
Journal of Mathematical Imaging and Vision (2019) 61:1051–1068
https://doi.org/10.1007/s10851-019-00887-y

A Differential–Algebraic Projective Framework for the Deformable
Single-View Geometry of the 1D Perspective Camera

Adrien Bartoli1

Received: 8 January 2019 / Accepted: 25 April 2019 / Published online: 3 May 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Single-View Geometry (SVG) studies the world-to-image mapping or warp, which is the relationship that exists between a
body’s model and its image. For a rigid body observed by a projective camera, the warp is described by the usual camera
matrix and its properties. However, it is clear that for a body whose deformation state changes between the body’s model and
its image, the ‘simple,’ globally parameterized warp described solely by the camera matrix, breaks down. Existing work has
exploited deformation to reconstruct the deformed body from its image, but did not establish the properties of the deformable
warp. Studying these properties is part of deformable SVG and forms a recent research topic. Because deformations may take
place anywhere in the object’s body, and because they may be uncorrelated, the warp is local in nature. Using a differential
framework is thus an obvious choice. We propose a differential–algebraic projective framework based on modeling the body’s
surface by a locally rational projective embedding and on the 1D projective camera. We show that this leads, via the study
of univariate rational functions, to differential invariants that the warp must satisfy. It may seem surprising, given the generic
hypothesis made on the observed body, hardly stronger than mere local smoothness, that constraints can still be found.
Our framework generalizes the Schwarzian derivative, the first-order projective differential invariant, which holds under the
assumption that the body’s shape is locally linear. Our invariants may be used to construct regularizers to be used in warp
estimation. We report experimental results of two types on simulated and real data. The first type shows that the proposed
invariants hold well for an independently estimated warp. The second type shows that the proposed regularizers improve warp
estimation from point correspondences compared to the classical derivative-penalizing regularizers.
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1 Introduction

Single-View Geometry (SVG) is concerned with how cam-
eras form images of the world geometrically. More precisely,
SVG deals with the geometry and algebra of the warp, a
mapping that exists between a model of the world and a
model of the image, as illustrated by Fig. 1. SVG endeav-
ors to (i) establish the existence and form of such mappings,
(ii) study their characteristics and (iii) estimate them numeri-
cally. For rigid bodies, SVGuses simple geometric primitives
such as points and an algebraic projective framework, which
led to a deep understanding of points (i), (ii) and (iii) [6,9,13].
Point (i) merely uses the body’s pose and the camera’s pin-
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hole projection model and leads to the projective camera
represented by a (3× 4) matrix, point (ii) studies what prop-
erties make a (3 × 4) matrix valid as a camera and point
(iii) solves the so-called camera resection or pose estimation
problem. The case of deformable bodies forms an open and
challenging research challenge, owing to the deformation
causing the model and observed body shapes to be different.
Deformable SVG is important because it will form the math-
ematical framework for and deepen our understanding of the
Shape-from-Template (SfT) problem [12,18,23]. In order to
define deformable SVG more specifically, we start with the
informal definition of an important mapping, the embedding.
The embedding maps points from the body’s model to its
deformed state in camera coordinates and thus extends the
notion of relative body–camera pose from the rigid case as it
also holds the body’s deformation. As in the rigid case, the
projection mapping represents the camera, mapping points
from the deformed body to its observed image. The warp
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is then defined as the composition of the projection with
the embedding. It maps points from the body’s model to the
observed image of the deformed body. This informal defini-
tion of thewarp already provides a simple and generic answer
to point (i). In contrast, point (ii) is much more involved, but
tremendously important to understand, for twomain reasons.
The first reason is to understand the theoretical possibility of
characterizing the observations forming valid images inde-
pendently of the body’s deformed state. It contrasts with the
rigid case where the body’s state is already known: In the
deformable case, the observed shape is unknown because
deformation occurred between the body’s state in the model
and the body’s state as observed in the image. The second
reason is that the theoretical characteristics of the warp may
be used to improve point (iii). For deformable bodies, it is
indeed very common to estimate the warp using a derivative-
penalizing regularizer, as in the Thin-Plate Spline [3] and
optic flow computation [10]. An understanding of point (ii)
can provide physically sound regularizers, with the potential
to improve warp estimation. Importantly, these regularizers
are independent of the observed shape and thus insensitive to
reconstruction ambiguities. These considerations, however,
require further assumptions on the embedding, for, by defi-
nition, the warp is so far just a mere locally smooth mapping.

We propose to study deformable SVG for locally ratio-
nal projective embeddings. Locally rational means that the
embeddings resemble a rational function of some degree in
the infinitesimal vicinity of any smooth point. A rational
function is formed by the ratio of two polynomials and thus
naturally includes simple polynomial functions. It is simple
to see that the locally rational embeddings lead to locally
rational warps, as the projection mapping is essentially a
ratio. A noteworthy consequence is that the polynomial
embeddings do not lead to a simplified form of the warp
and thus of the SVG. Our motivations for choosing these
embeddings are threefold. Our first motivation is genericity:
The chosen embeddings can represent the surface of thin
or thick objects, whether they deform isometrically or in
more complex ways. Indeed, any embedding can be locally
approximated to a good extent by its Taylor or Padé approx-
imation [21] at some finite order. Understanding the limits
of using such an extremely generic prior, slightly stronger
than mere local smoothness, forms a fundamental research
question. A locally linear embedding was successfully used
in isometric deformable reconstruction [17]. The chosen
embeddings generalize this concept, as they can behave
locally as polynomials of a fixed but arbitrary degree, beyond
linearity. Our experimental results show that in terms of
warp estimation, the quadratic and cubic locally rational
models outperform the linear model, so that the proposed
generalization brings a practical improvement. Our second
motivation is simplicity and stability of the representation.
A global embedding model would have to adjust its com-

plexity to the actual deformation. Therefore, coping with
complex deformations would come at the price of a higher
degree, potentially causing instabilities. In contrast, the cho-
sen embeddings are locally constrained to behave similarly
to rational functions of low degree. Our third motivation is
that this representation allows us to truly model perspective
projection without ever approximating it. Indeed, perspec-
tive projection is simply expressed by rationality, which is
perfectly respected by the proposed invariants.

Our methodology is to first study point (ii) for strictly
rational embeddings, establishing differential invariants on
the warp. Because the existence and study of such invari-
ants for an arbitrary degree were not previously established,
except for the special case of linear rational functions [15],
this forms a main contribution of our work. We specifi-
cally studied the differential invariants though other non-
differential invariants may exist. We then study point (iii),
deriving warp regularizers from our differential invariants.
We use these regularizers as soft penalties in warp estimation
in place of the usual derivative-penalizing regularizers. Con-
cretely, we have chosen to work with a 1D setup, for which
the deformable body is a plane curve, the camera a projection
from 2D to 1D and the warp a 1D mapping. Our motivations
are twofold. Our first motivation is that the 1D warp case
forms a necessary step to establish the 2D warp case, where
the deformable body is a surface and the camera a usual pin-
hole. The 1D case is simpler than the 2D case, yet conveys
valuable insights on the theoretical form of the sought invari-
ants, their use in warp estimation and their practical impact.
Indeed, our experimental results show that in terms of warp
estimation, the locally rational representation substantially
outperforms the locally polynomial representation assumed
by the existing derivative-penalizing regularizers, when used
in a compound cost exploiting point correspondences. Our
second motivation is that the 1Dwarp invariants already give
a subset of the 2D warp invariants. We show this fact by con-
structing a virtual 1D setup from the 2D setup. The main
result is that the 1D invariants hold for a 1D warp along any
rational curve chosen in the 2D model and for any 1D pro-
jection of the 2D image.

We first review previous work in §2 and give background
material in §3. We then give our theoretical results on the
invariants of univariate rational functions in §4 and showhow
this applies to deformable 1D SVG in §5. We give experi-
mental results on warp estimation in §6 and a conclusion
in §7. Finally, a first appendix discusses the extension of our
1D framework to higher dimensions, in particular to form a
basis for 2D deformable SVG, and a second appendix gives
the proof of our proposition regarding the invariants.
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Fig. 1 Geometric setup used in studying SVG. Themapping to be stud-
ied is the warp, which exists between the body’s model and the body’s
image. In the rigid case, the image shows the body’s model up to pose
and perspective projection. In the deformable case, the body’s shape

changes between the model and image with much higher complexity
and the setup uses the embedding-projection framework. The 1D setup
is simpler to study that the 2D setup yet provides valuable theoretical
and practical insights for both cases

2 PreviousWork

We split our review of previous work into four parts:
deformable SVG, the 1D camera, rational functions and the
embedding-projection framework.

