. The UPR class is defined
as the class of sets X which can be written as a locally finite
union of sets Xi , i ∈ N, such that for any finite subset of
indices I ⊂ N, ∩i∈I Xi is of positive reach. In particular sets
of positive reach belong of course to this class, and it contains
also all finite unions of non-empty closed convex sets. The
normal cycle N (X) associated with a set X ∈ UPR can be
defined in a recursive way so that the following fundamental
additive property is satisfied:

Definition 5 (Additive property) Assume that sets X , Y , X ∩
Y are with positive reach. Then, we define

N (X ∪ Y ) := N (X) + N (Y ) − N (X ∩ Y ) (3)

In the case where X ∪Y is with positive reach, this definition
is coherent: the left-hand side and the right-hand side in the
definition are equal. In the case of a finite union of sets with
positive reach: X = ∪n

i=1Xi , belonging to UPR , it is easy to
see that any combination of unions and intersections of the
Xi also belongs to UPR . Hence, the additive formula allows
to write a recursive expression for the normal cycle of X ,
which can serve as a definition for normal cycle in this case:
for 1 ≤ k ≤ n, one has

N (X1 ∪ · · · ∪ Xk) = N (X1 ∪ · · · ∪ Xk−1) + N (Xk)

− N ((X1 ∪ · · · ∪ Xk−1) ∩ Xk)

Since this formula is not ready to use, we will rather
explicit a decomposition of the unit normal bundle such
that the additive property is straightforward. This work has
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Fig. 3 Decomposition of the normal bundle of a union of segments. In
green, the spherical part (of a single point and of an extremity) and in
red the cylindrical part. Note that this representation is only illustrative,
as the true normal bundle belongs to the space R

2 × S
1 in this case

(Color figure online)

already been done for discrete curves in [43]. We recall it
briefly here for convenience, starting with union of segments
and considering union of triangles after.

If we start with a single segment, C = [a, b], we define
the normal cycle of its relative interior, the “open segment”
C̃ := [a, b]\{a, b} as

N (C̃) = N (C) − N (∂C) = N (C) − N ({a}) − N ({b})

where N ({a}) = {a} × S
2, N ({b}) = {b} × S

2.
Now, letC1∪· · ·∪Cn be a union of n segments inRd . We

can consider without loss of generality that two segments Ci

and C j for i �= j either do not intersect or intersect at one of
their end points. Using the additive property eq. (3), it can be
easily seen that the normal cycle of a union of segments can
be obtained by summing the normal cycles associated with
open segments and vertices. More precisely, if we denote
{v1, . . . , vN } the vertices of ∪n

i=1Ci , our decomposition of
the normal bundle satisfies:

N (C1 ∪ · · · ∪ Cn) =
n∑

i=1

N (C̃i ) +
N∑

j=1

N ({vi }) (4)

Even though the additive property is now straightforward,
we will go a bit further in this decomposition, as it will prove
to be more efficient with the kernel metric. We can decom-
pose (4) into cylindrical and spherical parts as follows:

N (C1 ∪ · · · ∪ Cn) =
(

n∑

i=1

N (Ci )
cyl

)

+
⎛

⎝
n∑

i=1

N (C̃i )
sph +

N∑

j=1

N ({vi })
⎞

⎠ (5)

This decomposition is sketched in Fig. 3.

A slightly more complex decomposition is necessary for
a union of triangles in R

3. We apply the same process as
for the union of segments. Let T be a triangle of R3 with
vertices x1, x2, x3 and edges: f1 = x2 − x1, f2 = x3 − x2,
f3 = x1− x3. We denote by ei the geometrical edges (i.e. the
segments [x1, x2], etc.) of the triangle. The normal vectors
of the face are: nT = f1× f2

| f1× f2| and −nT . First, we define the
normal cycle of the relative interior of T , the “open triangle”
T̃ := T \∂T where ∂T := (e1 ∪ e2 ∪ e3):

N (T̃ ) := N (T ) − N (∂T ).

∂T is a union of the edges (ei )1≤i≤3, and the description of
its normal bundle has been done right above:

N (∂T ) =
3∑

i=1

N (ẽi ) +
3∑

i=1

N ({xi }).

Thus

N (T̃ ) = N (T ) −
3∑

i=1

N (ẽi ) −
3∑

i=1

N ({xi })

Since we know an explicit description of N (T ), N (ẽi ) and
N ({xi }), we can express N (T̃ ) as a sum of a spherical part,
cylindrical part and planar part:

N (T̃ ) = N (T̃ )pln + N (T̃ )cyl + N (T̃ )sph,

with

N
pln
T̃

:= N
pln
T = T × {±nT },

N
cyl
T̃

:= ∪3
i=1ei × S⊥+

fi ,− fi×nT
,

N
sph
T̃

:= ∪3
i=1{xi } × S+

fi−1,− fi+1
,

where S+
α,β = {u ∈ S

2 | 〈u, α〉 ≥ 0 , 〈u, β〉 ≤ 0}, and

N (T̃ )pln := [N pl

T̃
] = [T × {±nT }],

N (T̃ )cyl := −
3∑

i=1

[
ei × S⊥+

fi ,− fi×nT

]
,

N (T̃ )sph :=
3∑

i=1

[{xi } × S+
− fi+1, fi

]
,

In Fig. 4, one can find an illustration of the normal bundle of
an open triangle.

After the introduction of N (T̃ ), we can proceed as for a
union of segments. Suppose thatT = ∪nT

i=1Ti is a triangula-
tion where we require that the intersection of two triangles is
either empty, or a single edge or a single vertex. We denote
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Fig. 4 “Normal bundle” of an open triangle T̃ in dark blue. The normal
bundle above the interior of the triangle,N pln

T̃
, is two triangles in cyan.

The normal bundle above the edges, N cyl
T̃

, is three half cylinders in

red. The normal bundle over the vertices, N sph
T̃

, is portions of sphere
in green (Color figure online)

Fig. 5 Decomposition of the normal bundle for two triangles with a
common edge. In this figure, the two normal bundles of the open trian-
gles appear. Then, we add (only once) the normal bundle of the open
edge (the red cylinder and the two green half spheres). Then, we add
(only once) the normal bundle of the vertices of the edge (the two green
spheres). Note that if the triangulation is reduced to this two triangles,
we should add the normal bundle of the other edges of the triangles
(Color figure online)

(e j )1≤ j≤ne the edges and (vk)1≤k≤nv the vertices of the tri-
angulation. Then, one has:

N (T ) =
nT∑

i=1

N (T̃i ) +
ne∑

j=1

N (ẽ j ) +
nv∑

k=1

N ({vk})

With this decomposition, the additive property is straightfor-
ward. Moreover, one can guess that the different parts of the
unit normal bundle contain different kinds of discrete curva-
ture information: the area form for the planar part, the mean
curvature for the cylindrical part and the Gaussian curvature
for the spherical part. This will be clearer when introducing
kernel metrics.

x

τx

C

y

τy
S

Fig. 6 Representation of the curves C and S with currents

In this section, we have developed the representation of
shapes through normal cycles, in a common setting that
encompasses both the smooth and the discrete case. We are
left to design metric on such representations, so that we have
a distance between shapes that is sensitive to curvature.

3 Kernel Metrics on Normal Cycles

The idea of normal cycles (resp. current) is convenient
because it embeds shapes in a vectorial space: the space
of 2-currents in R

3 × S
2 (resp. the space of 2-current in

R
2). These spaces, defined as dual to spaces of differential

forms, come with a dual norm: if T ∈ Ωm
0 (Rd)′, we define

M(T ) := sup
{
T (ω), ω ∈ Ωm

0 (Rd), ‖ω‖∞ ≤ 1
}
, called the

mass norm in geometric measure theory. It would be tempt-
ing to use this norm as a distance between shapes. However,
it is not interesting for a matching purpose. Indeed, if C and
S are two shapes, non-intersecting, then one can show that
M([S] − [C]) = H m(C) +H m(S) and this independently
of any closeness between the two sets. This happens because
the set of test functions ω is too large and thus discriminates
completely the two shapes.

For our numerical purpose, we need a computable expres-
sion for the dissimilarity between shapes. In the very same
spirit of [26] for currents and [11] for varifolds, we will
use the theory of reproducing kernel Hilbert space (RKHS,
see [4] for the original article) to provide kernel metrics
on normal cycles as dissimilarity measures. This work has
already been presented in [43], and we present here the basis
for self-completeness.

Example 2 We illustrate this with the example of two curves
C and S inR2. Representing these two curves as currents [C]
and [S] (Fig. 6), a kernel metric allows to consider a scalar
product between those curves that takes explicit expression
as integral over the curves:

〈[C], [S]〉W ′ =
∫

C

∫

S
k(x, y)

〈
τx , τy
〉
dH 1(x)dH 1(y).

Now, if we represent the two curves as normal cycles
(Fig. 7), the kernel metric will consider integrals over the
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Fig. 7 Representation of the curves C and S with normal cycle

normal bundle rather than integrals over the curves them-
selves. Precisely, we will construct two scalar kernels kp and
kn where kp takes into account the relative spatial position of
the curves and kn the relative position of the normal vectors
u and v at point x ∈ C and y ∈ S.