Deformable SVG. SVG has been well studied for rigid bod-
ies [6,9,13] and very scarcely for deformable bodies. Most of
the work in SfT, whose geometric setup is modeled by SVG,
focuses on computing the body’s 3D deformation and not on
characterizing the warp’s properties [12,18,23]. The estima-
tion of rigid SVG andMultiple-ViewGeometry (MVG) from
images of algebraic curves was thoroughly studied [14,24].
The deformable case of multiview reconstruction was specif-
ically studied for isometric curves [6]. A comprehensive
differential framework was given in [5]. There are two main
differences between these works and ours. First, they use a
rigid or an isometric prior, while we use a locally rational
model, which is a much more generic and thus much weaker
constraint. Second, they study the differential relationships
between space and image curves for quantities such as speed,
curvature and torsion, while we establish generic invariants
at any order.

The 1D camera.We use the 1D camera as a simplified case
of the regular 2D camera. The 1D camera was introduced
in [22] for line-based affine Structure-from-Motion but can
be also derived by analogy to the usual 2D camera. It has a
total of five parameters which are two intrinsics (the focal
length f and the principal point q0, both expressed in num-
ber of pixels) and three extrinsics (a rotation angle and two
translation parameters). The strategy of using the 1D cam-
era to simplify a 2D problem was used in the rigid case; for
instance, the 1D trifocal tensor is much easier to understand
and work with than the 2D trifocal tensor [7,8]. We defined
the 1DSfT problem and showed that it makes expressing a
constraint such as isometry much easier than in the usual 2D
formulation [11]. We showed that, in general configuration,
1DSfT has a discrete number of solutions if the isometric

prior is used, but an infinite number of ambiguities other-
wise. Solutions derived in the 1D case can sometimes be
used directly in the 2D case. For instance, the geometry of a
2D camera in planar motion is equivalent to a 1D camera on
the trifocal plane of the 2D cameras [8].

Rational functions. Rational functions are used in several
areas of applied mathematics such as data interpolation via
the Padé approximation [21] and the Non-Uniform Rational
B-Spline (NURBS) [19]. Their properties were studied for
instance in [25,26]. The closest fundamental result to ours is
probably the Schwarzian derivative [16], a differential ver-
sion of the cross-ratio whichwe showedmay be directly used
in warp estimation [20]. The Schwarzian is also the solution

of the ODE 2μ(1)μ(3) − 3μ(2)2 = 0 [15], where μ(k) rep-
resents the kth derivative of μ. In the context of SVG, it
is derived by considering a linear projective embedding, or
equivalently, making the assumption that the curve is locally
flat. Our theory generalizes the Schwarzian by considering
rational projective embeddings of an arbitrary degree and has
the Schwarzian as a special case.

The embedding-projection framework. The embedding-
projection framework has been extensively used to model
SfT. In the 2D setup, differential solutions were found to
resolve reconstruction for the isometric and conformal mod-
els [1]. The framework has more recently been used in
the 1D setup to study isometric reconstruction [11]. These
works and their extensions use differential equations giving
the reconstruction in terms of the warp. However, none of
them studied deformable SVG. They thus assume that the
warp is computed in a preliminary step, independently of the
reconstruction, thereby neglecting valuable constraints. In
contrast, our study of deformable SVG shows that the warp
strongly depends on the assumptions made on the embed-
ding. Deriving these warp invariants by marginalizing the
embedding is far from trivial, but using them in warp esti-
mation then brings substantial improvements.
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3 Background

3.1 Notation

We write logical equivalence as ⇔. We use C∞(Rc, R
d) for

the set of smooth functions fromR
c toR

d and use the shortcut
C∞ def= C∞(R, R). We write U = [a, b] the set of natural
numbers in the interval [a, b], for a, b ∈ N. For a set U ⊂ N,

U = [u1, u|U |], we define μ(U) def= (μ(u1) · · · μ(u|U |))� as
a multivalued function giving the orders of derivatives of μ

from U . We use R
∗ to denote the set of nonzero real numbers

and N
∗ to denote the set of nonzero natural numbers.

3.2 Univariate Polynomial Functions

Let Pn be the set of univariate polynomials of degree n and

P̄n
def= P0 ∪ · · · ∪ Pn the set of univariate polynomials of

degree at most n. For instance, P0 is the set of constant func-
tions, P1 the set of linear functions and P̄1 = P0 ∪ P1 the
set of constant and linear functions. We have:

δ ∈ Pn ⇒ {δ(e) = 0 | e > n} (1)

δ(e) = 0 ⇒ {δ ∈ Pn | n < e} (2)

δ(e) = 0 ⇔ δ ∈ P̄e−1. (3)

3.3 Univariate Rational Functions

A univariate rational function μ is a fraction of two polyno-
mials of degrees a, b ∈ N, respectively.We defineμ’s degree
as the pair (a, b) ∈ N

2. Formally, a functionμ is a univariate
rational function if and only if ∃a, b ∈ N s.t.Ra,b[μ] with:

Ra,b[μ] def⇔
(

∃α ∈ Pa, γ ∈ Pb, gcd(α, γ ) ∈ R
∗ s.t. μ = α

γ

)
,

(4)

where gcd(α, γ ) is the polynomial greatest common divisor
of α and γ . The condition on gcd(α, γ ) means that the frac-
tion cannot be simplified to a lower degree. The domain of
μ is � ⊂ R with � = {x ∈ R | γ (x) �= 0}. A function μ

is a univariate rational function of degree at most (a, b) if
R̄a,b[μ] holds with:

R̄a,b[μ] def⇔
(

∃α ∈ P̄a, γ ∈ P̄b s.t. μ = α

γ

)
. (5)

Abusing notation, we write μ ∈ Ra,b and μ ∈ R̄a,b equiv-
alently to Ra,b[μ] and R̄a,b[μ], respectively. The set of
univariate rational functions forms a field, meaning that the
addition, subtraction, multiplication and division of rational
functions is a rational function.

4 Canonical Invariants of Univariate Rational
Functions

We show that a univariate rational functionμ of degree (a, b)
satisfies differential invariants. These invariants form an infi-
nite set for a given degree (a, b), as function μ also satisfies
the invariants of higher degrees. We here define and study
the canonical invariant of degree (a, b). Importantly, when
applied to a function μ ∈ C∞, the canonical invariant con-
strainsμ to be a univariate rational function of degree at most
(a, b). It is straightforward to see that the canonical invariant
thus implies all the invariants of higher degrees.

Our key result is given in the next proposition. It is an
equivalence between the set of univariate rational functions
of somemaximal degree and the canonical differential invari-
ant of that degree. The proof of this proposition is given as
Appendix B.

Proposition 1 (Canonical invariants) A function μ is a uni-
variate rational function of degree at most (a, b) if and only
if it satisfies the canonical invariant Ia,b. Formally:

∀μ ∈ C∞, a, b ∈ N R̄a,b[μ] ⇔ Ia,b[μ]

with:

Ia,b[μ] def⇔
⎛
⎝ ∑

s∈Sb+1

sgn(s)
b+1∏
i=1

(
a + i

si − 1

)
μ(a+i−si+1) = 0

⎞
⎠ .

(6)

We use Sb+1 to generate all permutations of the set [1, b+1]
and sgn(s) ∈ {−1, 1} to compute the signature1 of per-
mutation s = {s1, . . . , sb+1}. Ia,b[μ] is an homogeneous
polynomial ODE of degree b + 1. The lowest and greatest
orders it involves are max(a − b + 1, 0) and a + b + 1,
respectively.

Examples. We give four examples of univariate rational
functions and canonical invariants and discuss the general
case and advanced examples. An important case is the one
of linear fractional functions, which are univariate rational
functions of degree (1, 1). Any univariate rational function
μ of degree (1, 1) can be written as μ(x) = a1x+a0

b1x+b0
for

a0, a1, b0, b1 ∈ R. Proposition 1 says that such functions
are also characterized by the following differential canonical
invariant:

I1,1[μ] ⇔
(
−2μ(1)μ(3) + 3μ(2)μ(2) = 0

)
.