〈N (C), N (S)〉W ′ =
∫

NC

∫

NS

kp(x, y)kn(u, v)
〈
τ(x,u), τ(y,v)

〉

dH 1(x, u)dH 1(y, v).

It has been shown in [43] (in R
d and as a consequence

in our framework of surface in R
3) that by choosing scalar

kernels kn and kp such that: ∀x ∈ R
3, kp(x, .) ∈ C0(R

d)

and ∀n ∈ S
2, kn ∈ C (S2), then we generate a RKHS W of

differential forms such that W ↪→ Ω2
0 (R3 × S

2). This will
always be the case in the following. The spaceW is generated
through elementary differential forms:

kp(x, .)kn(n, .)α, (x, n) ∈ R
3 × S

2, α ∈ Λ2(R3 × S
2)∗

By considering the topological dual of these spaces, we
obtain the inclusion: Ω2

0 (R3 × S
2)′ ⊂ W ′. We recall that

the normal cycle N (S) of a surface S ⊂ R
3 is an element

of Ω2
0 (R3 × S

2)′. The inclusion Ω2
0 (R3 × S

2)′ ⊂ W ′ allows
to have an explicit representation of N (S) in W ′ through the
kernels kp and kn .

Note 3 The question whether the dual inclusion Ω2
0 (R3 ×

S
2)′ ⊂ W ′ is an injection is called the universality prop-

erty. It can be shown that it is equivalent to W being dense
in Ω2

0 (R3 × S
2) [6]. We have already shown that if kn is a

Sobolev kernel, then we have indeed Ω2
0 (R3 × S

2)′ ↪→ W ′
[43]. However, this will not be the case with the normal ker-
nels kn that we will chose in this article.

InW ′, the scalar product between two normal cycles N (S)

and N (C) associated with two surfaces S and C is explicit:

Proposition 1 [43] With such spatial scalar kernel kp and
normal scalar kernel kn, we generate a RKHS of differen-
tial forms W ↪→ Ω2

0 (R3 × S
2). In W ′, the scalar product

between the normal cycles N (C) and N (S) associated with
two surfaces (discrete or smooth) C and S is:

〈N (C), N (S)〉W ′ =
∫

NC

∫

NS

kp(x, y)kn(u, v)
〈
τ(x,u), τ(y,v)

〉

dH 2(x, u)dH 2(y, v).

(6)

The unit normal bundlesNC andNS have been described
for smooth surfaces and triangulations in the previous sec-
tion. Our aim in the following is to specify some kernels kn
and kp that allow for a computable scalar product between
two triangulations. The main limitation for the choice of
the kernels will be our ability to compute explicitly the
scalar product, and to do so, we will chose two simple
normal kernels: kn(u, v) = 1 and kn(u, v) = 〈u, v〉. We
will see that even though these kernels may seem coarse
at first, we are able to retrieve curvature-related informa-
tion. For the spatial kernel kp, we will use a Gaussian kernel

kp(x, y) = exp

(
−|x−y|2

σ 2
W

)
.

4 Expression of the Kernel Metric for
Discrete Surfaces with Constant and Linear
Normal Kernel

Note 4 We derive expression of the kernel metrics on normal
cycles with the linear normal kernel and the constant normal
kernel kn . However, for the moment and for the linear normal
kernel we are limited to the implementation phase which is
more delicate than for the constant kernel. This is why we
only present experiments with the constant normal kernel in
this article. It is, however, interesting to see that the normal
linear kernel gives Gaussian curvature information as it will
be seen in Proposition 4

In this section, we derive the expression of the kernel met-
ric for discrete surfaces inR3,with constant and linear normal
kernels. For this, we will use the decomposition of the unit
normal bundle that has been presented in Sect. 2.2. The com-
putation of the scalar product between two triangulations
[Eq. (6)] involves integration over the planar part (in cyan in
Fig. 5), the cylindrical part (in red) and the spherical part (in
green). After introducing the notations in 4.1, we will detail
the computation and the approximation of Eq. (6) for each
part of the normal bundle. One can find the scalar product
with the constant and linear normal kernel kn in 4.2 and 4.3.
In Sect. 6.2, we present an implementation of such metrics
in PyTorch, using automatic differentiation libraries in order
to compute the gradient of the metric without implementing
it.
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4.1 Notations for Triangulated Surfaces and General
Remarks

Let us first introduce the notations that we will use in the
following.

Let T = ∪N
i=1Ti and T ′ = ∪M

i=1T
′
i be two triangu-

lated meshes. We denote x1, . . . , xnv (resp. y1, . . . , ymv )
the vertices of T (resp. of T ′). Given a triangle Ti (resp.
T ′
j ), v1i , v

2
i , v

3
i are its three vertices and bi its barycentre:

bi = 1
3 (v

1
i +v2i +v3i ) (resp. b

′
j ). ( fl)1≤l≤ne (resp (gl)1≤l≤me )

are the edges ofT (resp.T ′). ±nTi are the unit normal vec-
tors of the triangle Ti . Moreover:

– x f 1i
and x f 2i

are the two vertices of fi : fi = x f 2i
− x f 1i

.
– ci (resp. d j ) is the middle of the edge fi (resp. g j ).
– nT , fi is the normal vector of the triangle T such that
nT , fi × fi is oriented inward for the triangle T .

We recall that with the kernel metric, the planar, cylin-
drical and spherical parts are orthogonal to one another [43,
Prop. 36].

Proposition 2 [43, prop. 36] For any two triangulations
T and T ′, the planar part N (T )pln, the cylindrical part
N (T )cyl and the spherical part N (T )sph are orthogonal
with respect to the kernel metric:

〈
N (T )pln, N (T ′)cyl

〉

W ′ =
〈
N (T )cyl, N (T ′)sph

〉

W ′

=
〈
N (T )sph, N (T ′)pln

〉

W ′ = 0

The calculation of the expression of (6) in this case is sim-
plified, and we see here how convenient the decomposition
introduced in Sect. 2.2 is: we only need to compute scalar
products between spherical parts, cylindrical parts and planar
parts. This will be done below.

We start with
〈
N (T )pln, N (T ′)pln

〉
W ′ . We would like to

compute

〈
N (T )pln, N (T ′)pln

〉

W ′ =
∫

N pln
T

∫

N pln
T ′

kp(x, y)kn(u, v)

× 〈τ(x,u), τ(y,v)

〉
dH 2(x, u)

dH 2(y, v)

We have seen in Sect. 2.2 and illustrated in Fig. 5 that

N (T )pln =
[
N

pln
T

]
,

with

N
pln
T =

N⊔

i=1

Ti × {±nTi
}
.

N
pln
T corresponds to the cyan triangles in Fig. 5. Since the

planar parts are disjoint, we can restrict ourselves to the com-
putation of the scalar product for the planar part associated
with a single triangle T ∈ T and T ′ ∈ T ′.

For a point (x, u) ∈ N
pln
T , we denote τ(x,u) the 2-tangent

vector of N pln
T . We recall that this is a 2-vector associated

with a positively oriented, orthonormal basis of T(x,u)N
pln
T .

One can show that

τ(x,u) =
(
e1(x, u)

0

)
∧
(
e2(x, u)

0

)
,

where (e1(x, u), e2(x, u), u) is a positively orientedorthonor-
mal basis of R3. Moreover, if τ(y,v) is a 2-tangent vector of

N
pln
T at point (y, v), then we have

〈
τ(x,u), τ(y,v)

〉 = 〈u, v〉.
Combining all these quantities, we have:

〈
N (T )pln, N (T ′)pln

〉

W ′ =
∫

T

∫

T ′
kp(x, y)kn(±nT ,±nT ′)

× 〈±nT ,±nT ′ 〉 dH 2(x)dH 2(y).

In order to have a fast implementation, we approximate
the integrals over T and T ′ with a single evaluation of the
spatial kernel at the barycentres of the triangles cT and c′

T ′ :

〈
N (T )pln, N (T ′)pln

〉

W ′

� |T ||T ′|kp(cT , c′
T ′)kn(±nT ,±nT ′) 〈±nT ,±nT ′ 〉 .

(7)

where |T | = Area(T). For the whole triangulation:

〈
N (T )pln, N (T ′)pln

〉

W ′

�
N∑

i=1

M∑

j=1

|Ti ||T ′
j |kp(ci , c′

j )kn(±nTi , nT ′
j
)
〈
±nTi ,±nT ′

j

〉
.

Note 5 If we choose kn(u, v) = 〈u, v〉, we obtain:
〈
N (T )pln, N (T ′)pln

〉

W ′

� 4
N∑

i=1

M∑

j=1

|Ti ||T ′
j |kp(ci , c′

j )
〈
nTi , nT ′

j

〉2
.

which is exactly the kernel metric on varifolds for the linear
kernel on the Grassmanian [11]. We see here that with the
planar part, we retrieve the metric on varifolds. This shows
that the metric on normal cycles contains more information
about the shape that the one on varifolds.

The same work can be done for the cylindrical and the
spherical part.

We consider two cylinders (or half cylinders)Ci = fi ×Si
and C ′

j = g j × S′
j , where Si (resp. S′

j ) is a circle or a half

123



Journal of Mathematical Imaging and Vision (2019) 61:1069–1095 1079

circle, in a plane orthogonal to fi (resp. g j ). Ci represents
a generic elementary of the cylindrical part of the unit nor-
mal bundle for a triangulation, as it is illustrated in Fig. 5.
Thus, [Ci ], the current associatedwithCi represents a typical
contribution of the cylindrical part in the normal cycle.