This can be easily verified. This invariant is the ODE from
which the Schwarzian derivative was derived [15], and as

1 We have that sgn(s) = 1 if s can be generated by an even number of
interchanges of the elements of [1, b+ 1], and sgn(s) = −1 otherwise.
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expected, it corresponds to linear fractional functions, called
homographies in the context of projective geometry. The
same reasoning leads to the differential canonical invariant
for the quadratic fractional functions, using (a, b) = (2, 2),
as:

I2,2[μ] ⇔
(

− 12μ(1)μ(3)μ(5) + 15μ(1)μ(4)μ(4)

+ 18μ(2)μ(2)μ(5) − 30μ(2)μ(4)μ(3)

+ 40μ(3)μ(3)μ(3) − 30μ(3)μ(2)μ(4) = 0
)
.

The numerator’s and denominator’s degrees need not be
equal, and we can for instance derive the canonical invariants
for the constant-quadratic or the quadratic-linear fractional
functions as:

I0,2[μ] ⇔
(
μ(0)μ(0)μ(3) − 3μ(0)μ(2)μ(1)

+ 6μ(1)μ(1)μ(1) − 3μ(1)μ(0)μ(2) = 0
)
,

and:

I2,1[μ] ⇔
(
−3μ(2)μ(4) + 4μ(3)μ(3) = 0

)
.

We observe that the order of the invariants increases with a,
while the number of terms and degrees increase with b.

Generally speaking, any rational plane curve induces a
rational warp which thus satisfies the proposed invariants.
For example, the warp μ induced by a cubic B-spline satis-
fies I3,3[μ], while the warp μ induced by a cubic NURBS
satisfies I9,9[μ], as shown in §5.3.

Polynomial kernel of the canonical invariants. The ker-
nel of the simple derivative invariant of order e is formed
by the polynomials of degree e − 1, see Eq. 3. The canon-
ical invariant of order (a, b) also includes polynomials in
its kernel, forming the polynomial kernel of the canonical
invariant. Their degree is now derived in terms of a, b. As
can be seen from Eq. 6 and from the examples above, the
canonical invariant Ia,b[μ] is a sum where each term has
partial derivatives of μ as factors. Therefore, using Eq. 1,
there must exist a polynomial μ̂ so that Ia,b[μ̂] holds. We
call μ̂ ∈ P̄d the polynomial kernel of Ia,b, and define the
polynomial kernel’s degree d as the greatest natural num-
ber so that ∀μ̂ ∈ P̄d , Ia,b[μ̂] holds. It is easy to show that
d = a. This is obtained by considering that each term in
Ia,b[μ] must vanish. Because a term is a product of deriva-
tives, what matters is thus the greatest order involved in the
term, as the derivative at this order vanishes with a higher
degree polynomial than the other derivatives. Overall, for all
terms to vanish, we must thus select d + 1 as the minimum
over the terms inIa,b[μ]of the greatest order involved in each
term. By examining Eq. 6, we can compute the sum of orders

on each term as
∑b+1

i=1 (a + i − si + 1) = (a + 1)(b + 1),
which is a constant value. Additionally, there is a term in
Ia,b[μ] where all orders are equal. Together, these imply
that d + 1, the minimum over the terms of the greatest order
per term, is given by the order of the term where all factors
have the same order. Because we have b+1 factors per term,
we obtain d = (a+1)(b+1)

b+1 − 1 = a. For the four examples
above, we have d = 1, d = 2, d = 0 and d = 2. In the
first example, it says that the polynomial kernel is made of
linear functions μ̂ ∈ P1, for which μ̂(2) = 0. Of course,
the canonical invariant does not only have polynomials in
its kernel, but also univariate rational functions, according to
Proposition 1. The polynomial kernel is indeed included in
the general kernel, as μ̂ ∈ P̄a ⇒ R̄a,0[μ̂] ⇒ R̄a,b[μ̂] for
b ≥ 0.

5 Deformable Single-View Geometry

We first give our notation and show how the warp is derived
for a generic embedding and perspective projection. We then
specialize the derivation to rational embeddings, showing
that the warp is then itself rational. We finally show how
to estimate the warp under a locally rational regularization
constructed from the canonical invariants.

5.1 Notation

We denote the deformed plane curve as C in the projective
planeP

2.We represent C by a projective embeddingϕ : � →
P
2 where � ⊂ R is the curve parameterization’s domain,

leading to C = ϕ(�). In other words, we have that C is
the set of points of the projective plane Q = ϕ(p) ∈ P

2

obtained by embedding any point p ∈ �. The camera is
given by a function� : P

2 → R representing a 1Dprojective

camera [22], and the warp is simply η
def= � ◦ ϕ. We require

η ∈ C∞(�, R), meaning that the warp must be a smooth
function, except at some points where the invariants may
not be evaluated. This is implied by requiring that C is a
smooth curve lying entirely in the open projective half-plane
representing the front or the back of the camera, but, however,
forms a weaker requirement.

5.2 TheWarp for a Generic Embedding

The general 1D projective camera � can be defined as the
composition of a 2D homography h : P

2 → P
2 and the

canonical perspective projection as:

�(Q)
def= h1�Q

h2�Q
, (7)
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with h1,h2 ∈ R
3 and not both identically zero. These six

parameters are defined up to scale, meaning that only five of
them are independent and contain the camera’s two intrinsics
and three extrinsics. Whether the camera is calibrated or not
does not change the way deformable SVG is defined in this
context. Using Eq. 7, we derive the warp as:

η = � ◦ ϕ = h1�ϕ

h2�ϕ
. (8)

5.3 TheWarp for a Locally Rational Embedding

Wedenote the three components of the projective embedding
as ϕ� = [ϕ1 ϕ2 ϕ3]. We first assume that the embedding is
rational, meaning that we have ϕi ∈ R̄ai ,bi , and so that there
exist αi ∈ P̄ai , γi ∈ P̄bi , i ∈ {1, 2, 3} with ϕi = αi

γi
. We

analyze the numerator and denominator of η in Eq. 8 by
letting l ∈ {1, 2} as:

h�
l ϕ = hl1ϕ1 + hl2ϕ2 + hl3ϕ3

= hl1
α1

γ1
+ hl2

α2

γ2
+ hl3

α3

γ3

= hl1α1γ2γ3 + hl2α2γ3γ1 + hl3α3γ1γ2

γ1γ2γ3
.

We thus have:

h�
1 ϕ

h�
2 ϕ

= h11α1γ2γ3 + h12α2γ3γ1 + h13α3γ1γ2

h21α1γ2γ3 + h22α2γ3γ1 + h23α3γ1γ2
.

Since δ1 ∈ P̄a, δ2 ∈ P̄b ⇒ δ1δ2 ∈ P̄a+b, δ1+δ2 ∈ P̄max(a,b)

we have η ∈ R̄a,b with:

a = b = max(a1 + b2 + b3, a2 + b3 + b1, a3 + b1 + b2),

where we recall that (ai , bi ) is the degree of ϕi , i ∈ {1, 2, 3}.
Therefore, we have η ∈ R̄a,a , and we can use Proposition 1
to state that Ia,a[η] must hold. This way, we have obtained
constraints that the warp must satisfy in order to be geo-
metrically valid for a rational embedding. This brings an
answer to point (ii) of SVG, which we defined in Introduc-
tion as a study of the warp’s characteristics, independently of
the embedding and projection. Our target assumption, how-
ever, is that the embedding is locally rational, meaning that
it is rational in an infinitesimal neighborhood of each point
p ∈ �. Consequently, the warp is also locally rational. The
key advantage is that representing a non-trivial curve with a
globally rational embedding requires one to use high-degree
polynomials for its numerator, its denominator or both of
them, whereas using high-degree polynomials is not stable
in practice [21]. In contrast, a locally rational warp is a flex-
ible and stable warp, which will be constrained to behave
similarly to a low-degree rational warp on a local basis. A

similar reasoning may be found in the definition of B-spline
curves, which are both flexible and stable thanks to the use of
local low-degree polynomials [19]. In practice, we use a sta-
ble generic deformable model for the warp and performwarp
estimation using a regularizer constructed from the canonical
invariants. When used as a penalty term in warp estimation,
this regularizer makes the warp behave locally like a ratio-
nal map. This process is described in the next section, where
we use a simple Gaussian radial basis function to model the
warp.

5.4 Estimating theWarp from Correspondences

We describe how the canonical invariants fit into a frame-
work to estimate the warp from point correspondences. This
framework preserves the generic warp model’s natural flex-
ibility while making it locally rational. It is different from
using an explicit rational embedding which would make the
warp globally rational.

General methodology We want to estimate the warp η

from m point correspondences {p j , q j }, p j ∈ �, q j ∈ R,
j ∈ [1,m]. The general methodology is to define a corre-
spondence cost functional C[η] = 1

m

∑m
j=1

(
η(p j ) − q j

)2
and a regularizer R[η], and to solve the following variational
problem:

min
η

C[η] + λR[η], (9)

where λ ∈ R
+ is the regularization weight, controlling the

relative influence of the two terms in relationship to the intrin-
sic scale of each term.

Regularization weight The value of λ is important. We
choose it by splitting the correspondences into a training set,
a validation set and a test set. We then sample λ on a prede-
fined range, solve problem 9 for each value of λ using the
training set and finally keep the warp with the lowest valida-
tion residual. The sampling range is chosen such that outside
it the resulting warp does not exhibit significant changes. We
use 30 samples in our experiments.

Regularizer In the literature, the regularizer is often derived
from the L2 norm of the warp’s partial derivatives integrated
over the domain. For example, the B-spline [19] and the
Thin-Plate Spline [4]were constructed by penalizing second-
order derivatives. We call these the polynomial regularizers
because they constrain the warp to be locally polynomial.
We use a low order k ∈ {1, 2, 3} because the regularizers are
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differential, thus measured very locally. This already allows
significant flexibility on the warp. They are defined as:

RPOL k[η] def=
∫

�

(
η(k)(p)

)2
dp.

We, however, show in §5.3 that a locally polynomial or
rational embedding leads to a locally rational warp with
degree (a, a). We thus use the canonical rational invariant
Ia,a given in Proposition 1 to construct new regularizers, for
a ∈ {1, 2, 3}, as:

RRAT a[η] def=
∫

�

(Ia,a[η](p))2dp.
The regularizers are applied to thewholewarp.However, they
are constructed as integrals over the domain �. Importantly,
the integrands measure the warp’s closeness to a polynomial
or a rational function at point p ∈ �. The regularizers thus
measure the extent to which the warp is everywhere locally
similar to a polynomial or a rational function. In other words,
the lower the regularizer, the closer the warp to a local poly-
nomial or rational function on each and every point of its
domain.

Minimization In order to solve problem 9, we introduce a
flexible parametric representation of the warp using a Gaus-
sian radial basis function [2]. The l Gaussian bases are
uniformly spread across the domain �, which we define as
� = {p ∈ R | 0 ≤ p ≤ 1} by default. Their position
is defined as c1, . . . , cl ∈ � and thus given by ck = k−1

l−1 ,
k ∈ [1, l]. Their standard deviation σ is fixed. The parame-
ters to estimate are thus contained in a setω ∈ R

l of l weights,
one for each Gaussian basis. We use l = 50 Gaussian bases
with σ = 5

l in our experiments. The parametric warp repre-

sentation is thus η(p;ω)
def= ∑l

k=1 ωk exp
(
− (p−ck )2

2σ 2

)
. We

use gradient descent starting from the identity warp.

Results Each estimated warp is tied to a regularizer and
thus denoted accordingly, as POL1, POL2, POL3, RAT1,
RAT2 and RAT3. As a baseline, we also used the radial basis
function representation fittedwithout a regularizer, by setting
λ = 0 in problem 9. The resulting warp is denoted PLAIN.

6 Experimental Results

Our two main goals are (i) to assess to which extent the
invariants hold on an independent warp and (ii) to assess
their contribution to the stability of warp estimation when
used to form regularizers. We report two sets of experiments

to evaluate these two main goals, both using simulated and
real data.

6.1 Assessing the Invariants on IndependentWarps

We want to compare the value of the invariants estimated for
independent warps, in order to objectively find the ability of
each invariant to capture thewarp’s behavior. This is because,
even if theoretically the rational invariants use a more phys-
ically valid representation of the warp than the simple warp
derivatives, their dependency on higher order derivativesmay
cause instabilities. For simulated data, we use the true warp,
while for real data, we use the PLAINwarp.We first describe
the measured quantities.

6.1.1 Measured Quantities

We measured six quantities related to the six regularizers
defined in §5.4. These are the first three derivatives of the
warp, namely |η(1)|, |η(2)| and |η(3)|, related to the classical
polynomial regularizers, and the first three canonical invari-
ants, namely |I1,1[η]|, |I2,2[η]| and |I3,3[η]|, related to the
rational regularizers. We use the absolute value as only the
magnitude of these quantities matters, not their sign. How-
ever, because they are of different orders of magnitude, they
cannot be cross-compared individually. We thus also report a
normalized version of these six quantities achieved by divid-
ing by the maximum over a set of values.

6.1.2 Simulated Data

Simulation setup We simulated a 1D perspective camera
with a 1 unit focal length observing a 1D flat object of size
4 units whose midpoint is located 10 units from the cen-
ter of projection. The flat object is then deformed, which is
represented by simulating its embedding from the template
domain �. By projecting the object, we arrive at a simulated
image. Because the warp η is the composition of the known
projection and embedding functions, as shown by Eq. 8, we
can estimate thewarp’s target value and its derivatives analyt-
ically at any point in �. We use a fixed point shown in black
on the simulated shape in Fig. 2 to monitor the six measured
quantities. We then did three types of basic transformations
of the object: slanting, curving and a combination of both.
The embedding is rational for the former but not for the last
two transformations, as it involves trigonometric functions.
This way, our measurements depend directly on the basic
transformations of slanting and curving and can be plotted
according to the amount of perspective, of curvature and of
their combination.
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Fig. 2 Results of simulated data experiments. From left to right, the object is slanted, curved and both slanted and curved. From top to bottom,
the simulated camera and object with the observed point shown in black, individual plots and joint plot with normalization of the six measured
quantities

Perspective The default fronto-parallel view of the object
does not contain perspective. In order to increase the per-
spective effect, we slanted the object by rotating it around its
midpoint with an angle θ varying between 0◦ and 45◦. The
results are shown in the left column of Fig. 2. We observe
that the warp derivatives are sensitive to perspective. More
precisely, |η(2)| and |η(3)| vanish at θ = 0, when the object
is exactly fronto-parallel, but then quickly increase with per-
spective, while |η(1)| does not even vanish at θ = 0. On the
other hand, all three canonical invariants |I1,1[η]|, |I2,2[η]|
and |I3,3[η]| vanish independently of the amount of perspec-
tive.

Curvature. The default flat-shaped object does not contain
curvature. In order to increase curvature,we curved the object
by linearly morphing its shape with an arc of radius 4 units.
Importantly, the resulting shape is not described by a poly-
nomial or a rational function. The results are shown in the
middle column of Fig. 2. We make the same observation on
the warp derivatives as in the increasing perspective case:
These are sensitive to curvature. On the other hand, con-
trarily to the case of perspective, the canonical invariants
also show sensitivity to curvature. We observe that the sen-

sitivity decreases with the order. More precisely, |I1,1[η]|
performs very similarly to |η(2)| and |η(3)|, while |I2,2[η]|
and |I3,3[η]| show better performance, |I3,3[η]| having a flat
regime approximately twice as long as |I2,2[η]|. We observe
that |I2,2[η]| and |I3,3[η]|have a large intrinsic scale, exhibit-
ing larger values than the other four invariants. The intrinsic
scale of an invariant is arbitrary. Importantly however, it
does not influence the results of warp estimation, thanks to
the cross-validation mechanism selecting the regularization
weight automatically.