For a point (x, u) ∈ N
cyl
T , one can show [16,43] that:

τ(x,u) =
(
e1(x, u)

0

)
∧
(

0
e2(x, u)

)
,

where (e1(x, u), e2(x, u), u) is a positively orientedorthonor-
mal basis of R3. We then obtain:

〈
[Ci ], [C ′

j ]
〉

W ′

=
∫

fi

∫

g j

kp(x, y)
〈
fi/| fi |, g j/|g j |

〉∫

Si

∫

S′
j

kn(u, v) 〈u, v〉

× dH 2(x, u)dH 2(y, v)

and with a similar approximation as for the planar part, we
end up with:

〈
[Ci ], [C ′

j ]
〉

W ′ � kp(ci , d j )
〈
fi , g j
〉

∫

Si

∫

S′
j

kn(u, v) 〈u, v〉 dH 1(u)dH 1(v)

(8)

One should notice that we do not approximate the inte-
gration over the normal part (i.e. integrations over Si and
S′
j ).

For the spherical part, for a point (x, u) ∈ N
sph
T , one can

show [16,43] that:

τ(x,u) =
(

0
e1(x, u)

)
∧
(

0
e2(x, u)

)
,

where (e1(x, u), e2(x, u), u) is a positively orientedorthonor-
mal basis of R3

We compute explicitly the spherical scalar product: we
end up with

〈[{x} × S1], [{y} × S2]〉
= kp(x, y) ×

∫

S1

∫

S2
kn(u, v) 〈u, v〉 dH 2(u)dH 2(v)

(9)

where x and y are the vertices at stake and S1 and S2 are
portions of sphere (see Fig. 5, in green).

In the next sections, we will specify the different scalar
product with the constant (kn(u, v) = 1) or the linear normal
kernel (kn(u, v) = 〈u, v〉).

4.2 Discrete Scalar Product with Constant Normal
Kernel

In this subsection, we express the discrete version of the
scalar product eq. (6), with the constant normal kernel,

kn(u, v) = 1.

With such kernel, it is easy to show that the planar scalar
product vanishes, aswell as the spherical scalar product.Only
the cylindrical part and the boundary term remain:

Proposition 3 Let T and T ′ be two triangulated meshes.
The approximated scalar product between the associated
normal cycles with spatial kernel kp and constant normal
kernel kn(u, v) = 1 is

〈
N (T ), N (T ′)

〉
W ′ = π2

4

ne∑

i=1

me∑

j=1

kp(ci , d j )
〈
fi , g j
〉

×
〈
∑

{T | fi edge of T }
nT , fi ,

∑

{T ′|g j edge of T ′}
nT ′,g j

〉

+ π2

4

∑

xi vertex
of ∂T

∑

y j vertex
of ∂T ′

kp(xi , y j )
〈
Ai , Bj

〉

(10)

where Ai =∑k f ik /| f ik | is the sum of the normalized edges
of the border, with xi as vertex, and oriented outward from
xi , and nTi , fi is the normal vector of the triangle Ti such that
nTi , fi × fi is oriented inward for the triangle T .

Proof See “Appendix”. ��
This can be rewritten:

〈
N (T ), N (T ′)

〉
W ′ = π2

4

ne∑

i=1

me∑

j=1

kp(ci , d j )
〈
fi , g j
〉

×
〈
∑

{T | fi edge of T }
nT , fi ,

∑

{T ′|g j edge of T ′}
nT ′,g j

〉

+ 〈N (∂T ), N (∂T ′)
〉
W ′

(11)

The expression
〈
N (∂T ), N (∂T ′)

〉
W ′ is exactly the scalar

product of the curves ∂T and ∂T ′ that has been computed
in [43]. Notice that the planar part and the spherical part are
not involved in this scalar product (except for the spherical
part of the border).

Some remarks: first, we recall that the previous expres-
sion does not necessitate a coherent orientation for the mesh.
Second, even with a constant kernel kn for the normal part,
the metric is sensitive to curvature. Indeed, for an edge f , the
cylindrical part of the scalar product involves scalar products
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between normal vectors of the adjacent triangles which are
required quantities to compute the discrete mean curvature.
Another interesting feature to notice is that the scalar product
involves a specific term for the boundary which will enforce
thematching of the boundaries of the shapes. The fact that the
boundary has a special behaviour for the normal cycle metric
is not surprising. Indeed, a normal cycle encodes generalized
curvature information of the shape. Hence, the boundary cor-
responds to a singularity of the curvature and has a specific
behaviour in the kernel metric. We will see that this feature
is of interest for a matching purpose.

In terms of computational complexity, we see in (10) that
the model of normal cycles on surfaces is more sophisticated
than varifolds (see Sect. 4.4 for a recall on varifolds), even
with a constant normal kernel. The scalar product involves
a double loop on the edges of the triangulations, as well
as for each edge, the computation of the sum of the normal
vector of the adjacent triangles. However, it is the same order
of complexity as varifolds for the computation of the scalar
product, i.e. O(n2e) where ne is the number of edges which
is often the same order as the number of triangles.

4.3 Discrete Scalar Product with Linear Normal
Kernel

Now,we focus on the linear normal kernel, kn(u, v) = 〈u, v〉.

Proposition 4 Suppose that T and T ′ are two triangulated
meshes. The scalar product between the associated nor-
mal cycles with spatial kernel kp and linear normal kernel
kn(u, v) = 〈u, v〉 is

〈
N (T ), N (T ′)

〉
W ′ = 4

N∑

i=1

M∑

j=1

kp(bi , b
′
j )|Ti ||T ′

j |
〈
nTi , nT ′

j

〉2

+ 4

3

Nv∑

k=1

Mv∑

l=1

kp(xk, yl)GT (xk)GT ′(yl)

+ second-order spherical terms

where

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

GT (xk) =
[
π(2 − mxk + Nxk ) −

Nxk∑

i=1

ϕi,xk

]

GT ′(yl) =
[
π(2 − myl + Nyl ) −

Myk∑

j=1

ϕ j,yl

]

where Nxk is the number of triangles with vertex xk , mxk is
the number of edges with vertex xk and ϕi,xk is the angle at
vertex xk of the triangle Ti .

Proof See “Appendix”; the second-order spherical terms are
also explained. ��

Now, suppose for sake of simplicity that the two trian-
gulated meshes have no border and no branching edge or
vertex. Then, it is easy to see that for every vertex x of the
triangulations Nx = mx , and then, GT (x) is the discrete
Gaussian curvature of the triangulation T at vertex x . The
scalar product is then a classical varifold scalar product, with
an additional measure term, located at the vertices, and with
intensity equal to the discrete Gaussian curvature.

We remind that we put this linear term to be complete, but
that for the moment we do not present any results with such a
metric. There is indeed not yet a satisfactory implementation.

4.4 Comparison with Kernel Metrics onVarifolds

This subsection is for comparison purpose. We briefly
express the discrete metric on varifolds. For more details,
one can see [30].

Rigorously speaking, a 2-varifold in R
3 is a Borel finite

measure onR3×G2(R
3)whereG2(R

3) is the Grassmanian:
the space of all unoriented planes ofR3.G2(R

3) can bemade
in correspondence with R

3 by associating to a plane one of
its normal vectors.

Now, considering (x, T ) ∈ R
3 × G2(R

3), we define the
Dirac varifold δ(x,T ) which is simply the Dirac measure
located at (x, T ).

We can define a scalar product between two suchmeasures
using two scalars kernel kp for the spatial part (R3), and kt
for the Grassmanian part (G2(R

3)):

〈
δ(x,T ), δ(y,P)

〉 = kp(x, y)kt (T , P).

Associating T and P with a unit normal vector u and v,
and considering kt (T , P) = 〈u, v〉2 which defines a proper
reproducing kernel on G2(R

3), then we have:

〈
δ(x,T ), δ(y,P)

〉 = kp(x, y) 〈u, v〉2 .

Now if we consider a triangulations T , we can approxi-
mateT in the space of varifolds with Dirac varifolds located
at the barycentre of the triangles, and with unit normal vec-
tors as a unit normal vector of the triangle, and with an area
information of the triangles. We denote μT this approxima-
tion in the space of varifolds. μT =∑N

i=1 Area(Ti )δ(bi ,nTi )
.

Then the scalar product between two triangulations writes
immediately:

〈μT , μT ′ 〉 =
N∑

i=1

M∑

j=1

kp(bi , b
′
j )|Ti ||T ′

j |
〈
nTi , nT ′

j

〉2
(12)

123



Journal of Mathematical Imaging and Vision (2019) 61:1069–1095 1081

Comparing this expression with the one obtained with the
linear normal kernel on normal cycles in prop. 4, one can see
that the metric on varifolds contains only planar information
and thus is not sensitive to curvature. Moreover, it formalizes
the fact themodel of normal cycles ismore complex, and even
that the latter encompass the former.

This metric is the one with which we will compare the
results in the experiment.

5 DeformationModel: LDDMM

Previous sections provide a theoretical framework to com-
pute distance between shapes with kernel metrics on normal
cycles. This distance can be used for various applications.
In this article, we propose an application for a registration
purpose: we use this distance as a residual distance between
a deformed shape and a target shape, or in other words, we
use this distance as a data attachment term for an inexact
matching problem.

This data attachment term can be fitted in any kind
of registration framework. In the following, we will con-
sider diffeomorphic deformations that are generated through
flows of regular time-varying vector fields. This is the
large deformation diffeomorphicmetricmapping (LDDMM)
framework that we will briefly recall in the following.

After stating an existence result for this problem,we detail
in 6.1 a practical algorithm to minimize the functional asso-
ciated with the inexact matching problem [see Eq. (13)] with
discrete shapes. The concrete numerical implementation is
detailed in the next section. Several examples of registration
with normal cycles are presented on synthetic and real data
in the following sections.

As explained in [49], in theLDDMMframework, the study
of shape variability is carried by the study of geometrical
transformations from one shape to another. The group of
deformations at stake, GV , is generated through integration
of time-varying vector fields living in a Hilbert space V ,
with V ↪→ C 1

0 (Rd).With this hypothesis, V is a reproducing
kernel Hilbert spacewith kernel KV andGV is endowedwith
a nice Riemannian structure. For example, the Riemannian
distance between the identity and a deformation ϕ ∈ GV

writes:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dGV (Id, ϕ)2 = E(ϕ)

:= inf

{∫ 1

0
‖vt‖2V dt

∣
∣∣∣(vt )0≤t≤1 ∈ L2([0, 1], V )

}

∂ϕt

∂t
= vt ◦ ϕt , ϕ0 = Id, and ϕ1 = ϕ.

This distance between the identity and ϕ can be interpreted
as the energy of the deformation ϕ. Thus, the optimal defor-
mation between two shapes C and S will be the deformation

ϕ with least energy and such that ϕ(C) = S. For practical
purpose, we cannot assume that any two shapes can be regis-
tered with a deformation ϕ ∈ GV . That is why we relax this
hypothesis and say that the optimal deformation is the one
that minimizes the sum of the energy and a discrepancy mea-
sure between the deformed shape and the target, A(ϕ(C), S).
This new registration problem, called inexact matching prob-
lem, is a trade-off between the regularity of the deformation,
quantified by the energy E(ϕ) and the registration accuracy,
quantified by a term A(ϕ(C), S). The aim of this section is
to use kernel metrics on normal cycles for the dissimilarity
measure A. Given two shapes C and S

A(C, S) := ‖N (C) − N (S)‖2W ′ .

where W is a RKHS such that W ↪→ Ωd−1
0 (Rd × S

d−1).
Theminimization problemwith dual Hilbert norm on normal
cycles as data attachment term is then:

min
v∈L2

V

γ

∫ 1

0
‖vt‖2V dt + ∥∥ϕv.N (C) − N (S)

∥∥2
W ′ (13)

where γ is a trade-off parameter and ϕv is the deformation
obtained at time 1 through the flow of (vt )0≤t≤1.

One should notice that we have defined the action ϕ.N (C)

of diffeomorphism on normal cycles for sets C ∈ UPR

in [43]. This includes smooth submanifolds of Rd , but also
polyhedral meshes. This has been studied with more details
in [42]. This general framework will be the one wework with
in the following.

5.1 Existence of a Minimizer

Weremind that for smooth submanifoldC ,wehaveϕ.N (C) =
N (ϕ(C)). For discrete shapes, we refer to [43] for a rigorous
definition of such transport.

We now state the theorem of existence of a minimizer
for (13) that encompasses both the case of smooth shapes
and the one of polyhedral shapes:

Theorem 1 (Existence of a minimizer for (13)) Suppose that
C, S are either smooth or discrete shapes and assume that
one has the embeddings V ↪→ C30(Rd ,Rd), and W ↪→
Ωd−1

1,0 (Rd × Sd−1). Then there exists a minimizer for the
problem (13).

The proof of this theorem relies on the weak continuity
of v ∈ L2

V �→ ‖ϕv.N (C) − N (S)‖2W ′ and is fully proved
in [42,43].

In the following, KV will be, depending on the application,
a Cauchy kernel with width σV :

KV (x, y) = 1

1 + |x−y|2
σ 2
V

,
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a Gaussian kernel with width σV :

KV (x, y) = exp(−‖x − y‖2 /σ 2
V ),

or a sum of Gaussian kernel with decreasing width. W is
generated through the kernels kp and kn as in Sect. 4. So that
we have existence of a minimizer for (13).

5.2 Discrete Framework

Knowing that a minimizer exists is a first step, and we will
focus now on the problem of finding such a minimizer.

In the following, we focus on the discrete problem: we
consider discrete shapes Cd and Sd . The geodesic equation
followed by ϕv

t is simpler, and we will explicit the approxi-
mations made for the data attachment term in order to have
a tractable algorithm for the minimization procedure.

A discrete shape Cd is defined by a set of N points
(xi )1≤i≤N in R

d (the vertices), with a connectivity matrix
describing the connection between the vertices. This applies
for curves in R

3 but also for any polyhedral shape in R
d .

However, we will restrain our problem to curves and sur-
faces in R

d , and we will use the metric on surfaces seen in
Sect. 4. The functional to minimize is then:

J1(v) = γ

∫ 1

0
‖vt‖2V dt + ∥∥ϕv

1 .N (Cd) − N (Sd)
∥
∥2
W ′ (14)

However, ϕv
1 .N (Cd) is too complex to be implemented

numerically. To overcome this difficulty, we approximate the
action of ϕv on Cd . For this purpose, we define Cd,ϕv as the
discrete curve or surface with vertices (ϕv

1 (xi ))1≤i≤N with
the same connectivity matrix as Cd . This means that we con-
sider that ϕv induces a displacement of the vertices only, and
the displaced vertices are linked with straight lines. From
this, we introduce the approximate matching problem, with
the functional J̃ :

J̃ (v) = γ

∫ 1

0
‖vt‖2V dt + ∥∥N (Cd,ϕv ) − N (Sd)

∥
∥2
W ′ (15)

As shown in [26], if we denote by qi (t) = ϕv
t (xi ) the

points trajectories, the energy term in (15) enforces the opti-
mal vector field to be a geodesic path and to write

vt =
N∑

i=1

KV (·, qi (t))pi (t) (16)

where the pi (t) ∈ R
d are auxiliary variables and are called

momentum vectors. Further, it was shown in [35] (and
detailed in an optimal control point of view in [3]) that the
problem can be written in Hamiltonian form: if we denote

Hr the reduced Hamiltonian:

Hr (p(t), q(t)) = 1

2

N∑

i=1

N∑

j=1

p j (t)
T KV (qi (t), q j (t))pi (t)

= 1

2
‖vt‖2V ,

qi and pi must satisfy coupled geodesic equations which
write

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

q̇i,t = ∂Hr

∂ pi
=

n∑

j=1

KV (qi,t , q j,t )p j,t

ṗi,t = −∂Hr

∂qi
= −
( n∑

j=1

d1(KV (qi,t , q j,t )p j,t )

)T
pi,t .

(17)

This Hamiltonian is constant along geodesic path and
thus is a function of the initial momenta p0 and the ini-
tial positions q0. As could be expected, this implies that the
optimal velocity vector field vt in (16) is of constant norm:
‖vt‖2V = cste = Hr (q0, p0). Initial positions being fixed,
we can consider Hr and further ϕv as function of the p0 only
and denote it ϕ p0 . The Hamiltonian formalism reduces the
initial problem of minimization on an infinite dimensional
Hilbert space V (15) to a minimization on (Rd)N :

min
p0∈(Rd )N

2γ Hr (p0, q0) + ∥∥N (Cd,ϕ p0 ) − N (Sd)
∥∥2
W ′ (18)

and where q and p follow the coupled geodesic equa-
tions (17). The second term depends only on the position
of the final vertices: (qi (1))1≤i≤N = (ϕ p0

1 (qi (0))
)
1≤i≤N that

we will denote q(1). The data attachment term is then a func-
tion of q(1): g(q(1)).

min
p0∈(Rd )N

J (p0) := 2γ Hr (p0, q0) + g(q(1)) (19)

with q and p following (17). As said before, g is a measure
of the residual dissimilarity between the deformed shape at
time 1 with vertices q(1) and the target shape Sd .

6 Numerical Implementation

6.1 Registration Algorithm

Functional (19) is explicit using the expressions for the scalar
products of normal cycles appearing in g(q(1)) and that have
been computed in Sect. 4. In order to minimize it depend-
ing on the initial momenta, one classically uses a geodesic
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shooting algorithm [3,35].We explain here briefly the heuris-
tic of this algorithm. In order to compute∇p0 J (p0), we need
to compute ∇p0g(q(1)). However, g(q(1)) depends on p0
through the integration of the geodesic equations [Eq. (17)].
Hopefully, we have explicitly access to ∇q(1)g(q(1)), and
starting with this gradient, we obtain ∇p0g(q(1)) through
backward integration of the linearized geodesic equations
which are recalled in [3], and which involve the Hessian of
the Hamiltonian. Integrating these equations from time 1 to
time 0, we end up with ∇p0g(q(1)).