Combined perspective and curvature. We increased both
perspective and curvature by combining slanting and curving
of the object as above described. The results are shown in the
right column of Fig. 2. We make the same observations as in
the increasing curvature case: All six measured quantities are
sensitive to the combined effect of perspective and curvature.
There are two important differences, however. First, there is a
larger gap between the group formed by the warp derivatives
and |I1,1[η]| and the group formed by |I2,2[η]| and |I3,3[η]|.
Second, there is a smaller gap between |I2,2[η]| and |I3,3[η]|.
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Fig. 3 Results of real data experiments. The top row shows the input 2D images from which the 1D images were constructed. The middle and
bottom rows show the six measured quantities individually and in a joint plot with normalization, respectively

Synthesis. Our experimental observations perfectly confirm
the theory. First, we have that the warp derivatives are not
invariant to camera perspective and object curvature. Sec-
ond, we have that all canonical invariants are insensitive to
camera perspective and have various sensitivities to object
curvature. The first-order canonical invariant is very sensi-
tive to object curvature while the second- and third-order
canonical invariants have a good tolerance. This is sensible
because a higher order canonical invariant models a higher
order rational embedding able to represent the object’s local
curvature.

6.1.3 Real Data

Data acquisition and result presentation We emulated a 1D
camera by slicing space along a plane containing the center
of projection of a 2D camera. Concretely, we created a 1D
template with 30 regularly spaced black tickmarks which we
printed on a paper sheet. We then selected a horizontal line
crossing the ticks on the 2D image of the deformed paper
sheet. The ticks were manually marked in the 2D image and
these locations projected on the line. The 1D coordinates of
the ticks along this line define the 1D image obeying the
geometry of a 1D camera. Each tick thus gives a 1D corre-
spondence between the template and the image. The interest

of this dataset lies in the noise distribution on the data, which
is more realistic than on simulated data, in the realism of the
2D shape and in the realism of the physical imaging process,
to which the pinhole camera is just an approximation. We fit-
ted the warp PLAIN to the correspondences. We then chose
100points uniformly spread in the template andused thewarp
to estimate their location in the image and their derivatives.
From these, we estimated the value of the sixmeasured quan-
tities, sorted them and plotted them individually and jointly
with normalization, as for the simulated data. For a particular
quantity, the plotted curve thus starts with the lowest values,
obtained for the points where the warp best minimizes the
quantity and increases toward the highest values, obtained
for the points where the warp is least compatible with the
quantity.

Results The results obtained for three images are shown in
Fig. 3. The first-order derivative |η(1)| does clearly not do a
good job, as it has a steady logarithmic or linear increase.
The second- and third-order derivatives |η(2)| and |η(3)|
perform better, but also show an increase at all points. Sim-
ilarly, the first-order canonical invariant |I1,1[η]| shows an
increase at all points, performing worse than |η(2)| and |η(3)|.
The second- and third-order canonical invariants |I2,2[η]|
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and |I3,3[η]|, however, both have a flat part starting at the
beginning of their curves. This flat part means that these
two quantities, and thus the corresponding invariants, form
a better model of the warp than the other quantities. The
third-order canonical invariant |I3,3[η]| is significantly bet-
ter than the second-order one |I2,2[η]|. These results agree
with the synthetic data experiments to some extent. Indeed,
as predicted by theory, we have that the canonical invariants
perform better than the mere derivatives, because they model
the effect of perspective. The results also differ from the syn-
thetic data experiments as for the canonical invariants, the
larger the degree, the better the results. This is explained by
the fact that the local shape is probably of higher complexity
in the real data case and thus requires a more complex warp
to be accurately captured.

6.2 Assessing the Invariants inWarp Estimation

We want to evaluate the performance of the six regularizers
defined in §5.4 in warp estimation from point correspon-
dences.

6.2.1 Simulated Data

Wedescribe the simulation setup and then the results obtained
when varying the amount of noise, the number of points and
when creating an extrapolation area.

Simulation setup We used the same simulation setup as
in §6.1.2 with a more complex shape obtained by combining
sines and cosines with a global rotation and translation. An
example of shape is shown in Fig. 4. We generated a finite
number of point correspondences which we corrupted with
noise following a Gaussian distribution whose standard devi-
ation controls the noise level. We used a default noise level
of 0.5% of the object’s image size and number of points of
20. We split the correspondence set equally in training and
validation sets. We used the true warp to assess the estimated
warps by measuring the discrepancy at 1000 regularly sam-
pled test points at the zeroth-, first- and second-orders. The
zeroth-order discrepancy is the distance between the position
predicted by the true and the estimated warp. The first- and
second-order discrepancies are the differences between the
first- and second-order derivatives predicted by the true and
the estimated warp. The results are averages over 50 trials.

Noise Wevary the noise level between0 to 1%of the object’s
image size. The results are shown in the left column of Fig. 4.
We observe that the overall accuracy does not show the typ-
ical trend of degrading with noise. This is explained by the
fact that regularization smoothes out noise. We observe that
the POL1 warp gives the poorest performance. It is followed

by a group comprising the PLAIN, POL2 and POL3 warps,
with POL2 performing slightly better in terms of first-order
error. We next find the RAT2 and RAT3 warps followed by
the RAT1 warp. These three warps are on par in terms of
zeroth-order error but the RAT1 warp performs clearly best
in terms of the first- and second-order errors.

Number of points We vary the number of points between
10 and 50. The results are shown in the middle column of
Fig. 4. We observe that the accuracy increases with the num-
ber of points for all warps at zeroth and first order. However,
this increase becomes very shallow for the POL1, POL2,
POL3 and PLAIN warps at second order. The POL1 warp
has the worst performance, followed by a group with the
POL2, POL3 and PLAIN warps. The RAT2 and rat3 warps
perform better and the RAT1 warp outperforms, except for
lower numbers of points. The differences between the warps
increase with the order.

Extrapolation We created an extrapolation domain by
removing input correspondences in a localized part on the
side of the object. We observe that the accuracy degrades
with the size of the extrapolation domain. The POL1 warp
has the worst performance, and the RAT1 warp has the best
performance. We find in between the five other warps with
performances depending on the order and the size of the
extrapolation domain. In particular, the RAT3 warp always
outperforms at zeroth and first orders. It outperforms at sec-
ond orderwhen the extrapolation domain is smaller than 10%
of the object.

Synthesis Our experimental observations show that there
is a real benefit in using a rational regularizer over a regu-
lar polynomial regularizer in warp estimation. We have that
the first-order rational regularizer outperforms in almost all
cases. It is closely followed by the second- and third-order
rational regularizers and then by the second- and third-order
polynomial regularizers. Interestingly, the plain Gaussian
radial basis function is on parwith the second- and third-order
rational regularizers. Finally, the first-order polynomial reg-
ularizer underperforms in almost all cases. The differences
across the warps generally increase with the order of the
estimated derivatives. The reason for these results is that the
first-order rational regularizer forms the optimal trade-off in
terms of local shape capture capability and local constraint
strength. Indeed, the higher the degree, the more flexible
the modeling capability but the weaker the constraint. The
powerful modeling capability of the second- and third-order
rational regularizers is thus impaired by the weakened local
constraint they exert on the warp, compared to the first-order
rational regularizer.
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Fig. 4 Results of simulated data experiments. The top row shows an example of simulated configuration. From left to right, the noise, number of
points and extrapolation domain are varied. From the second to fourth row, the zeroth-, first- and second-order errors are shown for the seven tested
warps

6.2.2 Real Data

In the case of real data, we do not have access to ground truth.
We followed the estimation methodology described in §5.4
and three cases of splitting the 30 input point correspon-
dences into training, validation and test sets. This allowed us
to emulate mild and strong interpolation and extrapolation.
The results are the test residuals given in Fig. 5. They are
averages over 50 trials for each configuration in each case.

Mild interpolation The mild interpolation case emulates the
non-uniformity of data by changing the size of the training
set, without creating overly large areas of missing data. We
used a fixed size of ten points for each of the validation and
test sets while varying the number of training points from 10
to 5. These points are all chosen randomly at each trial. The
results are shown in the second row of Fig. 5. We observe
that all warps follow the same trend of nicely degrading for
a decreasing number of training points. The PLAIN warp
always performs worst while the RAT2 warp always per-
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Fig. 5 Results of real data experiments. The top row shows the input 2D images from which the 1D images were constructed. The other three rows
show the result of the mild interpolation, strong interpolation and extrapolation experiments, respectively

forms best, except for the convex shape where the RAT3
warp performs slightly better for larger numbers of training
points. The second worst is the POL1 warp. It is followed
by the POL2 and then the POL3 warps. The POL3 warp
has performances close to the RAT1 warp, which is itself
below the RAT2 warp. Overall, the RAT2 warp has the best
performance. This is because the RAT2 warp has increased
modeling capabilities compared to the RAT1 warp from its
higher degree. However, because the interpolation range is
limited, the extramodeling capabilities of the RAT3warp did
not compensate its lower constraining strength on the warp.