Algorithm 1 Geodesic shooting with fixed-step gradient
descent.
Input: q0 (initial source shape), δ (step size)
Output: argminp0∈(Rd )n J (p0)
initialization: p0 = 0
while Convergence do

Compute (q(1), p(1)) through forward integration
Compute ∇q(1)g(q(1))
Compute ∇p0g(q(1)) through backward integration
Compute ∇p0 J (p0) = KV (q0, q0)p0 + ∇p0g(q(1))
p0 ← p0 − δ∇p0 J (p0).

end while

In fact, once we can compute∇p0 J (p0), one can plug any
optimization procedure in order to minimize the functional
with respect to p0. We use a quasi-Newton Broyden–
Fletcher–Goldfarb–Shanno algorithm with limited memory
(L-BFGS) [33] rather than the gradient descent with fixed
step presented in Algorithm 1.

The BFGS algorithm is a quasi-Newton method that com-
putes an approximation of the Hessian, which is updated and
improved at each step. With the limited memory implemen-
tation of BFGS, there is no storage of a N × N (where N
is the number of variables) matrix and the memory storage
is linear with respect to N . See [33] for more details. This
method provides a direction of descent, and the step in this
direction is fixed by a Wolfe line search.

For our numerical implementation, the forward integra-
tion scheme is done with a Ralston numerical scheme. This
is a higher-order discrete ode solver than the classical Euler
scheme.

The challenging part of the implementation is the cal-
culation of the gradient, which requires the integration
of linearized backward differential equations involving the
second-order derivatives of the deformation kernel (as briefly
explained above and extensively studied in [3]). In the next
section, wewill see how to take advantage of PyTorch’s auto-
differentiation libraries to automatically evaluate the gradient
∇p0 J (p0), without implementing it, and therefore without
implementing the backward step in Algorithm 1.

6.2 PyTorch and KeOps

Our code for surface registration with normal cycles as data
attachment term is available at https://proussillon.gitlab.io/
en/code/surface-registration-lddmm/projects/.

We provide a Python implementation using the PyTorch
library, together with the KeOps library developed by Ben-
jamin Charlier, Jean Feydy, and Joan Glaunès and freely
available at https://plmlab.math.cnrs.fr/benjamin.charlier/lib
keops.

This allows for a user-friendly implementation which per-
forms automatic differentiation (to compute the gradient of
the metrics). Moreover, the PyTorch + KeOps library auto-
matically transfers the calculus onGPU (graphics processing
unit), with a smart parallelization. All this is briefly detailed
in the following. See [8,9] for more details.

PyTorch is a Python native language, developed by
Facebook for neural networks applications. It handles the
computation on GPU, allowing for a pain free paralleliza-
tion. On top of that, PyTorch performs automatic differ-
entiation. Indeed, with the recent development of neural
network, there has been an increasing necessity to compute
the gradient of loss functions, obtained through elemen-
tary operations, linear or nonlinear, across different layers.
Even though each operation is simple, with an explicit
differential, it may be hard to compute the whole gradi-
ent (i.e. across all the layers). With PyTorch, it is pos-
sible to keep track of the sequence of operations and to
automatically differentiate it through backward propaga-
tion.

Now, if we look closely at our scalar products of the kernel
metrics [e.g. Eq. (10)], the typical expressions that we want
to evaluate and differentiate are of the form γi =∑ j ci j with

ci j = kp(xi , y j )
〈
bi , c j
〉
or ci j = kp(xi , y j )

〈
bi , c j
〉2.

The main limitation inherent with PyTorch is that we
need to store the matrix (ci j )i, j , transfer this matrix to
the GPU and then perform the computations. However,
this matrix is of size N 2 where N is the number of
vertices which may be huge. For surfaces with 100,000
vertices, this may exceed the memory capacity of the
GPU.

In order to solve this problem, Benjamin Charlier, Jean
Feydy and Joan Glaunès developed the KeOps library which
is an interface for a CUDA implementation that computes
and automatically differentiate such expressions on the fly,
without storing the whole matrix on GPU.

The code provided in this article uses with benefits all the
functionality allowed by the coupling PyTorch + CUDA in
terms of automatic differentiation and GPU implementation
thanks to the KeOps Library.
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6.3 Computation Time for the Data Attachment Term
and Its Gradient

We present here indications on the calculation time of the
kernel distance with normal cycles and compare them with
those on varifolds. For this purpose, we provide benchmarks
of calculation time, for mesh size ranging from 101 to 106

points. In Fig. 8 , we present the calculation times for a single
evaluation of the distance and its gradient (with respect to the
vertices) on the normal cycles and on the varifolds according
to the number of points.

In Fig. 9, we present the computational time with respect
to the number of vertices for the evaluation of the total loss
in the LDDMM framework, i.e. Eq. (19), with varifolds or
normal cycles as data attachment term. The time needed here
is higher because on top of the evaluation of the previous
distance, we also need to integrate the geodesic equation and
to do backpropagation to compute the gradient.

Let us nowmake some comments on these results. First of
all, it is important to note that the implementation coupling
auto-differentiation on PyTorch and parallelization on GPU
via KeOps provides a method that is fast and scalable to sur-
faces up to a million points (for the distance evaluation, as
well as for the gradient evaluation). Second, even if the nor-
mal cycle model is more complex, the computation times are
comparable with those of varifolds (from Figs. 8, it can be
said that there is a factor 3 between the two methods). And
the difference in computation time is reduced even further
when this distance is integrated into the LDDMM machin-
ery. Indeed, we observe in Fig. 9 that the calculation times are
almost identical with varifolds or normal cycles. This means
that in this context, the time-consuming part of the calcula-
tion comes more from the forward and backward integration
of geodesic equations than from the evaluation of the data
attachment term and its gradient. This is even if the normal
cycle model is more complex.

Note 6 The integration of the geodesic equations is made
using a Ralston’s method. It is a Runge–Kutta method of
order 2 (an Euler scheme method).

Note 7 These results are obtained with a NVIDIA GeForce
GTX 1080. With a standard graphic card on a laptop (e.g.
a Quadro M1200), the computation time is approximately 8
times higher.

7 Experiments

Let us now move to the experiments of surface matching
using LDDMM and kernel metrics on normal cycles. The
aim of this section is to illustrate the properties of a matching
with normal cycles, as well as some limitations.
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Fig. 8 Time needed to compute the distance between two triangulated
meshes, as well as its gradient (with respect to the vertices) for varifolds
and normal cycles.On the y-axis: time of computation in seconds, on the
x-axis: number of vertices of the meshes. The computation is scalable
to surfaces up to millions of points. Note that the calculation time is
of the same order of magnitude for normal cycles and varifolds. This
benchmark is made with a NVIDIA GeForce GTX 1080
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Fig. 9 Time needed to compute the total loss of the LDDMM frame-
work [Eq. (19)] as well as its gradient (with respect to the initial
momenta) for varifolds and normal cycles as data attachment term.
On the y-axis: time of computation in seconds, on the x-axis: number
of vertices of the meshes. The computation is scalable to surfaces up to
millions of points. Note that the calculation time is of the same order
of magnitude for normal cycles and varifolds. This benchmark is made
with a NVIDIA GeForce GTX 1080

For each type of data, the different synthetic examples aim
to illustrate the curvatures properties and a comparison with
varifolds [11,30] are shownwhen it is relevant. The examples
on real data are a first step to show the advantage of this new
dissimilarity metric for applicative purpose.
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The algorithm is run until convergence with a stopping
criterion on the norm of the successive iterations, with a tol-
erance of 10−6. Our implementation with the use of GPU
allows to perform matching of surfaces with 10,000 points
in a reasonable time, which will be specified for each exper-
imentation.

For all the following matchings, the geometric kernel kp
is a Gaussian kernel of width σW and kn is constant kernel as
in Sect. 4.2. The kernel KV is a sum of 4 Gaussian kernels
of decreasing sizes, in order to capture different features of
the deformation. The trade-off parameter γ is fixed at 0.01
for all the experiments.

7.1 Synthetic Data: Illustration of the Curvature
Properties

7.1.1 Registration of an Ellipsoid to a Duck

Let us start with the simple, yet interesting example of
Fig. 10. We want to perform a matching between an ellipsoid
(the source shape, in blue) and a duck shape (the target, in
orange). The duck shape contains 2000 points and the ellip-
soid 10,000.

The registration is performed with normal cycles and
varifolds. We chose a Gaussian kernel for the spatial ker-
nel and a sum of 4 Gaussian kernels of decreasing size
(σV = 0.2, 0.1, 0.05, 0.025) for the deformation kernel kV .
We recall that for normal cycles, we chose a constant normal
kernel and for varifolds, a linear kernel on the Grassmanian.
One run is performed at size σW = 0.075 for spatial kernel.
For normal cycles, the 1000 iterations were made in 1018s
(1 s/it). For varifolds, the run ended in 890s (0.9 s/it). These
computation times were obtained with a Nvidia GeForce
GTX 1080. The registrations can be found in Fig. 11. As
expected, the matching with normal cycles is more accurate
that the one with varifolds. This appears clearly in the neigh-
bourhood of regions with high curvature as the beak or the
eyes. It is interesting to notice that even the coarse mesh of
the duck appears in the deformed ellipsoid for normal cycles.

For validation purposes, in order to have a measurement
of the closeness between the deformed shape and the target,
and compare the different registrations, we computed the
Hausdorff distance and a root-mean-square (RMS)Hausdorff
distance between two surfaces S and S′, defined as:

d(S, S′) = max

(

sup
x∈S

d(x, S′), sup
y∈S′

d(y, S)

)

,

dRMS(S, S′) =
√

1

H 2(S)

∫

S
d(x, S′)2dH 2(x)

+
√

1

H 2(S′)

∫

S′
d(y, S)2dH 2(y).

(20)

To compute these distances, we used the MeshLab soft-
ware [14]. In practice, these quantities were approximated
by upsampling meshes and evaluating all pairwise distances
between vertices. Note that for an interpretation purpose, we
also renormalized these distances with the typical size of the
data (i.e. the diagonal of the box containing the data). The
reader can find the distances on the figures for each experi-
ment.

Beyond the precision of thematching, wewant to insist on
the stability of the results in relation to the parameters. Unlike
varifolds, where precise parameter adjustment is sometimes
required, the result of matching for normal cycles is less
crucially dependent on the parameters of the spatial kernel
σW , as well as the trade-off parameter γ . As an illustration,
we can look at Figs. 12 and 13 which shows the result of the
final matching on the duck as a function of the size of σW .
It is noteworthy that even at small scale (σW = 0.0375), the
metric on normal cycles still enforces the matching of mean
curvature through the factor

〈
∑

{T | fi edge of T }
nT , fi ,

∑

{T ′|g j edge of T ′}
nT ′,g j

〉

.

This allows to be less concerned about the parameter setting
of σW . Indeed, if we compare the results for σW = 0.0375
for normal cycles and varifolds (bottom right in Figs. 12, 13),
we see that the matching with normal cycles is very accurate.
With varifolds, we cannot retrieve fine details in the eyes and
we obtain artifacts in the chest (see the bottom right Fig. 13).
Note that in these experiments, we increase the varifolds data
term so that it has the same order of magnitude as the data
term with normal cycles.

If we increase γ , that is the importance of regularization,
this would strongly deteriorate the accuracy for varifolds,
whereas it remains fully satisfactory for normal cycles.

A way to avoid such behaviour for varifolds is to use a
coarse to precise scale strategy, by decreasing progressively
σW . The lower sensitivity of themetric on normal cycles with
respect to the parameters allows us to avoid this costly step
in time and adjustment.

7.1.2 Registration of an Ellipsoid to a Hippopotamus

Now let us move to an other example (Fig. 14). We want to
perform a matching between an ellipsoid (source shape, in
blue) and a hippopotamus shape (target, in orange). The hip-
popotamus contains 20,000 points and the ellipsoid 10,000.
Notice that the size of the mesh of the hippopotamus is cur-
vature dependent (coarse near flat regions, precise around
region with high curvature). This feature will be of impor-
tance to compare the matching results.
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Fig. 10 Two views of the matching problem of an ellipsoid to an duck

Fig. 11 Registration of a blue ellipsoid to an orange duck. The left col-
umn represents the matching with normal cycles and the right column
the onewith varifolds. The registrationwith normal cycles ismore accu-
rate as it can be seen with the beak or the eyes. One can even notice that

the coarsemesh of the duck appears in the deformed ellipsoid.Hausdorff
distance with normal cycles: d = 0.015, dRMS = 0.004. Hausdorff dis-
tance with varifolds: d = 0.021, dRMS = 0.005. See Eq. (20) for the
definition of d and dRMS (Color figure online)

The hippopotamus fits in a box of size 52× 26× 16. The
registration was performed with normal cycles and varifolds.
We chose aGaussian kernel for the spatial kernel and a sumof
4Gaussian kernels of decreasing size (σV = 10, 5, 2.5, 1.25)
for the deformation kernel kV . We recall that for normal
cycles, we chose a constant normal kernel and for varifolds,
a linear kernel on the Grassmanian. Three runs were per-
formed, one at size σW = 10, one at size σW = 5 and the
last one at size σW = 2. The first runs can be seen as ini-
tialization procedures in order to avoid local minima. In this
example, these runs are compulsory since the target has fine
details (located in the head), but also coarse features, such as
the legs.

For normal cycles, each run was stopped after 200 itera-
tions, for a total time of 660s (1,1 s/it). The same number

of iterations was used for varifolds, for a total time of
600s (1 s/it). The registrations are depicted in Fig. 15. The
matching with normal cycles is satisfactory considering the
difficulty of the registration.Not all details are retrieved in the
head, but this could be achieved with another run at smaller
scale.

The result obtained with varifolds may seem surprising
at first. If the registration is good near the head of the hip-
popotamus, it is much worse on the body. On this region,
one can observe pinches of the deformed shape, whereas the
target is flat. In order to understand this behaviour, Fig. 16
is illuminating. On this figure, one can observe the superim-
position of the target mesh and the final matching mesh. The
first thing to notice is that for the varifolds (right column), the
deformation tends to concentrate triangles at different loca-
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Fig. 12 Sensitivity to the size of the kernel σW , normal cycles, γ = 0.01. We show here two views of the final matching of the blue ellipsoid to the
orange duck with normal cycles, depending on σW . σW decreases from left to right, respectively, σW = 0.15, 0.075, 0.0375 (Color figure online)

Fig. 13 Sensitivity to the size of the kernel σW , normal cycles, γ =
0.01.We show here two views of the final matching of the blue ellipsoid
to the orange duck with varifolds, depending on σW . σW decreases from

left to right, respectively, σW = 0.15, 0.075, 0.0375. The varifolds data
term is scaled to have the same order of magnitude as the normal cycles
data term (Color figure online)

tions (the pinches). And on the last row, one can observe that
these locations can be made in correspondence with vertices
of the target that are in the middle of big triangles. To explain
this phenomenon, one needs to remember that in the discrete
case, the varifold is approximated as Diracs located in the
couple (barycentre of the triangles× tangent plane of the tri-
angles), withmass equals to the area of the triangle. Thus, one
way to reduce the varifold norm is to concentrate the mass of

the deformed shape at points far from all the barycentres of
the surrounding triangles, i.e. the vertices. This is particularly
true at small scales σW , and this is why we can observe this
behaviour for the varifolds norm. However, the runs at small
scales are necessary in order to fit the details of the head.

For normal cycles, the metric penalizes the difference of
curvatures between the source and the target, and one can
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Fig. 14 Matching problem between an ellipsoid and a hippopotamus shape. Note that the mesh of the target is coarse at flat regions and becomes
more precise around regions with high curvature

Fig. 15 Registration of an ellipsoid (in blue) to a hippopotamus shape
(in orange). The left column represents the matching with normal
cycles and the right column the one with varifolds. The registra-
tion with normal cycles is satisfactory. The one with varifolds is bad

near the flat regions of the target. Hausdorff distance with normal
cycles: d = 0.014, dRMS = 0.0037. Hausdorff distance with varifolds:
d = 0.024, dRMS = 0.0055. See Eq. (20) for the definition of d and
dRMS (Color figure online)

observe a nice fitting of the flat region with a coarse mesh
(Fig. 16, left column).

7.1.3 Registration of Hippocampi

The second example is amatching of twohumanhippocampi,
of typical size 10×20×40. Each shape is around 7000 points.
Three runs at different geometric kernel sizes are performed
(see Fig. 17). We can see the final deformation matches well
the two hippocampus, even the high curved regions of the
shape.

7.1.4 Real Data: Retinas

This data set was provided by B. Charlier, N. Charon and
M.F. Beg is a set of retina layers from different subjects.
Originally, each surface comes with a signal that represents
the thickness of the retina layers at each vertex. In [31], a
statistical analysis of these functional shapes is made using
atlas estimation in the framework of LDDMM and with a
varifolds kernel metric. We refer to this article for the proce-
dure of generation of this data set. In the following, we only
use the geometrical information of the shapes to illustrate the
properties of a matching with normal cycles. The difficulty
of this example is to perform a matching that is convincing
for the interior of the retina, as well as for the boundary. One

should notice that the border has no real physicalmeaning but
is the result of the data acquisition. The hole in the centre of
each retina corresponds to optical nerve. Even though these
boundaries are not the interesting part for a medical appli-
cation, they make the registration harder. We will see that
the matching with normal cycles will incorporate the bound-
aries during the registration, resulting in a much smoother
deformation.

The retina are surfaces of typical size 8 × 8mm. Each
retina is sampled with approximately 5000 points. As
for hippocampi, three runs were performed, with σW =
0.8, 0.4, 0.2, and the deformation kernel KV used was a sum
of 4 Gaussian kernels, σV = 2.4, 1.2, 0.6, 0.3. All the details
of the matching are in Fig. 18. The retinas have a boundary
whichwill be seen as a regionwith singularities for the kernel
metric on normal cycles. This is not the case for the varifolds
metric which makes the matching of the corresponding cor-
ners harder. The matching of the boundaries is better with
normal cycles and provides a much more regular deforma-
tion (see Fig. 18).