Strong interpolation The strong interpolation case emu-
lates the lack of data in possibly large areas surrounded by
available data by changing the size of the test set within the
domain. We split the input points into three parts. The left
and right parts are used to sample the training and validation
sets while the middle part forms the test set. We use a fixed
number of ten points for each of the training and validation
sets and ensure that five of each lies in the left and right parts.
The number of test points is then varied from 1 to 9. It repre-
sents the size of the gap that the warp has to interpolate. The
results are shown in the third row of Fig. 5. We observe that
all warps roughly follow the same trend of degrading for an
increasing interpolation range. The PLAIN and POL1 warps
are the worst, except for the convex shape where the POL2
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and RAT1 warps also perform poorly. The POL3 and RAT3
warps show better performances. The RAT1 warp is on par,
except for the convex shape. The RAT2 warp performs better
in all cases, except a single configuration with one point on
the concave shape. Overall, the RAT2 warp has the best per-
formance. The explanation for these results are similar to the
mild interpolation case. Even though the interpolation range
is larger, this remains a relatively easy task for the warps,
and the extra modeling capability of the RAT3 warp is not
needed.

Extrapolation The extrapolation case emulates the lack of
data on the boundary of the domain by changing the size of
the test set. We vary the number of test points from 1 to 9 and
choose them as the leftmost points in the input points. We
use a fixed number of ten points for each of the training and
validation sets. They are chosen randomly in the remaining
input points. The results are shown in the fourth row of Fig. 5.
We observe a mild error increase or a slight error decrease,
depending on the shape, for all warps but the POL1 warp, for
an increasing extrapolation range. Indeed, the POL1 warp
quickly degrades dramatically in all three shapes. It is then
difficult to give a general ordering of the warps, as their per-
formance changes significantly across the configurations and
shapes. Nonetheless, we observe that the PLAIN warp does
well as compared to the two previous cases of interpolation.
While the best results are generally achieved by the RAT3
warp, the POL2 and POL3warps outperform on the concave
shape for smaller extrapolations. Overall, the RAT3warp has
the best performance. This is explained by the fact that the
rat3 warp has the highest modeling capabilities of all the
tested warps, and that extrapolation is fundamentally a more
difficult task than interpolation, in the sense that the model
must capture the structure of the data to a very good extent
in order to make reliable predictions.

7 Conclusion

We have proposed a theoretical framework based on locally
rational embeddings and univariate rational functions to for-
mulate the SVG of a deformable body observed by a 1D
projective camera. This framework is generic in the sense
that it does not impose a specific deformation constraint, but
uses mere local smoothness represented by a locally rational
embedding. Our work is theoretic and includes experimen-
tal results showing the ability of the proposed invariants
to improve the estimation of warps. Our framework fits in
the recent and fascinating research topic of understanding
the visual geometry of a deformable body. We now discuss
two possibilities of future work based on our framework:
deformable MVG and higher dimensions.

A natural question when working on deformable SVG is
whether the framework would form a basis for deformable
MVG. Local smoothness surely forms a good basis for
deformable MVG because locally smooth warps have a local
group structure. Concretely for two images, deformable SVG
studies the smooth warps ηi ∈ C∞ from the parameteriza-
tion space defined from the embeddings as ηi = � ◦ ϕi ,
i = 1, 2, while deformable MVG studies the smooth inter-
image warp η1,2 ∈ C∞. By construction, we have η1,2 =
η2 ◦ η−1

1 = � ◦ ϕ2 ◦ η−1
1 . We can thus construct a smooth

embeddingϕ1,2 by using image 1 as a parameterization space

for image 2 as ϕ1,2
def= ϕ2 ◦ η−1

1 . Therefore, one could use
local smoothness to define thewarps and exploit the proposed
deformable SVG.

Extending our 1D framework to higher dimensions also
forms an appealing idea. The extension to 2D is particularly
interesting, as it will allow one to handle the 2D images of
surfaces taken by regular cameras.

Acknowledgements This research has received funding from the EU’s
FP7 through the ERC research grant 307483 FLEXABLE.We thank the
authors of [11] for the real dataset and Yan Gérard for his kind feedback
on the paper.

A Higher Dimensions

We give general points about extending our framework to
higher dimensions. We then show that the 1D invariants pro-
vide a partial set of invariants for the 2D setup using a virtual
1D setup.

A.1 General Points

Extending our 1D framework to higher dimensions presents
different types of difficulties, whether one extends the dimen-
sion of the source or the target space. Note that extending
the framework to handle 2D warps requires one to extend
the dimension of both the source and target spaces. Extend-
ing the dimension of the target space, for example to 2D in
order to model the image of a deformable 3D curve, leads
to η� = [η1 η2] = 1

γ
[α1 α2]. It is straightforward to see

that this warp satisfies two invariants, Ia,a[η1] and Ia,a[η2],
for a polynomial embedding of degree a. However, these two
invariants, according to Proposition 1, guarantee that ηi = αi

γi
for some αi , γi ∈ Pa , i = 1, 2, but they do not guarantee that
γ1 = γ2, which is a necessary condition for the SVG to be
valid. It is quite likely that this requirement adds an invariant
that η must fulfill. Extending the dimension of the source
space, for example to 2D in order to model a deformable
3D surface, means that the partial derivatives will become
tensor-valued functions. Though this will require one to use
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Fig. 6 Virtual 1D setup. We use this construction to show that the proposed invariants for the 1D setup form a subset of the invariants for the 2D
setup

a tensorial notation, such as Einstein’s, this will also allow
one to follow the proposed mathematical framework.

A.2 TheVirtual 1D Setup

Our goal is to show that the 1D invariants form a subset of
the 2D invariants. For that purpose, we construct a virtual 1D
setup, as shown in Fig. 6. We start from the 2D setup, shown
in Fig. 1, where the warp η′ : �′ → R

2, �′ ⊂ R
2, is a 2D

rational mapping. Therefore, both its source and target space
dimensions must be reduced by one in order to apply our 1D
invariants. Importantly, these reductions must preserve ratio-
nality. Our first step is to reduce the source space dimension.
This is done by choosing a rational plane curve parameter-
ized by κ : � → R

2, a 1D rational embedding. Clearly,
η′ ◦ κ : � → R

2 is a rational function. The domain � ⊂ R

of κ stands for the virtual 1D body’s model. Our second step
is to reduce the target space dimension. This is done by intro-
ducing a virtual 1D camera, represented by � : P

2 → R, in
the 2D image. Clearly, η = � ◦ η′ ◦ κ : � → R is a rational
function. Therefore, according to Proposition 1, there exist
a, b ∈ N such that the invariant Ia,b[η] holds. The value of
a, b is upper-bounded by a combination of the degrees of κ

and η′ and the parameters of �. We can easily derive inter-
esting cases out of this general formulation. For instance,
choosing the rational plane curve as a straight horizontal line
in the 2D model, we have κ(p) = [p y]�, where y ∈ R

is a constant, and the degree of η′ ◦ κ is at most (a′, b′),
the degree of η′. Then, placing the virtual 1D camera at the
origin with its principal axis along the vertical direction, we
have �([q1 q2]�) = q1

q2
, and the degree of η becomes at

most (a′, a′). The real example shown in the experiments

of §§6.1.3 and 6.2.2 represents a special case of this general
principle.

We have shown that the 1D invariants can be applied to
simple restrictions of the 2D warp, based on choosing a sim-
ple rational curve in the 2Dmodel and a simple 1D projection
in the 2D image. This forms a possible way to study the
generalization of our 1D invariants to higher dimensions. A
first step would be to study how to form a minimal set of
restrictions among the many possible ones to form a set of
mutually independent invariants. A second step would be to
study whether the so-obtained invariant set forms sufficient
conditions to characterize the set of 2D rational functions.

B Proof of Proposition 1

We prove Proposition 1 in two parts. Part I is the forward
implication and part II the reverse implication. Part I requires
the following three lemmas. It constructs the canonical invari-
antIa,b[μ] by differentiating the relationship γμ = α, called
G[μ, α, γ ] in Lemma 1, at the orders Z ⊂ N, which we will
show can be chosen as Z = [a + 1, a + b + 1] in Lemma 2.
It then combines the different orders in Lemma 3 to elimi-
nate all orders of γ and α from the equations, resulting in the
sought invariant, an equation depending on μ only.

Lemma 1 We have ∀μ ∈ C∞, a, b ∈ N, α ∈ P̄a, γ ∈ P̄b:

μ = α

γ
⇒ {He,b[μ, γ ] | e > a},

with:

He,b[μ, γ ] def⇔
(

b∑
k=0

(
e

k

)
γ (k)μ(e−k) = 0

)
. (10)
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Proof We have that μ = α
γ
implies G[μ, α, γ ], with:

G[μ, α, γ ] def⇔ (γμ = α) . (11)

By taking the eth derivative of G[μ, α, γ ] using Leibniz’s
rule, we obtain:

DeG[μ, α, γ ] ⇔
(

e∑
k=0

(
e

k

)
γ (k)μ(e−k) = α(e)

)
. (12)

Using Eq. 1, we have that α(e) = 0 for e > a and γ (e) = 0
for e > b. We can thus rewrite DeG[μ, α, γ ] as:

Ke,a,b[μ, α, γ ] def⇔
⎛
⎝min(e,b)∑

k=0

(
e

k

)
γ (k)μ(e−k) = 1e≤aα

(e)

⎞
⎠ ,

where 1 is the indicator function, with 1true = 1 and 1false =
0. For e > a we can simplify Ke,a,b[μ, α, γ ] to He,b[μ, γ ],
using the relationship min(e, b) ≤ b and

(e
k

) = 0 for k > e
to set a fixed summation count. ��
Lemma 2 For α ∈ P̄a, γ ∈ P̄b constructing a differential
invariant Ia,b[μ] requires one to differentiate G[μ, α, γ ] at
the orders in Z ⊂ N with min(Z) > a and |Z| = b + 1.

Proof Recall that deriving a differential invariant Ia,b[μ] on
μ from equations DeG[μ, α, γ ] formed at several orders e
requires that α and γ be eliminated, as well as their deriva-
tives at all orders. We start with the elimination of α and
its derivatives. By construction DeG[μ, α, γ ] involves α(e)

and no other orders of α, as can be seen in Eq. 12. There-
fore, the only way to cancel out all orders of α to form an
invariant on μ is by differentiation of G[μ, α, γ ] at an order
greater than a, the degree of α, thanks to Eq. 1. This proves
min(Z) > a. Importantly, once α has been canceled, the
equations DeG[μ, α, γ ] become homogeneous, as can triv-
ially be seen fromEq. 12.We now turn to the elimination of γ
and its derivatives. The situation is different as each equation
DeG[μ, α, γ ] depends on {γ (0), . . . , γ (e)}. This means that
we will have to form a linear system in γ and its derivatives.
Forcing this system to have a solution will then allow us to
eliminate γ and its derivatives, as will be shown in Proof of
Lemma 3. This also means that differentiating DeG[μ, α, γ ]
to form De+1G[μ, α, γ ] introduces a new order γ (e+1) of γ .
Therefore, the first e orders in G[μ, α, γ ] involve the first e
orders of γ . This means that to eliminate all orders of γ to
form an invariant on μ, one has to differentiate G[μ, α, γ ]
to an order greater than b, the degree of γ , thanks to Eq. 1,
and that the number of orders involved must be greater than
b. This is equivalent to requiring the size of Z to be greater
than b. Each order beyond b then allows one to form a linear
system, and thus an invariant. Because we want to form one
invariant only, this proves |Z| = b + 1. ��

Lemma 3 Defining Ĥa,b[μ, γ ] def= {He,b[μ, γ ] | e ∈ [a +
1, a + b + 1]}, we have:

∀μ, γ ∈ C∞, a, b ∈ N
∗ Ĥa,b[μ, γ ] ⇒ Ia,b[μ].

Proof We choose U ,V ⊂ N to contain, respectively, the
orders of μ and γ involved in Eq. 10, namely U = [max(a+
1 − b, 0), a + b + 1] and V = [0, b]. The relationship
He,b[μ, γ ] in Eq. 10 is bilinear in μ(U) and γ (V), and we
thus have ∀e ∈ N, a, b ∈ N, ∃Ae,b ∈ N

|U |×|V |:

He,b[μ, γ ] ⇔
(
μ(U)�Ae,bγ (V) = 0

)
.

Together with Ĥa,b[μ, γ ], this shows that γ (V) is up to
scale a non-trivial element in the kernel of the matrix-valued
function βa,b[μ] ∈ C∞ (

R, R
(b+1)×|V |) whose ‘rows’ are

functions μ(U)�Ae,b ∈ C∞ (
R, R

1×|V |) for e ∈ [a + 1, a +
b + 1]. Because |V| = b + 1, we thus have ∀μ, γ ∈
C∞, a, b ∈ N, ∃βa,b[μ] ∈ C∞ (

R, R
(b+1)×(b+1)

)
:

Ĥa,b[μ, γ ] ⇔
(
βa,b[μ]γ ([0,b]) = 0

)
.

In order to form a non-trivial invariant on μ, we force
the kernel of βa,b[μ] to be non-empty. This invariant may
thus be found by expanding det

(
βa,b[μ]) = 0. Inspecting

He,b[μ, γ ] in Eq. 10, we find that the entry of matrix βa,b[μ]
at (i, j) is given by:

βa,b;i, j [μ] =
(
a + i

j − 1

)
μ(a+i− j+1). (13)

Using Leibniz’s formula, we finally expand det
(
βa,b[μ]) =

0 to arrive at the canonical invariant 6. ��

Proof of Proposition 1, part I We want to show the forward
implication, R̄a,b[μ] ⇒ Ia,b[μ]. We use the definition 4
to obtain Ra,b[μ] ⇒ ∃α ∈ P̄a, γ ∈ P̄b s.t. μ = α

γ
. From

Lemma1,we thenhave that this implies {He,b[μ, γ ] | e > a}.
Lemma 2 shows that instantiating He,b at the orders in
[a + 1, a + b + 1], which is equivalent to Ĥa,b[μ, γ ], is
required to form the canonical invariantIa,b[μ]. These orders
lead to the canonical invariant, and any other orders respect-
ing Lemma 2 lead to a non-canonical invariant for the degree
(a, b) (see comment 1). Finally, applying Lemma 3 proves
the forward implication in Eq. 6. ��

Comment 1 (Non-canonical invariants andnumberof invari-
ants) The way the invariants are constructed depends on
Z ⊂ N, which must satisfy the constraints from Lemma 2.
We have defined the canonical invariant as the one obtained
with Z = [a + 1, a + b + 1]. However, for a given degree
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(a, b), there exist an infinite number ofZ subsets, each lead-
ing to a different invariant. There thus exist an infinite number
of invariants.

Part II of our proof of Proposition 1 uses Lemma 4 to show
that given the invariant Ia,b[μ] there exists a smooth vector-

value function γ ∈ (C∞)b+1, γ � def= (γ1, . . . , γb+1) with
γk ∈ C∞, k = 1, . . . , b + 1, so that Ĥa,b[μ, γ ] holds.

The latter is defined as Ĥa,b[μ, γ ] def= {He,b[μ, γ ] | e ∈
[a + 1, a + b + 1]}, where He,b[μ, γ ] is an extension of
He,b[μ, γ ] where γ ’s derivatives are replaced by the scalar-
valued functions forming the vector-valued function γ as:

He,c[μ, γ ] ⇔
(

c∑
k=0

(
e

k

)
γk+1μ

(e−k) = 0

)
.

It then shows that this implies that at each point in� eitherμ
or γ is a polynomial of some bounded degree. In the former
case,μ is also a univariate rational function. In the latter case,
this is because the entries of γ correspond to the derivatives
of a scalar-valued function γ . We can then show that there
exist a polynomial α such thatμ = α

γ
. More specifically, our

proof requires the following three lemmas.