In the last example (Fig. 19), the two retinas are the result
of an unsatisfactory segmentation . This leads to artifacts
in each retina: two triangles for the source retina (in blue,
Fig. 19) and only one for the target, in orange. We would like
that during thematching, these artificial features are not taken
into account. However, these are regions of high curvature,
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Fig. 16 View 1. Registration of
an ellipsoid to a hippopotamus
(zoom, with the mesh). The left
column shows the matching
with normal cycles and the right
column the one with varifolds.
The last row is the overlay of the
target and the final registration.
In order to reduce the varifolds
norm between the source and
the target at small scales, the
deformation concentrates small
triangles of the source near
vertices of big triangles for the
target. This is because, with the
discrete varifolds setting, the
mass is concentrated at the
barycentre of the triangles

and as we could expect, the kernel metric on normal cycles
will make a correspondence between those points. As we
can see in the second row of Fig. 19, the two triangles are
crushed together, into one triangle, even though the cost of
the resulting deformation is high. This example shows how
sensitive to noise or artifacts normal cycles are. The datamust
be smooth and well segmented so that the matching works
well.

8 Conclusion and Perspectives

In this paper, we have used the theory of the shapes repre-
sentation with normal cycles to define a distance between
surfaces. Using reproducing kernels, we are able to con-
struct a distance that becomes completely explicit in the
case of triangulated surfaces. In addition, this distance still
contains curvature information that is inherent in the nor-
mal cycle model, even if the selected kernels are simple.
We also proposed an implementation in PyTorch, using both
auto-differentiation libraries, and optimized GPU calcula-
tions, and with a linear memory footprint (with the KeOps
library). Gradient calculations are greatly simplified, despite
the complexity of the model (both for normal cycles and for
the deformation model).

The examples presented show that the use of normal cycles
improves matching results (even when the size of the spatial
kernel is large compared to the features to be matched), at a
cost that is similar compared to varifolds. We can also high-
light the fact that normal cycles take naturally into account
the boundary of the shapes. This implies a good matching
of the boundary for surfaces. This implies also that normal
cycles are sensitive to topological changes, as opposed to

currents or varifolds. This may be a drawback if we have
uncertainty on the data (for example, a poor segmentation
that creates artificial holes). However, it also allows the use
of coarse meshes on regions of low curvature without affect-
ing the registration (see example of Fig. 16).

An obvious future work is to develop the computation of
the metric in the case of discrete surfaces for non-constant
kn , at least for the linear normal kernel. This is of interest
since we have already seen that the kernel metric with linear
kernel encodes Gaussian curvature information of the sur-
faces. A normal kernel kn(u, v) = 1 + 〈u, v〉 would thus
contain all the curvatures information. However, the calcu-
lus remains intricate and this may lead to another approach:
to find interesting compact approximation of the spherical
part of a normal cycle. Indeed, in our discretization strat-
egy, replacing the spherical part of the normal cycle by Dirac
masses aswe do for the spatial part would not be directly pos-
sible, as it would not guarantee convergence of the discrete
model to a continuous versionwhen the size of themesh goes
to zero. In place of that, we decided not to approximate this
part, which leads to heavy computations. Finding efficient
approximations of integrations over the spherical part of the
normal bundle would be of great interest.

We believe also that kernel metrics on normal cycles can
prove useful outside the LDDMM framework, in the spirit
of [12,13,15,16], where the authors study the curvature infor-
mation of a smooth surface that one could retrieve from
a surface approximation using normal cycles. The estima-
tion of the mean curvature of a surface from a points cloud
approximation has also been done using the first variation
of varifolds in [5]. The advantage of our setting is that it
provides a Hilbert space W ′ where all the representation of
shapes lives, and it might be possible to obtain convergence
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t = 0 t = 1

t = 0

(a) profile, (b) profile,

(c) face, (d) face, t = 1

Fig. 17 Two views (profile and face) at times t = 0 and t = 1 of the
matching of two hippocampi with normal cycles. The target shape is in
orange and the source in blue. Each shape has 6600 points. Three runs
at different geometric kernel sizes are performed (σW = 25, 10, 5),
and the kernel of deformation is a sum of Gaussian kernels with
σV = 10, 5, 2.5, 1.25. Each run ended, respectively, at 72, 100 and
100 iterations for a total time of 565s (2 s/it) (Color figure online)

rate of the approximation on W ′ and retrieve information
on the curvatures convergence. Of course, these are only
guess for now, and we need to work further on this direc-
tion.

The theoretical study of the link between the kernels
defined on the normal cycles and the information of cur-
vatures that we retrieve is also an aspect that we would like
to study. Going further in this direction, it seems that we can
formalize a precise link between normal cycles and varifolds.
It is obvious from the expression of prop. 4 that with the pro-
jection on the planar space of the discrete scalar product we
retrieve the scalar product on varifolds. We would like to
investigate this projection independently of the metric.

A Discrete Scalar Product with the Constant
Kernel

A.1 Discrete Surfaces

For discrete surfaces, and with the constant normal kernel,
it can be easily seen that the planar part is not involved.
The scalar product of normal cycles above vertices (i.e. the
spherical scalar product) involves terms as:

kp(x, y)
∫

S1

∫

S2
kn(u, v)

〈
τNC (x, u), τNC (y, v)

〉
dH 2(u)dH 2(v)

= kp(x, y)

〈∫

S1
τNC (x, u)
︸ ︷︷ ︸

=u for the spherical part

dH 2(u)

∫

S2
τNC (y, v)dH 2(v)

〉

= kp(x, y)

〈∫

S1
udH 2(u),

∫

S2
vdH 2(v)

〉

If we focus on portion of sphere, one can show that if

S1 =
⎧
⎨

⎩

⎛

⎝
sθucϕu

sθusϕu

cθu

⎞

⎠
∣∣∣∣θu ∈ [0, π ], ϕu ∈ [0, ϕ0]

⎫
⎬

⎭

is a portion of sphere, then
∫
S1
udH 2(u) = π sin

(
ϕ0/2
)

⎛

⎝
cos(ϕ0/2)
sin(ϕ0/2)

0

⎞

⎠. Note that we retrieve the half sphere with

ϕ0 = π and the total sphere with ϕ0 = 2π . Now, taking into
account the orientation, we have to compute for the spherical
part:

〈
x ×
(
[s.] −

∑
[h.s] +

∑
[p.s]
)
y

×
(
[s.] −

∑
[h.s] +

∑
[p.s]
)〉

W ′

where s stands for sphere, h.s for half sphere and p.s for por-
tion of spheres. In fact, one can show that for a given vertex,
summing the contributions of the sphere, the half spheres
(associated with the edges), and the portion of spheres (asso-
ciated with the triangles), then the spherical part vanishes
for a vertex that is not in the border. Moreover, we have the
following equality:

〈
N (C)sph, N (S)sph

〉

W ′ = 〈N (∂C), N (∂S)〉W ′

and thus, the spherical part is exactly the scalar product of
the curves associated with the border, scalar product that has
been computed in [43].
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Fig. 18 Each column represents thematching of two retinaswith kernel
metric on normal cycles (left) and varifolds (right). The target shape is in
orange and the source shape is in blue. Each shape has 5000 points. For
the varifolds metric, the geometric kernel is Gaussian. The kernel on the
Grassmanian is chosen linear so that no additional parameter is involved.
The same parameters are used for each data attachment term. Three runs

at different geometric kernel sizes are performed (σW = 0.8, 0.4, 0.2).
KV is a sum of Gaussian kernels with σV = 2.4, 1.2, 0.6, 0.3. For nor-
mal cycles, the registration algorithm took 1000s (0.5 s/it). Hausdorff
distance with normal cycles: d = 0.1997, dRMS = 0.0017. Hausdorff
distance with varifolds: d = 0.2086, dRMS = 0.0036. See Eq. (20) for
the definition of d and dRMS (Color figure online)

(a) t = 0 (b) t = 0.5 (c) t = 1

Fig. 19 Matching of two retinas with normal cycles: the target is in
orange and the source in blue. Three runs at different geometric kernel
sizes are performed (σW = 0.8, 0.4, 0.2). KV is a sum of Gaussian
kernels with σV = 2.4, 1.2, 0.6, 0.3. The first row shows the initial
configuration. The second row shows the matching in the specific zone

delimited by the red rectangle. The metric on normal cycles enforces
the matching of corresponding high curvature points, which leads to the
alignment of the two triangles into the single one of the target (Color
figure online)

Now let us focus on the cylindrical part. Using expres-
sion (8), with kn = 1, one can see that the scalar product
involving a full cylinder is null, and thus, only the half
cylinders remains. Consider thus the scalar product between
two half cylinders. If we denote HCyl1 = [a, b] × S⊥

b−a ,

HCyl2 = [c, d] × S⊥
d−c two half cylinders (where S

⊥+
b−a,α ={

u ∈ S
2| 〈u, b − a〉 = 0, 〈u, α〉 ≥ 0

}
is a half circle), we

compute the scalar product in W ′ between these two half

cylinders. With the approximations of (8):

〈HCyl1, HCyl2〉W ′ � kp
(a + b

2
,
c + d

2

)
〈b − a, d − c〉

×
∫

S⊥,+
b−a,α

∫

S⊥
d−c,β ,+

〈
b − a

|b − a| × u,
d − c

|d − c| × v

〉

dH 1(u)dH 1(v)

� kp
(a + b

2
,
c + d

2

)
〈b − a, d − c〉
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Fig. 20 Decomposition of the normal bundle for two triangles with
a common edge. In this figure, the two normal bundles of the open
triangles appear. Then, we add (only once) the normal bundle of the
open edge (the red cylinder and the two green half spheres). Then, we
add (only once) the normal bundle of the vertices of the edge (the two
green spheres) (Color figure online)