Lemma 4 We have ∀μ ∈ C∞, a, b ∈ N:

Ia,b[μ] ⇒
(
∃γ ∈ (C∞)b+1 s.t. Ĥa,b[μ, γ ]

)
(14)

Ia,b[μ] ⇒
(
∃γ ∈ C∞ s.t. Ĥa,b[μ, γ ([0,b])]

)
. (15)

Proof We first prove Eq. 14. The way the invariant Ia,b was
derived in the proof of Lemma 3 is by nullifying the determi-
nant of a matrix-valued operator βa,b on μ. In other words,
Ia,b[μ] implies det(βa,b[μ]) = 0, and thus that βa,b[μ] has
a non-empty null-space, which we represent by the vector-
valued function γ , defined such that βa,b[μ]γ = 0. The
smoothness of γ is implied by the smoothness of μ and
βa,b[μ], and the fact that the null-space of a rank-deficient
matrix is obtained as a multi-linear combination of the
matrix’ entries.

We now prove Eq. 15 by contradiction. Assuming
that ∀μ ∈ C∞ s.t. Ia,b[μ], we have �γ ∈ C∞ s.t.
Ĥa,b[μ, γ ([0,b])]. By using the contrapositive of Lemma 1,
this implies that �α ∈ Pa, γ ∈ Pb s.t. μ = α

γ
. In other

words, this implies the falsity ofRa,b[μ]. However, the for-
ward implication of Proposition 1, which is proved in part I of
the proof, implies that the kernel of the canonical invariant
comprises at least the rational functions of the appropriate
degree, which contradicts the falsity of Ra,b[μ]. ��
Lemma 5 We have ∀μ, γ ∈ C∞, c, e ∈ N, e ≥ c:

(He,c[μ, γ ] ∧ He+1,c[μ, γ ]) ⇒ γ (c+1)μ(e−c) = 0.

Proof We first differentiate He,c[μ, γ ]:

DHe,c[μ, γ ] ⇔
( c∑

k=0

(
e

k

)
γ (k)μ(e−k+1)

+
c∑

k=0

(
e

k

)
γ (k+1)μ(e−k) = 0

)
.

We expand the first term as:

c∑
k=0

(
e

k

)
γ (k)μ(e−k+1)

=
(
e

0

)
γμ(e+1) +

c∑
k=1

(
e

k

)
γ (k)μ(e−k+1)

=
(
e + 1

0

)
γμ(e+1) +

c∑
k=1

(
e

k

)
γ (k)μ(e−k+1),

where the last equality follows from
(e
0

) = (e+1
0

) = 1 since
e ≥ 0. We expand the second term as:

c∑
k=0

(
e

k

)
γ (k+1)μ(e−k)

=
c+1∑
k=1

(
e

k − 1

)
γ (k)μ(e−k+1)

=
c∑

k=1

(
e

k − 1

)
γ (k)μ(e−k+1) +

(
e

c

)
γ (c+1)μ(e−c).

Using the relation
(e+1

k

) = ( e
k−1

) + (e
k

)
, we obtain:

DHe,c[μ, γ ] ⇔
( c∑

k=0

(
e + 1

k

)
γ (k)μ(e−k+1)

+
(
e

c

)
γ (c+1)μ(e−c) = 0

)
.

Expanding DHe,c[μ, γ ] − He+1,c[μ, γ ] yields
(e
c

)
γ (c+1)

μ(e−c) = 0. Because e ≥ c,
(e
c

)
> 0 and we arrive at

γ (c+1)μ(e−c) = 0. ��

Lemma 6 We have ∀μ ∈ C∞, c, e ∈ N, γ ∈ C∞, γ (c+1) =
0:

He,c[μ, γ ] ⇒ (γμ)(e) = 0.

Proof Let α = γμ. We thus have that G[μ, α, γ ] from
Eq. 11 holds. We then form DeG[μ, α, γ ] from Eq. 12 and
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DeG[μ, α, γ ] − He,c[μ, γ ] as:
(

e∑
k=0

(
e

k

)
γ (k)μ(e−k) = α(e)

)

−
(

c∑
k=0

(
e

k

)
γ (k)μ(e−k) = 0

)
.

For e ≤ c, we immediately obtain α(e) = 0 because the
second summation goes only up to e since

(e
k

)
vanishes for

k > e. For e > c, the relationship is rewritten as:

(
e∑

k=c+1

(
e

k

)
γ (k)μ(e−k) = α(e)

)

Because γ (c+1) = 0, this also leads to α(e) = 0. ��
Proof of Proposition 1, part II We want to show the reverse
implication, R̄a,b[μ] ⇐ Ia,b[μ]. We first prove the case
b > 0. We use Lemma 4, Eq. 14, which is Ia,b[μ] ⇒(
∃γ ∈ (C∞)b+1 s.t. Ĥa,b[μ, γ ]

)
.Wefirst showĤa,b[μ, γ ]

admits as solution (μ, γ ) for which R̄a,b[μ] holds and γ =
γ ([0,b]).We then show this is the only solution to Ĥa,b[μ, γ ].
Wehave fromLemma4,Eq. 15, thatĤa,b[μ, γ ([0,b])] is solv-
able. We have that Ĥa,b[μ, γ ([0,b])] ⇔ Ĥa,b[μ, γ ]. By def-
inition, Ĥa,b[μ, γ ] impliesHa+b,b[μ, γ ] ∧Ha+b+1,b[μ, γ ]
and we can thus apply Lemma 5 with c = b and e = a + b,
leading to:

Ĥa,b[μ, γ ] ⇒ γ (b+1)μ(a) = 0.

This implies that there exists� ⊂ R such that (i)μ(a) = 0 on
� and (ii) γ (b+1) on R\�. In case (i), because μ is smooth
from a premise of Proposition 1, using Eq. 2 for μ in �

implies μ ∈ Pn with n ≤ a, which is equivalent to R̄a,0[μ].
In case (ii), because γ is smooth from Lemma 4, using Eq. 2
for γ in R\� implies γ ∈ Pn with n < b + 1. We can use
Lemma 6 with c = b and e = a + 1. Defining α = γμ,
we obtain that α(a+1) = 0, which implies through Eq. 2
that α ∈ Pn with n < a. We can therefore write μ = α

γ

and thus R̄a,b[μ]. Combining cases (i) and (ii), we obtain
that Ra,b[μ] holds since max(0, b) = b. We finally prove
the case b = 0 with a ≥ 0. Using Eq. 6, we have that
Ia,0[μ] ⇔ (a+1

1

)
μ(a+1) = 0. The factor

(a+1
1

) = a + 1 and
because a + 1 > 0 we arrive at μ(a+1) = 0 and thus R̄a,0

holds.
We now show that the above solution is the only one to

Ĥa,b[μ, γ ]. We use an induction on b. The key observa-
tion to this proof is that for b > 0 the leading submatrix
of βa,b[μ] is βa,b−1[μ]. We start with b = 0. In that case
βa,0[μ] = (a+1

0

)
μ(a+1) = μ(a+1) where the last equality

follows from a + 1 > 0. Because Ia,0[μ] ⇔ (μ(a+1) = 0),
as can easily be found from Eq. 6, we directly have that
μ ∈ P̄a which implies R̄a,0[μ]. We now examine b > 0.
In that case, βa,b[μ] ∈ C∞(R, R

(b+1)×(b+1)), and by def-
inition of the invariant we have det(βa,b[μ]) = 0 and so
rank(βa,b[μ]) ≤ b. We then face two cases. In the first case,
we have rank(βa,b[μ]) < b. This means that any (b × b)
minor of βa,b[μ] vanishes. In particular, deleting the last row
and column of βa,b[μ], we observe that the obtained sub-
matrix is βa,b−1[μ]. This is easily understood from Eq. 13,
wherewe observe that the entries ofβa,b[μ] do not depend on
b (just its size depends on b). Therefore, from the induction
hypothesis, we have R̄a,b−1[μ] which implies R̄a,b[μ]. In
the second case, we have rank(βa,b[μ]) = b. The equations
βa,b[μ]γ = 0 from Ĥa,b[μ, γ ] are homogeneous. Any two
solutions γ and γ ′ must thus be related by γ = τγ ′ for some
τ ∈ C∞(R, R

∗). Therefore, we have that γ = τγ ([0,b]).
Because Ĥ[μ, γ ] = Ĥ[μ, τγ ([0,b])] = τĤ[μ, γ ([0,b])] =
τĤ[μ, γ ], we conclude that all solutions to Ĥ[μ, γ ] are
equivalent. ��
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