×
〈
b − a

|b − a| ×
∫

S⊥,+
b−a,α

udH 1(u)
d − c

|d − c|

×
∫

S⊥
d−c,β ,+

vdH 1(v)

〉

� π2

4
kp
(a + b

2
,
c + d

2

)
〈b − ad − c〉

〈
b − a

|b − a| × α,
d − c

|d − c| × β

〉

In a triangle T , [a, b] corresponds to an edge and α corre-
sponds to a unitary vector orthogonal to [a, b], in the plane
defined by the triangle and oriented in the interior of the
triangle. Finally, if we consider two triangulations T and
T ′,with a decomposition of the unit normal bundle as in
Fig. 20, we have

〈
N (T ), N (T ′)

〉
W ′ =
〈
N (T )cyl, N (T ′)cyl

〉

W ′

+ 〈N (∂T ), N (∂T ′)
〉
W ′

= π2

4

ne∑

i=1

me∑

j=1

kp(ci , d j )
〈
fi g j
〈

〈
∑

Ti triangles
with edge fi

nTi , fi ,
∑

T ′
j triangles

with edge g j

nT ′
j ,g j

〉

+ 〈N (∂T ), N (∂T ′)
〉
W ′

(21)

where nTi , fi is the normal vector of the triangle Ti such that
nTi , fi × fi is oriented inward for the triangle T .

For the boundary,
〈
N (∂T ), N (∂T ′)

〉
W ′ , we can show

similarly that:

〈
N (∂T ), N (∂T ′)

〉
W ′

=π2

4

∑

xk∈∂T

∑

yl∈∂T ′
kp(xk, yl)〈Ak, Bl〉

(22)

where Ak =∑i f ki /| f ki | is the sum of the normalized edges
of the boundary with xk as vertex, and oriented outward from
xk .

B Discrete Scalar Product with Linear Normal
Kernel

We can show that only the planar and the spherical parts are
involved in this scalar product. For the planar part, we have
already seen that

〈
N (T )pln, N (T ′)pln

〉

W ′

� 4
N∑

i=1

M∑

j=1

|Ti ||T ′
j |kp(ci , c′

j )
〈
nTi , nT ′

j

〉2
.

In this appendix, we want to compute explicitly the spher-
ical scalar product for normal cycles, with the linear normal
kernel. The generic expression involved is the following inte-
gral:

∫

S1

∫

S2
〈u, v〉2 dudv

where S1 and S2 are two portions of spheres (that may be the
whole sphere, half sphere) with no assumption on the relative
position of one sphere compared to the other.

To compute this expression, without loss of generality, we
can suppose that S1 is parametrized as follows:

S1 =
⎧
⎨

⎩

⎛

⎝
sin θu cosϕu

sin θu sin ϕu

cos θu

⎞

⎠
∣∣∣ θu ∈ [0, π ], ϕu ∈ [0, ϕ1]

⎫
⎬

⎭

where ϕ1 is the aperture angle of the portion of sphere (ϕ1 =
2π for a whole sphere, and π for a half sphere). Suppose that

v =
⎛

⎝
v1
v2
v3

⎞

⎠, then:
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∫

S1
〈u, v〉2 du =

∫ π

0

∫ ϕ1

0

〈⎛

⎝
sin θu cosϕu

sin θu sin ϕu

cos θu

⎞

⎠ ,

⎛

⎝
v1
v2
v3

⎞

⎠
〉2

sin θudθudϕu

which can be made explicit using the fact that

∫ π

0
sin3 θudθu = 4

3
,

∫ π

0
sin2 θu cos θudθu = 0,

∫ π

0
sin θu cos

2 θudθu = 2

3
.

Integrating first with respect to θu and then to ϕu , we end up
with:
∫

S1
〈u, v〉2 du = 2

3
ϕ1 + 1

3
(v21 − v22) sin(2ϕ1)

+ 4

3
v1v2 sin

2(ϕ1).

The quantity of interest is now:

∫

S1

∫

S2
〈u, v〉2 dudv =

∫

S2

[2
3
ϕ1 + 1

3
(v21 − v22) sin(2ϕ1)

+ 4

3
v1v2 sin

2(ϕ1)
]
dv

Themain limitation is that we do not have an obvious param-
eterization of S2 since there is no assumption on the relative
disposition of S1 and S2. Suppose now that R is the rotation
which brings S2 to S′

2, where

S′
2 =
⎧
⎨

⎩

⎛

⎝
sin θv cosϕv

sin θv sin ϕv

cos θv

⎞

⎠
∣∣∣ θv ∈ [0, π ], ϕv ∈ [0, ϕ2]

⎫
⎬

⎭

We have:

∫

S2
(v21 − v22)dv =

∫

S2

(
〈v, e1〉2 − 〈v, e2〉2

)
dv

=
∫

RS2

(〈
R−1v, e1

〉2 −
〈
R−1v, e2

〉2)
dv

=
∫ π

0

∫ ϕ2

0

⎛

⎜
⎝

〈⎛

⎝
sin θv cosϕv

sin θv sin ϕv

cos θv

⎞

⎠ , Re1

〉2

−
〈⎛

⎝
sin θv cosϕv

sin θv sin ϕv

cos θv

⎞

⎠ , Re2

〉2
⎞

⎟
⎠

× sin θvdθvdϕv

This computation is similar to the one of
∫
S1

〈u, v〉2 du and
we obtain:
∫

S2
(v21 − v22)dv = 1

3

[
r211 − r212 + r222 − r221

]
sin(2ϕ2)

+ 4

3
[r11r21 − r12r22] sin

2(ϕ2)

where R = (ri j )1≤i, j≤3. The same reasoning for the term
v1v2 leads to

∫

S2
v1v2dv =

∫ π

0

∫ ϕ2

0
〈v, Re1〉 〈v, Re2〉 dv.

= 1

3
[r11r12 − r21r22] sin(2ϕ2)

+ 2

3
[r11r22 + r12r21] sin

2(ϕ2)

Finally, if we combine all the terms, we obtain:

∫

S1

∫

S2
〈u, v〉2 dudv

= 4

3
ϕ1ϕ2 + 1

9

[
r211 − r212 + r222 − r221

]
sin(2ϕ1) sin(2ϕ2)

+ 4

9
[r11r21 + r12r22] sin(2ϕ1) sin

2(ϕ2)

+ 4

9
[r11r12 − r21r22] sin

2(ϕ1) sin(2ϕ2)

+ 8

9
[r11r22 + r12r21] sin

2(ϕ1) sin
2(ϕ2)

(23)

with

r11 = 〈e1, f1〉
r21 = 〈e1, f2〉 =

〈
e1,

1

sin ϕ2
( fϕ2 − cosϕ2 f1)

〉

r12 = 〈e2, f1〉 =
〈

1

sin ϕ1
(eϕ1 − cosϕ1e1), f1

〉

r22 = 〈e2, f2〉 =
〈

1

sin ϕ1
(eϕ1 − cosϕ1e1)

1

sin ϕ2
( fϕ2 − cosϕ2 f1)

〉

Note 8 Expression (23) simplifies greatly when one of the
involved sphere is a half sphere or a sphere. Indeed, all
the terms with a sinus vanish, and it remains:

∫
S1

∫
S2

〈u, v〉2
dudv = 4

3ϕ1ϕ2.

Note 9 Note that this computation is useful to compute the
scalar product between portions of sphere in the triangula-
tion. For an implementation, remember that the portion of
sphere is not defined by the edges of the triangles, say e1, e2,
but by the orthogonals: −e⊥

2 , e⊥
1 .

Now, if we are given two triangulated meshes, we will
express one part of the spherical scalar product: at two vertex
x and y, as we have done for the constant normal kernel, we
need to compute
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〈
x ×
(
[s.] −

∑
[h.s] +

∑
[p.s]
)

y ×
(
[s.] −

∑
[h.s] +

∑
[p.s]
)〉

W ′

If we use the previous expressions of
∫
S1

∫
S2

〈u, v〉2 dudv,
ad gathering all the terms 4/3ϕ1ϕ2, we end up with:

〈
N (T )sph, N (T ′)sph

〉

W ′

= 4

3

Nv∑

k=1

Mv∑

l=1

kp(xk, yl)GT (xk)GT ′(yl)

+ second-order spherical terms

where

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

GT (xk) =
[
π(2 − nxk + Nxk ) −

Nxk∑

i=1

ϕi,xk

]

GT ′(yl) =
[
π(2 − myl + Nyl ) −

Myk∑

j=1

ϕ j,yl

]

andwhere the second-order spherical terms appearwhen con-
sidering the crossed terms

1

9

[
r211 − r212 + r222 − r221

]
sin(2ϕ1) sin(2ϕ2)

+ 4

9
[r11r21 + r12r22] sin(2ϕ1) sin

2(ϕ2)

+ 4

9
[r11r12 − r21r22] sin

2(ϕ1) sin(2ϕ2)

+ 8

9
[r11r22 + r12r21] sin

2(ϕ1) sin
2(ϕ2)

we do not explicit these second-order terms since we still not
have a satisfying implementation of this metric.
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